
®

ARM966E-S
Microprocessor Core

Technical
Manual

J u n e 2 0 0 1

Preliminary

www.DataSheet4U.com

ii
Rev. A Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

This document is preliminary. As such, it contains data derived from functional
simulations and performance estimates. LSI Logic has not verified either the
functional descriptions, or the electrical and mechanical specifications using
production parts.

Document DB14-000111-00, First Edition (June 2001)
This document describes LSI Logic Corporation’s ARM966E-S Microprocessor
Core and will remain the official reference source for all revisions/releases of this
product until rescinded by an update.

To receive product literature, visit us at http://www.lsilogic.com.

LSI Logic Corporation reserves the right to make changes to any products herein
at any time without notice. LSI Logic does not assume any responsibility or
liability arising out of the application or use of any product described herein,
except as expressly agreed to in writing by LSI Logic; nor does the purchase or
use of a product from LSI Logic convey a license under any patent rights,
copyrights, trademark rights, or any other of the intellectual property rights of LSI
Logic or third parties.

Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

TRADEMARK ACKNOWLEDGMENT
LSI Logic logo design. G10, GigaBlaze, CoreWare, FlexStream, and Right-First-
Time are trademarks or registered trademarks of LSI Logic Corporation.ARM is
a registered trademark of ARM Ltd., used under license. All other brand and
product names may be trademarks of their respective companies.

EH

www.DataSheet4U.com

ARM966E-S Microprocessor Core iii
Rev. A Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Preface

This book is the primary reference and Technical Manual for the
ARM966E-S Microprocessor core. It contains a complete functional
description of the core and describes the main features of the
microarchitecture.

Audience

This document assumes that you have some familiarity with
microprocessors and related support devices. The people who benefit
from this book are:

• Engineers and managers who are evaluating the processor for
possible use in a system

• Engineers who are designing the processor into a system

Organization

This document has the following chapters:

• Chapter 1, Introduction, provides an overview of the ARM966E-S
Microprocessor core and the LSI Logic CoreWare® program.

• Chapter 2, Signal Descriptions, describes all of the external
interface signals.

• Chapter 3, Programmer’s Model, discusses the memory model and
operating modes of the ARM966E-S, and describes its register set.

• Chapter 4, Exception Processing, describes the events that cause
the ARM966E-S exceptions and discusses how the ARM966E-S
handles them.

• Chapter 5, AHB Interface Unit, describes the operation of the
Advanced High-performance Bus Interface Unit.

www.DataSheet4U.com

iv Preface
Rev. A Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

• Chapter 6, Write Buffer, describes the internal Write Buffer.

• Chapter 7, System Controller, describes the internal
Coprocessor 15 block, which the CPU uses to control the Write
Buffer and Instruction and Data RAMs.

• Chapter 8, Tightly Coupled RAM, describes the two built-in RAMs:
the Instruction RAM and the Data RAM.

• Chapter 9, External Coprocessor Interface, describes the external
coprocessor interface through which additional on-chip coprocessors
connect.

• Chapter 10, Debug, describes the operation of the ARM966E-S
debug interface, which is based on the IEEE Std. 1149.1-1990.

• Chapter 11, Test Methodology, discusses the available test
methods.

• Appendix A, ARM9E-S Enhanced Instructions, describes the
enhancements to the ARM9E-S instruction set.

Related Publications

ARM946E-S Microprocessor Core with Cache Technical Manual,
Document No. DB14-000104-00

Standard Test Access Port and Boundary Scan Architecture,
IEEE Standard 1149.1-1990

ARM940T Datasheet, ARM Ltd., Document No. ARM DDI 0092A-04

ARM9 Architecture Reference Manual, ARM Ltd., Document No.
ARM DDI 0100

ARM9E-S Technical Reference Manual, ARM Ltd., Document No.
ARM DDI 0165

ARM Hurricane Engineering Specification

AHB Specification (Rev. 2.0), ARM Ltd., Document No. ARM IHI 0011

Conventions Used in This Manual

The first time a word or phrase is defined in this manual, it is italicized.

www.DataSheet4U.com

Preface v
Rev. A Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

The word assert means to drive a signal true or active. The word
deassert means to drive a signal false or inactive.

Hexadecimal numbers are indicated by the prefix “0x” —for example,
0x32CF. Binary numbers are indicated by the prefix “0b” —for example,
0b0011.0010.1100.1111.

www.DataSheet4U.com

vi Preface
Rev. A Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

www.DataSheet4U.com

ARM966E-S Microprocessor Core vii
Rev. A Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Contents

Chapter 1 Introduction
1.1 Overview 1-1
1.2 Block Diagram Description 1-2

1.2.1 ARM9E-S Processor Core 1-3
1.2.2 System Controller 1-4
1.2.3 CP15 System Control Coprocessor 1-4
1.2.4 Address Decoders 1-4
1.2.5 Instruction and Data RAMs 1-4
1.2.6 DMA Interface 1-5
1.2.7 AHB Interface Unit and Write Buffer 1-5
1.2.8 External Coprocessor Interface 1-5
1.2.9 JTAG and Debug Port 1-5
1.2.10 Embedded Trace Module Interface 1-6

1.3 Feature Summary 1-6
1.4 CoreWare Program 1-6

Chapter 2 Signal Descriptions
2.1 AHB Interface 2-3
2.2 Coprocessor Interface 2-8
2.3 Instruction RAM Signals 2-10
2.4 Data RAM Signals 2-10
2.5 DMA Signals 2-12
2.6 Debug Signals 2-14
2.7 ETM Interface Signals 2-16
2.8 Miscellaneous Signals 2-20
2.9 Initialization Control Signals 2-21
2.10 ATPG Scan Control Signals 2-21

www.DataSheet4U.com

viii Contents
Rev. A Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Chapter 3 Programmer’s Model
3.1 About the Programmer’s Model 3-1
3.2 Data Abort Model 3-2
3.3 Data Types 3-2
3.4 Processor Modes 3-3
3.5 CP15 Instruction Format 3-4
3.6 Memory Map 3-5
3.7 Registers 3-5

3.7.1 CPU Registers 3-6
3.7.2 CP15 Registers 3-9

Chapter 4 Exception Processing
4.1 Overview 4-1
4.2 Exception Flow 4-2
4.3 Exception Descriptions 4-4

4.3.1 Reset Exception 4-4
4.3.2 Undefined Instruction Execution 4-4
4.3.3 Software Interrupt Exception 4-5
4.3.4 Prefetch Abort (Instruction Fetch Memory Abort) 4-5
4.3.5 Data Abort (Data Access Memory Abort) 4-6
4.3.6 IRQ (Interrupt Request) Exception 4-7
4.3.7 FIQ (Fast Interrupt Request) Exception 4-7

Chapter 5 AHB Interface Unit
5.1 Overview 5-1
5.2 AHB Interface Signals 5-2

5.2.1 Transfer Types 5-3
5.2.2 Burst Types 5-4
5.2.3 Control Signals 5-5
5.2.4 Data Buses 5-8
5.2.5 Endianess 5-10

5.3 AHB Clocking 5-11
5.4 AHB Operation 5-11
5.5 Basic Transfers 5-12
5.6 Burst Operations 5-15

5.6.1 Early Burst Termination 5-15

www.DataSheet4U.com

Contents ix
Rev. A Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

5.6.2 Burst Operation Example 5-15
5.7 Slave Transfer Responses 5-16

5.7.1 Two-Cycle Response 5-17
5.7.2 Error Response 5-18
5.7.3 Retry Responses 5-19
5.7.4 Split Responses 5-19

Chapter 6 Write Buffer
6.1 Introduction 6-1
6.2 Normal Operation 6-2
6.3 Full Write Buffer 6-2
6.4 Unbuffered Writes 6-3
6.5 Read-Lock-Write 6-3
6.6 Read to Write-Posted Address 6-3
6.7 Write Buffer Nonrecoverable Error and Abort Conditions 6-3

Chapter 7 System Controller
7.1 Operation 7-1
7.2 Clock Control 7-2

Chapter 8 Tightly Coupled RAM
8.1 Tightly Coupled Memory (TCM) Overview 8-1
8.2 ARM966E-S SRAM Requirements 8-1
8.3 Enabling the SRAM 8-2

8.3.1 Using INITRAM to Enable SRAM 8-2
8.3.2 Using CP15 Control Register to Enable SRAM 8-3

8.4 ARM966E-S SRAM Wrapper 8-5
8.5 Example SRAM Interfaces 8-6

8.5.1 ONESEGX32 8-7
8.5.2 FOURSEGX32 8-7
8.5.3 FOURSEGX8 8-8

Chapter 9 External Coprocessor Interface
9.1 Overview 9-1
9.2 Coprocessor Instruction Execution 9-2

9.2.1 LDC/STC Instructions 9-2

www.DataSheet4U.com

x Contents
Rev. A Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

9.2.2 MCR/MRC Instructions 9-5
9.2.3 Interlocked MCRs 9-6
9.2.4 CDP Instructions 9-7

9.3 Privileged Instructions 9-8
9.4 Stalling and Interrupts 9-9

Chapter 10 Debug
10.1 Debug Systems 10-1

10.1.1 The Debug Host 10-2
10.1.2 The Protocol Converter 10-2
10.1.3 Debug Target 10-3

10.2 About the Debug Interface 10-4
10.2.1 Stages of Debug 10-5
10.2.2 Clocks 10-5

10.3 Scan Chain 15 10-6
10.4 Breakpoints, Watchpoints, and External Debug Requests 10-8

10.4.1 Entry into Debug State on Breakpoint 10-9
10.4.2 Breakpoints and Exceptions 10-10
10.4.3 Watchpoints 10-11
10.4.4 Watchpoints and Exceptions 10-13
10.4.5 Debug Request 10-13
10.4.6 Actions of the ARM9E-S Core in Debug State 10-13

10.5 ARM9E-S Clock Domains 10-14
10.6 Determining the Core and System States 10-14
10.7 About the EmbeddedICE-RT Logic 10-14
10.8 Disabling the EmbeddedICE-RT Logic 10-16
10.9 The Debug Communications Channel 10-16

10.9.1 Debug Communication Channel Registers 10-17
10.9.2 Debug Communications Channel Status

Register 10-17
10.9.3 Communications Channel Monitor Mode

Debug Status Register 10-18
10.9.4 Using the Communications Channel 10-19

10.10 Real-Time Debug 10-20

Chapter 11 Test Methodology
11.1 Scan Insertion 11-1

www.DataSheet4U.com

Contents xi
Rev. A Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

11.2 RAMBIST 11-1

Appendix A ARM9E-S Enhanced Instructions

Index

Customer Feedback

Figures
1.1 ARM966E-S Block Diagram 1-3
2.1 ARM966E-S Signal Diagram 2-2
3.1 Coprocessor Instruction Format 3-4
3.2 ARM966E-S Memory Map 3-5
3.3 CPU Register Organization 3-6
3.4 Program Status Registers (CPSR and SPSR) Format 3-8
5.1 Multiplexer Interconnection 5-2
5.2 Transfer Type Examples 5-4
5.3 AHB Clock Relationships 5-11
5.4 Simple Transfer 5-13
5.5 Transfer with Wait States 5-14
5.6 Multiple Transfers 5-14
5.7 Incrementing Bursts with Undefined Lengths 5-16
5.8 Transfer with Retry Response 5-18
5.9 Error Response 5-18
8.1 SRAM Read Cycle 8-2
8.2 ARM966E-S SRAM Hierarchy 8-6
8.3 ONESEGX32 Interface 8-7
8.4 FOURSEGX32 Interface 8-8
8.5 FOURSEGX8 Interface 8-10
9.1 CLK and CPCLKEN Timing 9-2
9.2 LDC/STC Cycle Timing 9-3
9.3 MCR/MRC Cycle Timing 9-6
9.4 Interlocked MCR 9-7
9.5 Late Cancelled CDP 9-8
9.6 Privileged Instructions 9-9
9.7 Stalling and Interrupts 9-10

www.DataSheet4U.com

xii Contents
Rev. A Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

10.1 Typical Debug System 10-2
10.2 ARM9E-S Processor and Debug Logic 10-3
10.3 Clock Synchronization Logic 10-6
10.4 Breakpoint Timing 10-10
10.5 Watchpoint Entry with Data Processing Instruction 10-11
10.6 Watchpoint Entry with Branch 10-12
10.7 The ARM9E-S, TAP Controller, and EmbeddedICE-RT 10-15
10.8 Debug Communications Channel Status Register 10-17
10.9 Coprocessor 14 Debug Status Register Format 10-18

Tables
3.1 Supported Data Types 3-2
3.2 ARM9E-S Processor Modes 3-3
3.3 Instruction Format Field Descriptions 3-4
3.4 Mode Bits 3-9
3.5 CP15 Register Map 3-9
3.6 Core Control Instructions 3-12
3.7 Register 13, Trace Process Identifier 3-14
3.8 CP15 RAMBIST Register Map 3-14
4.1 Exception Processing Modes 4-2
4.2 Exception Priority Order 4-2
5.1 Transfer Type Encoding 5-3
5.2 Burst Signal Encoding 5-5
5.3 Size Encoding 5-6
5.4 Protection Signal Encoding 5-7
5.5 Active Byte Lanes for a 32-Bit Little-Endian Data Bus 5-9
5.6 Active Byte Lanes for a 32-Bit Big-Endian Data Bus 5-10
10.1 Scan Chain 15 Addressing Mode Bit Order 10-6
10.2 Mapping of Scan Chain 15 Address Field to CP15

Registers 10-7
10.3 Debug State Figure Notations 10-9
10.4 CP14 Register Map 10-17

www.DataSheet4U.com

ARM966E-S Microprocessor Core Technical Manual 1-1
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Chapter 1
Introduction

This chapter introduces the ARM966E-S microprocessor core. This
chapter contains the following sections:

• Section 1.1, “Overview”

• Section 1.2, “Block Diagram Description”

• Section 1.3, “Feature Summary”

• Section 1.4, “CoreWare Program”

1.1 Overview

The ARM966E-S microprocessor core is a synthesizable macrocell that
integrates the ARM9E-S 32-bit processor, an instruction RAM, a data
RAM, a write buffer, and an AHB bus interface.

The ARM966E-S implements the ARM architecture v5T, which supports
both the 32-bit ARM and 16-bit Thumb instruction sets, allowing you to
trade off between high performance and high code density. Additionally
the ARM9E-S processor core provides an ARM9E-S instruction
extension and an enhanced multiplier for increased DSP performance.

The AHB bus interface eases connection to cached and SRAM-based
memory systems.

The ARM966E-S supports the ARM debug architecture and includes
logic to assist in both hardware and software debug. It supports
nonstopping hardware debug, which allows critical exception handlers to
execute while debugging the system. The ARM966E-S provides real-time
trace and supports external coprocessors.

www.DataSheet4U.com

1-2 Introduction
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

1.2 Block Diagram Description

Figure 1.1 shows a block diagram of the ARM966E-S. The main
functional blocks are:

• ARM9E-S Processor Core

• System Controller

• CP15 System Control Coprocessor

• Instruction RAM

• Data RAM

• DMA Interface to Data RAM

• Address Decoders

• Write Buffer

• AHB Interface

• External Coprocessor Interface

• JTAG and Debug Port

• Embedded Trace Module Interface

These modules are briefly described following the block diagram. They
are described in more detail in the subsequent chapters of this manual.

www.DataSheet4U.com

Block Diagram Description 1-3
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Figure 1.1 ARM966E-S Block Diagram

1.2.1 ARM9E-S Processor Core

The ARM9E-S processor core has a Harvard bus architecture with
separate instruction and data interfaces. This design allows concurrent
instruction and data accesses, and greatly reduces the cycles per
instruction of the processor. For optimal performance, single-cycle
memory accesses for both interfaces are required, although the core can
be stalled for nonsequential accesses or slower memory systems.

AHB Bus
Interface Unit

and
Write Buffer

Instruction
SRAM

Dout

Addr Din

Data
SRAM

Dout

Addr Din

System
Control

Coprocessor
(CP15)

External
Coprocessor

Interface

IA

ARM9E-S

INSTR RDATA

DA

WDATA

System
Controller

ETM
Interface

DMA Interface

DMA Controller

AHB Peripherals Coprocessors

Core

ETM

www.DataSheet4U.com

1-4 Introduction
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

The processor is implemented using a five-stage pipeline:

• Instruction Fetch (F)

• Instruction Decode (D)

• Execute (E)

• Data Memory Access (M)

• Register Write (W)

ARM implementations are fully interlocked, so that software functions
identically across different implementations without concern for how the
pipeline is affected.

1.2.2 System Controller

The System Controller oversees the interactions between the Instruction
RAM, Data RAM, and the Bus Interface Unit. It controls internal
arbitration between the blocks and stalls the appropriate blocks when
required.

1.2.3 CP15 System Control Coprocessor

The processor core uses a set of registers in the CP15 Coprocessor to
control the functionality of the RAMs and the Write Buffer. These
registers are accessed using the coprocessor instructions MCR and
MRC.

1.2.4 Address Decoders

The address decoders determine whether a memory request accesses
the internal RAM or the Advanced High-Performance Bus (AHB)
interface. The address decoders provide a hit/miss indication to the
System Controller, which then either stalls the core if an AHB read or
unbuffered write access is required or allows execution to continue if the
access hits the RAM or is a buffered write.

1.2.5 Instruction and Data RAMs

The ARM966E-S incorporates internal instruction and data memories to
allow high-speed operation without incurring the performance penalty of
accessing the system bus or the die size penalty of a cached processor.

www.DataSheet4U.com

Block Diagram Description 1-5
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

The Instruction and Data RAMs each consist of blocks of ASIC library
compiled RAM. The RAM sizes can be of any size up to 64 Mbytes. The
instruction and data memories can have unique sizes.

1.2.6 DMA Interface

The Direct Memory Access (DMA) interface allows an external device
direct access to the ARM966E-S Data RAM. If a single-port Data RAM
is used, then the DMA interface stalls the ARM966E-S microprocessor
core during the DMA transfer. If a dual-port Data RAM is used, then the
DMA interface does not stall the ARM966E-S during the DMA transfer.

1.2.7 AHB Interface Unit and Write Buffer

The AHB is a new generation of AMBA bus, which meets the
requirements of high-performance synthesizable designs. The AHB
Interface Unit arbitrates between the external bus transaction sources
within the ARM966E-S. It stalls all other accesses until the current
request has been completed. The AHB Interface Unit supports the
following types of transactions: burst transfers, split transactions,
single-cycle bus master handovers, single clock edge operations, and
non-3-state implementations.

The Write Buffer is a 12-entry FIFO. It increases system performance.

1.2.8 External Coprocessor Interface

The ARM966E-S supports the connection of coprocessors through the
external coprocessor interface. All types of ARM coprocessor instructions
are supported. Coprocessors determine the instructions they need to
execute using a pipeline follower in the coprocessor.

1.2.9 JTAG and Debug Port

The ARM966E-S debug interface is based on IEEE Std. 1149.1-1990. It
can stop the processor core on a given instruction fetch (breakpoint),
data access (watchpoint), or external debug request. The JTAG-style
serial interface can serially insert instructions into the pipeline of the core
without using the external data bus.

www.DataSheet4U.com

1-6 Introduction
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

1.2.10 Embedded Trace Module Interface

This interface connects to an external Embedded Trace Module (ETM).
The ETM provides a high-speed port for tracing of the processor core in
real time.

1.3 Feature Summary

This section lists the key features of the ARM966E-S microprocessor
core:

• ARM9E-S processor core

• Instruction and Data RAMs with independent sizes up to 64 Mbytes

• DMA Interface to Data RAM

• ARM Advanced High-Performance Bus (AHB) interface unit with
write buffer

– Write buffer depth: 16 words at up to four addresses

– Burst transfers

– Split transactions

• External coprocessor interface

• System controller arbitrates between instruction and data memories
and AHB

• Embedded trace module provides a real-time trace capability

1.4 CoreWare Program

An LSI Logic core is a fully defined, optimized, and reusable block of
logic. It supports industry-standard functions and has predefined timing
and layout. The core is also an encrypted RTL simulation model for a
wide range of VHDL and Verilog simulators.

The CoreWare library contains an extensive set of complex cores for the
storage, communications, consumer, and computer markets. The library
consists of high-speed interconnect functions such as the GigaBlaze®

G10® Core, DSPs, MPEG-2 decoders, a PCI core, and many more.

www.DataSheet4U.com

CoreWare Program 1-7
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

The library also includes megafunctions or building blocks, which provide
useful functions for developing a system on a chip. Through the
CoreWare program, you can create a system on a chip uniquely suited
to your applications.

Each core has an associated set of deliverables, including:

• Encrypted RTL or C simulation models for both Verilog and VHDL
environments

• A System Verification Environment (SVE) for RTL-based simulation

• Netlists for full timing simulation

• Complete documentation

• LSI Logic FlexStream® design support

The LSI Logic FlexStream design solution provides seamless
connectivity between products from leading Electronic Design
Automation (EDA) vendors and the LSI Logic manufacturing
environment. Standard interfaces for formats and languages such as
VHDL, Verilog, Waveform Generation Language (WGL), Physical Design
Exchange Format (PDEF), and Standard Delay Format (SDF) allow a
wide range of tools to interoperate within the LSI Logic FlexStream
design environment. In addition to design capabilities, full scan Automatic
Test Pattern Generation (ATPG) tools and LSI Logic's specialized test
solutions can be combined to provide high-fault coverage test programs
that assure a fully functional design.

Because your design requirements are unique, LSI Logic is flexible in
working with you to develop your system-on-a-chip CoreWare design.
Three different work relationships are available:

• You provide LSI Logic with a detailed specification and LSI Logic
performs all design work.

• You design some functions while LSI Logic provides you with the
cores and megafunctions, and LSI Logic completes the integration.

• You perform the entire design and integration, and LSI Logic
provides the core and associated deliverables.

Whatever the work relationship, LSI Logic’s advanced CoreWare
methodology and ASIC process technologies consistently produce
Right-First-Time™ silicon.

www.DataSheet4U.com

1-8 Introduction
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

www.DataSheet4U.com

ARM966E-S Microprocessor Core Technical Manual 2-1
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Chapter 2
Signal Descriptions

This chapter describes the external signals of the ARM966E-S
microprocessor core. The descriptions are categorized according to the
interface. The signal descriptions are listed alphabetically by mnemonic
within each interface.

In the descriptions that follow, the verb assert means to drive TRUE or
active. The verb deassert means to drive FALSE or inactive.

This chapter contains the following sections:

• Section 2.1, “AHB Interface”

• Section 2.2, “Coprocessor Interface”

• Section 2.3, “Instruction RAM Signals”

• Section 2.4, “Data RAM Signals”

• Section 2.5, “DMA Signals”

• Section 2.6, “Debug Signals”

• Section 2.7, “ETM Interface Signals”

• Section 2.8, “Miscellaneous Signals”

• Section 2.9, “Initialization Control Signals”

• Section 2.10, “ATPG Scan Control Signals”

Figure 2.1 provides a signal summary for the ARM966E-S.

www.DataSheet4U.com

2-2 Signal Descriptions
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Figure 2.1 ARM966E-S Signal Diagram

HADDR[31:0]
HBURST[2:0]

HBUSREQ
HGRANT

HLOCK
HPROT[3:0]

HRDATA[31:0]
HREADY

HRESETn
HRESP[1:0]
HSIZE[2:0]

HTRANS[1:0]
HWDATA[31:0]

HWRITE

AHB
Interface

Coprocessor
Interface

CHSDE[1:0]
CHSEX[1:0]

CPCLKEN
CPDIN[31:0]

CPDOUT[31:0]
CPINSTR[31:0]

CPLATECANCEL
CPPASS
CPTBIT

nCPMREQ
nCPTRANS

Instruction
RAM

IADDR[23:0]
IENABLE

IRDATA[31:0]
IWDATA[31:0]

IWE[3:0]
NOIRAM

DADDR[23:0]
DENABLE

DRDATA[31:0]
DWDATA[31:0]

DWE[3:0]
NODRAM

DADDR2[23:0]
DENABLE2

DRDATA2[31:0]
DWDATA2[31:0]

DWE2[3:0]

Data
RAM

DMAA[25:0]
DMAD[31:0]
DMAENABLE
DMAMAS[1:0]

DMAnRW
DMARData[31:0]
DMAReady
DMAWait

DMAnREQ DMA

COMMRX
COMMTX
DBGACK
DBGDEWPT
DBGEN
DBGEXT[1:0]
DBGIEBKPT
DBGINSTREXEC
DBGIR[3:0]
DBGnTDOEN
DBGnTRST
DBGRNG[1:0]
DBGRQI
CBGSCREG[4:0]
DBGSDIN
DBGSDOUT
DBGTAPSM[3:0
DBGTCKEN
DBGTDI
DBGTDO
DBGTMS
EDBGRQ

Debug

BIGENDOUT
CLK
HCLKEN
nFIQ
nIRQ

Miscellaneous

ARM966E-S

www.DataSheet4U.com

AHB Interface 2-3
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Figure 2.1 ARM966E-S Signal Diagram (cont.)

2.1 AHB Interface

HADDR[31:0] Address Bus Out Output
The ARM966E-S drives the AHB address on
HADDR[31:0].

ETMBIGEND
ETMCHSD[1:0]
ETMCHSE[1:0]

ETMDA[31:0]
ETMDABORT
ETMDBGACK

ETMDMAS[1:0]
ETMDMORE

ETMDnMREQ
ETMDnRW
ETMDSEQ

ETMEN
ETMHIVECS
ETMIA[31:1]

ETMID31To25[31:25]
ETMID15To11{15:11]

ETMInMREQ
ETMINSTREXEC

ETMISEQ
ETMITBIT

ETMLATECANCEL
ETMnWAIT
ETMPASS

ETMRDATA[31:0]

ETMINSTRVALID
ETMPROCID[31:0]

ETMPROCIDWR
FIFOFULL

TAPID[31:0]

ETM
Interface

INITRAM
VINITHI

SCANEN
SI
SO

Initialization
Control

ATPG
Scan

ControlARM966E-S

ETMRNGOUT[1:0]
ETMWDATA[31:0]

www.DataSheet4U.com

2-4 Signal Descriptions
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

HBURST[2:0] Burst Type Output
This output indicates whether the transfer forms part of a
burst. The ARM966E-S generates burst types of SINGLE
and INCR only.

HBUSREQ Bus Request Output
HBUSREQ is a signal from the ARM966E-S to the bus
arbiter. A HIGH in this output indicates that the core
requires the bus.

HGRANT Bus Grant Input
A HIGH on this signal indicates the ARM966E-S is
currently the highest priority master. Ownership of the
address/control signals changes at the end of a transfer
when HREADY is HIGH. A master gets access to the bus
when both HREADY and HGRANT are HIGH.

HLOCK Locked Transfer Output
When HLOCK is HIGH, it indicates that the ARM966E-S
requires locked access to the bus, and that no other
masters should be granted the bus until HLOCK is LOW.
HLOCK is asserted when the ARM966E-S is executing
the SWAP instruction.

