

LDS431RP

2.5V Shunt Ref/Amplifier

Product Specification

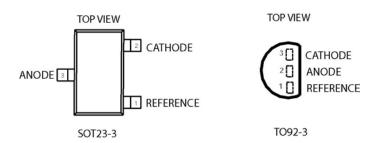
Revision 1.8

May 12, 2008

General Description

The LDS431RP is a three-terminal adjustable shunt regulator based on a highly stable bandgap reference and is an excellent replacement for standard TL431 references when used as a secondary feedback element in Switch Mode Power Supplies.

The LDS431RP meets all of the requirements of standard 431 the specifications that are needed to monitor the • secondary output voltage and provide the feedback signal to the primary through an opto-coupler. It is offered in both the very popular SOT23-3 and TO-92 packages.


Applications

- Power supply control loop
- Low TC voltage reference
- Power management applications

Features

- Programmable precise output voltage 2.5V to 15V
- Wide temp range: -40° to 85°C standard
- Improved stability with capacitive loads
- Low TC voltage reference
- Wide range of package options
- RoHS compliant

Pin Configuration

Pin Descriptions

Pin Name	Function
CATH	Output and supply terminal, must be greater than 2.5V for normal operation
REF	Input, nominally 2.495V in normal operation.
ANODE	Ground and Substrate

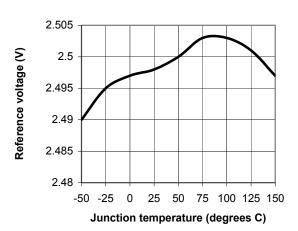
www.leadis.com Rev. 1.8 May 12, 2008

Absolute Maximum Ratings

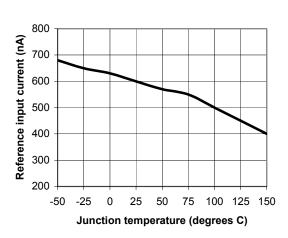
Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These stress ratings only, and functional operation of the device at these or any conditions beyond those indicated under recommended Operating Conditions is not implied. Exposure to "Absolute Maximum Rating" for extended periods may affect device reliability. Use of standard ESD handling precautions is required.

Parameter	Value	Units
CATH Voltage	18	V
REF Current	10	mA
CATH, ANODE Currents	100	mA
Operating Junction Temperature	150	°C
Lead Temperature (soldering 10 seconds)	260	°C
Storage Temperature Range	-65 to +150	°C
ESD Rating (HBM)	3	KV

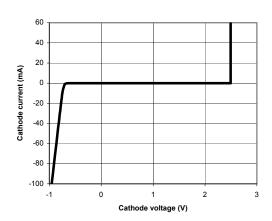
Electrical Specifications


Electrical characteristics are guaranteed over the full temperature range –40°C <Tj<85°C unless otherwise stated. Ambient temperature must be de-rated based upon power dissipation and package thermal characteristics.

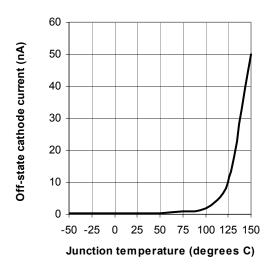
Symbol	Parameter	Conditions	Min	Тур	Max	Units
V_{REF}	Reference Voltage	25°C; V _{REF} =V _{CATH} ; I _{CATH} =10mA	2.458	2.495	2.532	V
ΔV_{REF}	V _{REF} Temperature deviation	−40°C <tj<85°c.< td=""><td></td><td>8</td><td>25</td><td>mV</td></tj<85°c.<>		8	25	mV
$\frac{\Delta V_{REF}}{\Delta V_{CATH}}$	Ratio of V _{REF} Change to V _{CATH} Change (Line Reg; 1/gain)	I _{CATH} =10mA, V _{CATH} = V _{REF} to 15V		-1	-2.7	mV/V
I_{REF}	Reference input current	I _{CATH} =10mA		0.7	4	μΑ
ΔI_{REF}	I _{REF} Temperature Deviation			0.04	0.2	μΑ
I _{CATH(min)}	Minimum Cathode Current			.5	1	mA
I _{CATH(OFF)}	Off-State Cathode Current	V _{REF} =0V; V _{CATH} =15V		.05	1	μA
r _{CATH}	Dynamic Output Impedance	I _{CATH} =0.1 to 100mA f ≤ 1.0 kHz		0.2	0.5	Ω


