										IONS		I						<u>.</u>		
LTR					DI	ESCR	IPIIC	N					DATI	E (YB	R-MO-	-DA)		APPR	OVED	_
<u>A</u>	Addeo	d devi	ce typ	e 02;	Edito	orial a	and te	chnica	l chan	nges th	roughd	out	94-	04-19			<u> </u>	M. A. 1	FRYE	
REV SHEET																				
SHEET REV	JS			REN	 		A	A	A	A	A	A	A	A	A	A	A	A	A	
SHEET REV SHEET							A 1	A 2	A 3	A 4	A 5	A 6	A 7	A 8	A 9	A 10	A 11	A 12	A 13	
SHEET REV SHEET REV STATU	5			SHI						4	5	6 SE EI	7	8 ONIC	9 S SU	10 PPLY	11 CEN	12		-
SHEET REV SHEET REV STATO OF SHEETS PMIC N/A BTAND MIL	S 	RY		SHI PREPA SAN CHECK	EET RED B	OONEY				4	5	6 SE EI	7	8 ONIC	9 S SU	10	11 CEN	12		┝
SHEET REV SHEET REV STATO OF SHEETS PMIC N/A BTAND MIL	S DARDI JITAR AWING NG IS AN ALL DEP NCIES O	LY G VAILAB PARTNEI F THE	LE ITS	SHI PREPA SAN CHECK SAN	EET ARED B'	DONEY				4 Di MIC SUF	5 EFENS	6 SE EI I IRCU ISOF	7 LECTR DAYTO	8 CONIC DN, C	9 S SU DHIO	10 PPLY	11 CEN 44	12 TER	13 CESS	
SHEET REV SHEET REV STATU OF SHEETS PMIC N/A BTAND BTAND MIL DRJ THIS DRAWIN FOR USE BY AND AGEN	ARDI JITAR AVIN NG IS AN ALL DEP NCIES ON NT OF DI	LY G VAILAB PARTNEI F THE	LE ITS	SHI PREPA SAN CHECK SAN APPRO MIC DRAWI 93	EET IDRA RI GED BY IDRA RI IDRA RI IDRA RI IDVED B' CHAEL	OONEY OONEY Y FRYE PROVAL	1			4 Di MIC SUF	5 EFENS CROC PERV JICO	6 SE EI I IRCU ISOF N	7 LECTR DAYTO	8 CONIC DN, O LIN IRCU	9 S SU DHIO	10 PPLY 454 , M1 MON	11 CEN 44 ICRO NOLI	12 TER	13 CESS C	

■ 9004708 0002738 790 **■**

(-

~

1. SCOPE

1.1 <u>Scope</u>. This drawing forms a part of a one part - one part number documentation system (see 6.6 herein). Two product assurance classes consisting of military high reliability (device classes Q and M) and space application (device class V), and a choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). Device class N microcircuits represent non-JAN class B microcircuits in accordance with 1.2.1 of NIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices". When available, a choice of radiation hardness assurance (RMA) levels are reflected in the PIN. -

1.2 PIN. The PIN shall be as shown in the following example:

1.2.1 <u>Radiation hardness assurance (RHA) designator</u>. Device class M RHA marked devices shall meet the MIL-I-38535 specified RHA levels and shall be marked with the appropriate RHA designator. Device classes Q and V RHA marked devices shall meet the MIL-I-38535 specified RHA levels and shall be marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.