HPROT[3:0] Protection Control Output
This output provides additional information about a bus
access. HPROT[3:0] are primarily intended for use by any
module that implements some level of protection.

HBURST[2:0] Burst Type Description

000 SINGLE Single transfer

001 INCR Incrementing burst of
unspecified length

010–111 Reserved Not supported

www.DataSheet4U.com

AHB Interface 2-5
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

The signals indicate whether the transfer is an opcode
fetch or data access, and whether the transfer is a
supervisor mode access or user mode access.

Note that for the ARM966E-S, HPROT3 is forced LOW
(noncacheable).

HRDATA[31:0] Read Data Bus Input
This bus transfers data from the bus slaves to the
ARM966E-S during read operations. The ARM966E-S
has a 32-bit wide data bus. The width can be easily
extended outside the core to allow for higher bandwidth
operation.

HREADY Transfer Done Input
When HIGH, the HREADY signal indicates the transfer on
the bus has finished. Drive this signal LOW to extend a
transfer.

Note: Slaves on the bus require HREADY to be both an
input and an output.

HRESETn Reset Input
This input is the active-LOW system reset.

HRESP[1:0] Transfer Response Input
HRESP[1:0] provide additional information on the status
of a transfer. When a slave must insert a number of wait

HPROT3
Cacheable

HPROT2
Bufferable

HPROT1
Supervisor

HPROT0
Data/Opcode Description

– – – 0 Opcode Fetch

– – – 1 Data Access

– – 0 – User Access

– – 1 – Supervisor Access

– 0 – – Not Bufferable

– 1 – – Bufferable

0 – – – Not Cacheable

www.DataSheet4U.com

2-6 Signal Descriptions
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

states prior to decoding what response to give, then it
must drive the response to OKAY.

HSIZE[2:0] Transfer Size Output
This output indicates the size of the transfer, which is
typically byte (8 bits), halfword (16 bits), or word (32 bits).

HRESP[1:0]
Transfer
Response Description

00 OKAY When HREADY is HIGH, the
transfer has completed.

01 ERROR This response shows an error
has occurred. The error
condition must be signaled to the
bus master so that it is aware the
transfer was unsuccessful.

A two-cycle response is required
for an Error condition.

10 RETRY The Retry response shows the
transfer is not complete, so the
bus master should retry the
transfer. The master will continue
to retry the transfer until it
completes.

A two-cycle RETRY response is
required.

11 SPLIT The Split response indicates the
transfer has not yet completed
successfully. The bus master
must retry the transfer when it is
next granted access to the bus.
The slave will request access to
the bus on behalf of the master
when the transfer can complete.

A two-cycle SPLIT response is
required.

HSIZE[2:0] Transfer Size Description

000 8 bits Byte

001 16 bits Halfword

010 32 bits Word

011–111 Reserved

www.DataSheet4U.com

AHB Interface 2-7
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

HTRANS[1:0] Transfer Type Out Output
This output indicates the current transfer type.

HWDATA[31:0]
Write Data Bus Output
This bus transfers data from the master to the bus slaves
during write operations. The width can be extended
external to the core to allow for higher bandwidth
operation.

HWRITE Transfer Direction Out Output
When HWRITE is HIGH, the transfer is a write. When
HWRITE is LOW, the transfer is a read.

HTRANS[1:0] Transfer Type Description

00 Idle No data transfer required.

01 Busy Used to insert an idle cycle
in the middle of a burst of
transfers.

10 Nonsequential Indicates first transfer of a
burst or single transfer.

11 Sequential The control information is
identical to the previous
transfer. The address is
equal to the address of the
previous transfer plus the
size (in bytes). For
wrapping bursts, the
address of the transfer
wraps at the address
boundary equal to the size
(in bytes) multiplied by the
number of beats in the
transfer (either 4, 8, or 16).

www.DataSheet4U.com

2-8 Signal Descriptions
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

2.2 Coprocessor Interface

CHSDE[1:0] Coprocessor Handshake Decode Input
These inputs are the handshake signals from the decode
stage of the coprocessor’s pipeline follower.

CHSEX[1:0] Coprocessor Handshake Execute Input
These inputs are the handshake signals from the execute
stage of the coprocessor’s pipeline follower.

CPCLKEN Coprocessor Clock Enable Output
This clock enable controls the timing of the coprocessor
interface. It is used in conjunction with CLK to effectively
run the coprocessor at a higher frequency than the data
bus.

CPDIN[31:0] Coprocessor Data In Input
This 32-bit bus is the coprocessor data bus for
transferring MRC and STC data from the coprocessor to
the ARM966E-S.

CPDOUT[31:0]
Coprocessor Data Out Output
This 32-bit bus is the coprocessor data bus for
transferring data to the coprocessor.

CHSDE[1:0] Encoding

10 ABSENT

00 WAIT

01 GO

11 LAST

CHSEX[1:0] Encoding

10 ABSENT

00 WAIT

01 GO

11 LAST

www.DataSheet4U.com

Coprocessor Interface 2-9
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

CPINSTR[31:0]
Coprocessor Instruction Output
This 32-bit bus is the coprocessor instruction data bus for
transferring instructions to the pipeline follower in the
coprocessor.

CPLATECANCEL
Coprocessor Late Cancel Output
When CPLATECANCEL is HIGH during the first memory
cycle of a coprocessor instruction execution, the
coprocessor instruction must be cancelled without
updating any internal state.

This signal is asserted only in cycles where the previous
instruction accessed memory and a data abort occurred.

CPPASS Coprocessor Pass Output
A HIGH on this signal indicates that there is a
coprocessor instruction in the execute stage of the
pipeline that should be executed.

CPTBIT Coprocessor Interface in Thumb State Output
When CPTBIT is HIGH, the coprocessor interface is in
Thumb state (16-bit instructions); otherwise the interface
supports 32-bit instruction execution.

nCPMREQ Not Coprocessor Memory Request Output
When nCPMREQ is LOW on a rising CLK edge and
CPCLKEN is HIGH, the instruction on CPINSTR must
enter the coprocessor pipeline follower’s decode stage,
and the instruction previously in the pipeline follower’s
decode stage should enter its execute stage.

nCPTRANS Not Coprocessor Translate Output
When nCPTRANS is LOW, the coprocessor interface is
in a nonprivileged state. When nCPTRANS is HIGH, the
coprocessor interface is in a privileged state. The
coprocessor should sample this signal on every cycle
when determining the coprocessor response. Refer to
Section 3.4, “Processor Modes,” for a description of the
privileged and nonprivileged (User) modes.

www.DataSheet4U.com

2-10 Signal Descriptions
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

2.3 Instruction RAM Signals

IADDR[23:0] Instruction RAM Address Output
This 24-bit bus contains the Instruction RAM address.
Addressing is performed on word boundaries.

IENABLE Word-Based Instruction Chip Enable Output
The ARM966E-S asserts this output HIGH to indicate the
Instruction RAM data bus is enabled.

IRDATA[31:0] Instruction RAM Read Data Input
This 32-bit bus contains data read from the Instruction
RAM.

IWDATA[31:0] Instruction RAM Write Data Output
This 32-bit bus contains write data for the Instruction
RAM.

IWE[3:0] Byte-Based Instruction Write Enable Output
The ARM966E-S asserts these outputs HIGH to enable
writes to the Instruction RAM.

NOIRAM Instruction RAM Present Input
The ARM966E-S asserts NOIRAM HIGH to indicate the
Instruction RAM is not present and thus Instruction RAM
decoding is disabled. NOIRAM asserted LOW indicates
Instruction RAM is present, which enables Instruction
RAM decoding.

2.4 Data RAM Signals

The Data RAM interface supports both single-port and dual-port RAMs.
When single-port RAMs are used, the ARM966E-S stalls during DMA
transfers. When dual-port RAMs are used, the ARM966E-S does not
need to be stalled during DMA transfers.

IWE Bit Function

IWE3 Write enable for IWDATA[31:24]

IWE2 Write enable for IWDATA[23:16]

IWE1 Write enable for IWDATA[15:8]

IWE0 Write enable for IWDATA[7:0]

www.DataSheet4U.com

Data RAM Signals 2-11
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

The ARM966E-S uses the signals described below to access the Data
RAM for both single-port and dual-port RAM implementations. The DMA
Interface shares these signals with the ARM966E-S for single-port RAM
implementations.

DADDR[23:0] Data RAM Address Output
This 24-bit bus contains the Data RAM address.
Addressing is performed on word boundaries.

DENABLE Word Based Data Chip Enable Output
The ARM966E-S asserts this output HIGH to indicate the
Data RAM data bus is enabled.

DRDATA[31:0] Data RAM Read Data Input
This 32-bit bus contains data read from the Data RAM.

DWDATA[31:0]Data RAM Write Data Output
This 32-bit bus provides write data to the Data RAM.

DWE[3:0] Byte Based Data Write Enable Output
The ARM966E-S asserts these outputs HIGH to enable
writes to the Data RAM.

NODRAM Data RAM Present Input
The ARM966E-S asserts NODRAM HIGH to indicate
Data RAM is not present and thus Data RAM decoding
is disabled. NODRAM asserted LOW indicates Data RAM
is present, which enables Data RAM decoding.

The DMA Interface uses the signals described below to access only the
second port of a dual-port RAM.

DADDR2[23:0]
Data RAM Address Output
This 24-bit bus contains the Data RAM address.
Addressing is performed on word boundaries.

DWE Bit Function

DWE3 Write enable for DWDATA[31:24]

DWE2 Write enable for DWDATA[23:16]

DWE1 Write enable for DWDATA[15:8]

DWE0 Write enable for DWDATA[7:0]

www.DataSheet4U.com

2-12 Signal Descriptions
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

DENABLE2 Word-Based Data Chip Enable Output
The ARM966E-S asserts this output HIGH to indicate the
Data RAM data bus is enabled.

DRDATA2[31:0]
Data RAM Read Data Input
This 32-bit bus contains data read from the Data RAM.

DWDATA2[31:0]
Data RAM Write Data Output
This 32-bit bus provides write data to the Data RAM.

DWE2[3:0] Byte Based Data Write Enable Output
The ARM966E-S asserts these outputs HIGH to enable
writes to the Data RAM.

2.5 DMA Signals

DMAA[25:0] DMA Address Input
This 26-bit address contains the byte address for DMA
transfers. Tie all unused address bits LOW.

DMAD[31:0] DMA Write Data Input
This 32-bit bus contains the DMA write data to the Data
RAM.

DMAENABLE DMA Port Enable Input
DMAENABLE must be asserted HIGH for a DMA transfer
to proceed. Asserting DMAENABLE LOW can be used to
save power when the DMA interface is not being used.
Tie DMAENABLE LOW if the DMA Interface is not used
in the implementation.

DWE2 Bit Function

DWE3 Write enable for DWDATA[31:24]

DWE2 Write enable for DWDATA[23:16]

DWE1 Write enable for DWDATA[15:8]

DWE0 Write enable for DWDATA[7:0]

www.DataSheet4U.com

DMA Signals 2-13
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

DMAMAS[1:0] DMA Memory Access Size Input
DMAMAS[1:0] encodes the size of DMA writes. DMA
reads are always one word wide.

DMAnREQ DMA Request Input
DMAnREQ is an active-LOW DMA transfer request. Tie
this input HIGH if the DMA interface is not used.

DMAnRW DMA Write not Read Input
DMAnRW is the DMA Read/Write signal.

DMARData[31:0]
DMA Read Data Output
This 32-bit bus contains DMA Data read from the Data
RAM.

DMAReady DMA Ready Output
DMAReady is asserted HIGH when the ARM966E-S is
stalled due to a DMA Wait request. DMAReady must be
sampled HIGH before a DMA transfer to/from a
single-port Data RAM can take place.

DMAWait DMA Wait Request Input
DMAWait is asserted HIGH to stall the ARM966E-S
before proceeding with a DMA transfer to/from a
single-port Data RAM implementation. A HIGH on
DMAReady indicates when the ARM966E-S is stalled.

Only use this signal for single-port Data RAM
implementations. Tie it LOW for dual-port Data RAM
implementations.

DMAMAS[1:0] Memory Access Size

00 Byte

01 Halfword

10 Word

11 Reserved

DMAnRW Function

0 Read

1 Write

www.DataSheet4U.com

2-14 Signal Descriptions
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

2.6 Debug Signals

COMMRX Communications Channel Receive Output
When HIGH, this signal indicates that the Comms
Channel Receive Buffer has data that the ARM9E-S
processor core can read.

COMMTX Communications Channel Transmit Output
When HIGH, this signal indicates the Comms Channel
Transmit Buffer is empty.

DBGACK Debug Acknowledge Output
When HIGH, DBGACK indicates that the ARM9E-S
processor core is in debug mode.

DBGDEWPT Debug Watchpoint Input
This input can halt the processor for debug purposes. If
HIGH at the end of a data memory request cycle, this
input causes the ARM9E-S processor core to enter the
debug state.

DBGEN Debug Enable Input
A LOW on this input disables the debug features of the
ARM966E-S. Tie this input LOW when debugging is not
required.

DBGEXT[1:0] Breakpoint/Watchpoint External Condition Input
These inputs to the EmbeddedICE logic make
breakpoints/watchpoints dependent on external
conditions.

DBGIEBKPT Processor Execution Breakpoint Input
When this input is asserted, processor execution is halted
for debug purposes. If DBGIEBKPT is HIGH at the end
of an instruction fetch, the ARM9E-S processor core
enters the debug state if that instruction reaches the
execute stage of the processor’s pipeline.

DBGINSTREXEC
Instruction Executed Output
When this output is asserted HIGH, the instruction in the
execute stage of the processor’s pipeline was executed.

www.DataSheet4U.com

Debug Signals 2-15
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

DBGIR[3:0] Tap Controller Instruction Register Output
These outputs reflect the current instruction loaded into
the TAP controller instruction register. They change when
the TAP state machine is in the UPDATE_IR state on the
rising edge of CLK when DBGTCKEN is asserted.

DBGnTDOEN DBGTDO 3-State Enable Output
When LOW, this signal indicates there is serial data on
the DBGTDO output. DBGnTDOEN can be used as the
output enable on a packaged part’s DBGTDO pin.

DBGnTRST Not Test Reset Input
This active-LOW input is the internally synchronized reset
signal for the EmbeddedICE internal state.

DBGRNG[1:0] Watchpoint Register Match Output
These outputs indicate that the corresponding
EmbeddedICE Watchpoint register has matched the
conditions currently present on the address, data, and
control buses. These signals are independent of the state
of the watchpoint’s enable control bit.

DBGRQI Internal Debug Request Output
This signal is the debug request signal presented to the
processor core’s debug logic. It is the ANDing of
EDBGRQ as presented to the ARM966E-S and bit 1 of
the Debug Control Register.

DBGSCREG[4:0]
Scan Chain Register Output
These outputs reflect the ID number of the scan chain
currently selected by the TAP controller. They change
when the TAP state machine is in the UPDATE_DP state
on the rising edge of CLK when DBGTCKEN is asserted.

DBGSDIN Boundary Scan Serial Input Data Output
This output contains the serial data for an external scan
chain.

DBGSDOUT Boundary Scan Serial Output Data Input
DBGSDOUT is the serial data input from an external
scan chain. When an external scan chain is not
implemented, tie this signal LOW.

www.DataSheet4U.com

2-16 Signal Descriptions
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

DBGTAPSM[3:0]
TAP Controller State Machine Output
This bus reflects the current state of the TAP controller
state machine. The TAP controller follows the
IEEE 1149.1 Test Access Port protocol.

DBGTCKEN Test Clock Enable Input
This input is the synchronous enable for the test clock.

DBGTDI Test Data In Input
DBGTDI contains data input from the boundary scan
logic.

DBGTDO Test Data Out Output
The ARM966E-S outputs test data on DBGTDO from its
boundary scan logic.

DBGTMS Test Mode Select Input
DBGTMS is the JTAG test mode select signal. The test
mode follows the IEEE 1149.1 Test Access Port protocol.

EDBGRQ External Debug Request Input
An external debugger asserts this signal to force the
processor to enter the debug state.

2.7 ETM Interface Signals

These signals are part of the Trace module interface. All ETM outputs
are registered from the corresponding core internal signals.

ETMBIGEND Endian Mode Output
When this signal is HIGH, the endian mode is big endian;
when ETMBIGEND is LOW, the mode is little endian.

www.DataSheet4U.com

ETM Interface Signals 2-17
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

ETMCHSD[1:0]
ETM Coprocessor Handshake Decode Output
These outputs are the handshake signals from the
decode stage of the coprocessor’s pipeline follower.

ETMCHSE[1:0]
ETM Coprocessor Handshake Execute Output
These outputs are the handshake signals from the
execute stage of the coprocessor’s pipeline follower.

ETMDA[31:0] ETM Data Address Output
This 32-bit bus contains the ETM data address.

ETMDABORT ETM Data Abort Output
The ARM966E-S asserts this signal to indicate a data
abort to the ARM9E-S processor core.

ETMDBGACK ETM Debug Mode Indication Output
When HIGH, this signal indicates that the processor is in
the debug state.

ETMDMAS[1:0]ETM Data Size Indicator Output
These signals indicate the data size of the ETM. They
become valid in the same cycle as the data address bus:

ETMCHSD[1:0] Encoding

10 ABSENT

00 WAIT

01 GO

11 LAST

ETMCHSE[1:0] Encoding

10 ABSENT

00 WAIT

01 GO

11 LAST

DMAS[1:0] Transfer Size

00 Byte

01 Halfword

10 Word

11 Reserved

www.DataSheet4U.com

2-18 Signal Descriptions
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

ETMDMORE ETM Sequential Data Indication Output
The ETMDMORE signal is active during load and store
multiple instructions and only goes HIGH when
ETMDnMREQ is LOW. This signal effectively gives the
same information as ETMDSEQ, but a cycle ahead. This
information is provided to allow external logic more time
to decode sequential cycles.

ETMDnMREQ ETM Data Memory Request Output
This signal is asserted HIGH when the ARM966E-S is
making a request to the ETM data memory.

ETMDnRW ETM Data R/W Output
If this signal is LOW at the end of the cycle, then any data
memory access in the following cycle is a read. If this
signal is HIGH, then the access is a write.

ETMDSEQ ETM Sequential Data Indication Output
If this signal is HIGH at the end of the cycle, then any
data memory access in the following cycle is sequential
from the last data memory access.

ETMEN ETM Enable Input
When this signal is HIGH, the ETM is enabled and the
ARM966E-S interface signals are driven out of this
module, pipelined by one clock stage.

ETMHIVECS Exception Vector Location Output
When this output is LOW, the ARM966E-S exception
vectors start at address 0x0000.0000. When this signal is
HIGH, the ARM966E-S exception vectors start at address
0xFFFF.0000. This output is a static configuration signal.

ETMIA[31:1] ETM Instruction Address Bus Output
This 31-bit bus contains the address for the ETM.

ETMID31To25[31:25]
Bits [31:25] of Instruction Data Output
These outputs reflect the status of bits [31:25] of the
instruction data read by the ARM966E-S.

ETMID15To11[15:11]
Bits [15:11] of Instruction Data Output
These outputs reflect the status of bits [15:11] of the
instruction data read by the ARM966E-S.

www.DataSheet4U.com

ETM Interface Signals 2-19
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

ETMInMREQ ETM Instruction Memory Request Output
The ARM966E-S drives this output LOW to indicate that
an instruction fetch will take place.

ETMINSTREXEC
ETM Instruction Execute Indicator Output
The ARM966E-S asserts this output HIGH to indicate
that the instruction in the execute stage of the processor
pipeline has been executed.

ETMISEQ ETM Sequential Instruction Output
The ETMISEQ signal indicates whether the fetch is
sequential (HIGH) or nonsequential (LOW) to the
previous access.

ETMITBIT ETM Thumb Indication Output
When this signal is LOW, the processor is in ARM state
and it fetches 32-bit instructions. When ETMITBIT is
HIGH, the processor is in Thumb state and it fetches
16-bit instructions.

ETMLATECANCEL
ETM Coprocessor Late Cancel Indicator Output
If this output is HIGH during the first memory cycle of a
coprocessor instruction, then the coprocessor should
cancel the instruction without changing any internal state.
This signal is only asserted in cycles where the previous
instruction accessed memory and a data abort occurred.

ETMnWAIT ETM Clock Stall Output
Driving this output LOW stalls the ETM.

ETMPASS ETM Coprocessor Instruction Execute Indicator
Output

A HIGH on this signal indicates that there is a
coprocessor instruction in the execute stage of the
pipeline, which should be executed.

ETMRDATA[31:0]
ETM Read Data Output
This 32-bit bus contains ETM read data.

ETMRNGOUT[1:0]
ETM Watchpoint Register Match Output
This output indicates that corresponding EmbeddedICE
Watchpoint register has matched the conditions currently

www.DataSheet4U.com

2-20 Signal Descriptions
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

present on the address, data, and control buses. This
signal is independent of the state of the watchpoint’s
enable control bit.

ETMWDATA[31:0]
ETM Write Data Output
This 32-bit bus contains ETM write data.

ETMINSTRVALID
ETM Instruction Valid Output
The ARM966E-S asserts this output HIGH to indicate the
current instruction is valid for the ETM.

ETMPROCID[31:0]
ETM Process ID Output
This 32-bit output contains the Process ID for the ETM.

ETMPROCIDWR]
ETM Process ID Write Output
This output is asserted when ETMPROCID is written.

FIFOFULL ETM FIFO FULL Input
This input is asserted when the ETM FIFO is full. Tie this
signal LOW if an ETM is not used.

TAPID[31:0] Boundary Scan ID Code Input
This bus specifies the ID Code value shifted out on
DBGTDO when the IDCODE instruction enters the TAP
Controller.

2.8 Miscellaneous Signals

BIGENDOUT Big Endian Output
When this output is HIGH, the ARM966E-S is in
big-endian mode (byte 0 is the most-significant bit). When
this output is LOW, the ARM966E-S is in little-endian
mode.

This output is a static configuration signal. It must remain
at one value from reset or be changed using a carefully
constructed code sequence to avoid software problems.

CLK System Clock Input
CLK is the ARM966E-S system clock. CLK can be
stretched in either state (held HIGH or LOW).

www.DataSheet4U.com

Initialization Control Signals 2-21
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

HCLKEN HCLK Enable Input
HCLKEN is used in conjunction with CLK to effectively
run the ARM966E-S at a higher frequency than the AHB
system bus. HCLKEN is HIGH for a single CLK period
and signifies the rising edge of the AHB clock, HCLK. All
AHB outputs transition on the CLK rising edge in which
HCLKEN is asserted.

nFIQ Not Fast Interrupt Input
This active-LOW input is the ARM Fast interrupt request.
The ARM966E-S supports synchronous interrupts only.

nIRQ Not Interrupt Request Input
This active-LOW input is the ARM interrupt request. The
ARM966E-S supports synchronous interrupts only.

2.9 Initialization Control Signals

INITRAM RAM Enable Configuration Input
When INITRAM is HIGH, the Instruction and Data RAMs
are enabled at the end of reset. When it is LOW, the
Instruction and Data RAMs are disabled coming out of
reset.

This input is a static configuration signal. Its value is
sampled at reset only.

VINITHI High Vectors Configuration Input
When VINITHI is LOW at reset, the exception vectors
start at address 0x0000.0000. When VINITHI is HIGH,
the exception vectors start at 0xFFFF.0000.

This signal is a static configuration signal. Its value is
sampled at reset only.

2.10 ATPG Scan Control Signals

SCANEN Scan Enable Input
The ARM966E-S asserts this input HIGH to enable data
scanning through the scan chain.

www.DataSheet4U.com

2-22 Signal Descriptions
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

SI Scan Chain In Input
SI is the input for the serial scan chain. There can be
multiple SI/SO scan pairs.

SO Scan Chain Out Output
SO is the output for the serial scan chain. There can be
multiple SI/SO scan pairs.

www.DataSheet4U.com

ARM966E-S Microprocessor Core Technical Manual 3-1
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Chapter 3
Programmer’s Model

This chapter describes the programmer’s model of the ARM966E-S
microprocessor core. This chapter contains the following sections:

• Section 3.1, “About the Programmer’s Model”

• Section 3.2, “Data Abort Model”

• Section 3.3, “Data Types”

• Section 3.4, “Processor Modes”

• Section 3.5, “CP15 Instruction Format”

• Section 3.6, “Memory Map”

• Section 3.7, “Registers”

3.1 About the Programmer’s Model

The programmer’s model for the ARM966E-S consists of the ARM9E-S
programmer’s model with some additions. The added features control
both the operation of the ARM966E-S internal coprocessors and any
coprocessor connected to the external coprocessor interface.

There are two internal coprocessors within the ARM966E-S:

• Coprocessor 14 (CP14) within the ARM9E-S core allows software
access to the debug communications channel

• Coprocessor 15 (CP15) allows configuration of the tightly coupled
SRAM and write buffer and other ARM966E-S system options, such
as big- or little-endian operation.

The CP14 registers are accessible with MCR and MRC instructions.
These registers are described in Section 10.9, “The Debug
Communications Channel.”

www.DataSheet4U.com

3-2 Programmer’s Model
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

The CP15 registers are accessible with MCR and MRC instruction.
These registers are defined in Section 3.7.2, “CP15 Registers.”

Any coprocessors and their registers that are attached to the external
coprocessor interface are accessible with the appropriate coprocessor
instructions.

3.2 Data Abort Model

The ARM966E-S implements the base restored data abort model, which
differs from the base updated data abort model implemented by the
ARM7TDMI. The difference in the Data Abort model affects only a very
small section of operating system code, the Data Abort handler. It does
not affect user code.

With the base restored data abort model, when a Data Abort exception
occurs during the execution of a memory access instruction, the
processor hardware always restores the base register to the value the
register contained before the instruction was executed. This step
removes the requirement for the Data Abort handler to unwind any base
register update that might have been specified by the aborted instruction.

The base restored data abort model significantly simplifies the software
Data Abort handler.

3.3 Data Types

The ARM966E-S supports the data types listed in Table 3.1.

Table 3.1 Supported Data Types

Data Type Size

Byte 8 bits

Halfword 16 bits (halfwords must be aligned to two-byte boundaries)

Word 32 bits (words must be aligned to four-byte boundaries)

www.DataSheet4U.com

Processor Modes 3-3
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

ARM instructions are exactly one word (32 bits) and are aligned on a
four-byte boundary. THUMB instructions are exactly one halfword
(16 bits) and are aligned on a two-byte boundary.

All data operations (for example, ADD) are performed on word quantities.
Load and store operations can transfer bytes, halfwords, and words to
and from memory, automatically zero-extending or sign-extending bytes
or halfwords as they are loaded. Signed operands are in two’s
complement format.

3.4 Processor Modes

The ARM966E-S supports seven processor modes. These modes are
summarized in Table 3.2.

Mode changes occur either through software control or as a result of
external interrupts or exception processing. Most application programs
execute in User mode. The other modes, known as privileged modes, are
entered to service interrupts or exceptions or to access protected
resources.