Typical Performance Characteristics

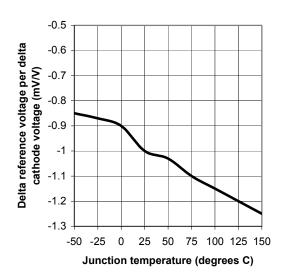
Reference voltage


Junction temperature

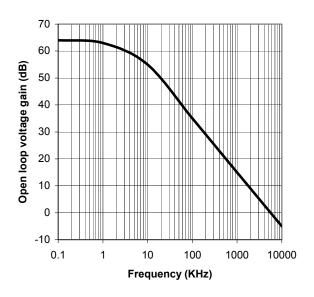
Reference input current vs junction temperature

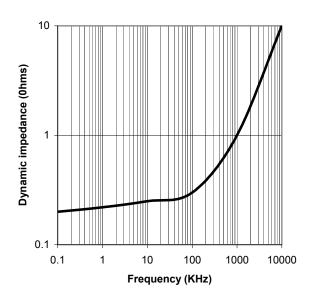


Cathode current vs Cathode voltage

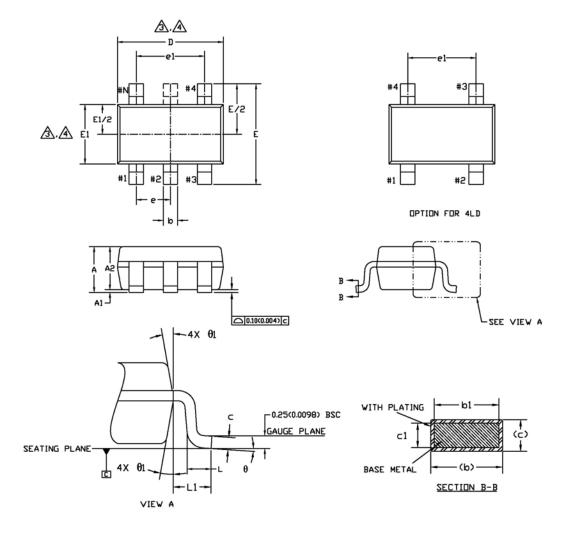


Typical Performance Characteristics (contd.)


Off-state cathode current vs Junction temperature


Delta Reference voltage per delta cathode voltage vs junction temperature

Open loop voltage gain vs frequency


Dynamic impedance vs frequency

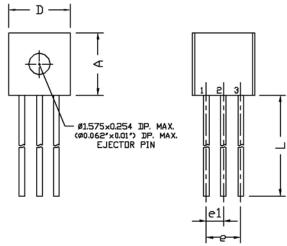
LDS431RP **Leadis Technology**

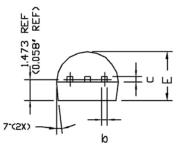
Package Dimensions

SOT23-3, SOT23-4, SOT23-5, SOT23-6

S	COMMON							
B	DIMENSIONS MILLIMETER			DIMENSIONS INCH				
Ľ	MIN.	N□M. MAX.		MIN.	N□M.	MAX.		
Α	1.20	1.30	1.40	0.047	0.051	0.055		
A1	0.05	-	0.15	0.002	-	0.006		
A2	0.90	1.15	1.30	0.035	0.045	0.051		
b	0.35	-	0.50	0.013	-	0.020		
b1	0.35	0.40	0.45	0.013	0.015	0.017		
С	0.08	- 0.22		0.003	-	0.008		
c1	0.08	0.13	0.20	0.003	0.005	0.007		
ם	2.90 BSC			0.114 BSC				
Ε	2.80 BSC			0.110 BSC				
E1	1.60 BSC			0.062 BSC				
6	0.95 BSC			0.037 BSC				
e1	1.90 BSC		0.074 BSC					
L	0.35	0.45	0.45 0.55		0.017	0.021		
L1	0.60 REF.			0.023 REF.				
θ	0*	4*	8•	0*	4*	8*		
61		10° TYP			10° TYP 10° TYP			P