1.2.2 <u>Device type(s)</u>. The device type(s) shall identify the circuit function as follows:

Device type	<u>Generic number</u>	<u>Circuit function</u>
01	MAX697	Microprocessor supervisory circuit
02	MAX696	Microprocessor supervisory circuit with battery backup switching

1.2.3 <u>Device class designator</u>. The device class designator shall be a single letter identifying the product assurance level as follows:

Device class	Device requirements documentation
м	Vendor self-certification to the requirements for non-JAN class B microcircuits in accordance with 1.2.1 of MIL-STD-883
Q or V	Certification and qualification to MIL-1-38535

1.2.4 Case outline(s). The case outline(s) shall be as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	Terminals	Package style
Е	GDIP1-T16 or CDIP2-T16	16	Dual-in-line
2	CQCC1-N20	20	Square leadless chip carrier

1.2.5 Lead finish. The lead finish shall be as specified in MIL-STD-883 for class M or MIL-1-38535 for classes Q and V. Finish letter "X" shall not be marked on the microcircuit or its packaging. The "X" designation is for use in specifications when lead finishes A, B, and C are considered acceptable and interchangeable without preference.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-93125
DEFENSE ELECTRONICS SUPPLY CENTER		REVISION LEVEL	SHEET
Dayton, Ohio 45444		A	2

DESC FORM 193A JUL 91

🛲 9004708 0002739 627 💻

1.3 Absolute maximum ratings. 1/ Supply voltage range: V_{cc} -0.3 V to +6.0 V VBATT (device type 02) ------All other inputs ------0.3 V to +6.0 V -0.3 V dc to (V_{OUT} + 0.5 V) Input current: V_{cc} +200 mA VBATT (device type 02) +50 mA +20 mA Output current: Short circuit protected +20 mA Rate-of-rise: V_{cc} - - - - -. 100 V/µs 100 V/#s -65°C to +160°C Power dissipation (P_D): Case outline E 2/ Case outline 2 3/ 800 mW 727 mW Lead temperature (soldering, 10 seconds)-----+300°C Thermal resistance, junction-to-case $(\theta_{JC})^{-}$. Thermal resistance, junction-to-ambient (θ_{JA}) : Case outline E +50°C/W +100°C/W +110°C/W 1.4 <u>Recommended operating conditions</u>. Supply voltage (V_{CC}) - - - - - - - - - - 3.0 V dc to 5.5 Ambient operating temperature range (T_A) - - - - - -55°C to +125°C 3.0 V dc to 5.5 V dc 2. APPLICABLE DOCUMENTS 2.1 <u>Government specifications, standards, bulletin, and handbook</u>. Unless otherwise specified, the following specifications, standards, bulletin, and handbook of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein. SPECIFICATIONS MILITARY MIL-1-38535 - Integrated Circuits, Manufacturing, General Specification for. STANDARDS MIL ITARY MIL-STD-883 Test Methods and Procedures for Microelectronics. MIL-STD-973 Configuration Management. Microcircuit Case Outlines. MIL-STD-1835 BULLETIN MILITARY MIL-BUL-103 List of Standardized Military Drawings (SMD's). Stresses above the absolute maximum rating may cause permanent damage to the device. Extended 1/ operation at the maximum levels may degrade performance and affect reliability. Derate 10 mW/°C above +85°C. Derate 9.09 mW/°C above +70°C. STANDARD I ZED SIZE 5962-93125 MILITARY DRAWING A DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 REVISION LEVEL SHEET Α 3 DESC FORM 193A JUL 91

9004708 0002740 349 📟

.

HANDBOOK

MILITARY

MIL-HDBK-780 - Standardized Military Drawings.

(Copies of the specifications, standards, bulletin, and handbook required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements for device class M shall be in accordance with 1.2.1 of MIL-SID-883, "Provisions for the use of MIL-SID-883 in conjunction with compliant non-JAN devices" and as specified herein. The individual item requirements for device classes Q and V shall be in accordance with MIL-1-38535, the device manufacturer's Quality Management (QN) plan, and as specified herein.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-STD-883 (see 3.1 herein) for device class M and MIL-I-38535 for device classes Q and V and herein.

3.2.1 <u>Case outline(s)</u>. The case outline(s) shall be in accordance with 1.2.4 herein.

3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1.

3.2.3 Block diagram. The block diagram shall be as specified on figure 2.

3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full ambient operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I.