Table 3.2 ARM9E-S Processor Modes

Processor Mode Description

User (USR) Normal program execution mode

FIQ (FIQ) High-speed data transfer or channel process

IRQ (IRQ) General-purpose interrupt handling

Supervisor (SVC) Protected mode for the operating system

Abort (ABT) Virtual memory and/or memory protection
implementation

Undefined (UND) Software emulation of hardware coprocessors

System (SYS) Privileged operating system tasks (architecture
version 4 only)

www.DataSheet4U.com

3-4 Programmer’s Model
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

3.5 CP15 Instruction Format

System Control Coprocessor 15 (CP15) controls the operation and
configuration of the Instruction RAM, Data RAM, and write buffer. This
coprocessor is backward-compatible with the ARM7. All unused and
reserved bits should be programmed to zeros.

To read and write the configuration registers, use the MRC and MCR
instructions, respectively. These operations are only allowed in nonuser
modes; an undefined instruction trap is taken if accesses are attempted
in user mode.

Figure 3.1 shows the fields that make up the instruction format.

Figure 3.1 Coprocessor Instruction Format

Table 3.3 defines the fields within the coprocessor instruction format.

31 28 27 24 23 21 20 19 16 15 12 11 8 7 5 4 3 0

Cond 1110 opcode_1 n CRn Rd 1111 opcode_2 1 CRm

Table 3.3 Instruction Format Field Descriptions

Field Name Function

Cond ARM condition code

opcode_1 ARM opcode 1. Opcode_1 is zero for all CP15 instructions.

n Load/store bit
0 = MRC (CP15 register read)
1 = MCR (CP15 register write)

CRn CP15 Source/Destination register. This field determines
which configuration register is being accessed.

Rd ARM CPU register

1111 Coprocessor number (p15)

opcode_2 ARM opcode 2

CRm CP15 Operand register

www.DataSheet4U.com

Memory Map 3-5
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

One example of an MRC register read instruction using the above format
is MRC p15, 0, Rd, c0, c0, 0, where p15 = 1111, 0 = opcode_1,
Rd = ARM CPU register, c0 = CRn, c0 = CRm, and 0 = opcode_2.

3.6 Memory Map

Figure 3.2 shows the memory map for the ARM966E-S.

Figure 3.2 ARM966E-S Memory Map

3.7 Registers

This section describes the CPU and CP15 register sets.

AHB Unbuffered

AHB Buffered

AHB Unbuffered

AHB Buffered

Data Memory

Instruction Memory

0xFFFF.FFFF

0xF000.0000
0xEFFF.FFFF

0x3000.0000
0x2FFF.FFFF

0x2000.0000
0x1FFF.FFFF

0x1000.0000
0x0FFF.FFFF

0x0800.0000
0x07FF.FFFF

0x0f00.0000
0x03FF.FFFF

0x0000.0000

256 Mbytes

256 Mbytes

256 Mbytes

128 Mbytes

64 Mbytes

64 Mbytes

www.DataSheet4U.com

3-6 Programmer’s Model
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

3.7.1 CPU Registers

The processor has a total of 37 registers:

• 30 32-bit-wide general-purpose registers

• 6 status registers

• 1 program counter

The registers are arranged in partially overlapping banks. Each of the
seven processor modes has a different register bank. At any one time,
15 general-purpose registers (R0 through R14), one or two status
registers, and the program counter are visible. The current processor
mode determines which general-purpose registers and status registers
are currently visible.

Figure 3.3 shows the register bank organization. The banked registers
are shaded in the figure.

Figure 3.3 CPU Register Organization

Mode

User/System Supervisor Abort Undefined Interrupt Fast Interrupt

R0 R0 R0 R0 R0 R0
R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4
R5 R5 R5 R5 R5 R5
R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7
R8 R8 R8 R8 R8 R8_FIQ
R9 R9 R9 R9 R9 R9_FIQ
R10 R10 R10 R10 R10 R10_FIQ
R11 R11 R11 R11 R11 R11_FIQ
R12 R12 R12 R12 R12 R12_FIQ
R13 R13_SVC R13_ABORT R13_UNDEF R13_IRQ R13_FIQ
R14 R14_SVC R14_ABORT R14_UNDEF R14_IRQ R14_FIQ
PC PC PC PC PC PC

CPSR CPSR CPSR CPSR CPSR CPSR
SPSR_SVC SPSR_ABORT SPSR_UNDEF SPSR_IRQ SPSR_FIQ

www.DataSheet4U.com

Registers 3-7
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

3.7.1.1 Stack Pointer (SP)

Register 13 is the stack pointer. It is banked across all modes to provide
a private stack pointer for each mode (except for system mode which
shares the user-mode R13).

3.7.1.2 Link Register (LR)

Register 14 is the Link register. It holds the address of the next
instruction after a Branch with Link (BL) instruction, which is the
instruction used to make subroutine calls. All other times, R14 can be
used as a general-purpose register.

3.7.1.3 Program Counter (PC)

Register 15 is the program counter. It is used in most instructions as a
pointer to the instruction that is two instructions after the instruction being
executed. Because all ARM instructions are one word long and are
always aligned on word boundaries, the bottom two bits of the PC are
always zeros. When the PC is read, bits [1:0] are zeros and bits [31:2]
contain the PC. When the PC is written, bits [1:0] are ignored and bits
[31:2] are written to the PC. Depending on how the PC is used, its value
is either the address of the instruction plus 8 or is unpredictable.

3.7.1.4 Banked Registers in FIQ Mode

Registers R8 through R14 in FIQ mode are banked. They provide very
fast interrupt processing without the need for preserving register contents
by storing them to memory. Values are preserved across interrupt calls
so that register contents do not need to be restored from memory.

3.7.1.5 Current Program and Saved Program Status Registers (CPSR and SPSR)

The CPSR is accessible in all processor modes. It contains condition
code flags, interrupt enable flags, and the current mode. Each privileged
mode (except system mode) has an SPSR, which preserves the value of
the CPSR when an exception occurs.

Figure 3.4 shows the format of the CPSR and SPSR.

www.DataSheet4U.com

3-8 Programmer’s Model
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Figure 3.4 Program Status Registers (CPSR and SPSR) Format

The N (negative), Z (zero), C (carry), V (overflow), and S (sticky) bits are
the condition code flags. The condition code flags in the CPSR can be
changed as a result of arithmetic and logical operations in the processor
and can be tested by all instructions to determine whether the instruction
is to be executed.

The S bit supports the ARM9E instruction extensions. It is set whenever
either a saturation occurs during a QADD, QDADD, QSUB, or QDSUB
instruction or when the result of an SMLAxx or SMLAWx instruction
overflows 32 bits. You must use an MRS instruction to observe the
contents of the S flag. The S flag is sticky. Once it is set, then no
subsequent instruction will reset it apart from an MSR instruction writing
to the CPSR. Refer to Appendix A for descriptions of the ARM9E
instruction extensions.

Bits [26:8] are reserved. They read as zeros and may only be written with
the same value read from the same field as the processor.

Bits [7:0] are the control bits. They change when an exception arises and
can be altered by software only when the processor is in a privileged
mode. The I bit disables IRQ interrupts when it is set. When set, the F bit
disables FIQ interrupts. When the T flag is zero, it indicates ARM
execution; when it is set, it indicates THUMB execution.

The mode bits, M[4:0], determine the mode in which the processor
operates. Table 3.4 shows the encoding of these bits. Values not shown
in the table are invalid; their results are unpredictable.

31 30 29 28 27 26 8 7 6 5 4 3 2 1 0

N Z C V S Res I F T M4 M3 M2 M1 M0

www.DataSheet4U.com

Registers 3-9
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

User mode and System mode do not have an SPSR, as these modes
are not entered on any exception, so a register to preserve the CPSR is
not required. In User or System mode, any reads to the SPSR read an
unpredictable value, and any writes to the SPSR are ignored.

3.7.2 CP15 Registers

Use the MCR and MRC instructions to access the configuration
registers; the processor must be in supervisor (privileged) mode.

Never access an invalid CRn register because neither the access nor an
undefined instruction trap occurs. An access to a CRn register in user
mode causes the undefined instruction trap to be taken.

Table 3.4 Mode Bits

M[4:0] Mode Accessible Registers

0b10000 User PC, R0 through R14, CPSR

0b10001 FIQ PC, R0 through R7, R8_fiq through R14_fiq, CPSR, SPSR_fiq

0b10010 IRQ PC, R0 through R12, R13_irq, R14_irq, CPSR, SPSR_irq

0b10011 SVC PC, R0 through R12, R13_svc, R14_svc, CPSR, SPSR_svc

0b10111 Abort PC, R0 through R12, R13_abt, R14_abt, CPSR, SPSR_abt

0b11011 Undef PC, R0 through R12, R13_und, R14_und, CPSR, SPSR_und

0b11111 System PC, R0 through R14, CPSR

Table 3.5 CP15 Register Map

Register Function

0 ID Code

1 Control

2–6 Reserved

7 Core Control

8–12 Reserved

www.DataSheet4U.com

3-10 Programmer’s Model
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

3.7.2.1 ID Code Register (0)

Register 0 is a read-only register that lists the core identifier. Accessing
Register 0 with the MRC p15, 0, Rd, c0, c0, 0 instruction returns
the ID code.

ID Code Register – The ID Code Register is a read-only identity
register that returns the LSI Logic code for this core. This code is made
up of four fields.

Implementor [31:24]
This field contains an eight-bit value unique to LSI Logic
Corporation. Its value is 0x41.

Architecture Version [23:16]
This field specifies the ARM9E-S architecture. Its value is
0x05 (Version 5T).

LSI Logic Core ID [15:4]
This field contains a 12-bit value that uniquely identifies
this core. Its value is 0x966.

Revision [3:0]
This four-bit field indicates the revision number. Its value
is 0x0.

3.7.2.2 Control Register (1)

The Control register is a read/write register that contains the control bits.
The reserved bits denoted as SBZ should be written with zeros; the
reserved bits denoted as SBO should be written with ones. All bits are

13 Trace process identifier

14 Reserved (undefined instruction)

15 Test

Table 3.5 CP15 Register Map (Cont.)

Register Function

31 24 23 16 15 4 3 0

Implementor Architecture Version LSI Logic Core ID Revision

www.DataSheet4U.com

Registers 3-11
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

cleared to zero on reset unless stated otherwise. The reserved bits have
an unpredictable value when read.

Res (SBZ) Reserved [31:16], 14, [11:8], [1:0]
These bits are reserved and must be written as zeros.

TBIT Configure Disable Loading TBIT 15
This bit controls the behavior of load PC instructions.
When TBIT is cleared, a load to the PC uses bit 0 of the
loaded data to control the entry into the THUMB state.
When TBIT is set, this behavior is disabled. At reset, this
bit is cleared.

V Alternate Vector Select 13
This read-only bit controls the base address used for the
exception vectors. When V is cleared, the base address
for the exception vectors is 0x0000.0000. When V is set,
the base address for the exception vectors is
0xFFFF.0000. At reset, this bit takes on the value of the
VINITHI pin.

I Instruction Memory Enable Bit 12
When this bit is set, all accesses to the Instruction
memory space will access the Instruction RAM. When
this bit is cleared, all accesses to the Instruction Memory
space will access the AHB. At reset, this bit takes on the
value of the INITRAM pin.

E Big/Little Endian Bit 7
This bit determines the byte-ordering convention. It is
cleared during reset.

Res (SBO) Reserved [6:4]
These bits are reserved and must be written as ones.

31 16 15 14 13 12 11 8 7 6 4 3 2 1 0

Res (SBZ) TBIT Res
(SBZ) V I Res (SBZ) E Res

(SBO)
W
B D Res

(SBZ)

E Endian

0 Little Endian

1 Big Endian

www.DataSheet4U.com

3-12 Programmer’s Model
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

WB Write Buffer Enable 3
This bit determines whether the write buffer is enabled or
not. At reset, the write buffer is disabled.

D Data Memory Enable Bit 2
This bit determines whether data accesses will access
the Data RAM or the AHB. At reset, this bit takes on the
value of the INITRAM pin.

3.7.2.3 Core Control Register (7)

The Core Control register is a write-only register. Writes to this register
can drain the write buffer, or cause a wait for interrupts. A read of this
register returns an unspecified value. Table 3.6 shows the valid write
instructions to this register with their corresponding functions.

Drain Write Buffer – Coprocessor 15 can stall instruction execution
until the write buffer is emptied. This operation is useful in real-time
applications where the processor needs to be sure that a write to a
peripheral has completed before program execution continues. An
example is where a peripheral in a bufferable region is the source of an
interrupt. Once the interrupt has been serviced, the request must be
removed before interrupts can be re-enabled. The processor can be sure
of the removal if a drain write-buffer operation separates the store to the
peripheral and the enable interrupt functions.

WB Description

0 Write Buffer disabled

1 Write Buffer enabled

D Description

0 Data RAM accessed

1 AHB accessed

Table 3.6 Core Control Instructions

ARM Instruction Data Function

MCR p15, Rd, c7, c10, 4 SBZ Drain Write Buffer

MCR p15, Rd, c7, c0, 4 SBZ Wait For Interrupt

MCR p15, Rd, c15, c8, 2 SBZ Wait For Interrupt (StrongARM backward
compatibility)

www.DataSheet4U.com

Registers 3-13
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Invoking the Drain Write Buffer instruction stalls the processor core until
any outstanding accesses in the write buffer have been completed (all
data has been written to memory).

Wait For Interrupt – The Wait For Interrupt instructions allow the
ARM966E-S to enter a low power standby mode. When the operation is
invoked, the internal system clock enable signal (CLKEN) is negated until
either an interrupt or a debug request occurs. This function is invoked by
a write to Register 7 using the MCR p15, Rd, c7, c0, 4 instruction.
The MCR p15, 0, Rd, c15, c8, 2 instruction is provided to support
older software.

When the Wait For Interrupt instruction is executed, the processor is
stalled until nFIQ, nIRQ, or EDBGRQ is asserted. Also if the debugger
sets the debug request bit in the EmbeddedICE Control register, then the
wait-for-interrupt condition terminates.

When either nFIQ or nIRQ is asserted, the processor “wakes up”
regardless of whether the interrupts are enabled or disabled
(independent of the I and F bits in the processor’s CPSR). The
debug-related awakening only occurs if DBGEN is set (when debug is
enabled).

If interrupts are enabled, the ARM966E-S is guaranteed to take the
interrupt before executing the instruction after the Wait For Interrupt. If
interrupts are disabled, the ARM966E-S restarts execution of the
instruction following the Wait For Interrupt. If a debug request is used to
wake up the system, then the processor enters the debug state before
executing any further instructions.

Wait For Interrupt does not prevent the write buffer from emptying.

3.7.2.4 Trace Process Identifier (13)

This register allows the real-time trace tools to identify the currently
executing process in multitasking environments.

The contents of this register are replicated on the ETMPROCID[31:0]
outputs of the ARM966E-S. The ETMPROCIDWR signal is asserted
HIGH for a single clock cycle whenever a write to this register occurs.
Table 3.7 shows the trace process identifier for reads and writes.

www.DataSheet4U.com

3-14 Programmer’s Model
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

3.7.2.5 CP15 Test (15)

LSI Logic does not implement the ARM test register set. Use the
LSI Logic recommended tool to implement RAMBIST in your design.

Writes to the ARM test registers have no effect. Reads from the test
registers result in default values of 0.

The CP15 RAMBIST Control Registers provide control of and access to
the Instruction and Data RAMs so that memory failures can be isolated
or forced. Table 3.8 shows the register map for CP15 Register 15.

Table 3.7 Register 13, Trace Process Identifier

Register Read Write

Trace Process Identifier MRC p15, 0, Rd, c13, c1, 1 MCR p15, 0, Rd, c13, c1, 1

Table 3.8 CP15 RAMBIST Register Map

Register Register Reads Register Writes

1 BIST Control Register
MRC p15, 1, Rd, c15, c0, 1

BIST Control Register
MCR p15, 1, Rd, c15, c0, 1

2 Instruction BIST Fail Address Register
MRC p15, 1, Rd, c15, c0, 2

Instruction BIST Start/Pause Address
Register
MCR p15, 1, Rd, c15, c0, 2

3 Instruction BIST Fail/Pause Read Data
Register
MRC p15, 1, Rd, c15, c0, 3

Instruction BIST Test/Pause Write Data
Register
MCR p15, 1, Rd, c15, c0, 3

4–5 Reserved (undefined instruction) Reserved (undefined instruction)

6 Data BIST Fail Address Register
MRC p15, 1, Rd, c15, c0, 6

Data BIST Start/Pause Address Register
MCR p15, 1, Rd, c15, c0, 6

7 Data BIST Fail/Pause Data Register
MRC p15, 1, Rd, c15, c0, 7

Data BIST Test/Pause Data Register
MCR p15, 1, Rd, c15, c0, 7

www.DataSheet4U.com

Registers 3-15
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

BIST Control Register – This register controls the operation of the
memory BIST. When written, this register controls the Instruction and
Data memory BIST wrappers.

IBISTSize Instruction BIST Size W [31:21]
Reserved R [31:21]
This write-only field defines the size of the instruction
memory as n. IBISTSize in bytes is 4 x 2n.

ICom IBIST Complete R 20
Reserved W 20
A one on this read-only bit indicates the Instruction BIST
run has completed. This bit is hardcoded to 0x1, BIST
complete.

IFail IBIST Fail R 19
Reserved W 19
A one on this read-only field indicates the Instruction
BIST detected a memory failure. This bit is hardcoded to
0x0.

IEn IBIST Enable R/W 18
Setting this bit enables the IBIST controller to drive the
instruction memory address, data, write enable, and chip
select signals. This bit must be set before issuing an
IBISTRun. It must remain set for the duration of the IBIST
test.

IPause IBIST Pause R/W 17
Setting this bit pauses the instruction BIST operation.
This facility is useful for inserting errors and isolating
failures.

IRun IBISTRunning R 16
IBISTRun W 16
When reading this bit, a one indicates the instruction
BIST is running. If IPause is set, then IBISTRunning is
deasserted when BIST execution is paused. This bit is
hardcoded to 0x0, BIST not running.

31 21 20 19 18 17 16 15 5 4 3 2 1 0

IBISTSize I
Com

I
Fail

I
En

I
Pause

I
Run DBISTSize D

Com
D

Fail
D
En

D
Pause

D
Run

www.DataSheet4U.com

3-16 Programmer’s Model
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

DBISTSize Data BIST Size W [15:5]
Reserved R [15:5]
This write-only field defines the size of the data memory
as n. DBISTSize in bytes is 4 x 2n.

DCom DBIST Complete R 4
Reserved W 4
A one on this read-only bit indicates the data BIST run
has completed. This bit is hardcoded to 0x1, BIST
complete.

DFail DBIST Fail R 3
Reserved W 3
A one on this read-only field indicates the data BIST
detected a memory failure. This bit is hardcoded to 0x0.

DEn DBIST Enable R/W 2
Setting this bit enables the DBIST controller to drive the
data memory address, data, write enable, and chip select
signals. This bit must be set before issuing a DBISTRun.
It must remain set for the duration of the DBIST test.

DPause DBIST Pause R/W 1
Setting this bit pauses the data BIST operation. This
facility is useful for inserting errors and isolating failures.

DRun DBISTRunning R 0
DBISTRun W 0
When reading this bit, a one indicates the data BIST is
running. If DPause is set, then DBISTRunning is
deasserted when BIST execution is paused. This bit is
hardcoded to 0x0, BIST not running.

Instruction BIST Start/Pause Address Register – The function of this
write-only register depends on the setting of the IPause bit in the CP15
BIST Control register.

When the Instruction BIST Pause bit is cleared, a write to this register
determines the Instruction BIST Start Address. BIST testing is executed
on instruction memory from the IBIST Start Address to an address that
is a function of the IBIST size with respect to the Start Address. Normally

31 26 25 0

Reserved IBIST Start Address/IBIST Pause Address

www.DataSheet4U.com

Registers 3-17
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

this register is cleared to allow testing of the full instruction memory.
However, it can be set to a nonzero value to limit testing to only a portion
of instruction memory.

When the Instruction BIST Pause bit is set, a write to this register sets
the Instruction Pause Address. When BIST testing is paused, the Pause
address is held at the instruction memory RAM address input.

CP15 Instruction BIST Test/Pause Write Data Register – The
function of this write-only register depends on the setting of the IPause
bit in the CP15 BIST Control register.

When the Instruction BIST Pause bit is cleared, a write to this register
sets the Instruction BIST Data pattern (IBISTTestData). The BIST
algorithm uses IBISTTestData and its inverse pattern for instruction
memory BIST testing.

When the Instruction BIST Pause bit is set and BIST operation is
paused, data written to this register is placed in the instruction memory
at the IBIST Pause Address.

CP15 Instruction BIST Fail Address Register – This read-only
register contains the address of the first detected instruction memory
failure. This register is valid when the Instruction RAM BIST Fail bit is set
in the CP15 BIST Control register.

Because ARM BIST was not implemented, this register is hardcoded to
0x00000000.

CP15 Instruction BIST Fail/Pause Read Data Register – The
function of this read-only register depends on the setting of the IPause
bit in the CP15 BIST Control register.

Because ARM BIST was not implemented, this register has been
hardcoded to 0x00000000.

31 0

IBIST Test Data/IBIST Pause Write Data

31 26 25 0

Reserved IBIST Fail Address

www.DataSheet4U.com

3-18 Programmer’s Model
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

CP15 Data BIST Start/Pause Address Register – The function of this
write-only register depends on the setting of the DPause bit in the CP15
BIST Control register.

When the Data BIST Pause bit is cleared, a write to this register
determines the Data BIST Start Address. BIST testing is executed on
data memory from DBIST Start Address to a function of the DBIST size
with respect to the Start Address. Normally, this register is cleared to
allow testing of the full data memory. However, it can be set to a nonzero
value to limit testing to only a portion of data memory.

When the Data BIST Pause bit is set, a write to this register sets the
Data Pause Address. When BIST testing is paused, the Pause address
is held at the data memory RAM address inputs.

CP15 Data BIST Test/Pause Write Data Register – The function of
this write-only register depends on the setting of the DPause bit in the
CP15 BIST Control register.

When the Data BIST Pause bit is cleared, a write to this register sets the
Data BIST Data pattern (DBISTTestData). The BIST algorithm uses
DBISTTestData and its inverse pattern for data memory BIST testing.

When the Data BIST Pause bit is set and BIST operation is paused, data
written to this register is placed in the data memory at the DBIST Pause
Address.

CP15 Data BIST Fail Address Register – This read-only register
contains the address of the first detected data memory failure. This
register is valid when the Data RAM BIST Fail bit is set in the CP15 BIST
Control register.

31 0

IBIST Fail Data/IBIST Pause Read Data

31 26 25 0

Reserved DBIST Start Address/DBIST Pause Address

31 0

DBIST Test Data/DBIST Pause Write Data

www.DataSheet4U.com

Registers 3-19
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Because ARM BIST is not implemented, this register is hardcoded to
0x00000000.

CP15 Data BIST Fail/Pause Read Data Register – The function of this
read-only register depends on the setting of the DPause bit in the CP15
BIST Control register.

Because ARM BIST is not implemented, this register is hardcoded to
0x00000000.

31 26 25 0

Reserved DBIST Fail Address

31 0

DBIST Fail Data/DBIST Pause Read Data

www.DataSheet4U.com

3-20 Programmer’s Model
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

www.DataSheet4U.com

ARM966E-S Microprocessor Core Technical Manual 4-1
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Chapter 4
Exception Processing

This section describes all events that cause exceptions, defines the types
of exceptions, and explains how they are resolved.

• Section 4.1, “Overview”

• Section 4.2, “Exception Flow”

• Section 4.3, “Exception Descriptions”

4.1 Overview

Internal and external sources generate exceptions, which cause the
processor to handle an exceptional event, such as a hardware interrupt
or an attempt to execute an undefined instruction. The processor state
just before handling the exception must be preserved so that the original
program can be resumed when the exception routine has completed.
More than one exception may arise at the same time.

The ARM966E-S supports seven types of exceptions; each type of
exception has a privileged processor mode. Table 4.1 shows the types
of exceptions with their corresponding processor mode that processes
that exception. When an exception occurs, execution is forced to an
exception vector location.

www.DataSheet4U.com

4-2 Exception Processing
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Table 4.2 lists exceptions from highest to lowest priority. While more than
one exception can occur for a single instruction, only the exception with
the highest priority is reported.

4.2 Exception Flow

When an exception occurs, some of the standard registers are replaced
with registers specific to the exception mode. All exceptions have banked

Table 4.1 Exception Processing Modes

Exception Type Mode Vector Address

Reset SVC 0x0000.0000

Undefined Instructions UNDEF 0x0000.0004

Software Interrupt (SWI) SVC 0x0000.0008

Prefetch Abort (Instruction fetch
memory abort)

ABORT 0x0000.000C

Data Abort (Data Access
memory abort)

ABORT 0x0000.0010

IRQ (Interrupt) IRQ 0x0000.0018

FIQ (Fast Interrupt) FIQ 0x0000.001C

Table 4.2 Exception Priority Order

Exception Priority

Reset 1 (Highest)

Data Abort 2

FIQ 3

IRQ 4

Prefetch Abort 5

BKPT, Undefined Instruction, SWI 6 (Lowest)

www.DataSheet4U.com

Exception Flow 4-3
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

registers for R14 and R13. One interrupt mode has more banked
registers for fast interrupt processing.

After an exception, R14 holds the return address for exception
processing. This address is used to return after the exception is
processed and to address the instruction that caused the exception.

R13 is banked across exception modes to provide each exception
handler with a private stack pointer (SP). The fast interrupt mode also
banks registers 8 through 12, so that interrupt processing can begin
without the need to save or restore these registers. The system mode
does not have any banked registers; it uses the User-mode registers.
System mode is used to run normal (nonexception) tasks that require a
privileged processor mode.

All other processor states are held in the status registers: CPSR and
SPSR. The current operating processor status is in the Current Program
Status Register (CPSR). The CPSR holds four condition code flags (N,
Z, C, and V), two interrupt disable bits (IRQ and FIQ), and five bits that
encode the current processor mode.

All exception modes except for User and System have a Saved Program
Status Register (SPSR), which holds the CPSR of the task immediately
before the exception occurred. Both the CPSR and SPSR are accessed
with special instructions.

When an exception occurs, the ARM9E-S processor core halts execution
after the current instruction and begins execution at the fixed address in
low memory, pointed at by the exception vectors. Each exception has a
separate vector location. Memory aborts have two vector locations to
distinguish between data and instruction accesses.

At initialization, the operating system installs a handler on every
exception. Privileged operating system tasks are normally run in System
mode to allow exceptions to occur within the operating system without
state loss. Exceptions overwrite their R14 when an exception occurs, and
System mode is the only privileged mode that cannot be entered by an
exception.

www.DataSheet4U.com

4-4 Exception Processing
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

4.3 Exception Descriptions

This section provides detailed descriptions of the seven exception types.
It describes the cause of each exception and describes how each
exception is processed.