NOTE :


Dimensioning and tolerancing per ASME Y 14.5 M - 1994. Dimensions are in millimeters. Converted inch dimension are not necessarily exact. Dimension D does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 0.15 mm per side. Dimension E1 does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.15 mm per side. Top package may be smaller than the bottom package Dimension D and E1 are determine at the outermost extremes of the plastic body exclusive of mold flash gate burrs and interlead flash.


gate burns and interlead flash. Terminal numbers are shown for reference only. Die is facing up for molding. Die is facing down for trim/form.

LDS431RP **Leadis Technology**

Package Dimensions

TO92-3

Ş	COMMON						
B	DIMENSIONS MILLIMETER			DIMENSIONS INCH			
MIN. NOM. MA		MAX.	MIN.	MAX.			
Α	4.472	4,572	4.672	0.176	0.180	0.184	
b	0.381	0.406	0.431	0.015	0.016	0.017	
c	0.356	0.406	0.456	0.014	0.016	0.018	
D	4.472	4.572	4.672	0.176	0.180	0.184	
Ε	3.456	3.556	3.656	0.136	0.140	0.144	
6	2.413	2.540	2.667	0.095	0.100	0.105	
e1	1.143	1.270	1.397	0.045	0.050	0.055	
L	13.87	13.97	14.07	0.546	0.550	0.554	

NDTES :

- 1. CONTROLLING DIMENSION : MILLIMETER. CONVERTED INCH DIMENSION ARE NOT NECESSARILY EXACT. 2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.
- 3. FOR 2 LEAD PACKAGE CENTER LEAD IS CLIPPED

Ordering Information

Device	Operating Tj	%Tol	PKG Type	Vout	Wrap	Ordering Number
LDS431RP	-40C° ≤ 85C°	1.5	TO-92-3	2.5V	BULK	LDS431REX-N3-25-BL
LDS431RP	-40C° ≤ 85C°	1.5	TO-92-3	2.5V	T&R	LDS431REX-N3-25-TL
LDS431RP	-40C° ≤ 85C°	1.5	SOT-23-3	2.5V	T&R	LDS431REX-M3-25-TL

Note: Lead Free and RoHS compliant.

Warranty and Use

LEADIS TECHNOLOGY MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE, EXPRESS OR IMPLIED, REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR THAT THE USE OF ITS PRODUCTS WILL NOT INFRINGE ITS INTELLECTUAL PROPERTY RIGHTS OR THE RIGHTS OF THIRD PARTIES WITH RESPECT TO ANY PARTICULAR USE OR APPLICATION AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY ARISING OUT OF ANY SUCH USE OR APPLICATION, INCLUDING BUT NOT LIMITED TO, CONSEQUENTIAL OR INCIDENTAL DAMAGES.

Leadis Technology products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Leadis Technology product could create a situation where personal injury or death may occur.

Leadis Technology reserves the right to make changes to or discontinue any product or service described herein without notice. Products with data sheets labeled "Advance Information" or "Preliminary" and other products described herein may not be in production or offered for sale.

Leadis Technology advises customers to obtain the current version of the relevant product information before placing orders. Circuit diagrams illustrate typical semiconductor applications and may not be complete.

Leadis Technology 800 W. California Ave, Suite 200 Sunnyvale, CA 94086 Phone: 408.331.8600

Fax: 408.331.8601 http://www.leadis.com Document No: 431RLDS Revision: 1.8

Issue date: 5/12/2008