3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. Marking for device class M shall be in accordance with MIL-STD-883 (see 3.1 herein). In addition, the manufacturer's PIN may also be marked as listed in MIL-BUL-103. Marking for device classes Q and V shall be in accordance with MIL-1-38535.

3.5.1 <u>Certification/compliance mark</u>. The compliance mark for device class M shall be a "C" as required in MIL-STD-883 (see 3.1 herein). The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-1-38535.

3.6 <u>Certificate of compliance</u>. For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-BUL-103 (see 6.7.2 herein). For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.7.1 herein). The certificate of compliance submitted to DESC-EC prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device class M the requirements of MIL-STD-883 (see 3.1 herein), or for device classes Q and V, the requirements of

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device class M in MIL-STD-883 (see 3.1 herein) or for device classes Q and V in MIL-1-38535 shall be provided with each lot of microcircuits delivered to this drawing.

3.8 <u>Notification of change for device class M</u>. For device class M, notification to DESC-EC of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change as defined in MIL-STD-973.

3.9 <u>Verification and review for device class M</u>. For device class M, DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

3.10 <u>Microcircuit group assignment for device class M</u>. Device class M devices covered by this drawing shall be in microcircuit group number 105 (see MIL-I-38535, appendix A).

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-93125
DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 4

DESC FORM 193A

💻 9004708 0002741 285 🎟

Test	Symbol	Conditi -55°C < T	ions <u>1</u> /	Group A subgroups	Device type	Limi	ts <u>2</u> /	Unit
		-55°C ≤ T _A : unless otherwise	specified	subgroups	type	Min	Max	-
Operating voltage range	V _{CC}		<u> </u>	1,2,3	01	3.0	5.5	v
-					02	3.2	5.5	-
Operating voltage range	VBATT			1,2,3	02	2.0	4.0	v
Supply current	^I cc			1,2,3	01		400	μA
BATTERY BACKUP SWITCHING	G					[
Output voltage	VOUT	I _{OUT} = 1 mA		1,2,3	02	V _{cc} -0.3		V
		$I_{OUT} = 50 \text{ mA}$		-		V _{CC} -0.5		-
Output voltage in battery backup mode	BATTOUT	$I_{OUT} = 250 \ \mu A$		1,2,3	02	VBATT		v
,		V _{CC} < V _{BATT} - 0.2	V		}	-0.1		
Supply current (excludes I _{OUT})	¹ cc	I _{OUT} = 1 mA		1	02		4	mA
001				2,3		· · · · · · · · · · · · · · · · · · ·	7	-[
		$I_{OUT} = 50 \text{ mA}$		1			7	-
				2,3			10	-
Supply current in battery backup	IBATT	$V_{CC} = 0 V, V_{BATT}$	= 2.8 V	1	02		1	μA
mode				2,3			10	-]
Battery standby leakage current	BATTLkg	5.5 V > V_{CC} > V_{BA}	TT + 1 V	1	02	-0.1	0.02	μA
				2,3		-1.0	0.02	-
attery switchover threshold (V _{CC} - V _{BATT})	BATTSW _{TH}			1,2,3	02	-200	200	πV
BATT on output voltage	BATT ON _{OUT}	I _{SINK} = 1.6 mA		1,2,3	02		0.4	v
BATT on output short circuit current	BATT ON 105	BATT ON = V _{OUT}		1,2,3	02		60	mA
	105	BATT ON = 0 V, VC	c = 0 V			0.5	25	μA
SET AND WATCHDOG TIMING								
Low line voltage threshold	LLIN	$V_{CC} = +5 V, +3 V$		1,2,3	ALL	1.25	1.35	V
Reset timeout delay	R _{DEL}	OSC SEL HIGH, V _{CC}	= 5 V	9	ALL	35	70	ms
				10,11		31	78	
	DARDIZED		SIZE				59(52-9312
DEFENSE ELECTRO	DNICS SUPE	LY CENTER	A				+	
MILITA Defense electro	RY DRAWIN	LY CENTER	SIZE A	DEV	ISION 1		590 SHEI	

JUL 91

.