4.3.1 Reset Exception

Cause – The Reset exception occurs when the processor reset signal is
asserted.

Processing – The ARM9E-S processor core immediately stops
execution of the current instruction. When the reset is deasserted, the
following actions occur:

• R14_svc is loaded with an unpredictable value

• SPSR_svc is loaded with the contents of CPSR

• CPSR[5:0] are set to 0b010011 (supervisor mode)

• CPSR6 is set to one (fast interrupts are disabled)

• CPSR7 is set to one (normal interrupts are disabled)

• the program counter (PC) is loaded with the reset vector (0x0)

4.3.2 Undefined Instruction Execution

Cause – When the ARM9E-S executes a coprocessor instruction, it
waits for any external coprocessor to acknowledge that it can execute the
instruction. If no coprocessor responds, an undefined instruction
exception occurs. If an attempt is made to execute an instruction that is
undefined, an undefined instruction exception occurs.

This exception can be used for software emulation of a coprocessor in a
system that does not have the physical coprocessor or for
general-purpose instruction set extension by software emulation.

Processing – When an undefined instruction exception occurs, the
following actions occur:

• R14_und is loaded with the address of the undefined instruction + 4

• SPSR_und is loaded with the contents of CPSR

www.DataSheet4U.com

Exception Descriptions 4-5
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

• CPSR[5:0] are set to 0b011011 (undefined mode)

• CPSR6 remains unchanged (fast interrupt status is unchanged)

• CPSR7 is set to one (normal interrupts are disabled)

• The program counter (PC) is loaded with the undefined instruction
exception vector (0x4)

To return after emulating the undefined instruction, use MOVS PC, R14.
This instruction restores the PC (from R14_und) and CPSR (from
SPSR_und) and returns to the instruction following the undefined
instruction.

4.3.3 Software Interrupt Exception

Cause – The software interrupt instruction (SWI) causes a software
interrupt exception. The ARM9E-S processor core enters Supervisor
mode to request a particular supervisor (operating system) function.

Processing – When an SWI is executed, the following actions occur:

• R14_svc is loaded with the address of the SWI instruction + 4

• SPSR_svc is loaded with the contents of CPSR

• CPSR[5:0] are set to 0b010011 (supervisor mode)

• CPSR6 remains unchanged (fast interrupt status is unchanged)

• CPSR7 is set to one (normal interrupts are disabled)

• The program counter (PC) is loaded with the software interrupt
exception vector (0x8)

To return after performing the SWI operation, use MOVS PC, R14. This
instruction restores the PC (from (R14_svc) and CPSR (from SPSR_svc)
and returns to the instruction following the SWI.

4.3.4 Prefetch Abort (Instruction Fetch Memory Abort)

Cause – The memory system indicates a memory abort. Activating an
abort in response to an instruction fetch marks the fetched instruction as
invalid. An abort takes place if the processor attempts to execute the
invalid instruction. If the instruction is not executed (for example, as a
result of a branch being taken while it is in the pipeline), no prefetch abort
occurs.

www.DataSheet4U.com

4-6 Exception Processing
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Processing – When an attempt is made to execute an aborted
instruction, the following actions occur:

• R14_abt is loaded with the address of the aborted instruction + 4

• SPSR_abt is loaded with the contents of CPSR

• CPSR[5:0] are set to 0b010111 (abort mode)

• CPSR6 remains unchanged (fast interrupt status is unchanged)

• CPSR7 is set to one (normal interrupts are disabled)

• The program counter (PC) is loaded with the prefetch abort
exception vector (0xC)

To return after fixing the reason for the abort, use SUBS PC, R14, #4.
This instruction restores both the PC (from R14_abt) and CPSR (from
SPSR_abt) and returns to the aborted instruction.

4.3.5 Data Abort (Data Access Memory Abort)

Cause – The memory system indicates a memory abort. Activating an
abort in response to a data access (load or store) marks the data as
invalid. A data abort exception occurs before any subsequent instructions
or exceptions have altered the state of the processor core.

Processing – The following actions occur:

• R14_abt is loaded with the address of the aborted instruction + 8

• SPSR_abt is loaded with the contents of CPSR

• CPSR[5:0] are set to 0b010111 (abort mode)

• CPSR6 remains unchanged (fast interrupt status is unchanged)

• CPSR7 is set to one (normal interrupts are disabled)

• The program counter (PC) is loaded with the data abort exception
vector (0x10)

To return after fixing the reason for the abort, use SUBS PC, R14, #8.
This instruction restores both the PC (from R14_abt) and CPSR (from
SPSR_abt) and returns to re-execute the aborted instruction.

If the aborted instruction does not need to be re-executed, use SUBS PC,
R14, #4. For memory access instructions that specify writebacks and

www.DataSheet4U.com

Exception Descriptions 4-7
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

generate data aborts (LDR, LDRH, LDRSH, LDRB, LDRSB, STR, STRH,
STRB, LDM, STM, LDC, STC), the final value that these instructions
leave in the base register is implementation-defined.

4.3.6 IRQ (Interrupt Request) Exception

Cause – The IRQ exception is generated when the nIRQ input is
asserted. It has a lower priority than the FIQ exception and is masked
out when an FIQ sequence is entered. Interrupts are disabled when the
I bit in the CPSR is set (note that the I bit can only be changed from a
privileged mode). If the I flag is cleared, the ARM9E-S processor core
checks for an IRQ at instruction boundaries.

Processing – When an IRQ is detected, the following actions occur:

• R14_irq is loaded with the address of the next instruction to be
executed + 4

• SPSR_irq is loaded with the contents of CPSR

• CPSR[5:0] are set to 0b010010 (interrupt mode)

• CPSR6 remains unchanged (fast interrupt status is unchanged)

• CPSR7 is set to one (normal interrupts are disabled)

• The program counter (PC) is loaded with the interrupt request
exception vector (0x18)

To return after servicing the interrupt, use SUBS PC, R14, #4. This
instruction restores both the PC (from R14_irq) and CPSR (from
SPSR_irq) and resumes execution of the interrupted code.

4.3.7 FIQ (Fast Interrupt Request) Exception

Cause – The FIQ exception is generated when the nFIQ input is
asserted. FIQ supports a data transfer or channel process, and has
sufficient private registers to remove the need for register saving in such
applications (thus minimizing the overhead of context switching).

Fast interrupts are disabled when the F bit in the CPSR is set (note that
the F bit can only be altered from a privileged mode). If the F flag is
cleared, the ARM9E-S processor core checks for an FIQ at instruction
boundaries.

www.DataSheet4U.com

4-8 Exception Processing
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Processing – When an FIQ is detected, the following actions occur:

• R14_fiq is loaded with the address of the next instruction to be
executed + 4

• SPSR_fiq is loaded with the contents of CPSR

• CPSR[5:0] are set to 0b010001 (FIQ mode)

• CPSR6 is set to one (fast interrupt status is disabled)

• CPSR7 is set to one (normal interrupts are disabled)

• The program counter (PC) is loaded with the interrupt request
exception vector (0x1C)

To return after servicing the interrupt, use SUBS PC, R14, #4. This
instruction restores both the PC (from R14_fiq) and CPSR (from
SPSR_fiq) and resumes execution of the interrupted code.

The FIQ vector is intentionally the last vector to allow the FIQ
exception-handler software to be placed directly at address 0x1C and not
require a branch instruction from the vector.

www.DataSheet4U.com

ARM966E-S Microprocessor Core Technical Manual 5-1
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Chapter 5
AHB Interface Unit

This chapter describes the operation of the Advanced High-Performance
Bus (AHB) Interface Unit. It contains the following sections:

• Section 5.1, “Overview”

• Section 5.2, “AHB Interface Signals”

• Section 5.3, “AHB Clocking”

• Section 5.4, “AHB Operation”

• Section 5.5, “Basic Transfers”

• Section 5.6, “Burst Operations”

5.1 Overview

The AHB is a high-performance, burst-based bus protocol that
complements the lower level AMBA Advanced System Bus (ASB) and
APB protocols. The AHB bus supplies the needed requirements for
high-performance/high clock frequency systems. This bus can handle the
following:

• burst transfers

• single-cycle bus master handover

• single clock edge operation

• non-3-state implementation

The AHB bus protocol is used with a central multiplexer interconnection
scheme. From this scheme, all bus masters drive out the address and
control signals indicating the transfer they wish to perform. The arbiter
determines which master has its address/control signals routed to all of
the slaves. A central decoder is also required to control the read data

www.DataSheet4U.com

5-2 AHB Interface Unit
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

and response signal multiplexer, which selects the signals from the slave
that is involved in the transfer.

Figure 5.1 shows the structure that is required to implement an AHB
design with three masters and four slaves.

Figure 5.1 Multiplexer Interconnection

5.2 AHB Interface Signals

This section describes the signals that determine the transfer type and
burst type of each AHB transfer. It also describes the control signals that
provide additional information on the transfers.

Slave
#1

Slave
#2

Slave
#3

Slave
#4

HADDR

HADDR

HADDR

HADDR

HWDATA

HWDATA

HWDATA

HWDATAMaster
#1

Master
#2

Master
#3

HADDR

HADDR

HADDR

HWDATA

HWDATA

HWDATA

Address/

Decoder

Arbiter

HRDATA

HRDATA

HRDATA

Mux

Mux HRDATA

HRDATA

HRDATA

HRDATA

Control Mux

Write Data
Mux

Read Data
Mux

Mux

www.DataSheet4U.com

AHB Interface Signals 5-3
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

5.2.1 Transfer Types

Every transfer is classified into one of four different types, as determined
by the HTRANS[1:0] signals.

The first transfer of any burst is nonsequential; the address is unrelated
to the previous transfer. The remaining transfers in a burst are sequential;
the address is related to the previous transfer. Single transfers on the bus
are treated as bursts of one, and thus the transfer type is nonsequential.

The IDLE transfer type is used when a bus master is granted the bus,
but does not wish to perform a data transfer. Slaves must provide a zero
wait state OKAY response to IDLE transfers.

The BUSY transfer type allows bus masters to insert idle cycles in the
middle of a burst of transfers. This transfer type indicates that the bus
master is continuing with a burst, but the next transfer cannot take place
immediately.

When a master uses the BUSY transfer type, the address and control
signals must reflect the next transfer in the burst. The master must
always perform this transfer and cannot cancel it at a later point in time.
Slaves must provide a zero wait state OKAY response in the same way
that they respond to IDLE transfers.

Table 5.1 Transfer Type Encoding

HTRANS[1:0]
Transfer
Type Description

00 IDLE Idle transfer is used when a bus master is granted the bus, but does not
transfer data.

01 BUSY Busy transfer is used to insert an idle cycle in the middle of a burst of
transfers.

10 NONSEQ Nonsequential transfer indicates the first transfer of a burst or a single
transfer.

11 SEQ Sequential transfer is used for subsequent transfers in a burst. The
control information is identical to the previous transfer. The address is
equal to the address of the previous transfer plus the size (in bytes). For
wrapping bursts, the address of the transfer wraps at the address
boundary equal to the size (in bytes) multiplied by the number of beats
in the transfer (either 4, 8, or 16).

www.DataSheet4U.com

5-4 AHB Interface Unit
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Figure 5.2 shows usage of three transfer types. The first transfer is the
start of a burst; it is nonsequential. The master is unable to perform the
second transfer of the burst immediately. It uses a BUSY transfer to delay
the start of the next transfer. In this example, the master only requires
one cycle before it is ready to start the next transfer in the burst, which
completes with no wait states.

The master performs the third transfer of the burst immediately, but this
time the slave is unable to complete and uses HREADY to insert a single
wait state. The final transfer of the burst completes with zero wait states.

Figure 5.2 Transfer Type Examples

5.2.2 Burst Types

The AHB protocol defines four, eight, and 16-beat bursts as well as
undefined length bursts and single transfers. The protocol also supports
incrementing and wrapping bursts.

All ARM966E-S bursts are defined as incrementing bursts of undefined
length (INCR).

NONSEQ

CLK

HTRANS[1:0]

HADDR[31:0]

HWDATA[31:0]

HREADY

HRDATA[31:0]

BUSY

Data
(A)

SEQ SEQ SEQ

0x20 0x24 0x24 0x28 0x2C

INCR

Data
(0x20)

Data
(0x24)

Data
(0x28)

Data
(0x2C)

HBURST[2:0]

Data
(0x20)

Data
(0x24)

Data
(0x28)

Data
(0x2C)

www.DataSheet4U.com

AHB Interface Signals 5-5
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

HBURST[2:0] determine the burst type as indicated in Table 5.2. The
ARM966E-S supports SINGLE and INCR types only (HBURST[2:0] =
0b000 and 0b001).

Incrementing bursts access sequential locations; the address of each
transfer in the burst is just an increment of the previous address.

Bursts must not cross a 1 Kbyte address boundary. An incrementing
burst can be of any length, but the upper limit is set by the fact that the
address must not cross the 1 Kbyte boundary.

Single transfers can be done using an unspecified length incrementing
burst that has a burst length of one.

All transfers within a burst must be aligned to the address boundary
equal to the size of the transfer. For example, word transfers must be
aligned to word address boundaries (HADDR[1:0] = 00), and halfword
transfers must be aligned to halfword address boundaries
(HADDR0 = 0).

5.2.3 Control Signals

The control signals provide additional information regarding the transfer.
These signals include HWRITE, HSIZE[2:0], HPROT[3:0], HREADY, and
HRESP[1:0].

5.2.3.1 HWRITE

HWRITE determines the transfer direction. When HIGH, HWRITE
indicates a write transfer; the master broadcasts data on the write data
bus, HWDATA[31:0]. When HWRITE is LOW, a read transfer is
performed. The slave places the data on the read data bus,
HRDATA[31:0].

Table 5.2 Burst Signal Encoding

HBURST[2:0] Burst Type Description

000 SINGLE Single transfer

001 INCR Incrementing burst of unspecified length

010–111 Not supported

www.DataSheet4U.com

5-6 AHB Interface Unit
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

5.2.3.2 HSIZE[2:0]

HSIZE[2:0] indicate the transfer size. The size is used in conjunction with
the HBURST[2:0] signals to determine the address boundary for
wrapping bursts. The ARM966E-S only supports transfer sizes of byte,
halfword, and word (HSIZE[2:0] = 0b000, 0b001, and 0b010).

5.2.3.3 HPROT[3:0]

HPROT[3:0] are the protection control signals. They provide additional
information about a bus access and are primarily intended for use by any
module that wishes to implement some level of protection.

HPROT0 indicates whether the instruction is an opcode fetch or data
access. HPROT1 indicates whether the transfer is a supervisor mode
access or user mode access. For bus masters with an MMU, HPROT2
indicates whether the current access is bufferable. HPROT3 is tied to 0,
indicating noncacheable.

Table 5.3 Size Encoding

HSIZE[2:0] Transfer Size Description

000 8 bits Byte

001 16 bits Halfword

010 32 bits Word

011–111 Not supported

www.DataSheet4U.com

AHB Interface Signals 5-7
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Not all bus masters can generate accurate protection information
because they do not contain sufficient information about the nature of the
transfer. Therefore slaves should not use HPROT[3:0] unless absolutely
necessary.

5.2.3.4 HREADY

HREADY is used to extend the data portion of an AHB transfer. When
LOW, HREADY indicates the transfer is to be extended; when HIGH,
HREADY indicates the transfer can complete. A typical slave uses
HREADY to insert the appropriate number of wait states into the transfer.

To ensure accurate bus access latency, every slave must have a
predetermined number of wait states it inserts before backing off the bus.
It is recommended that slaves do not insert more than 16 wait states to
prevent any single access locking the bus for a large number of clock
cycles.

5.2.3.5 HRESP[1:0]

The HRESP[1:0] signals indicate the transfer response: OKAY, ERROR,
SPLIT, or RETRY.

When the transfer completes with an OKAY response on HRESP[1:0],
the transfer was successfully completed. The OKAY response is also

Table 5.4 Protection Signal Encoding

HPROT3
Cacheable

HPROT2
Bufferable

HPROT1
Supervisor

HPROT0
Data/Opcode Description

– – – 0 Opcode Fetch

– – – 1 Data Access

– – 0 – User Access

– – 1 – Supervisor Access

– 0 – – Not Bufferable

– 1 – – Bufferable

0 – – – Not Cacheable

www.DataSheet4U.com

5-8 AHB Interface Unit
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

used for any additional cycles that are inserted with HREADY LOW, prior
to giving one of the other three responses.

When it is necessary for a slave to insert a number of wait states prior
to deciding what response to give, then it must drive the response to
OKAY.

A slave uses the ERROR response to indicate to the bus master that
some form of error condition with the associated transfer has occurred.
Typically, this response is used for a protection error, such as an attempt
to write to a read-only memory location. A two-cycle response is required
for an Error condition.

The SPLIT and RETRY response combinations allow slaves to delay the
completion of a transfer, but free up the bus for use by other masters.
These response combinations are usually only required by slaves that
have a high access latency and can make use of these response codes
to ensure that other masters are not prevented from accessing the bus
for long periods of time.

The RETRY response indicates the transfer has not yet completed, so
the bus master should retry the transfer. The master should continue to
retry the transfer until it completes. A two-cycle RETRY response is
required.

The SPLIT response indicates the transfer has not yet completed. The
bus master must retry the transfer when it is next granted the bus. The
slave will request access to the bus on behalf of the master when the
transfer can be completed. A two-cycle SPLIT response is required.

5.2.4 Data Buses

Because the AHB interface does not implement 3-state drivers, it
contains separate read and write data buses.

5.2.4.1 HWDATA[31:0]

The bus master drives the write data bus during write transfers. If the
transfer is extended, then the bus master must hold the data valid until
the transfer completes, as indicated by HREADY HIGH.

All transfers must be aligned to the address boundary equal to the size
of the transfer. For example, word transfers must be aligned to word

www.DataSheet4U.com

AHB Interface Signals 5-9
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

address boundaries (HADDR[1:0] = 00), halfword transfers must be
aligned to halfword address boundaries (HADDR0 = 0).

For transfers that are narrower than the width of the bus, for example, a
16-bit transfer on a 32-bit bus, then the bus master only has to drive the
appropriate byte lanes. The slave is responsible for selecting the write
data from the correct byte lanes. Table 5.5 and Table 5.6 show which
byte lanes are active for little-endian and big-endian systems,
respectively. Burst transfers that have a transfer size less than the width
of the data bus have different active byte lanes for each beat of the
transfer.

Table 5.5 Active Byte Lanes for a 32-Bit Little-Endian Data Bus

Transfer
Size

Address
Offset DATA[31:24] DATA[23:16] DATA[15:8] DATA[7:0]

Word 0 x x x x

Halfword 0 x x

Halfword 2 x x

Byte 0 x

Byte 1 x

Byte 2 x

Byte 3 x

www.DataSheet4U.com

5-10 AHB Interface Unit
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

The active byte lane also depends on the endianess of the system, but
the AHB does not specify the required endianess. Therefore all master
and slaves must have the same endianess.

5.2.4.2 HRDATA[31:0]

The appropriate slave drives the read data bus during read transfers. If
the slave extends the read transfer by holding HREADY LOW, then the
slave only needs to provide valid data at the end of the final cycle of the
transfer, as indicated by HREADY HIGH.

For transfers that are narrower than the width of the bus, the slave only
needs to provide valid data on the active byte lanes, as indicated in
Table 5.5 and Table 5.6. The bus master is responsible for selecting the
data from the correct byte lanes.

A slave only has to provide valid data when a transfer completes with an
OKAY response. ERROR, RETRY, and SPLIT responses do not require
valid read data.

5.2.5 Endianess

For the system to function correctly, all modules must use the same
endianess. The same is true of any data routing or bridges. Dynamic
endianess is not supported.

Table 5.6 Active Byte Lanes for a 32-Bit Big-Endian Data Bus

Transfer
Size

Address
Offset DATA[31:24] DATA[23:16] DATA[15:8] DATA[7:0]

Word 0 x x x x

Halfword 0 x x

Halfword 2 x x

Byte 0 x x

Byte 1 x

Byte 2 x

Byte 3 x

www.DataSheet4U.com

AHB Clocking 5-11
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Only modules that are used in a wide variety of applications should
support both big- and little-endian ordering. Either a configuration pin or
internal control bit can select between the two endian settings.

5.3 AHB Clocking

The ARM966E-S uses a single clock, CLK. In many systems, it might be
desirable for the ARM966E-S to run at a higher frequency than the AHB
system bus. To support this option, the ARM966E-S provides a clock
enable, HCLKEN.

HCLKEN is HIGH for a single CLK period and signifies the rising edge
of the AHB clock HCLK. CLK and HCLK must be synchronous. The skew
between CLK and HCLK must be minimized. Note that HCLK is not used
by the core and might not be used in all implementations.

Figure 5.3 shows the relationship between CLK, HCLKEN, and HCLK.

Figure 5.3 AHB Clock Relationships

5.4 AHB Operation

Before an AHB transfer can begin, the bus master must be granted
access to the bus. This process is started by the master asserting a
request signal to the arbiter. Then the arbiter indicates when the master
is granted use of the bus.

CLK

HCLKEN

HCLK

AHB Outputs
from ARM966E-S

AHB Inputs
to ARM966E-S

www.DataSheet4U.com

5-12 AHB Interface Unit
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

When a master is granted the bus, its address and control signals are
driven to all slaves. These signals provide information on the address,
direction, and width of the transfer, as well as an indication when the
transfer forms part of an incrementing burst. Incrementing bursts do not
wrap at address boundaries.

A write data bus moves data from the master to a slave, while a read
data bus moves data from a slave to the master.

Every transfer consists of an address/control cycle followed by one or
more cycles for the data. The address cannot be extended and therefore
all slaves must sample the address during this time. The data, however,
can be extended using the HREADY signal. When LOW, this signal
causes wait states to be inserted into the transfer and allows extra time
for the slave to provide or sample data.

During a transfer, the slave shows the status using the response signals,
HRESP[1:0]. The OKAY response indicates that the transfer is
progressing normally, and, when HREADY goes HIGH, shows the
transfer has completed successfully.

The other possible transfer responses are ERROR, RETRY, and SPLIT.
The ERROR response indicates that a transfer error occurred and the
transfer was unsuccessful. Both SPLIT and RETRY transfer responses
indicate that the transfer cannot complete immediately, but the bus
master should continue to attempt the transfer.

In normal operation, a master is allowed to complete all the transfers in
a particular burst before the arbiter grants another master access to the
bus. However, in order to avoid excessive arbitration latencies, it is
possible for the arbiter to break up a burst and in such cases, the master
must rearbitrate for the bus in order to complete the remaining transfers
in the burst.

5.5 Basic Transfers

An AHB transfer consists of two distinct sections, the address and the
data. The address lasts only a single cycle, while the data might require
several cycles, using the HREADY signal.

www.DataSheet4U.com

Basic Transfers 5-13
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Figure 5.4 shows the simplest transfer with no wait states. The master
drives the address and control signals onto the bus after the rising edge
of CLK. The slave then samples the address and control information on
the next rising edge of the clock. After the slave has sampled the
address/control, it can start to drive the appropriate response. The bus
master samples the response on the third rising edge of the clock.

Figure 5.4 Simple Transfer

This example shows how the address and data phases of the transfer
occur during different clock periods. In fact, the address phase of any
transfer occurs during the data phase of the previous transfer. This
overlapping of address and data is fundamental to the pipelined nature
of the bus. It allows for high-performance operation while still providing
adequate time for a slave to provide the response to a transfer.

Figure 5.5 shows a transfer with wait states. A slave can insert wait
states into any transfer, allowing additional time for completion. For write
operations, the bus master holds the data stable throughout the extended
cycles. For read operations, the slave does not have to provide valid data
until the transfer is about to complete.

A

Address
Phase

Control

Data (A)

Data
(A)

Data
Phase

CLK

HADDR[31:0]

Control

HWDATA[31:0]

HREADY

HRDATA[31:0]

www.DataSheet4U.com

5-14 AHB Interface Unit
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Figure 5.5 Transfer with Wait States

When a transfer is extended with wait states, it ends up extending the
address phase of the next transfer. Figure 5.6 shows three transfers to
unrelated addresses: A, B, and C. The transfers to addresses A and C
both have zero wait states, but the transfer to address B has one wait
state. Extending the data phase of the transfer to address B extends the
address phase of the transfer to address C.

Figure 5.6 Multiple Transfers

A

CLK

HADDR[31:0]

Control

HWDATA[31:0]

HREADY

HRDATA[31:0]

Control

Data (A)

Data
(A)

Address
Phase Data Phase

A

CLK

HADDR[31:0]

Control

HWDATA[31:0]

HREADY

HRDATA[31:0] Data
(A)

B C

Control (A) Control (C)

Data
(B)

Control (B)

Data (B) Data (C)Data (A)

Data
(C)

www.DataSheet4U.com

Burst Operations 5-15
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

5.6 Burst Operations

This section provides examples of burst operations the ARM966E-S
supports.

5.6.1 Early Burst Termination

Sometimes a burst is not allowed to complete. To determine when a burst
has terminated early, the slave should monitor the HTRANS signals and
ensure that after the start of the burst, every transfer is sequential or
busy. Occurrence of a nonsequential or idle transfer indicates a new
burst has started, and thus the previous burst must have been
terminated.

If a bus master cannot complete a burst because it loses ownership of
the bus, then it must rebuild the burst appropriately when it next gains
access to the bus. For example, if a master has only completed one beat
of a four-beat burst, then it must use an undefined length burst to perform
the remaining three transfers.

5.6.2 Burst Operation Example

Figure 5.7 shows incrementing bursts of undefined length. The figure
shows two bursts. The first burst is two transfers starting at address
0x20; the second burst is three transfers starting at address 0x5C. The
first burst consists of halfword transfers, so the addresses increment by
two. The second burst consists of word transfers, so the addresses
increment by four.

www.DataSheet4U.com

5-16 AHB Interface Unit
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Figure 5.7 Incrementing Bursts with Undefined Lengths

5.7 Slave Transfer Responses

After a master has started a transfer, the slave then determines how the
transfer should progress. No provision is made within the AHB
specification for a bus master to cancel a transfer once it has started.

Whenever a slave is accessed, it must provide a response that indicates
the status of the transfer. HREADY is used to extend the transfer. It works
in combination with the response signals, HRESP[1:0], which provide the
status of the transfer.

The options that the slave has on how it can complete the transfer are:

• Complete the transfer immediately

• Insert one or more wait states to allow time to complete the transfer

• Signal an error to indicate that the transfer has failed

• Delay the completion of the transfer, but allow the master and slave
to back off the bus, leaving it available for other transfers

NONSEQ

T1 T2 T3 T4 T5 T6 T7 T8

SEQ SEQSEQ NONSEQ

Control for Burst
Size = Word

Data
(0x20)

Data
(0x22)

Data
(0x60)

Data
(0x20)

Data
(0x22)

Data
(0x5C)

Data
(0x60)

Data
(0x64)

CLK

HTRANS[1:0]

HWDATA[31:0]

HREADY

HRDATA[31:0]

HBURST[2:0]

HWRITE
HSIZE[2:0]

HPROT[3:0]

0x20 0x60 0x640x22 0x5C

INCRINCR

Control for Burst
Size = Halfword

Data
(0x64)

Data
(0x5C)

HADDR[31:0]

www.DataSheet4U.com

Slave Transfer Responses 5-17
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

5.7.1 Two-Cycle Response

Only an OKAY response can be given in a single cycle. The ERROR,
RETRY, and SPLIT responses require at least two cycles.

To complete with any of these three responses, in the cycle previous to
the last cycle, the slave drives HRESP[1:0] to indicate ERROR, RETRY,
or SPLIT while driving HREADY LOW to extend the transfer for an extra
cycle. In the final cycle, the slave drives HREADY HIGH to end the
transfer, while continuing to drive HRESP[1:0].

If the slave needs more than two cycles to provide the ERROR, RETRY,
or SPLIT response, then additional wait states can be inserted at the
start of the transfer. During this time, the HREADY signal is LOW and the
response must be set to OKAY.

The two-cycle response is required because of the pipelined nature of
the bus. By the time a slave starts to issue an ERROR, RETRY, or SPLIT
response, then the address for the following transfer has already been
broadcast onto the bus. The two-cycle response allows sufficient time for
the ARM966E-S to cancel this address and drive HTRANS[1:0] to IDLE
before the start of the next transfer.

For the RETRY or SPLIT responses, the following transfer must be
cancelled because it must not take place before the current transfer has
completed. However, for the ERROR response, where the current
transfer is not repeated, it is optional whether or not the next transfer is
allowed to complete.

Figure 5.8 shows an example of a retry operation. The ARM966E-S
starts with a transfer to address A. Before the response is received for
this transfer, the ARM966E-S moves the address to A + 4. However, the
slave at address A is unable to complete the transfer immediately;
therefore it issues a RETRY or SPLIT response.

This response indicates to the ARM966E-S that the transfer at address
A is unable to complete. So the transfer at address A + 4 is cancelled
and replaced with an IDLE transfer.

www.DataSheet4U.com

5-18 AHB Interface Unit
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Figure 5.8 Transfer with Retry Response

Figure 5.9 shows a transfer where the slave requires one cycle to decide
on the response it is going to give (during which time HRESP indicates
OKAY). Then the slave ends the transfer with a two-cycle ERROR
response.

Figure 5.9 Error Response

5.7.2 Error Response

If a slave provides an ERROR response, then the ARM966E-S can
choose to cancel the remaining transfers in the burst. However, this
requirement is not strict; it is also acceptable for the ARM966E-S to
continue the remaining transfers in the burst.

NONSEQ

CLK

HTRANS[1:0]

HADDR[31:0]

HWDATA[31:0]

HREADY

HRESP[1:0]

Data (A)

SEQ IDLE NONSEQ

A A+4 A

OKAYRETRYRETRY

A

CLK

Control

HWDATA[31:0]

HREADY

HRESP[1:0]

Data (A)

ERRORERROROKAY

HADDR[31:0]

Control

HRDATA[31:0]

www.DataSheet4U.com

Slave Transfer Responses 5-19
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

5.7.3 Retry Responses

The RETRY response provides a mechanism for slaves to release the
bus when they are unable to supply data for a transfer immediately. This
mechanism allows the transfer to finish on the bus. Therefore a higher
priority ARM966E-S can get access to the bus.

After a RETRY has occurred, the arbiter continues to use the normal
priority scheme. Only masters that have a higher priority gain access to
the bus.

The ARM966E-S continues to request the bus and attempts the transfer
until it either has completed successfully or has been terminated with an
error response.

5.7.4 Split Responses

The SPLIT response provides a mechanism for slaves to release the bus
when they are unable to immediately supply data for a transfer. This
mechanism allows the transfer to finish on the bus. Therefore a higher
priority ARM966E-S can get access to the bus.

After a SPLIT has occurred, the arbiter adjusts the priority scheme so
that any other master requesting the bus gets access, even if it has a
lower priority. The slave requests access to the bus on behalf of the
master when the transfer can complete.

The ARM966E-S will continue to request the bus and attempt the transfer
until it is either completed successfully or terminated with an error
response.

www.DataSheet4U.com

5-20 AHB Interface Unit
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

www.DataSheet4U.com

ARM966E-S Microprocessor Core Technical Manual 6-1
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Chapter 6
Write Buffer

This chapter describes the ARM966E-S Write Buffer.

This chapter contains the following sections:

• Section 6.1, “Introduction”

• Section 6.2, “Normal Operation”

• Section 6.3, “Full Write Buffer”

• Section 6.4, “Unbuffered Writes”

• Section 6.5, “Read-Lock-Write”

• Section 6.6, “Read to Write-Posted Address”

• Section 6.7, “Write Buffer Nonrecoverable Error and Abort
Conditions”

6.1 Introduction

The ARM966E-S Write Buffer enhances system performance. It
decouples the processor from a slower memory interface during
processor writes. The Write Buffer allows the core to perform writes
without waiting for access to the AHB bus.

The Write Buffer consists of a 12-entry FIFO. Each entry can be either
address or data, where the use of each entry is specified by an
address/data flag. Each address entry is tagged with the size of the
transfer as indicated by the ARM9E-S processor core (byte, halfword, or
word).

The Write Buffer is flushed at reset. Any entries still in the buffer when
reset is asserted are lost. To enable the Write Buffer, write to CP15
Register 1. To drain the Write Buffer, write to CP15 Register 7.

www.DataSheet4U.com

6-2 Write Buffer
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

6.2 Normal Operation

The Write Buffer only buffers writes to areas of memory that are
identified as being bufferable (see the memory map on page 3-5).
Provided that the Write Buffer is enabled and the processor performs a
write to a bufferable area, the data is placed in the Write Buffer. The
Write Buffer is then marked as not empty. Once data is in the Write
Buffer, it is always written, even if it is subsequently disabled, unless a
reset occurs.

A Write Buffer Flush condition is defined as one of the following:

• Reset

• The Write Buffer is full and the processor attempts another write

• An unbuffered write occurs

• A Read-Lock-Write instruction occurs

• A read to address was previously posted, but is not yet written to
memory

Note: The ARM966E-S does not support reordering and merging
of writes. In cases, for example, where there are two
nonsequential writes to two adjacent but not incremental
addresses (such as 0x84 followed by 0x80), they could be
reordered and merged into a single two-word burst transfer,
but software might have intended the write to 0x84 to occur
before the write to 0x80. This feature also increases the
complexity of the Write Buffer.

If the ARM966E-S enters Wait-for-Interrupt mode, then the Write Buffer
continues to perform accesses until it is empty.

Read-modify-write sequences to buffered AHB regions are treated as
unbuffered accesses.

6.3 Full Write Buffer

When full, the Write Buffer must provide a response to the System
Controller to prevent lost data.

www.DataSheet4U.com

Unbuffered Writes 6-3
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

When the Write Buffer is full and the processor attempts a buffered write,
the first buffer entry must be written to memory to make space for the
new write entry. If the first Write Buffer entry was from a store multiple,
then all of the write cycles needed to complete the store multiple are
performed before the new write cycle is placed in the buffer.

6.4 Unbuffered Writes

An unbuffered write to the AHB bus causes the Write Buffer to drain
before the write takes place. Flushing ensures the writes are in the order
the software intended. The order is important, for example, when setting
up some parameters before triggering an external event. During this time,
the core must be stalled to prevent execution advancing.

6.5 Read-Lock-Write

The Read-Lock-Write sequence is atomic. It asserts the HLOCK signal
during the transfer to prevent any other bus masters from breaking the
sequence. The write phase of the sequence is treated as an unbuffered
write, which means that the Write Buffer needs to be flushed before the
write can complete. The Write Buffer is flushed before starting the read
phase of the sequence. Therefore only the memory bus is locked for the
minimum number of cycles (the single read followed by single write
cycles).

6.6 Read to Write-Posted Address

If a read occurs to an address contained in the Write Buffer, then the
buffer must be flushed before allowing the read to propagate to the bus.
During this time, the core must stall to prevent execution from advancing.

6.7 Write Buffer Nonrecoverable Error and Abort Conditions

Buffered writes cannot be successfully aborted. When an ERROR
response to a transfer on the AHB bus occurs, the Write Buffer drives
the DABORT signal to the processor. However, the data abort handler

www.DataSheet4U.com

6-4 Write Buffer
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

cannot correlate the processor’s present state to the bus cycle that
caused the ERROR. This event is considered to be a nonrecoverable
error condition.

www.DataSheet4U.com

ARM966E-S Microprocessor Core Technical Manual 7-1
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Chapter 7
System Controller

This chapter describes the ARM966E-S System Controller, which
arbitrates between the Instruction RAM, Data RAM, and the AHB Bus
Interface Unit. This chapter contains the following sections:

• Section 7.1, “Operation”

• Section 7.2, “Clock Control”

7.1 Operation

The System Controller oversees the interactions between the
Instruction/Data RAMs and the AHB Bus Interface Unit. The System
Controller prevents the processor core from advancing if its memory
requests cannot be satisfied simultaneously (for example, accessing
AHB memories while executing code from the tightly coupled RAM). The
System Controller prevents these occurrences from happening by
controlling the internal system clock enable signal (CLKEN) to the
ARM9E-S core.

When the core is accessing the on-chip memory, stall cycles are required
when:

• there are simultaneous data accesses and instruction fetches to the
Instruction Memory

• a write to the RAM is followed by a read of the same memory

If the Write Buffer is full, when the ARM966E-S writes to a bufferable
region of memory (see memory map on page 3-5), the System Controller
must stall it to prevent data loss. When the address decoders indicate an
ARM966E-S read misses the on-chip memory, the System Controller
must stall the core until the Write Buffer is empty and maintain the stall
until the access to the AHB is complete.

www.DataSheet4U.com

7-2 System Controller
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

When the core performs a nonbufferable write that misses the on-chip
memory as indicated by the address decoders, the System Controller
must stall the core until the Write Buffer is empty and maintain the stall
until the access to the AHB is complete.

7.2 Clock Control

When accessing the AHB bus for accesses that do not use the Write
Buffer, the internal clock enable CLKEN must include the effects of
HCLKEN, HREADY, and HGRANT to ensure that the core is
synchronized to the AHB bus. The AHB BIU must inform the System
Controller when each transfer has completed. The System Controller
determines when an external access is being performed and qualifies the
internal clock enables with HCLKEN from the AHB interface. Using
HCLKEN effectively slows down the operation of the ARM966E-S to the
AHB bus frequency.

www.DataSheet4U.com

ARM966E-S Microprocessor Core Technical Manual 8-1
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Chapter 8
Tightly Coupled RAM

This chapter describes the Instruction and Data RAMs within the
ARM966E-S design. It contains the following sections:

• Section 8.1, “Tightly Coupled Memory (TCM) Overview”

• Section 8.2, “ARM966E-S SRAM Requirements”

• Section 8.3, “Enabling the SRAM”

• Section 8.4, “ARM966E-S SRAM Wrapper”

• Section 8.5, “Example SRAM Interfaces”

8.1 Tightly Coupled Memory (TCM) Overview

The ARM966E-S supports synchronous SRAM for the tightly coupled
RAM. The TCM interfaces are zero wait state, and data must be returned
in a single clock cycle. The Instruction and Data RAMs can be of any
size up to 512 Kbytes. The Instruction RAM and Data RAM are
independent and thus can be different sizes.

8.2 ARM966E-S SRAM Requirements

The tightly-coupled SRAM is built from blocks of ASIC library compiled
SRAM. The Instruction SRAM (I-SRAM) and Data SRAM (D-SRAM) can
each be any size from 0 bytes to 512 KBytes; the size must be an integer
power of two. The I-SRAM and D-SRAM can have different sizes.

To allow the I-SRAM to be initialized and for access to literal tables
during execution, the data interface of the ARM966E-S must be able to
access the I-SRAM. Thus the instruction and data addresses must be
multiplexed before entering the I-SRAM, and the instruction data is

www.DataSheet4U.com

8-2 Tightly Coupled RAM
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

routed both to the instruction and data interfaces of the core. See
Figure 1.1 on page 1-3 for details of this data and address multiplexing.

The ARM966E-S supports the use of synchronous SRAM. The SRAM
control has been implemented in a way that expects the compiled SRAM
memory cells to return read data to the ARM966E-S in a single cycle.
This requirement applies to both the I-SRAM and D-SRAM. See
Figure 8.1 for a typical read cycle (I-SRAM shown).

Figure 8.1 SRAM Read Cycle

During normal program execution, the instruction and data interfaces of
the ARM966E-S can be active simultaneously. In this case, both SRAMs
can be simultaneously accessed allowing the core to continue execution
without any stall cycles. There are cases, however, where stall cycles are
encountered when accessing the SRAM.

8.3 Enabling the SRAM

There are two mechanisms for controlling the SRAM enable:

• both I-SRAM and D-SRAM can be enabled or disabled during reset
by the input INITRAM

• the I-SRAM and D-SRAM can be individually enabled or disabled
through software MCR instructions to CP15.

8.3.1 Using INITRAM to Enable SRAM

Two resets are described in the following subsections, depending on the
state of the INITRAM input.

CLK

InMREQ

IA[31:1]

INSTR[31:0]

SRAM

Access Time

Addr A
INSTR (A)

www.DataSheet4U.com

Enabling the SRAM 8-3
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

8.3.1.1 Reset with INITRAM LOW

INITRAM allows the ARM966E-S to boot with both SRAM blocks either
enabled or disabled. If INITRAM is held LOW during reset, the
ARM966E-S comes out of reset with both SRAMs disabled. All accesses
to I-SRAM and D-SRAM space go to the AHB. The I-SRAM and
D-SRAM can then be individually or jointly enabled by writing to the
CP15 Control Register (register 1).

8.3.1.2 Reset with INITRAM HIGH

If INITRAM is held HIGH during reset, both SRAM blocks are enabled
when the ARM966E-S comes out of reset. This case is normally used
for a warm reset where the SRAM has already been programmed before
nRESET is asserted to the ARM966E-S. In this case, the SRAM
contents are preserved and the ARM966E-S can run directly from the
tightly coupled SRAM following reset. Either one or both SRAMs can be
further disabled or enabled by writing to the CP15 control register.

Important: If INITRAM is held HIGH during a cold reset (the SRAM
has not previously been initialized), VINITHI must be held
HIGH to ensure that the ARM966E-S boots from
0xFFFF.0000, which is in AHB address space and is
outside the SRAM address space. This boot location is
necessary because if VINITHI is LOW, the ARM966E-S will
attempt to boot from 0x0000.0000, which selects the
uninitialized I-SRAM.

8.3.2 Using CP15 Control Register to Enable SRAM

When out of reset, the state of the CP15 Control register controls the
behavior of the tightly coupled SRAM. See Section 3.7.2, “CP15
Registers,” page 3-9 for details on how to read and write the CP15
Control Register.

8.3.2.1 Enabling the I-SRAM

To enable the I-SRAM, set bit 12 (the I bit) of the CP15 Control Register.
This register must be accessed in a read-modify-write fashion to
preserve the contents of the bits not being modified. When the I-SRAM
has been enabled, all future ARM9E-S instruction fetches and data

www.DataSheet4U.com

8-4 Tightly Coupled RAM
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

accesses to the I-SRAM address space access the I-SRAM. Figure 3.2
on page 3-5 shows the I-SRAM address space.

Enabling the I-SRAM greatly increases the performance of the
ARM966E-S because most accesses to it have no stall cycles, whereas
accessing the ARM966E-S through the AHB can cause several stall
cycles for each access.

You must ensure that the I-SRAM is appropriately initialized before it is
enabled and used to supply instructions to the ARM966E-S. If the core
tries to execute instructions from uninitialized I-SRAM, the behavior is
unpredictable.

8.3.2.2 Disabling the I-SRAM

To disable the I-SRAM, clear bit 12 of the CP15 Control Register. When
the I-SRAM has been disabled, all further ARM966E-S instruction
fetches access the AHB. If the ARM966E-S performs a data access to
the I-SRAM address space, an AHB access is performed. Figure 3.2 on
page 3-5 shows the I-SRAM address space.

The contents of the I-SRAM are preserved when it is disabled. If it is
re-enabled, accesses to previously initialized I-SRAM locations returns
the preserved data.

8.3.2.3 Enabling the D-SRAM

To enable the D-SRAM, set bit 2 (the D bit) of the CP15 Control Register.
When the D-SRAM has been enabled, all future read and write accesses
to the D-SRAM address space cause the D-SRAM to be accessed.
Figure 3.2 on page 3-5 shows the D-SRAM address space.

8.3.2.4 Disabling the D-SRAM

To disable the D-SRAM, clear bit 2 of the CP15 Control Register. When
the D-SRAM is disabled, all further reads and writes to the D-SRAM
address space access the AHB. Figure 3.2 on page 3-5 shows the
D-SRAM address space. Read and write accesses to D-SRAM address
space use the D-SRAM (if enabled) or access the AHB.

www.DataSheet4U.com

ARM966E-S SRAM Wrapper 8-5
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

8.4 ARM966E-S SRAM Wrapper

The ARM966E-S allows you to have control over the size of the I-SRAM
and D-SRAM (up to a maximum of 512 KBytes each). It is not possible
to have a single generic interface between the ARM966E-S and the
SRAM, due to the large number of differing compiled SRAM that can be
integrated into an ARM966E-S system, potentially each with a unique
interface.

To ease the task of integrating differing SRAM into the ARM966E-S, an
interface wrapper block has been developed to ensure that when
wrapped, the SRAM provides a standard interface to the ARM966E-S
SRAM control. Section 8.5, “Example SRAM Interfaces,” provides an
example SRAM wrapper with three example interfaces. Study these
examples and decide which is most appropriate for the type of SRAM
available. A script is provided that automates any required changes.

The RAM interface RTL allows you to trade off speed against power
performance so that you can tailor the ARM966E-S to suit a particular
requirement.

There are five SRAM modules instantiated at the top-level of the
ARM966E-S. Figure 8.2 shows the structure of these three modules.

www.DataSheet4U.com

8-6 Tightly Coupled RAM
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Figure 8.2 ARM966E-S SRAM Hierarchy

RamCtrl.v contains the RAM control logic that is partner-independent.
This logic is fixed.

IRamIF.v and DRamIF.v generate the SRAM-specific ChipSelect,
WriteEnable, and ByteWrite signals. Your own library RAMs are
instantiated inside InstrRAM.v and DataRAM.v.

8.5 Example SRAM Interfaces

The example wrapper contains three RAM interface examples. All of the
interface modifications are done in the IRamIF.v and the DRamIF.v
blocks for the I-SRAM and D-SRAM, respectively. The example SRAM
interfaces are:

• Section 8.5.1, “ONESEGX32”

• Section 8.5.2, “FOURSEGX32”

• Section 8.5.3, “FOURSEGX8”

Note: The examples shown here are for 32-Kbyte I-SRAM
(8 Kwords x 4 bytes). The interface for D-SRAM is identical.

IRamIF.v

BIST.v

IRAM.v

InstrRAM.v

BIST.v

DRAM.v

DRamIF.v

DataRAM.v

RamCtrl.v

ICtrl.v

DCtrl.v DMA

www.DataSheet4U.com

Example SRAM Interfaces 8-7
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

8.5.1 ONESEGX32

Figure 8.3 shows the simplest I-SRAM interface. To use this example, the
SRAM must consist of a single word-wide RAM that has byte-write
control.

Only single ChipSelect and WriteEnable signals are required.

Figure 8.3 ONESEGX32 Interface

8.5.2 FOURSEGX32

Use the example shown in Figure 8.4 when it is not possible to construct
the SRAM from a single physical block due to either layout constraints or
generator constraints, or because a single SRAM segment does not
meet timing constraints.

ICtrl.v

IRamIF.v

8K x 32

ByteWrite[3:0]

RamAddr[12:0]

WriteEnable

ChipSelect
IRData[31:0]

www.DataSheet4U.com

8-8 Tightly Coupled RAM
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Figure 8.4 FOURSEGX32 Interface

Separate chip select signals are required for each SRAM block.

• The generation of separate chip select signals for each SRAM block
ensures good power performance, because only the segment being
accessed is enabled.

• The SRAM address is 11 bits in this example (compared with the 13
bit address in Section 8.5.1, “ONESEGX32”). RamAddr[12:11] are
used to generate separate chip selects for each segment.

If it is not possible to have separate chip select signals for each block of
RAM, for example, if the RAM is asynchronous, then separate write
enable signals are required for each segment. The use of asynchronous
RAMs is not recommended due to the increased power consumption of
this solution.

Note: The wrapper RTL does not support asynchronous RAMs.

8.5.3 FOURSEGX8

Figure 8.5 shows that the SRAM needs to be split into four-byte wide
segments where an SRAM does not support byte writes. In order to give

ICtrl.v

IRamIF.v

2K x 32

ByteWrite[3:0]

RamAddr[10:0]

WriteEnable

ChipSelect[3:0]

2K x 32 2K x 32 2K x 32

IRData[31:0]

[2] [3]

[127:96][95:64]

[1][0]

[63:32][31:0]

OutputSelect[1:0]

www.DataSheet4U.com

Example SRAM Interfaces 8-9
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

an example of the most complex interface possible, Figure 8.5 assumes
that each byte-wide SRAM needs to be split into four blocks (see
word-wide SRAM in Section 8.5.2, “FOURSEGX32,”).

In Section 8.5.2, “FOURSEGX32,” the SRAM Address is 11 bits. Bits
[12:11] of the address are used to decode which of the four word-wide
RAMs is selected.

In Figure 8.5, ByteWrite[3:0] is used (inside IRamIF.v) to decode each
word-wide chip select into four separate chip select signals, one for each
byte of the word.

www.DataSheet4U.com

8-10 Tightly Coupled RAM
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Figure 8.5 FOURSEGX8 Interface

ICtrl.v

IRamIF.v

2K x 8

ByteWrite[3:0]

RamAddr[10:0]

WriteEnable

ChipSelect[15:0]

2K x 8 2K x 8 2K x 8

IRData[31:0]

[8] [12][4][0]

OutputSelect[1:0]

2K x 8 2K x 8 2K x 8 2K x 8

[11] [15][7][3]

2K x 8 2K x 8 2K x 8 2K x 8

[10] [14][6][2]

2K x 8 2K x 8 2K x 8 2K x 8

[9] [13][5][1]

8

32

B
yt

e
3

B
yt

e
2

B
yt

e
1

B
yt

e
0

www.DataSheet4U.com

ARM966E-S Microprocessor Core Technical Manual 9-1
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Chapter 9
External Coprocessor
Interface

This chapter describes the ARM966E-S external coprocessor interface.
The ARM966E-S connects to on-chip coprocessors through this
interface. This interface supports all types of coprocessor instructions.

This chapter contains the following sections:

• Section 9.1, “Overview”

• Section 9.2, “Coprocessor Instruction Execution”

• Section 9.3, “Privileged Instructions”

• Section 9.4, “Stalling and Interrupts”

9.1 Overview

Coprocessors determine which instructions they need to execute by a
pipeline follower in the coprocessor. As each instruction arrives from
memory, it enters both the ARM9E-S pipeline and the coprocessor’s
pipeline. To avoid a critical path for the instruction being latched by the
coprocessor, the coprocessor’s pipeline operates one clock cycle later
than the ARM9E-S core pipeline. However, the ARM966E-S also
includes a mechanism that stalls the pipeline so the processor can catch
up with the external coprocessor pipeline. So, in effect, both pipelines are
synchronized. The ARM9E-S core informs the coprocessor when
instructions move from decode into execute, and whether the instruction
needs to be executed.

To enable coprocessors to continue execution of coprocessor data
operations while the ARM9E-S core pipeline is stalled, the coprocessor
receives the CLK clock, and a clock enable signal CPCLKEN. If
CPCLKEN is LOW on the rising edge of CPCLK, then the ARM9E-S core
pipeline is stalled and the coprocessor pipeline should not advance.
Figure 9.1 indicates the timing for these signals and when the

www.DataSheet4U.com

9-2 External Coprocessor Interface
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

coprocessor pipeline should advance its state. Coprocessor Clock shows
the result of ANDing CLK with CPCLKEN; this is one technique for
generating a clock that reflects the ARM9E-S core pipeline advancing.

Figure 9.1 CLK and CPCLKEN Timing

9.2 Coprocessor Instruction Execution

There are three classes of coprocessor instructions: LDC/STC,
MCR/MRC, and CDP. The following subsections give examples of how a
coprocessor should execute these instruction classes.

9.2.1 LDC/STC Instructions

The cycle timing for this operation is shown in Figure 9.2 In this example
four words of data are transferred. The number of words transferred is
determined by how the coprocessor drives the CHSDE[1:0] and
CHSEX[1:0] buses.

CLK

CPCLKEN

Coprocessor
Clock

www.DataSheet4U.com

Coprocessor Instruction Execution 9-3
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Figure 9.2 LDC/STC Cycle Timing

As with all other instructions, the ARM9E-S core performs the main
decode off the rising edge of the clock during the decode stage. From
this, the core commits to executing the instruction and so performs an
instruction fetch. The coprocessor’s instruction pipeline keeps in step
with the ARM9E-S core by monitoring nCPMREQ, which is a latched
copy of the ARM9E-S core instruction memory request signal InMREQ.
Whenever nCPMREQ is LOW, an instruction fetch is occurring and
CPINSTR is updated with the fetched instruction in the next cycle. Thus
the instruction currently on CPINSTR should enter the decode stage of
the coprocessor pipeline, and the instruction in the decode stage of the
coprocessor’s pipeline should enter its execute stage.

During the execute stage, the condition codes are combined with the
flags to determine whether the instruction really executes or not. The
output CPPASS is asserted HIGH if the instruction in the execute stage
of the coprocessor pipeline is a coprocessor instruction and has passed
its condition codes. If a coprocessor instruction stalls, then CPPASS is
asserted on every cycle until the coprocessor instruction is executed. If
an interrupt occurs during stalling then CPPASS is driven LOW and the
coprocessor should stop the coprocessor instruction execution.

GO GO LAST Ignored

CPCLK

nCPMREQ

CPPASS

CPLATECANCEL

CHSDE[1:0]

CHSEX[1:0]

CPDOUT[31:0]
LDC

CPDIN[31:0]
STC

GO

Decode Execute Execute Execute Execute Memory Write
GO GO GO LAST

Processor
Pipeline

www.DataSheet4U.com

9-4 External Coprocessor Interface
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

The CPLATECANCEL output is used to cancel a coprocessor instruction
when the instruction preceding it causes a data abort. This output is valid
on the rising edge of CLK on the cycle after the coprocessor instruction’s
first execute cycle.