📟 9004708 0002742 ll 🎟

S WD INT	-55°C ≤ T unless other	≤ +125°C	Cubernoune.	Device			Unit
			subgroups	type	Min	its <u>2</u> /	-
WDINT	· · · · · · · · · · · · · · · · · · ·	····					
	Long period, V		9	ALL	1.0	2.25	s
			10,11		0.9	2.42	_
	Short period,	$V_{\rm CC} = 5 V$	9		70	140	ms
			10,11		62	154	-
MDEXT	Long period		9,10,11	ALL	3840	4097	Clock
	Short period				768	1025	_ cycle
WDIPW	$V_{1L} = 0.4 V, V_{1L}$	ι _μ = 4.0 v	9	ALL	200		ns
		•	10,11		300		-
R _{VOH}	$I_{SOURCE} = 1 \ \mu A$,	V _{CC} = 5 V	1,2,3	ALL	3.5		v
	^I SINK = 1.6 mA,					0.4	-]
VOL	I = 400 HA.	$V_{cc} = 0 V$		02	ļ	0.6	_
			1 2 7				
		·······	1,2,3	ALL		0.4	- V
LL VOH	^I SOURCE = 1 µA,	$V_{\rm CC} = 5.0 V$			3.5		
RVOH	^I SOURCE = 1 μ A,	v _{cc} = 5 v	1,2,3	ALL	3.5		v
RVOL	I _{SINK} = 1.6 mA					0.4	-
WDO VOH	$I_{\text{SOURCE}} = 1 \ \mu \text{A},$	V _{CC} = 5 V	1,2,3	ALL	3.5		v
WDOVOL	^I SINK = 800 µA		2,3			0.4	-
IOS	RESET, RESET, W	DO, LOW LINE	1,2,3	ALL	1	25	μA
WDIVIL	$V_{cc} = 5 V \frac{3}{4}$,	1	ALL		0.8	V
		•	2,3			0.4	
WDIVIH	$V_{\rm CC} = 5 \ V \ \underline{3} / \underline{4} /$		1	01	3.8		V
			-	02	3.5		
			1				
-	HDIPW RVOH RVOH UIVOH RVOH RVOH RVOH RVOH IIOOVOH IOOVOH IOS HDIVIL	$\frac{\text{Short period}}{\text{WDI}_{PW}} \begin{array}{c} \text{V}_{IL} = 0.4 \text{ V}, \text{ V}_{VCC} = 5 \text{ V} \\ \hline \text{R}_{VOH} & \text{I}_{SOURCE} = 1 \mu\text{A}, \\ \hline \text{R}_{VOL} & \begin{array}{c} \text{I}_{SOURCE} = 1 \mu\text{A}, \\ \hline \text{I}_{SINK} = 400 \mu\text{A}, \\ \hline \text{I}_{SINK} = 400 \mu\text{A}, \\ \hline \text{I}_{SINK} = 400 \mu\text{A}, \\ \hline \text{I}_{VOL} & \begin{array}{c} \text{I}_{SINK} = 800 \mu\text{A} \\ \hline \text{I}_{VOH} & \begin{array}{c} \text{I}_{SOURCE} = 1 \mu\text{A}, \\ \hline \text{R}_{VOH} & \begin{array}{c} \text{I}_{SOURCE} = 1 \mu\text{A}, \\ \hline \text{R}_{VOH} & \begin{array}{c} \text{I}_{SOURCE} = 1 \mu\text{A}, \\ \hline \text{R}_{VOH} & \begin{array}{c} \text{I}_{SOURCE} = 1 \mu\text{A}, \\ \hline \text{R}_{VOL} & \begin{array}{c} \text{I}_{SINK} = 1.6 \text{ mA} \\ \hline \hline \text{MDO}_{VOH} & \begin{array}{c} \text{I}_{SOURCE} = 1 \mu\text{A}, \\ \hline \hline \text{MDO}_{VOH} & \begin{array}{c} \text{I}_{SOURCE} = 1 \mu\text{A}, \\ \hline \hline \text{MDO}_{VOH} & \begin{array}{c} \text{I}_{SOURCE} = 1 \mu\text{A}, \\ \hline \hline \text{MDO}_{VOH} & \begin{array}{c} \text{I}_{SOURCE} = 1 \mu\text{A}, \\ \hline \hline \text{MDO}_{VOH} & \begin{array}{c} \text{I}_{SOURCE} = 1 \mu\text{A}, \\ \hline \ \text{MDO}_{VOH} & \begin{array}{c} \text{I}_{SOURCE} = 1 \mu\text{A}, \\ \hline \ \text{MDO}_{VOH} & \begin{array}{c} \text{I}_{SOURCE} = 1 \mu\text{A}, \\ \hline \ \text{MDO}_{VOH} & \begin{array}{c} \text{I}_{SOURCE} = 1 \mu\text{A}, \\ \hline \ \text{MDO}_{VOH} & \begin{array}{c} \text{I}_{SOURCE} = 1 \mu\text{A}, \\ \hline \ \text{MDO}_{VOH} & \begin{array}{c} \text{I}_{SOURCE} = 1 \mu\text{A}, \\ \hline \ \text{MDO}_{VOH} & \begin{array}{c} \text{I}_{SOURCE} = 1 \mu\text{A}, \\ \hline \ \text{MDO}_{VOH} & \begin{array}{c} \text{I}_{SOURCE} = 1 \mu\text{A}, \\ \hline \ \text{MDO}_{VOH} & \begin{array}{c} \text{I}_{SOURCE} = 1 \mu\text{A}, \\ \hline \ \ \text{MDO}_{VOH} & \begin{array}{c} \text{I}_{SOURCE} = 1 \mu\text{A}, \\ \hline \ \ \text{MDO}_{VOH} & \begin{array}{c} \text{I}_{SOURCE} = 1 \mu\text{A}, \\ \hline \ \ \ \text{MDO}_{VOH} & \begin{array}{c} \text{I}_{SOURCE} = 1 \mu\text{A}, \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{tabular}{ c c c c c } \hline Short period & \\ \hline MDI_{PW} & V_{IL} = 0.4 V, V_{IH} = 4.0 V \\ \hline V_{CC} = 5 V \\ \hline \hline V_{CC} = 5 V \\ \hline \hline R_{VOL} & \\ \hline I \\ \hline SOURCE = 1 \mu A, V_{CC} = 5 V \\ \hline \hline I \\ \hline VOL & \\ \hline I \\ \hline I \\ VOL & \\ \hline I \\ \hline I \\ VOL & \\ \hline I \\ I \\ VOL & \\ \hline I \\ I \\ VOH & \\ \hline I \\ SOURCE = 1 \mu A, V_{CC} = 5 V \\ \hline \hline R_{VOH} & \\ \hline I \\ SOURCE = 1 \mu A, V_{CC} = 5 V \\ \hline R_{VOH} & \\ \hline I \\ SOURCE = 1 \mu A, V_{CC} = 5 V \\ \hline R_{VOH} & \\ \hline I \\ SOURCE = 1 \mu A, V_{CC} = 5 V \\ \hline R_{VOL} & \\ \hline I \\ I \\ SOURCE = 1 \mu A, V_{CC} = 5 V \\ \hline \hline R_{VOL} & \\ \hline I \\ I \\ SOURCE = 1 \mu A, V_{CC} = 5 V \\ \hline R_{VOL} & \\ \hline I \\ I \\ SOURCE = 1 \mu A, V_{CC} = 5 V \\ \hline R_{VOL} & \\ \hline I \\ I \\ SOURCE = 1 \mu A, V_{CC} = 5 V \\ \hline R_{VOL} & \\ \hline I \\ I \\ SOURCE = 1 \mu