On the rising edge of the clock, the ARM9E-S processor core examines
the coprocessor handshake signals CHSDE[1:0] and CHSEX[1:0]. If a
new instruction is entering the execute stage in the next cycle, then the
core examines CHSDE[1:0]. If the coprocessor instruction currently in
execution requires another execute cycle, then the core examines
CHSEX[1:0]. The handshake signals encode one of four states:

• ABSENT

If there is no coprocessor attached that can execute the coprocessor
instruction, then the handshake signals indicate the ABSENT state,
and the ARM9E-S core takes the undefined instruction trap.

• WAIT

If there is a coprocessor attached that can handle the instruction, but
not immediately, then the coprocessor handshake signals are driven
to indicate that the ARM9E-S core should stall until the coprocessor
can catch up. In this case, the ARM9E-S core loops in an idle state
waiting for CHSEX[1:0] to be driven to another state, or for an
interrupt to occur. If CHSEX[1:0] changes to ABSENT then the
undefined instruction trap is taken. If CHSEX[1:0] changes to GO or
LAST, then the instruction proceeds as described below. If an
interrupt occurs, then the ARM9E-S core is forced out of the stalled
state. This condition is indicated to the coprocessor by a LOW
transition on CPPASS. The instruction is restarted at a later time.
The coprocessor should not commit to the instruction (change any of
the coprocessor’s states) until it has seen CPPASS HIGH when the
handshake signals indicate the GO or LAST condition.

• GO

The GO state indicates that the coprocessor can execute the
instruction immediately, and that it requires another cycle of
execution. Both the ARM9E-S core and the coprocessor must also
consider the state of the CPPASS signal before actually committing
to the instruction. For an LDC or STC instruction, the coprocessor
instruction drives the handshake signals with GO when two or more

www.DataSheet4U.com

Coprocessor Instruction Execution 9-5
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

words still need to be transferred. When only one more word is
required, the coprocessor drives the handshake signals with LAST.

• LAST

If an LDC or STC instruction is for more than one item of data, then
after stalling, the coprocessor might drive the coprocessor
handshake signals with a number of GO states, and in the cycle
LAST, where LAST indicates that the next transfer is the final one. If
there is only one transfer then the sequence would be:
[WAIT,[WAIT,...]],LAST.

9.2.2 MCR/MRC Instructions

These cycles look very similar to STC/LDC cycles. Figure 9.3 shows an
example with a stall (WAIT) state. First nCPMREQ is driven LOW to
denote that the instruction on CPINSTR is entering the decode stage of
the pipeline. This low state causes the coprocessor to decode the new
instruction and drive CHSDE[1:0] as required. In the next cycle
nCPMREQ is driven LOW to denote that the instruction has now been
issued to the execute stage. If the condition codes pass (thus the
instruction is to be executed), then CPPASS is driven HIGH and the
CHSDE[1:0] handshake bus is examined (it is ignored in all other cases).
For any successive execute cycles, the CHSEX[1:0] handshake bus is
examined. When the LAST condition is observed, the instruction is
committed. In the case of an MCR instruction, the CPDOUT[31:0] bus is
driven with the register data during the coprocessor write stage. In the
case of an MRC instruction, CPDIN[31:0] is sampled at the end of the
ARM9E-S memory stage and is written to the destination register during
the next cycle.

www.DataSheet4U.com

9-6 External Coprocessor Interface
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Figure 9.3 MCR/MRC Cycle Timing

9.2.3 Interlocked MCRs

If the data for an MCR operation is not available inside the ARM9E-S
core pipeline during its first decode cycle, then the ARM9E-S core
pipeline interlocks for one or more cycles until the data is available. An
example of this is where the register being transferred is the destination
from a preceding LDR instruction.

In this situation, the MCR instruction enters the decode stage of the
coprocessor pipeline, and then remains there for a number of cycles
before entering the execute stage. Figure 9.4 is an example of an
interlocked MCR.

WAIT

LAST Ignored

CPCLK

nCPMREQ

CPPASS

CPLATECANCEL

CHSDE[1:0]

CHSEX[1:0]

CPDOUT[31:0]
MCR

CPDIN[31:0]
MRC

Decode Execute Execute Memory Write
WAIT LAST

Processor
Pipeline

Cop data

Cop data

www.DataSheet4U.com

Coprocessor Instruction Execution 9-7
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Figure 9.4 Interlocked MCR

9.2.4 CDP Instructions

CDP instructions normally execute in a single cycle. Like all the previous
cycles, nCPMREQ is driven LOW to signal when an instruction is
entering the decode and then the execute stage of the pipeline. If the
instruction is to be executed then CPPASS is driven HIGH during the
execute. If the coprocessor can execute the instruction immediately, it
drives CHSDE[1:0] with LAST. If the instruction requires a wait cycle,
then the coprocessor drives CHSDE[1:0] with WAIT and CHSEX[1:0]
with LAST.

Figure 9.5 shows a CDP that is cancelled due to the previous instruction
causing a data abort. The CDP instruction enters the execute stage of
the pipeline and is signaled to execute when CPPASS is HIGH. In the
following phase, CPLATECANCEL is asserted, which causes the
coprocessor to terminate execution of the CDP instruction and to cause
no state changes to the coprocessor.

Note in Figure 9.5 that CPLATECANCEL can be asserted during the
memory cycle as well as during the execution cycle. The coprocessor
should be able to handle instruction aborts during these two stages.

WAIT WAIT

LAST Ignored

CPCLK

nCPMREQ

CPPASS

CPLATECANCEL

CHSDE[1:0]

CHSEX[1:0]

CPDOUT[31:0]
MCR

CPDIN[31:0]
MRC

Decode Decode Execute Execute Memory Write
GO WAIT LAST

Processor
Pipeline Interlock

Cop data

Cop data

www.DataSheet4U.com

9-8 External Coprocessor Interface
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Figure 9.5 Late Cancelled CDP

9.3 Privileged Instructions

The coprocessor can restrict certain instructions for use in privileged
modes only. To do this, the coprocessor has to track the nCPTRANS
output. Figure 9.6 shows how nCPTRANS changes after a mode
change.

LAST

CPCLK

nCPMREQ

CPPASS

CPLATECANCEL

CHSDE[1:0]

CHSEX[1:0] Ignored

Execute Memory Exception Exception
(entry start) (continues)

LDR with
Data Abort

Decode ExecuteProcessor
Pipeline

www.DataSheet4U.com

Stalling and Interrupts 9-9
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Figure 9.6 Privileged Instructions

9.4 Stalling and Interrupts

Figure 9.7 shows a stalled coprocessor instruction being abandoned due
to an interrupt. The coprocessor can stall the processor during the
execution of a coprocessor instruction if, for example, it is still busy with
an earlier coprocessor instruction. To do so, the coprocessor associated
with the decode stage instruction drives WAIT on CHSDE[1:0]. When the
instruction concerned enters the execute stage of the pipeline, the
coprocessor can drive WAIT onto CHSEX[1:0] for as many cycles as it
wants in order to keep the instruction in the busy-wait loop.

For interrupt latency reasons, the coprocessor can be interrupted while
stalling, thus causing the instruction to be abandoned. Abandoning
execution is done through CPPASS. The coprocessor must monitor the
state of CPPASS during every stall cycle. If it is HIGH, the instruction
should still be executed. If it is LOW, the instruction should be
abandoned. Note in Figure 9.7 that CPLATECANCEL is also asserted as
a result of the execute interruption.

Ignored

CPCLK

nCPMREQ

nCPTRANS

CPPASS

CPLATECANCEL

CHSDE[1:0]

CHSEX[1:0]

Ignored LAST

Ignored

Old Mode New Mode

Execute Execute Execute Memory
(cycle 3)

Mode
Change (cycle 2)

Write

Decode Decode Decode ExecuteProcessor
Pipeline

Memory Write

www.DataSheet4U.com

9-10 External Coprocessor Interface
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Figure 9.7 Stalling and Interrupts

WAIT

CPCLK

nCPMREQ

CPPASS

CPLATECANCEL

CHSDE[1:0]

CHSEX[1:0] WAIT WAIT

WAIT

Ignored

CPDOUT[31:0]
MCR

CPDIN[31:0]
MRC

Decode Execute Execute Execute
WAIT

Processor
Pipeline WAIT

Execute
InterruptedWAIT

Execute
Entry

www.DataSheet4U.com

ARM966E-S Microprocessor Core Technical Manual 10-1
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Chapter 10
Debug

This chapter describes the operation of the ARM966E-S debug interface.
The debug interface is based on IEEE Std 1149.1-1990. This chapter
contains the following sections:

• Section 10.1, “Debug Systems”

• Section 10.2, “About the Debug Interface”

• Section 10.3, “Scan Chain 15”

• Section 10.4, “Breakpoints, Watchpoints, and External Debug
Requests”

• Section 10.5, “ARM9E-S Clock Domains”

• Section 10.6, “Determining the Core and System States”

• Section 10.7, “About the EmbeddedICE-RT Logic”

• Section 10.8, “Disabling the EmbeddedICE-RT Logic”

• Section 10.9, “The Debug Communications Channel”

• Section 10.10, “Real-Time Debug”

A more detailed description of the ARM9E-S debug features and JTAG
interface is provided in Appendix D, Debug in Depth, of the ARM9E-S
Technical Reference Manual.

10.1 Debug Systems

The ARM966E-S forms one component of a debug system that
interfaces from the high-level debugging you perform to the low-level
interface the ARM966E-S supports. Figure 10.1 shows a typical debug
system.

www.DataSheet4U.com

10-2 Debug
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Figure 10.1 Typical Debug System

A debug system typically has three parts:

• The Debug Host

• The Protocol Converter

• Debug Target

The debug host and the protocol converter are system-dependent.

10.1.1 The Debug Host

The debug host is a computer that is running a software debugger, such
as armsd. The debug host allows you to issue high-level commands,
such as setting breakpoints or examining the contents of memory.

10.1.2 The Protocol Converter

An interface, such as a parallel port, connects the debug host to the
ARM966E-S development system. The messages broadcast over this
connection must be converted to the interface signals of the
ARM966E-S. The protocol converter performs this conversion.

For example, Multi-ICE

Development system containing ARM966E-S

Host computer running ARM or third party toolkitDebug
Host

Protocol
Converter

Debug
Target

www.DataSheet4U.com

Debug Systems 10-3
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

10.1.3 Debug Target

The ARM9E-S processor within the ARM966E-S has hardware
extensions that ease debugging at the lowest level. The debug
extensions allow you to:

• stall the core from program execution

• examine the core internal state

• examine the state of the memory system

• resume program execution.

The major blocks of the ARM9E-S debug model are described below and
are shown in Figure 10.2:

Figure 10.2 ARM9E-S Processor and Debug Logic

ARM9E-S Processor Core Includes hardware support for debug.

EmbeddedICE-RT Logic This set of registers and comparators is used to
generate debug exceptions (such as breakpoints).
This unit is described in Section 10.7, “About the
EmbeddedICE-RT Logic,” page 10-14.

TAP Controller Controls the action of the scan chains using a
JTAG serial interface.

ARM9E-S
EmbeddedICE-RT

ARM9E-S
TAP Controller

ARM9E-S

Scan
Chain 2

Scan
Chain 1

Processor

www.DataSheet4U.com

10-4 Debug
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

The ARM9E-S debug model is extended within the ARM966E-S with the
addition of scan chain 15. This scan chain is used for debug access to
the CP15 register bank when BIST is implemented. It allows the system
state within the ARM966E-S to be configured while in the debug state,
for instance, to enable or disable the SRAM before performing a debug
load or store.

The rest of this chapter describes the hardware debug extensions.

10.2 About the Debug Interface

The ARM966E-S debug interface is based on IEEE Std. 1149.1-1990,
Standard Test Access Port and Boundary-Scan Architecture. Refer to
this standard for an explanation of the terms used in this chapter and for
a description of the Test Access Port (TAP) controller states.

The ARM9E-S processor core contains hardware extensions for
advanced debugging features, which make it easier to develop the
hardware, application software, and operating systems.

The debug extensions allow you to force the core into the debug state.
In the debug state, the ARM9E-S processor and ARM966E-S memory
system are effectively stopped and isolated from the rest of the system
in halt mode. From this mode, you can examine the internal state of the
ARM9E-S processor, the ARM966E-S system, and the external state of
the AHB while all other system activity continues as normal. When debug
is complete, the ARM9E-S processor restores the core and system state,
and resumes program execution.

In addition, the ARM9E-S supports a real-time debug mode called
monitor mode, where instead of generating a breakpoint or watchpoint,
an internal Instruction Abort or Data Abort is generated. When monitor
mode is used in conjunction with a debug monitor program that is
activated by the abort exception entry, you can debug the ARM966E-S
while allowing the execution of critical interrupt service routines. The
debug monitor program typically communicates with the debug host over
the ARM966E-S debug communication channel. Monitor mode debug is
described in Section 10.10, “Real-Time Debug,” page 10-20.

www.DataSheet4U.com

About the Debug Interface 10-5
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

10.2.1 Stages of Debug

A request on one of the external debug interface signals or on an internal
functional unit known as the EmbeddedICE-RT logic forces the
ARM9E-S processor into the debug state. The interrupts that activate
debug are:

• a breakpoint (a given instruction fetch)

• a watchpoint (a data access)

• an external debug request

The internal state of the ARM9E-S processor is examined using a
JTAG-style serial interface, allowing instructions to be serially inserted
into the pipeline without using the external data bus. For example, when
in the debug state, a Store Multiple instruction (STM) can be inserted into
the instruction pipeline, which exports the contents of the ARM966E-S
registers. This data can be serially shifted out without affecting the rest
of the system.

10.2.2 Clocks

The system and test clocks must be synchronized externally to the
ARM966E-S macrocell. The ARM Multi-ICE debug agent directly
supports one or more cores within an ASIC design. To synchronize
off-chip debug clocking with the ARM966E-S macrocell requires a
three-stage synchronizer. The off-chip device (for example, Multi-ICE)
issues a TCK signal, and then waits for the RTCK (Returned TCK) signal
to come back. Synchronization is maintained because the off-chip device
does not progress to the next TCK until after RTCK is received.

Figure 10.3 shows this synchronization logic.

www.DataSheet4U.com

10-6 Debug
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Figure 10.3 Clock Synchronization Logic

10.3 Scan Chain 15

Scan chain 15 (SC15) provides debug access to the CP15 register bank,
allowing the system state within the ARM966E-S to be configured while
in the debug state.

Table 10.1 shows the order of SC15 from the DBGTDI input to the
DBGTDO output.

DBGTMS

DBGTDI

MultiICE
Interface

Pads

DBGnTRST

DBGTDO

DBGTCKEN

TDO

RTCK

TCK

CLK

TMS

D Q

TCK Synchronizer

D Q D Q

CLK

CLK

CLK

A
R

M
96

6E
-S

Input sample and hold

TDI

D Q

D Q

Table 10.1 Scan Chain 15 Addressing Mode Bit Order

Bits Contents

38 Read = 0, write = 1

37:32 CP15 register address

31:0 CP15 register value

www.DataSheet4U.com

Scan Chain 15 10-7
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Table 10.2 shows the CP15 register address field of SC15, which
provides debug access to the CP15 registers.

The scan address decode supersedes the existing functional decode
logic that is used to access the CP15 registers during MCR and MRC
instructions (see Section 3.7.2, “CP15 Registers,” page 3-9).

The decode overload is performed as the follows:

SC15 only allows access to bit 0 of the OpCode2 field by default. To
allow access to the Address and General BIST registers within CP15

Table 10.2 Mapping of Scan Chain 15 Address Field to CP15 Registers

Bit 38 Bits[37:32] Bits[31:30] CP15 Reg Number Meaning

0 0 0000 0 xx C0 Read ID Register

0 0 0001 0 xx C1 Read Control Register

1 0 0001 0 xx C1 Write Control Register

0 1 1111 1 00 C15 Read BIST Control Register

1 1 1111 1 00 C15 Write BIST Control Register

0 1 1111 0 01 C15 Read IBIST Address

1 1 1111 0 01 C15 Write IBIST Address

0 1 1111 1 01 C15 Read IBIST General

1 1 1111 1 01 C15 Write IBIST General

0 1 1111 0 11 C15 Read DBIST Address

1 1 1111 0 11 C15 Write DBIST Address

0 1 1111 1 11 C15 Read DBIST General

1 1 1111 1 11 C15 Write DBIST General

Bit 37 Corresponds to Opcode 1 of an MCR or MRC instruction.

Bits [36:33] Correspond to the CRn field of an MCR or MRC instruction.

Bit 32 Corresponds to bit 0 of the Opcode 2 field of an MCR or
MRC instruction.

Bits [2:1] Bits [2:1] of opcode 2 are tied to 00 during the debug state.

www.DataSheet4U.com

10-8 Debug
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Register 15, bits [31:30] of SC15 are overloaded as shown in Table 10.2.
There are certain restrictions with the overloading. When writing to the
BIST General registers (writing a new seed), bits[31:30] of the seed are
restricted to those values shown in Table 10.2. These bits are not used
in the BIST Address registers; so there are no debug restrictions when
accessing these registers.

The ability to control the ARM966E-S system state through scan
chain 15 provides extra debug visibility. For example, if the debugger
wishes to compare the contents of an address that maps to the I-SRAM
or D-SRAM with the same address in external memory, the debugger
can:

1. Load from the address with the SRAM enabled to return the SRAM
data.

2. Disable the SRAM.

3. Perform the load again. The second load now accesses the AHB
because the SRAM is disabled, returning the value from AHB
memory.

10.4 Breakpoints, Watchpoints, and External Debug Requests

The ARM966E-S enters the debug state when a breakpoint, watchpoint,
or external debug request occurs. There are four primary external signals
associated with the debug interface:

• DBGIEBKPT, DBGDEWPT, and EDBGRQ are system requests for
the ARM966E-S core to enter the debug state.

• The DBGACK signal informs the system that the ARM966E-S is in
the debug state.

Several figures in the following subsections illustrate ARM966E-S
waveforms in the debug state. Table 10.3 defines the notations used in
these figures.

www.DataSheet4U.com

Breakpoints, Watchpoints, and External Debug Requests 10-9
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

10.4.1 Entry into Debug State on Breakpoint

Any instruction being fetched from memory is sampled at the end of a
cycle. To apply a breakpoint to that instruction, the breakpoint signal
must be asserted by the end of the same cycle as shown in Figure 10.4.

You can build external logic, such as additional breakpoint comparators,
to extend the breakpoint functionality of the EmbeddedICE-RT logic.
These outputs must be applied to the DBGIEBKPT input. This signal is
ORed with the internally generated breakpoint signal before being
applied to the ARM9E-S core control logic. The timing of the input makes
it unlikely that data-dependent external breakpoints are possible.

A breakpointed instruction is allowed to enter the Execute stage of the
pipeline, but any state change as a result of the instruction is prevented.
All writes from previous instructions complete as usual.

The Decode cycle of the debug entry sequence occurs during the
Execute cycle of the breakpointed instruction. The latched breakpoint
signal forces the processor to start the debug sequence.

Figure 10.4 shows the breakpoint timing.

Table 10.3 Debug State Figure Notations

Term Definition

Fx, Dx, Ex, Mx, Wx Fetch, Decode, Execute, Memory, and Writeback
stages for instruction x on INSTR[31:0]

Ddebug Decode debug entry

Edebug1, Edebug2 Execute debug entry

ldr Load register from memory instruction

Dp Data processing instruction

B Branch instruction

T Trigger instruction

www.DataSheet4U.com

10-10 Debug
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Figure 10.4 Breakpoint Timing

10.4.2 Breakpoints and Exceptions

A breakpointed instruction can have a Prefetch Abort associated with it.
If so, the Prefetch Abort takes priority and the breakpoint is ignored.
(If there is a prefetch abort, instruction data might be invalid, the
breakpoint might be data-dependent, and if the data is incorrect, the
breakpoint could have triggered incorrectly.)

SWI and undefined instructions are treated the same as any other
instruction with a breakpoint set on it. Therefore the breakpoint takes
priority over the SWI or undefined instruction.

On an instruction boundary, if there is a breakpointed instruction and an
interrupt (nIRQ or nFIQ), the interrupt is taken and the breakpointed
instruction is discarded. When the interrupt is being serviced, the
execution flow is returned to the original program. Thus the instruction
that was previously breakpointed is fetched again, and if the breakpoint
is still set, the processor enters the debug state when it reaches the
Execute stage of the pipeline.

When the processor enters the halt-mode debug state, it is important that
further interrupts do not affect the instructions executed. For this reason,
as soon as the processor enters the stop-mode debug state, interrupts
are disabled, although the state of the I and F bits in the Program Status
Register (PSR) are not affected.

F1 D1
F2

E1
D2
F1

M1
E2
D1

Ddebug
W1
M2
E1

Edebug1

W2
M1

Edebug2

W1

21 3 4

CLK

IA[31:1]

INSTR[31:0]

DBGIEBKPT

DBGACK

www.DataSheet4U.com

Breakpoints, Watchpoints, and External Debug Requests 10-11
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

10.4.3 Watchpoints

Entry into the debug state following a watchpointed memory access is
imprecise because of the nature of the pipeline.

External logic, such as external watchpoint comparators, can be built to
extend the functionality of the EmbeddedICE-RT logic. Their outputs
must be applied to the DBGDEWPT input. This signal is simply ORed
with the internally generated Watchpoint signal before being applied to
the ARM9E-S core control logic. The timing of the input makes it unlikely
that data-dependent external watchpoints are possible.

After a watchpointed access, the next instruction in the processor
pipeline is always allowed to complete execution. Where this instruction
is a single-cycle data-processing instruction, entry into the debug state
is delayed for one cycle while the instruction completes. The timing of
debug entry following a watchpointed load in this case is shown in
Figure 10.5.

Figure 10.5 Watchpoint Entry with Data Processing Instruction

F1 D1
F2

E1
D2
Fldr

M1
E2

Dldr
FDp

W1
M2
Eldr
DDp
F5

W2
Mldr
EDp
D5

Wldr
MDp
E5 W5

Ddebug

WDp
M5

Edebug1Edebug2

CLK

InMREQ

INSTR[31:0]

DA[31:0]

WDATA[31:0]

RDATA[31:0]

DBGDEWPT

DBGACK

1 2 Dp 5 6 7 8

LDR

www.DataSheet4U.com

10-12 Debug
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Although instruction 5 enters the Execute stage, it is not executed, and
there is no state update as a result of this instruction. When the
debugging session is complete, normal continuation involves a return to
instruction 5, the next instruction in the code sequence to be executed.

The instruction following the instruction that generated the watchpoint
might have modified the Program Counter (PC). So it is not possible to
determine the instruction that caused the watchpoint. A timing diagram
in Figure 10.6 shows debug entry after a watchpoint where the next
instruction is a branch. However, it is always possible to restart the
processor.

Figure 10.6 Watchpoint Entry with Branch

When the processor enters the debug state, the ARM9E-S core is
interrogated to determine its state. In the case of a watchpoint, the PC
contains a value that is five instructions after the address of the next
instruction to be executed. Therefore if on entry to the debug state in
ARM state, the instruction SUB PC, PC, #20 is scanned in and the
processor restarted, execution flow returns to the next instruction in the
code sequence.

Fldr Dldr
FB

Eldr
DB

Mldr
EB

Wldr
MB
FT

WB
DT ET

Ddebug Edebug1Edebug2

CLK

InMREQ

INSTR[31:0]

DA[31:0]

WDATA[31:0]

RDATA[31:0]

DBGDEWPT

DBGACK

B T
LDR

X X T+4 T+8

IA[31:1]

T+C

www.DataSheet4U.com

Breakpoints, Watchpoints, and External Debug Requests 10-13
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

10.4.4 Watchpoints and Exceptions

If there is an abort with the data access as well as a watchpoint, the
watchpoint condition is latched, the exception entry sequence performed,
and then the processor enters the debug state. If there is an interrupt
pending, the ARM9E-S core allows the exception entry sequence to
occur and then enters the debug state.

10.4.5 Debug Request

A debug request can take place through the EmbeddedICE-RT logic or
through assertion of the EDBGRQ signal. The request is synchronized
and passed to the processor. A debug request takes priority over any
pending interrupt. Following synchronization, the core enters the debug
state when the instruction at the Execute stage of the pipeline is
completed (when Memory and Write stages of the pipeline have
completed). While waiting for the instruction to finish executing, no more
instructions are issued to the Execute stage of the pipeline.

Caution: Asserting EDBGRQ in monitor mode results in
unpredictable behavior.

10.4.6 Actions of the ARM9E-S Core in Debug State

When the ARM9E-S core is in the debug state, both memory interfaces
indicate internal cycles, which ensures that both the tightly coupled
SRAM within the ARM966E-S and the AHB interface are quiescent. The
rest of the AHB system can thus ignore the ARM9E-S processor core
and function as normal. Because the rest of the system continues
operation, the ARM9E-S processor core ignores aborts and interrupts.

The nRESET signal must be held stable during debug. If the system
applies a reset to the ARM966E-S (nRESET is driven LOW), the
ARM9E-S processor changes state without the knowledge of the
debugger.

www.DataSheet4U.com

10-14 Debug
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

10.5 ARM9E-S Clock Domains

The ARM9E-S clock, CLK, is qualified by two clock enables:

• SYSCLKEN controls access to the memory system

• DBGTCKEN controls debug operations

During normal operation, SYSCLKEN conditions CLK to clock the core.
When the ARM966E-S is in the debug state, DBGTCKEN conditions
CLK to clock the core.

10.6 Determining the Core and System States

When the ARM966E-S is in the debug state, you can examine the core
and system state by forcing the load and store multiples into the
instruction pipeline.

Before you can examine the core and system state, the debugger must
determine whether the processor entered debug from Thumb state or
ARM state, by examining bit 4 of the EmbeddedICE-RT Debug Status
Register. When bit 4 is HIGH, the core enters debug from Thumb state.

10.7 About the EmbeddedICE-RT Logic

The ARM9E-S EmbeddedICE-RT logic provides integrated on-chip
debug support for the ARM9E-S processor core.

EmbeddedICE-RT is programmed serially using the ARM9E-S TAP
controller. Figure 10.7 illustrates the relationship between the core,
EmbeddedICE-RT, and the TAP controller, showing only the signals that
are pertinent to EmbeddedICE-RT.

www.DataSheet4U.com

About the EmbeddedICE-RT Logic 10-15
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Figure 10.7 The ARM9E-S, TAP Controller, and EmbeddedICE-RT

The EmbeddedICE-RT logic comprises:

• two real-time watchpoint units

• two independent registers: the debug control register and the debug
status register

• debug communications channel.

The Debug Control Register and the Debug Status Register provide
overall control of EmbeddedICE-RT operation.

You can program one or both watchpoint units to halt the execution of
instructions by the core. Execution halts when the values programmed
into the EmbeddedICE-RT match the values currently appearing on the
address bus, data bus, and various control signals.

Any bit can be masked so that its value does not affect the comparison.

DBGEXT[1:0]

DBGCOMMRX

DBGCOMMTX

DBGRNG[1:0]

DBGACK

DBGIEBKPT

EDBGRQ

DBGDEWPT

DBGEN

DBGTCKEN

DBGTMS

DBGTDI

DBGTDO

CLK

EmbeddedICE-RTProcessor

DBGnTRST TAP

www.DataSheet4U.com

10-16 Debug
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Each watchpoint unit can be configured to be either a watchpoint
(monitoring data accesses) or a breakpoint (monitoring instruction
fetches). Watchpoints and breakpoints can be data-dependent.

10.8 Disabling the EmbeddedICE-RT Logic

To disable the EmbeddedICE-RT logic, force the DBGEN input LOW.
Hardwiring DBGEN LOW permanently disables debug access.

When DBGEN is LOW, it inhibits DBGDEWPT, DBGIEBKPT, and
EDBGRQ to the ARM9E-S, and DBGACK from the ARM966E-S is
always LOW.

10.9 The Debug Communications Channel

The EmbeddedICE-RT logic contains a communications channel for
passing information between the target and the host debugger. This
channel is implemented as coprocessor 14 (CP14).

The communications channel comprises:

• a 32-bit communications data read register

• a 32-bit communications data write register

• a 6-bit communications control register for synchronized
handshaking between the processor and the asynchronous
debugger.

These registers are located in fixed locations in the EmbeddedICE-RT
logic register map and are accessed from the processor using MCR and
MRC instructions to CP14.

In addition to the communications channel registers, the processor can
access a one-bit Debug Status Register for use in the real-time debug
configuration.

www.DataSheet4U.com

The Debug Communications Channel 10-17
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

10.9.1 Debug Communication Channel Registers

CP14 contains four registers. Table 10.4 shows the register allocations
in CP14.

10.9.2 Debug Communications Channel Status Register

The Debug Communications Channel Status Register is read-only. It
controls synchronized handshaking between the processor and the
debugger. The Debug Communications Channel Status Register is
shown in Figure 10.8.

Figure 10.8 Debug Communications Channel Status Register

Version Version [31:28]
This field contains a fixed pattern that denotes the
EmbeddedICE-RT version number (in this case 0b0011).

Res Reserved [27:2]
These bits are reserved and read as zeros.

W Write Available 1
This bit indicates whether the Communications Data
Write Register is available (from the viewpoint of the
processor). If, from the viewpoint of the processor, the
Communications Data Write Register is free (W = 0), new
data can be written. If the register is not free (W = 1), the
processor must poll until W = 0. From the viewpoint of the
debugger, when W = 1, new data is written that can be
scanned out.

Table 10.4 CP14 Register Map

Register Name Register Number Notes

Communications Channel Status C0 Read only

Communications Channel Data Read C1 For reads

Communications Channel Data Write C1 For writes

Communications Channel Monitor Mode Debug Status C2 Read/write

31 28 27 2 1 0

Version Res W R

www.DataSheet4U.com

10-18 Debug
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

R Read Available 0
This bit indicates whether there is new data in the
Communications Data Read Register. From the viewpoint
of the processor, if R = 1, there is new data that can be
read using an MRC instruction. From the viewpoint of the
debugger, if R = 0, the Communications Data Read
Register is free, and new data can be placed there
through the scan chain. If R = 1, data previously placed
there through the scan chain is not collected by the
processor, and so the debugger must wait.

From the viewpoint of the debugger, the registers are accessed using the
scan chain in the usual way. From the viewpoint of the processor, these
registers are accessed using coprocessor register transfer instructions.

You must use the following instructions:

Because the Thumb instruction set does not contain coprocessor
instructions, you are advised to access this data using SWI instructions
when in Thumb state.

10.9.3 Communications Channel Monitor Mode Debug Status Register

The CP14 Debug Status Register is provided for a debug monitor when
the ARM9E-S processor is configured into monitor mode.

The CP14 Debug Status Register is a one-bit wide read/write register as
shown in Figure 10.9.

Figure 10.9 Coprocessor 14 Debug Status Register Format

Bit 0, the DbgAbt bit, indicates whether the processor took a Prefetch
(DbgAbt = 1) or Data Abort (DbgAbt = 0) in the past because of a

MRC p14, 0, Rd, c0, c0 Returns the Debug Communications Control
Register into Rd.

MCR p14, 0, Rn, c1, c0 Writes the value in Rn to the Communications
Data Write Register.

MRC p14, 0, Rd, c1, c0 Returns the Debug Data Read Register into Rd.

31 1 0

Res Dbg
Abt

www.DataSheet4U.com

The Debug Communications Channel 10-19
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

breakpoint or watchpoint. If the ARM966E-S takes a Prefetch Abort as a
result of a breakpoint or watchpoint, then the bit is set. If on a particular
instruction or data fetch, both the debug abort and external abort signals
are asserted, the external abort takes priority and the DbgAbt bit is not
set. You can read or write the DbgAbt bit by means of MRC or MCR
instructions.

This bit can be used by a real-time debug aware abort handler. This
handler examines the DbgAbt bit to determine whether the abort is
externally or internally generated. If the DbgAbt bit is set, the abort
handler initiates communication with the debugger over the
communications channel.

10.9.4 Using the Communications Channel

Messages can be sent and received using the communications channel.

10.9.4.1 Sending a Message to the Debugger

When the processor wishes to send a message to the debugger, it must
check to see if the Communications Data Write Register is free for use.
The processor reads the Debug Communications Control Register to
check the status of the W bit.

• If W bit is cleared, the Communications Data Write Register is free
for use.

• If the W bit is set, previously written data is not read by the debugger.
The processor must continue to poll the Debug Communications
Control Register until the W bit is cleared.

When the W bit is cleared, a message is written by a register transfer to
coprocessor 14. Because the data transfer occurs from the processor to
the Communications Data Write Register, the W bit is set in the Debug
Communications Control Register.

The debugger sees both the R and W bits when it polls the Debug
Communications Control Register through the JTAG interface. When the
debugger sees that the W bit is set, it can read the Communications Data
Write Register, and scan the data out. The action of reading this data
register clears the W bit in the Debug Communications Control Register.
At this point, the communications process can begin again.

www.DataSheet4U.com

10-20 Debug
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

10.9.4.2 Receiving a Message from the Debugger

Transferring a message from the debugger to the processor is similar to
sending a message to the debugger. In this case, the debugger polls the
R bit of the Debug Communications Control Register:

• if the R bit is cleared, the Communications Data Read Register is
free for use, and data can be placed there for the processor to read

• if the R bit is set, previously deposited data is not yet collected, so
the debugger must wait.

When the communications data read register is free, data is written there
using the JTAG interface. The action of this write sets the R bit in the
Debug Communications Control Register.

The processor polls the Debug Communications Control Register. If the
R bit is set, there is data that can be read using an MRC instruction to
CP14. The action of this load clears the R bit in the Debug
Communications Control Register. When the debugger polls this register
and sees that the R bit is cleared, the data is taken, and the process can
be repeated.

10.10 Real-Time Debug

The ARM9E-S processor within the ARM966E-S contains logic that
allows the debugging of a system without stopping the core entirely. Thus
critical interrupt routines can still be serviced while the core is being
interrogated by the debugger. Setting bit 4 of the Debug Control Register
enables the real-time debug features of the ARM9E-S. When bit 4 is set,
the EmbeddedICE-RT logic is configured so that a breakpoint or
watchpoint causes the ARM966E-S to enter abort mode, taking the
Prefetch Abort or Data Abort vectors, respectively. When the ARM966E-
S is configured for real-time debugging, you must be aware of the
following restrictions:

• Breakpoints or watchpoints might not be data-dependent. No support
is provided for use of the range and chain functionalities. Breakpoints
or watchpoints can only be based on:

– instruction or data addresses

– external watchpoint conditioner (DBGEXTERN)

www.DataSheet4U.com

Real-Time Debug 10-21
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

– user or privileged mode access (DnTRANS and InTRANS)

– read or write access (watchpoints)

– access size (breakpoints, ITBIT, and watchpoints, DMAS[1:0]).

• The single-step hardware is not enabled.

• External breakpoints and watchpoints are not supported.

• The vector-catching hardware can be used but must not be
configured to catch the Prefetch or Data Abort exceptions.

Caution: No support is provided to mix halt mode and monitor mode
debug functionalities. When the core is configured into the
monitor mode, asserting the external EDBGRQ signal
results in unpredictable behavior. Setting the internal
EDBGRQ bit results in unpredictable behavior.

When an abort is generated by the monitor mode it is recorded in the
Debug Status Register in CP14 (see Section 10.9.3, “Communications
Channel Monitor Mode Debug Status Register”).

Because the monitor mode debug does not put the ARM9E-S into the
debug state, it is necessary to change the contents of the Watchpoint
registers while external memory accesses are taking place rather than
changing them when in the debug state. If the Watchpoint registers are
written to during an access, all matches from the affected watchpoint unit
using the register being updated are disabled for the cycle of the update.

If there is a possibility of false matches occurring during changes to the
Watchpoint registers, caused by old data in some registers and new data
in others, then you must:

1. Disable that watchpoint unit using the control register for that
watchpoint unit.

2. Change the other registers.

3. Re-enable the watchpoint unit by rewriting the control register.

www.DataSheet4U.com

10-22 Debug
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

www.DataSheet4U.com

ARM966E-S Microprocessor Core Technical Manual 11-1
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Chapter 11
Test Methodology

This chapter describes the ARM966E-S test methodology. Full-scan
ATPG and RAMBIST are provided to achieve >99% stuck at faults and
RAM data sensitivity faults. This chapter includes the following sections:

• Section 11.1, “Scan Insertion”

• Section 11.2, “RAMBIST”

For additional information, please contact your LSI Logic applications
engineer.

11.1 Scan Insertion

Scan insertion ensures a high level of fault coverage using Automatic
Test Pattern Generation (ATPG) tools and compatible synthesis library
cells. It has an impact on the area and performance of a design. It also
imposes constraints on the use of clock gating within the HDL code.

11.2 RAMBIST

LSI Logic does not implement ARM’s ARM966E-S RAMBIST controller.
Check with your LSI Logic applications engineer on how to add
RAMBIST to your design.

www.DataSheet4U.com

11-2 Test Methodology
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

www.DataSheet4U.com

ARM966E-S Microprocessor Core Technical Manual A-1
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

Appendix A
ARM9E-S Enhanced
Instructions

This appendix describes the instruction enhancements made to the
ARM9E-S instruction set. The extensions have been developed to
improve the ARM architecture’s performance in signal processing
algorithms.

Many real-time applications require both the benefits of a microcontroller
and a DSP. Microcontrollers bring high-level language support with solid
development tools, low cost memory systems, low interrupt latency, and
fast context switching time; DSPs tend to have features for fast math
performance in real-time control tasks.

Real-time applications are typically those involving devices that move,
including hard disk drives, printers, engine controllers, and
general-purpose servos such as those found in automotive steering
control. However, applications such as voice processing and modems
also benefit greatly from a controller with the mix of both microcontroller
and DSP functionalities. It is for these reasons that recent microcontroller
architectures have featured both controller and DSP functionality.

The ARM9E-S core features an enhanced 32 x 16 hardware multiplier,
which increases the ARM’s performance in hard real-time signal
processing applications. The extensions consist of:

• New multiply instructions that allow the efficient use of data
bandwidth so that best use can be made of the new multiplier.

• New saturation extensions to existing math instructions for use in the
design of stable control loops and bit-exact algorithms.

www.DataSheet4U.com

A-2 ARM9E-S Enhanced Instructions
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

In each of the instruction definitions, the following abbreviations are used:

Note also that in the instruction definitions, the term UNPREDICTABLE
means the result of an instruction cannot be relied upon. Unpredictable
instructions or results must not represent security holes.
UNPREDICTABLE instructions must not halt or hang the processor, or
any parts of the system.

{cond} Two character conditional execution mnemonic. Refer to the
ARM Architecture Reference Manual for a complete listing of
condition codes.

Rd,Rs,Rn,Rm Denote ARM register numbers.

x/y Denotes use of either the high or low half of an ARM register
as a source operand. ‘T’ is used to denote the top (most
significant), and ‘B’ denotes the bottom (least significant)
halfword.

SBZ A field in the instruction opcode that should be written as zero.
Nonzero values produce unpredictable results.

SignExtend(a) Sign-extends (propagates the sign bit) its argument to 32 bits.

SAT(f) Saturates the result of f to 32 bits. If f overflows 32 bits and is
negative, then SAT(f) returns the maximum negative value that
can be represented in 32 bits (0x80000000). If f overflows
32 bits and is positive, SAT(f) returns 0x7FFFFFFF.

DoesSat(f) Returns 1 if f would saturate when truncated to 32 bits,
otherwise returns 0.

www.DataSheet4U.com

A-3
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

CLZ Count Leading Zeros

Format CLZ{cond} Rd, Rm

Description This operation returns the number of leading zeros in the register Rm
into the destination register Rd. This operation was originally defined as
part of the ARMv5T instruction set extensions. It is mentioned here
because CLZ is supported in an ARM9E-compatible processor
regardless of whether that processor also supports the full ARMv5
instruction set. Used for speeding up the normalization at the start of a
Newton-Raphson based division and normalization of fixed-point
numbers.

Operation if (Rm == 0)
Rd = 32

else
for (i = 31; i >= 0; i--) {

if (Rm[i] == 1) then
Rd = 31 – i
break

}

Exceptions None

Qualifiers Condition Code

Notes Writing to R15: Specifying R15 (PC) for register Rd or Rm is
UNPREDICTABLE.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 1 0 1 1 0 SBZ Rd SBZ 0 0 0 1 Rm

www.DataSheet4U.com

A-4 ARM9E-S Enhanced Instructions
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

QADD Saturating Add

Format QADD{cond} Rd, Rm, Rn

Description This instruction saturates the sum of Rm and Rn and stores the result in
Rd. There are no immediate or shifted variants of this instruction. This
operation affects the sticky-overflow bit ‘S’ due to overflow in addition.

Operation Rd[31:0] = SAT(Rm[31:0] + Rn[31:0])
if (DoesSat(Rm[31:0] + Rn[31:0]))

S Flag = 1

Exceptions None

Qualifiers Condition Code

Notes Writing to R15: Specifying R15 (PC) for register Rd, Rn, or Rm is
UNPREDICTABLE.

Assembler Mnemonic: This mnemonic has reversed operands to be
consistent with the QDSUB mnemonic.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 1 0 0 0 0 Rn Rd SBZ 0 1 0 1 Rm

www.DataSheet4U.com

A-5
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

QDADD Saturated Double Rn and Saturated Add

Format QDADD{cond} Rd, Rm, Rn

Description Double Rn and saturate, then add to Rm and saturate. The result is
stored in Rd. There are no immediate or shifted variants of this
instruction. This operation affects the sticky-overflow bit ‘S’ due to
overflow in either the double operation or the addition.

Operation Rd[31:0] = SAT(Rm[31:0] + SAT(Rn[31:0] *2))
if (DoesSat(Rn[31:0]*2) || DoesSat(Rm[31:0] +
SAT(Rn[31:0]*2)))

S Flag = 1

Exceptions None

Qualifiers Condition Code

Notes Writing to R15: Specifying R15 (PC) for register Rd, Rm, or Rn is
UNPREDICTABLE.

Assembler Mnemonic: This mnemonic has reversed operands to be
consistent with the QDSUB mnemonic.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 1 0 1 0 0 Rn Rd SBZ 0 1 0 1 Rm

www.DataSheet4U.com

A-6 ARM9E-S Enhanced Instructions
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

QDSUB Saturated Double Rn and Saturated Subtract

Format QDSUB{cond} Rd, Rm, Rn

Description Double Rn and saturate, then subtract from Rm and saturate. The result
is stored in Rd. There are no immediate or shifted variants of this
instruction. This operation affects the sticky-overflow bit ‘S’ due to
overflow in either the double operation or the subtraction.

Operation Rd[31:0] = SAT(Rm[31:0] – SAT(Rn[31:0]*2))
if (DoesSat(Rn[31:0]*2) || DoesSat(Rm[31:0] –
SAT(Rn[31:0]*2)))

S Flag = 1

Exceptions None

Qualifiers Condition Code

Notes Writing to R15: Specifying R15 (PC) for register Rd, Rm or Rn is
UNPREDICTABLE.

Assembler Mnemonic: This operation performs a reverse subtract
(when compared to the normal ARM SUB operation). The operands in
the assembler mnemonic have been reversed so that the mnemonic can
be QDSUB instead of QDRSB.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 1 0 1 1 0 Rn Rd SBZ 0 1 0 1 Rm

www.DataSheet4U.com

A-7
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

QSUB Saturating Subtract

Format QSUB{cond} Rd, Rm, Rn

Description Subtract Rn from Rm and saturate. The result is stored in Rd. There are
no immediate or shifted variants of this instruction. This operation affects
the sticky-overflow bit ‘S’ due to overflow in the subtraction.

Operation Rd[31:0] = SAT(Rm[31:0] - Rn[31:0])
if (DoesSat(Rm[31:0] – Rn[31:0]))

S Flag = 1

Exceptions None

Qualifiers Condition Code

Notes Writing to R15: Specifying R15 (PC) for register Rd, Rm or Rn is
UNPREDICTABLE.

Assembler Mnemonic: This mnemonic has reversed operands to be
consistent with the QDSUB mnemonic.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 1 0 0 1 0 Rn Rd SBZ 0 1 0 1 Rm

www.DataSheet4U.com

A-8 ARM9E-S Enhanced Instructions
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

SMLAxy Signed Integer Multiply-Accumulate

Format SMLAxy {cond} Rd, Rm, Rs, Rn

Description The signed integer multiply-accumulate operation performs the multiply
on two 16-bit source operands from half of register Rm and half of Rs,
producing a 32-bit product and then a 32-bit accumulation with Rn. This
operation affects the sticky-overflow bit ‘S’ due to overflow in the
accumulation.

Operation if (bit[5] == 0)
<operand1> = SignExtend(Rm[15:0])

else
<operand1> = SignExtend(Rm[31:16])

if (bit[6] == 0)
<operand2> = SignExtend(Rs[15:0])

else
<operand2> = SignExtend(Rs[31:16])

Rd[31:0] = Rn[31:0] + (<operand1> * <operand2>)
if (DoesSat(Rn[31:0] + (<operand1> * <operand2>)))

S Flag = 1

Exceptions None

Qualifiers Condition Code

Notes Writing to R15: Specifying R15 (PC) for register Rd, Rm, Rs or Rn is
UNPREDICTABLE.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 1 0 0 0 0 Rd Rn Rs 1 y x 0 Rm

www.DataSheet4U.com

A-9
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

SMLALxy Signed Multiply-Accumulate

Format SMLALxy{cond} RdLo, RdHi, Rm, Rs

Description The signed multiply-accumulate operation performs a multiply on two
16-bit source operands from half of register Rm and half of Rs. Then a
64-bit accumulate is done with RdLo and RdHi.

Operation if (bit[5] == 0)
<operand1> = SignExtend(Rm[15:0])

else
<operand1> = SignExtend(Rm[31:16])

if (bit[6] == 0)
<operand2> = SignExtend(Rs[15:0])

else
<operand2> = SignExtend(Rs[31:16])

RdHi[31:0].RdLo[31:0] = RdHi[31:0].RdLo[31:0] + (<operand1>
* <operand2>)

Exceptions None

Qualifiers Condition Code

Notes Writing to R15: Specifying R15 (PC) for register RdHi, RdLo, Rm, or Rs
is UNPREDICTABLE.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 1 0 1 0 0 RdHi RdLo Rs 1 y x 0 Rm

www.DataSheet4U.com

A-10 ARM9E-S Enhanced Instructions
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

SMLAWy Signed Integer Multiply-Accumulate

Format SMLAWy{cond} Rd, Rm, Rs, Rn

Description The signed integer multiply-accumulate operation performs a 32 x 16 bit
multiply on the 32-bit operand in Rm and the 16-bit source operand from
half of register Rs. A 32-bit accumulate of the upper 32 bits of the 48-bit
product is done with Rn. This operation affects the sticky-overflow bit ‘S’
due to overflow in the accumulation.

Operation if (bit[6] == 0)
<operand2> = SignExtend(Rs[15:0])

else
<operand2> = SignExtend(Rs[31:16])

Rd[31:0] = Rn[31:0] + (Rm[31:0]*<operand2>)[47:16]
if (DoesSat(Rn[31:0] + (Rm[31:0]*<operand2>)[47:16]))

S Flag = 1

Exceptions None

Qualifiers Condition Code

Notes Writing to R15: Specifying R15 (PC) for register Rd, Rm, Rs, or Rn is
UNPREDICTABLE.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 1 0 0 1 0 Rd Rn Rs 1 y 0 0 Rm

www.DataSheet4U.com

A-11
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

SMULxy Signed Integer Multiply

Format SMULxy{cond} Rd, Rm, Rs

Description The signed integer multiply operation performs the multiply on two 16-bit
source operands from half of register Rm and half of Rs, producing a
32-bit result in Rd.

Operation if (bit[5] == 0)
<operand1> = SignExtend(Rm[15:0])

else
<operand1> = SignExtend(Rm[31:16])

if (bit[6] == 0)
<operand2> = SignExtend(Rs[15:0])

else
<operand2> = SignExtend(Rs[31:16])

Rd[31:0] = (<operand1> * <operand2>)

Exceptions None

Qualifiers Condition Code

Notes Writing to R15: Specifying R15 (PC) for register Rd, Rm, or Rs is
UNPREDICTABLE.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 1 0 1 1 0 Rd SBZ Rs 1 y x 0 Rm

www.DataSheet4U.com

A-12 ARM9E-S Enhanced Instructions
Rev. A Copyright © 1999-2001 by LSI Logic Corporation. All rights reserved.

SMULWy Signed Integer Multiply

Format SMULWy{cond} Rd, Rm, Rs

Description The signed integer multiply operation performs a 32 x 16 bit multiply on
the 32-bit operand in Rm and the 16-bit source operand from half of
register Rs, taking the upper 32 bits of the 48-bit product.

Operation if (bit[6] == 0)
<operand2> = SignExtend(Rs[15:0])

else
<operand2> = SignExtend(Rs[31:16])

Rd[31:0] = (Rm[31:0]*<operand2>)[47:16]

Exceptions None

Qualifiers Condition Code

Notes Writing to R15: Specifying R15 (PC) for register Rd, Rm, or Rs is
UNPREDICTABLE.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 1 0 0 1 0 Rd SBZ Rs 1 y 1 0 Rm

www.DataSheet4U.com

ARM966E-S Microprocessor Core Technical Manual IX-1
Rev. A Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Index

A

Address decoders 1-4
Advanced High-Performance Bus (AHB) 1-4

interface unit 5-1
AHB 1-4

clocking 5-11
interface signals 2-3
interface unit 5-1
operation 5-11

ARM966E-S block diagram 1-3
ARM9E-S processor core 1-3
ATPG 11-1

scan control signals 2-21
Automatic Test Pattern Generation 11-1

B

Base restored data abort model 3-2
Base updated data abort model 3-2
Basic transfers 5-12
BIST control register 3-15
Block diagram ARM966E-S 1-3
Breakpoints 10-9, 10-16

exceptions 10-10
instruction boundary 10-10
prefetch abort 10-10
timing 10-10

Burst operation example 5-15
Burst operations 5-15
Burst signal encoding 5-5
Burst types 5-4
Busy transfers 5-3

C

CDP Instructions 9-7
CLK 10-14

Clock
system 10-5
test 10-5

Control register 3-10
Coprocessor instruction format 3-4
Coprocessor instructions 9-2
Coprocessor interface signals 2-8
Core control register 3-12
Core state, determining 10-14
Count Leading Zeros A-3
CP14 3-1
CP15 3-1

data BIST fail address register 3-18
data BIST fail/pause read data register 3-19
data BIST start/pause address register 3-18
data BIST test/pause write data register 3-18
instruction BIST fail address register 3-17
instruction BIST fail/pause read data register

3-17
instruction BIST test/pause write data register

3-17
instruction format 3-4
RAMBIST register map 3-14

CPU register organization 3-6

D

Data abort exception 4-6
Data access memory abort exception 4-6
Data RAM 8-1
Data RAM signals 2-10
DBGACK 10-8, 10-16
DBGDEWPT 10-16
DBGEN 10-16
DBGIEBKPR 10-16
DBGTCKEN 10-14

www.DataSheet4U.com

IX-2 Index
Rev. A Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Debug
communcations data read register 10-16
communications channel 10-16, 10-19
communications channel status register 10-17
communications control register 10-16
communications data write register 10-16
control register 10-15
extensions 10-4
hardware extensions 10-3
host 10-2
interface signals 10-5, 10-8
message transfer 10-19
MultiICE 10-5
real-time 10-20
request 10-13
signals 2-14
state 10-5

actions of ARM9E-S 10-13
breakpoints 10-9
watchpoints 10-11

status register 10-15, 10-18
support 10-14
systems 10-1
target 10-3

Disabling EmbeddedICE-RT 10-16
DMA signals 2-12

E

Early burst termination 5-15
EDBGRQ 10-16
EmbeddedICE-RT 10-3, 10-13

debug communications channel 10-16
debug status register 10-14
disabling 10-16
macrocell 10-14
operation 10-15
overview 10-14

Error response 5-18
ETM interface signals 2-16
Exception

Data abort 4-6
Data access memory abort 4-6
Fast interrupt request 4-7
FIQ 4-7
flow 4-2
handling 4-1
Instruction fetch memory abort 4-5
Interrupt request 4-7

IRQ 4-7
prefetch abort 4-5
priority order 4-2
processing modes 4-2
reset 4-4
software interrupt 4-5
undefined instruction 4-4

External coprocessor interface 9-1

F

FIQ (Fast Interrupt Request) exception 4-7

H

HRDATA[31:0] 5-10
HWDATA[31:0] 5-8

I

ID Code register 3-10
Idle transfers 5-3
Initialization control signals 2-21
Instruction BIST Start/Pause Address register 3-

16
Instruction enhancements A-1
Instruction fetch memory abort exception 4-5
instruction format 3-4
Instruction RAM 8-1
Instruction RAM signals 2-10
Interlocked MCR 9-6
IRQ (Interrupt Request) exception 4-7

J

JTAG interface 10-3, 10-5

L

LDC/STC Cycle Timing 9-3
LDC/STC Instructions 9-2

M

MCR/MRC Cycle Timing 9-6
MCR/MRC Instructions 9-5
Memory Map 3-5
Miscellaneous signals 2-20
MultiICE 10-5
Multiple transfers 5-14
Multiplexer interconnection 5-2

www.DataSheet4U.com

Index IX-3
Rev. A Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

N

Nonrecoverable error 6-3
Nonsequential transfers 5-3

P

Prefetch abort exception 4-5
Privileged Instructions 9-8
Privileged mode 3-3
Processor core 1-3
Processor modes 3-3
Protection signal encoding 5-7
Protocol converter 10-2

R

Read-Lock-Write 6-3
Registers

BIST control 3-15
Control 3-10
Core control 3-12
CP15 data BIST fail address 3-18
CP15 data BIST fail/pause read data 3-19
CP15 data BIST start/pause address 3-18
CP15 data BIST test/pause write data 3-18
CP15 instruction BIST fail address 3-17
CP15 instruction BIST fail/pause read data 3-

17
CP15 insturction BIST test/pause write data 3-

17
debug communications channel status 10-17
debug communications control 10-16
debug communications data read 10-16
debug communications data write 10-16
debug control 10-15
debug status 10-15, 10-18
EmbeddedICE-RT debug status 10-14
ID code 3-10
Instruction BIST start/pause address 3-16
Trace process identifier 3-13

Reset exception 4-4
Retry response 5-19
RTCK 10-5

S

Saturated Double Rn and Saturated Add A-5
Saturated Double Rn and Saturated Subtract A-6
Saturating Add A-4

Saturating Subtract A-7
Scan insertion 11-1
Serial interface, JTAG 10-3, 10-5
Signal types

debug interface 10-5, 10-8
Signals

AHB interface 2-3
ATPG scan control signals 2-21
CLK 10-14
coprocessor interface 2-8
Data RAM 2-10
DBGACK 10-8, 10-16
DBGDEWPT 10-16
DBGEN 10-16
DBGIEBKPT 10-16
DBGTCKEN 10-14
Debug 2-14
DMA 2-12
EDBGRQ 10-16
ETM interface 2-16
initialization control 2-21
Instruction RAM 2-10
miscellaneous 2-20
RTCK 10-5
SYSCLKEN 10-14
TCK 10-5

Signed Integer Multiply A-11, A-12
Signed Integer Multiply-Accumulate A-8, A-10
Signed Multiply-Accumulate A-9
Simple transfer 5-13
Single transfers 5-5
Size encoding 5-6
Slave transfer responses 5-16
Software interrupt exception 4-5
Split response 5-19
SRAM

enabling 8-2
interfaces 8-6
requirements 8-1
wrapper 8-5

Stalling and Interrupts 9-9
State, debug 10-5
States, TAP controller 10-4
Supported data types 3-2
SYSCLKEN 10-14
System controller 7-1
System state, determining 10-14

www.DataSheet4U.com

IX-4 Index
Rev. A Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

T

TAP controller 10-3, 10-14
states 10-4

TCK 10-5
Test Access Port 10-4
Test clock 10-5
Test methodology 11-1
Trace process identifier register 3-13
Transfer type encoding 5-3
Transfer type examples 5-4
Transfer with wait states 5-14
Two-Cycle response 5-17

U

Unbuffered writes 6-3
Undefined instruction exception 4-4
User mode 3-3

W

Watchpoints 10-11, 10-15, 10-16
exceptions 10-13
timing 10-11

Write buffer 6-1
Write buffer flush 6-2
Write buffer full 6-2
Write buffer operation 6-2

www.DataSheet4U.com

ARM966E-S Microprocessor Core Technical Manual
Rev. A Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Customer Feedback

We would appreciate your feedback on this document. Please copy the
following page, add your comments, and fax it to us at the number
shown.