A, V_{CC} = 5 V \\ \hline R_{VOL} & \\ \hline I \\ SOURCE = 1 \mu A, V_{CC} = 5 V \\ \hline R_{VOL} & \\ \hline I \\ SOURCE = 1 \mu A, V_{CC} = 5 V \\ \hline R_{VOL} & \\ \hline I \\ SOURCE = 1 \mu A, V_{CC} = 5 V \\ \hline R_{VOL} & \\ \hline I \\ SOURCE = 1 \mu A, V_{CC} = 5 V \\ \hline R_{VOL} & \\ $	$ \frac{MD_{EXT}}{MDI_{PW}} = \frac{Long period}{Short period} = \frac{9,10,11}{Short period} = \frac{9,10,11}{10,11} $ $ \frac{MDI_{PW}}{R_{VOH}} = \frac{V_{IL} = 0.4 \text{ V}, V_{IH} = 4.0 \text{ V}}{V_{CC} = 5 \text{ V}} = \frac{9}{10,11} $ $ \frac{R}{VOH} = \frac{I}{SOURCE} = 1 \ \mu\text{A}, \ V_{CC} = 5 \text{ V}}{I,2,3} = \frac{1,2,3}{I} $ $ \frac{R}{VOL} = \frac{I}{ISINK} = \frac{400 \ \mu\text{A}, \ V_{CC} = 0 \text{ V}}{I} = \frac{1,2,3}{I} $ $ \frac{IL}{VOH} = \frac{I}{SOURCE} = 1 \ \mu\text{A}, \ V_{CC} = 5 \text{ V}}{I,2,3} = \frac{1,2,3}{I} $ $ \frac{R}{VOH} = \frac{I}{SOURCE} = 1 \ \mu\text{A}, \ V_{CC} = 5 \text{ V}}{I,2,3} = \frac{1,2,3}{I} $ $ \frac{MDO}{VOH} = \frac{I}{SOURCE} = 1 \ \mu\text{A}, \ V_{CC} = 5 \text{ V}}{I,2,3} = \frac{1,2,3}{I} $ $ \frac{MDO}{VOL} = \frac{I}{SINK} = \frac{1.6 \text{ mA}}{I} $ $ \frac{MDO}{VOL} = \frac{I}{SINK} = \frac{1.6 \text{ mA}}{I} $ $ \frac{MDO}{VOL} = \frac{I}{SINK} = \frac{1.6 \text{ mA}}{I} $ $ \frac{I}{OS} = \frac{RESET}{RESET}, \ RESET, \ MDO, \ LOW \ LINE} = \frac{1,2,3}{I} $ $ \frac{MDI_{VIL}}{VIL} = \frac{V_{CC}}{VCC} = 5 \text{ V} = \frac{1}{2,3} $	MD EXT Long period 9,10,11 All MDI PW VIL = 0.4 V, VIH = 4.0 V 9 All \overline{R}_{VOH} VIL = 0.4 V, VIH = 4.0 V 9 All \overline{R}_{VOH} ISOURCE = 1 μ A, V _{CC} = 5 V 1,2,3 All \overline{R}_{VOL} ISOURCE = 1 μ A, V _{CC} = 0 V 02 \overline{LL}_{VOL} ISINK = 1.6 mA, 02 02 \overline{LL}_{VOH} ISOURCE = 1 μ A, V _{CC} = 5.0 V 02 \overline{LL}_{VOH} ISOURCE = 1 μ A, V _{CC} = 5.0 V 02 \overline{R}_{VOH} ISOURCE = 1 μ A, V _{CC} = 5.0 V 1,2,3 All \overline{R}_{VOH} ISOURCE = 1 μ A, V _{CC} = 5.0 V 1,2,3 All \overline{R}_{VOH} ISOURCE = 1 μ A, V _{CC} = 5.0 V 1,2,3 All \overline{R}_{VOL} ISOURCE = 1 μ A, V _{CC} = 5.0 V 1,2,3 All \overline{R}_{VOL} ISOURCE = 1 μ A, V _{CC} = 5.0 V 1,2,3 All \overline{MDO}_{VOH} ISOURCE = 1	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