If appropriate, please also fax copies of any marked-up pages from this
document.

Important: Please include your name, phone number, fax number, and
company address so that we may contact you directly for
clarification or additional information.

Thank you for your help in improving the quality of our documents.

www.DataSheet4U.com

Customer Feedback
Rev. A Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Reader’s Comments

Fax your comments to: LSI Logic Corporation
Technical Publications
M/S E-198
Fax: 408.433.4333

Please tell us how you rate this document: ARM966E-S Microprocessor
Core Technical Manual. Place a check mark in the appropriate blank for
each category.

What could we do to improve this document?

If you found errors in this document, please specify the error and page
number. If appropriate, please fax a marked-up copy of the page(s).

Please complete the information below so that we may contact you
directly for clarification or additional information.

Excellent Good Average Fair Poor

Completeness of information ____ ____ ____ ____ ____
Clarity of information ____ ____ ____ ____ ____
Ease of finding information ____ ____ ____ ____ ____
Technical content ____ ____ ____ ____ ____
Usefulness of examples and
illustrations

____ ____ ____ ____ ____

Overall manual ____ ____ ____ ____ ____

Name Date

Telephone

Title

Company Name

Street

City, State, Zip

Department Mail Stop

Fax

www.DataSheet4U.com

Customer Feedback
Rev. A Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

www.DataSheet4U.com

Customer Feedback
Rev. A Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

www.DataSheet4U.com

U.S. Distributors
by State

A. E. Avnet Electronics
http://www.hh.avnet.com
B. M. Bell Microproducts,

Inc. (for HAB’s)
http://www.bellmicro.com
I. E. Insight Electronics
http://www.insight-electronics.com
W. E. Wyle Electronics
http://www.wyle.com

Alabama
Daphne
I. E. Tel: 334.626.6190
Huntsville
A. E. Tel: 256.837.8700
B. M. Tel: 256.705.3559
I. E. Tel: 256.830.1222
W. E. Tel: 800.964.9953

Alaska
A. E. Tel: 800.332.8638

Arizona
Phoenix
A. E. Tel: 480.736.7000
B. M. Tel: 602.267.9551
W. E. Tel: 800.528.4040
Tempe
I. E. Tel: 480.829.1800
Tucson
A. E. Tel: 520.742.0515

Arkansas
W. E. Tel: 972.235.9953

California
Agoura Hills
B. M. Tel: 818.865.0266
Granite Bay
B. M. Tel: 916.523.7047
Irvine
A. E. Tel: 949.789.4100
B. M. Tel: 949.470.2900
I. E. Tel: 949.727.3291
W. E. Tel: 800.626.9953
Los Angeles
A. E. Tel: 818.594.0404
W. E. Tel: 800.288.9953
Sacramento
A. E. Tel: 916.632.4500
W. E. Tel: 800.627.9953
San Diego
A. E. Tel: 858.385.7500
B. M. Tel: 858.597.3010
I. E. Tel: 800.677.6011
W. E. Tel: 800.829.9953
San Jose
A. E. Tel: 408.435.3500
B. M. Tel: 408.436.0881
I. E. Tel: 408.952.7000
Santa Clara
W. E. Tel: 800.866.9953
Woodland Hills
A. E. Tel: 818.594.0404
Westlake Village
I. E. Tel: 818.707.2101

Colorado
Denver
A. E. Tel: 303.790.1662
B. M. Tel: 303.846.3065
W. E. Tel: 800.933.9953
Englewood
I. E. Tel: 303.649.1800
Idaho Springs
B. M. Tel: 303.567.0703

Connecticut
Cheshire
A. E. Tel: 203.271.5700
I. E. Tel: 203.272.5843
Wallingford
W. E. Tel: 800.605.9953

Delaware
North/South
A. E. Tel: 800.526.4812

Tel: 800.638.5988
B. M. Tel: 302.328.8968
W. E. Tel: 856.439.9110

Florida
Altamonte Springs
B. M. Tel: 407.682.1199
I. E. Tel: 407.834.6310
Boca Raton
I. E. Tel: 561.997.2540
Bonita Springs
B. M. Tel: 941.498.6011
Clearwater
I. E. Tel: 727.524.8850
Fort Lauderdale
A. E. Tel: 954.484.5482
W. E. Tel: 800.568.9953
Miami
B. M. Tel: 305.477.6406
Orlando
A. E. Tel: 407.657.3300
W. E. Tel: 407.740.7450
Tampa
W. E. Tel: 800.395.9953
St. Petersburg
A. E. Tel: 727.507.5000

Georgia
Atlanta
A. E. Tel: 770.623.4400
B. M. Tel: 770.980.4922
W. E. Tel: 800.876.9953
Duluth
I. E. Tel: 678.584.0812

Hawaii
A. E. Tel: 800.851.2282

Idaho
A. E. Tel: 801.365.3800
W. E. Tel: 801.974.9953

Illinois
North/South
A. E. Tel: 847.797.7300

Tel: 314.291.5350
Chicago
B. M. Tel: 847.413.8530
W. E. Tel: 800.853.9953
Schaumburg
I. E. Tel: 847.885.9700

Indiana
Fort Wayne
I. E. Tel: 219.436.4250
W. E. Tel: 888.358.9953
Indianapolis
A. E. Tel: 317.575.3500

Iowa
W. E. Tel: 612.853.2280
Cedar Rapids
A. E. Tel: 319.393.0033

Kansas
W. E. Tel: 303.457.9953
Kansas City
A. E. Tel: 913.663.7900
Lenexa
I. E. Tel: 913.492.0408

Kentucky
W. E. Tel: 937.436.9953
Central/Northern/ Western
A. E. Tel: 800.984.9503

Tel: 800.767.0329
Tel: 800.829.0146

Louisiana
W. E. Tel: 713.854.9953
North/South
A. E. Tel: 800.231.0253

Tel: 800.231.5775

Maine
A. E. Tel: 800.272.9255
W. E. Tel: 781.271.9953

Maryland
Baltimore
A. E. Tel: 410.720.3400
W. E. Tel: 800.863.9953
Columbia
B. M. Tel: 800.673.7461
I. E. Tel: 410.381.3131

Massachusetts
Boston
A. E. Tel: 978.532.9808
W. E. Tel: 800.444.9953
Burlington
I. E. Tel: 781.270.9400
Marlborough
B. M. Tel: 800.673.7459
Woburn
B. M. Tel: 800.552.4305

Michigan
Brighton
I. E. Tel: 810.229.7710
Detroit
A. E. Tel: 734.416.5800
W. E. Tel: 888.318.9953
Clarkston
B. M. Tel: 877.922.9363

Minnesota
Champlin
B. M. Tel: 800.557.2566
Eden Prairie
B. M. Tel: 800.255.1469
Minneapolis
A. E. Tel: 612.346.3000
W. E. Tel: 800.860.9953
St. Louis Park
I. E. Tel: 612.525.9999

Mississippi
A. E. Tel: 800.633.2918
W. E. Tel: 256.830.1119

Missouri
W. E. Tel: 630.620.0969
St. Louis
A. E. Tel: 314.291.5350
I. E. Tel: 314.872.2182

Montana
A. E. Tel: 800.526.1741
W. E. Tel: 801.974.9953

Nebraska
A. E. Tel: 800.332.4375
W. E. Tel: 303.457.9953

Nevada
Las Vegas
A. E. Tel: 800.528.8471
W. E. Tel: 702.765.7117

New Hampshire
A. E. Tel: 800.272.9255
W. E. Tel: 781.271.9953

New Jersey
North/South
A. E. Tel: 201.515.1641

Tel: 609.222.6400
Mt. Laurel
I. E. Tel: 856.222.9566
Pine Brook
B. M. Tel: 973.244.9668
W. E. Tel: 800.862.9953
Parsippany
I. E. Tel: 973.299.4425
Wayne
W. E. Tel: 973.237.9010

New Mexico
W. E. Tel: 480.804.7000
Albuquerque
A. E. Tel: 505.293.5119

www.DataSheet4U.com

U.S. Distributors
by State
(Continued)

New York
Hauppauge
I. E. Tel: 516.761.0960
Long Island
A. E. Tel: 516.434.7400
W. E. Tel: 800.861.9953
Rochester
A. E. Tel: 716.475.9130
I. E. Tel: 716.242.7790
W. E. Tel: 800.319.9953
Smithtown
B. M. Tel: 800.543.2008
Syracuse
A. E. Tel: 315.449.4927

North Carolina
Raleigh
A. E. Tel: 919.859.9159
I. E. Tel: 919.873.9922
W. E. Tel: 800.560.9953

North Dakota
A. E. Tel: 800.829.0116
W. E. Tel: 612.853.2280

Ohio
Cleveland
A. E. Tel: 216.498.1100
W. E. Tel: 800.763.9953
Dayton
A. E. Tel: 614.888.3313
I. E. Tel: 937.253.7501
W. E. Tel: 800.575.9953
Strongsville
B. M. Tel: 440.238.0404
Valley View
I. E. Tel: 216.520.4333

Oklahoma
W. E. Tel: 972.235.9953
Tulsa
A. E. Tel: 918.459.6000
I. E. Tel: 918.665.4664

Oregon
Beaverton
B. M. Tel: 503.524.1075
I. E. Tel: 503.644.3300
Portland
A. E. Tel: 503.526.6200
W. E. Tel: 800.879.9953

Pennsylvania
Mercer
I. E. Tel: 412.662.2707
Philadelphia
A. E. Tel: 800.526.4812
B. M. Tel: 877.351.2355
W. E. Tel: 800.871.9953
Pittsburgh
A. E. Tel: 412.281.4150
W. E. Tel: 440.248.9996

Rhode Island
A. E. 800.272.9255
W. E. Tel: 781.271.9953

South Carolina
A. E. Tel: 919.872.0712
W. E. Tel: 919.469.1502

South Dakota
A. E. Tel: 800.829.0116
W. E. Tel: 612.853.2280

Tennessee
W. E. Tel: 256.830.1119
East/West
A. E. Tel: 800.241.8182

Tel: 800.633.2918

Texas
Arlington
B. M. Tel: 817.417.5993
Austin
A. E. Tel: 512.219.3700
B. M. Tel: 512.258.0725
I. E. Tel: 512.719.3090
W. E. Tel: 800.365.9953
Dallas
A. E. Tel: 214.553.4300
B. M. Tel: 972.783.4191
W. E. Tel: 800.955.9953
El Paso
A. E. Tel: 800.526.9238
Houston
A. E. Tel: 713.781.6100
B. M. Tel: 713.917.0663
W. E. Tel: 800.888.9953
Richardson
I. E. Tel: 972.783.0800
Rio Grande Valley
A. E. Tel: 210.412.2047
Stafford
I. E. Tel: 281.277.8200

Utah
Centerville
B. M. Tel: 801.295.3900
Murray
I. E. Tel: 801.288.9001
Salt Lake City
A. E. Tel: 801.365.3800
W. E. Tel: 800.477.9953

Vermont
A. E. Tel: 800.272.9255
W. E. Tel: 716.334.5970

Virginia
A. E. Tel: 800.638.5988
W. E. Tel: 301.604.8488
Haymarket
B. M. Tel: 703.754.3399
Springfield
B. M. Tel: 703.644.9045

Washington
Kirkland
I. E. Tel: 425.820.8100
Maple Valley
B. M. Tel: 206.223.0080
Seattle
A. E. Tel: 425.882.7000
W. E. Tel: 800.248.9953

West Virginia
A. E. Tel: 800.638.5988

Wisconsin
Milwaukee
A. E. Tel: 414.513.1500
W. E. Tel: 800.867.9953
Wauwatosa
I. E. Tel: 414.258.5338

Wyoming
A. E. Tel: 800.332.9326
W. E. Tel: 801.974.9953

www.DataSheet4U.com

Sales Offices and Design
Resource Centers

LSI Logic Corporation
Corporate Headquarters
1551 McCarthy Blvd
Milpitas CA 95035
Tel: 408.433.8000
Fax: 408.433.8989

NORTH AMERICA

California
Irvine
18301 Von Karman Ave
Suite 900
Irvine, CA 92612

♦ Tel: 949.809.4600
Fax: 949.809.4444

Pleasanton Design Center
5050 Hopyard Road, 3rd Floor
Suite 300
Pleasanton, CA 94588
Tel: 925.730.8800
Fax: 925.730.8700

San Diego
7585 Ronson Road
Suite 100
San Diego, CA 92111
Tel: 858.467.6981
Fax: 858.496.0548

Silicon Valley
1551 McCarthy Blvd
Sales Office
M/S C-500
Milpitas, CA 95035

♦ Tel: 408.433.8000
Fax: 408.954.3353
Design Center
M/S C-410
Tel: 408.433.8000
Fax: 408.433.7695

Wireless Design Center
11452 El Camino Real
Suite 210
San Diego, CA 92130
Tel: 858.350.5560
Fax: 858.350.0171

Colorado
Boulder
4940 Pearl East Circle
Suite 201
Boulder, CO 80301

♦ Tel: 303.447.3800
Fax: 303.541.0641

Colorado Springs
4420 Arrowswest Drive
Colorado Springs, CO 80907
Tel: 719.533.7000
Fax: 719.533.7020

Fort Collins
2001 Danfield Court
Fort Collins, CO 80525
Tel: 970.223.5100
Fax: 970.206.5549

Florida
Boca Raton
2255 Glades Road
Suite 324A
Boca Raton, FL 33431
Tel: 561.989.3236
Fax: 561.989.3237

Georgia
Alpharetta
2475 North Winds Parkway
Suite 200
Alpharetta, GA 30004
Tel: 770.753.6146
Fax: 770.753.6147

Illinois
Oakbrook Terrace
Two Mid American Plaza
Suite 800
Oakbrook Terrace, IL 60181
Tel: 630.954.2234
Fax: 630.954.2235

Kentucky
Bowling Green
1262 Chestnut Street
Bowling Green, KY 42101
Tel: 270.793.0010
Fax: 270.793.0040

Maryland
Bethesda
6903 Rockledge Drive
Suite 230
Bethesda, MD 20817
Tel: 301.897.5800
Fax: 301.897.8389

Massachusetts
Waltham
200 West Street
Waltham, MA 02451

♦ Tel: 781.890.0180
Fax: 781.890.6158

Burlington - Mint Technology
77 South Bedford Street
Burlington, MA 01803
Tel: 781.685.3800
Fax: 781.685.3801

Minnesota
Minneapolis
8300 Norman Center Drive
Suite 730
Minneapolis, MN 55437

♦ Tel: 612.921.8300
Fax: 612.921.8399

New Jersey
Red Bank
125 Half Mile Road
Suite 200
Red Bank, NJ 07701
Tel: 732.933.2656
Fax: 732.933.2643

Cherry Hill - Mint Technology
215 Longstone Drive
Cherry Hill, NJ 08003
Tel: 856.489.5530
Fax: 856.489.5531

New York
Fairport
550 Willowbrook Office Park
Fairport, NY 14450
Tel: 716.218.0020
Fax: 716.218.9010

North Carolina
Raleigh
Phase II
4601 Six Forks Road
Suite 528
Raleigh, NC 27609
Tel: 919.785.4520
Fax: 919.783.8909

Oregon
Beaverton
15455 NW Greenbrier Parkway
Suite 235
Beaverton, OR 97006
Tel: 503.645.0589
Fax: 503.645.6612

Texas
Austin
9020 Capital of TX Highway North
Building 1
Suite 150
Austin, TX 78759
Tel: 512.388.7294
Fax: 512.388.4171

Plano
500 North Central Expressway
Suite 440
Plano, TX 75074

♦ Tel: 972.244.5000
Fax: 972.244.5001

Houston
20405 State Highway 249
Suite 450
Houston, TX 77070
Tel: 281.379.7800
Fax: 281.379.7818

Canada
Ontario
Ottawa
260 Hearst Way
Suite 400
Kanata, ON K2L 3H1

♦ Tel: 613.592.1263
Fax: 613.592.3253

INTERNATIONAL

France
Paris
LSI Logic S.A.
Immeuble Europa
53 bis Avenue de l'Europe
B.P. 139
78148 Velizy-Villacoublay
Cedex, Paris

♦ Tel: 33.1.34.63.13.13
Fax: 33.1.34.63.13.19

Germany
Munich
LSI Logic GmbH
Orleansstrasse 4
81669 Munich

♦ Tel: 49.89.4.58.33.0
Fax: 49.89.4.58.33.108

Stuttgart
Mittlerer Pfad 4
D-70499 Stuttgart

♦ Tel: 49.711.13.96.90
Fax: 49.711.86.61.428

Italy
Milan
LSI Logic S.P.A.
Centro Direzionale Colleoni Palazzo
Orione Ingresso 1
20041 Agrate Brianza, Milano

♦ Tel: 39.039.687371
Fax: 39.039.6057867

Japan
Tokyo
LSI Logic K.K.
Rivage-Shinagawa Bldg. 14F
4-1-8 Kounan
Minato-ku, Tokyo 108-0075

♦ Tel: 81.3.5463.7821
Fax: 81.3.5463.7820

Osaka
Crystal Tower 14F
1-2-27 Shiromi
Chuo-ku, Osaka 540-6014

♦ Tel: 81.6.947.5281
Fax: 81.6.947.5287

www.DataSheet4U.com

Sales Offices and Design
Resource Centers
(Continued)

Korea
Seoul
LSI Logic Corporation of
Korea Ltd
10th Fl., Haesung 1 Bldg.
942, Daechi-dong,
Kangnam-ku, Seoul, 135-283
Tel: 82.2.528.3400
Fax: 82.2.528.2250

The Netherlands
Eindhoven
LSI Logic Europe Ltd
World Trade Center Eindhoven
Building ‘Rijder’
Bogert 26
5612 LZ Eindhoven
Tel: 31.40.265.3580
Fax: 31.40.296.2109

Singapore
Singapore
LSI Logic Pte Ltd
7 Temasek Boulevard
#28-02 Suntec Tower One
Singapore 038987
Tel: 65.334.9061
Fax: 65.334.4749

Sweden
Stockholm
LSI Logic AB
Finlandsgatan 14
164 74 Kista

♦ Tel: 46.8.444.15.00
Fax: 46.8.750.66.47

Taiwan
Taipei
LSI Logic Asia, Inc.
Taiwan Branch
10/F 156 Min Sheng E. Road
Section 3
Taipei, Taiwan R.O.C.
Tel: 886.2.2718.7828
Fax: 886.2.2718.8869

United Kingdom
Bracknell
LSI Logic Europe Ltd
Greenwood House
London Road
Bracknell, Berkshire RG12 2UB

♦ Tel: 44.1344.426544
Fax: 44.1344.481039

♦ Sales Offices with
Design Resource Centers

www.DataSheet4U.com

International Distributors

Australia
New South Wales
Reptechnic Pty Ltd
3/36 Bydown Street
Neutral Bay, NSW 2089

♦ Tel: 612.9953.9844
Fax: 612.9953.9683

Belgium
Acal nv/sa
Lozenberg 4
1932 Zaventem
Tel: 32.2.7205983
Fax: 32.2.7251014

China
Beijing
LSI Logic International
Services Inc.
Beijing Representative
Office
Room 708
Canway Building
66 Nan Li Shi Lu
Xicheng District
Beijing 100045, China
Tel: 86.10.6804.2534 to 38
Fax: 86.10.6804.2521

France
Rungis Cedex
Azzurri Technology France
22 Rue Saarinen
Sillic 274
94578 Rungis Cedex
Tel: 33.1.41806310
Fax: 33.1.41730340

Germany
Haar
EBV Elektronik
Hans-Pinsel Str. 4
D-85540 Haar
Tel: 49.89.4600980
Fax: 49.89.46009840

Munich
Avnet Emg GmbH
Stahlgruberring 12
81829 Munich
Tel: 49.89.45110102
Fax: 49.89.42.27.75

Wuennenberg-Haaren
Peacock AG
Graf-Zepplin-Str 14
D-33181 Wuennenberg-Haaren
Tel: 49.2957.79.1692
Fax: 49.2957.79.9341

Hong Kong
Hong Kong
AVT Industrial Ltd
Unit 608 Tower 1
Cheung Sha Wan Plaza
833 Cheung Sha Wan Road
Kowloon, Hong Kong
Tel: 852.2428.0008
Fax: 852.2401.2105

Serial System (HK) Ltd
2301 Nanyang Plaza
57 Hung To Road, Kwun Tong
Kowloon, Hong Kong
Tel: 852.2995.7538
Fax: 852.2950.0386

India
Bangalore
Spike Technologies India
Private Ltd
951, Vijayalakshmi Complex,
2nd Floor, 24th Main,
J P Nagar II Phase,
Bangalore, India 560078

♦ Tel: 91.80.664.5530
Fax: 91.80.664.9748

Israel
Tel Aviv
Eastronics Ltd
11 Rozanis Street
P.O. Box 39300
Tel Aviv 61392
Tel: 972.3.6458777
Fax: 972.3.6458666

Japan
Tokyo
Daito Electron
Sogo Kojimachi No.3 Bldg
1-6 Kojimachi
Chiyoda-ku, Tokyo 102-8730
Tel: 81.3.3264.0326
Fax: 81.3.3261.3984

Global Electronics
Corporation
Nichibei Time24 Bldg. 35 Tansu-cho
Shinjuku-ku, Tokyo 162-0833
Tel: 81.3.3260.1411
Fax: 81.3.3260.7100
Technical Center
Tel: 81.471.43.8200

Marubeni Solutions
1-26-20 Higashi
Shibuya-ku, Tokyo 150-0001
Tel: 81.3.5778.8662
Fax: 81.3.5778.8669

Shinki Electronics
Myuru Daikanyama 3F
3-7-3 Ebisu Minami
Shibuya-ku, Tokyo 150-0022
Tel: 81.3.3760.3110
Fax: 81.3.3760.3101

Yokohama-City
Innotech
2-15-10 Shin Yokohama
Kohoku-ku
Yokohama-City, 222-8580
Tel: 81.45.474.9037
Fax: 81.45.474.9065

Macnica Corporation
Hakusan High-Tech Park
1-22-2 Hadusan, Midori-Ku,
Yokohama-City, 226-8505
Tel: 81.45.939.6140
Fax: 81.45.939.6141

The Netherlands
Eindhoven
Acal Nederland b.v.
Beatrix de Rijkweg 8
5657 EG Eindhoven
Tel: 31.40.2.502602
Fax: 31.40.2.510255

Switzerland
Brugg
LSI Logic Sulzer AG
Mattenstrasse 6a
CH 2555 Brugg
Tel: 41.32.3743232
Fax: 41.32.3743233

Taiwan
Taipei
Avnet-Mercuries
Corporation, Ltd
14F, No. 145,
Sec. 2, Chien Kuo N. Road
Taipei, Taiwan, R.O.C.
Tel: 886.2.2516.7303
Fax: 886.2.2505.7391

Lumax International
Corporation, Ltd
7th Fl., 52, Sec. 3
Nan-Kang Road
Taipei, Taiwan, R.O.C.
Tel: 886.2.2788.3656
Fax: 886.2.2788.3568

Prospect Technology
Corporation, Ltd
4Fl., No. 34, Chu Luen Street
Taipei, Taiwan, R.O.C.
Tel: 886.2.2721.9533
Fax: 886.2.2773.3756

Wintech Microeletronics
Co., Ltd
7F., No. 34, Sec. 3, Pateh Road
Taipei, Taiwan, R.O.C.
Tel: 886.2.2579.5858
Fax: 886.2.2570.3123

United Kingdom
Maidenhead
Azzurri Technology Ltd
16 Grove Park Business Estate
Waltham Road
White Waltham
Maidenhead, Berkshire SL6 3LW
Tel: 44.1628.826826
Fax: 44.1628.829730

Milton Keynes
Ingram Micro (UK) Ltd
Garamonde Drive
Wymbush
Milton Keynes
Buckinghamshire MK8 8DF
Tel: 44.1908.260422

Swindon
EBV Elektronik
12 Interface Business Park
Bincknoll Lane
Wootton Bassett,
Swindon, Wiltshire SN4 8SY
Tel: 44.1793.849933
Fax: 44.1793.859555

♦ Sales Offices with
Design Resource Centers

www.DataSheet4U.com

www.DataSheet4U.com