.

JUL 91

9004708 0002743 058 📖

Test	Symbol	Conditions 1/	Group A	Device s type	Limit	s <u>2</u> /	Unit
		$-55^{\circ}C \leq T_{A} \leq +125^{\circ}C$ unless otherwise specifie	subgroup d	is type	Min	Max	
SET AND WATCHDOG TINING			1 1	01		50	μA
DI input current	WDIIN	WDI = V _{CC}	2,3			80	-
		WDI = 0 V	1		-50		-
			2,3		-80		-
		WDI = VOUT	1	02		50	
			2,3			80	
		WDI = 0 V	1		-50		
			2,3		-80		
OWER FAIL DETECTOR							
PFI input threshold	PFIVTH	$V_{CC} = +3 V, +5 V \underline{3}/$	1,2,3		1.2	1.4	V
PFI-LL threshold difference	PFILLIN	$v_{cc} = +3 v_{,} +5 v_{,}$	1	All	-50	+50	mV
PFI input current	PFIIN		1,2,3	ALL	- 25	+25	nA
LL _{IN} input current	LLIN		1,2,3	01	-25	+25	nA
				50	-500	+25	
PFO output voltage	PFOVOH	¹ SOURCE = 1 μ A, V _{CC} = 5 V	1,2,3	ALL	3.5		_ v
	PFOVOL	I _{SINK} = 1.6 mA				0.4	
PFO short circuit source current	PFOIOS	$PFI = V_{IH}, \overline{PFO} = 0 V$	1,2,3	All	1	25	μA
CHIP ENABLE GATING							1
CE., thresholds	CEVIL		1	01		0.8	V
CE, thresholds logic low	VIL		2,3			0.4	
CE _{IN} thresholds logic high	CEVIH	V _{CC} = +5 V	1	01	3.0		_
lögic high		-	2,3				_
CE _{IN} pullup current	CEINPI		1,2,	5 01	1	25	μΑ
See footnotes at end o	f table.						
	NDARDIZED	NG	IZE A				5962-9312
DEFENSE ELECTI DAYTON			REVISION	i levei A	_ SI	IEET 7	

JUL 91

.

.

9004708 0002744 T94 🛲

Test	Symbol	Conditions	1/ Group		Device	Limi	ts <u>2</u> /	Unit
		-55°C ≤ T ≤ +125 unless otherwise spec	°C subgr ified	oups	type	Min	Max	-
IP ENABLE GATING					•			
CE _{OUT} output voltage	CE VOH	$I_{\text{SOURCE}} = 800 \ \mu\text{A},$	1,2	,3	01	Vour -0.5		V
	$I_{SOURCE} = 1 \ \mu A$					V _{DUT} -0.05		
	CEVOL	I _{SINK} = 1.6 mA					0.4	
		V - 5 V	9	,	01		150	ns
CE propagation delay	^t PDCE	$v_{cc} = 5 v$	10,	11			250	-
DSCILLATOR		L			.	·····		
OSC IN input current	OSCININ		1,2	2,3	ALL		25	μA
OSC SEL input pullup current	OSCSEL	v _{cc} = 5 v	1,2	2,3	ALI	1	25	μA
OSC IN frequency	OSCINFRQ	OSC SEL = 0 V, V_{CC} =	5 V 9,10),11	ALL	0	250	kHz
range			1					the second s
OSC IN frequency with external capacitor 1/ V _{CC} = 3.0 V to 5.5 V 2/ The algebraic conver- maximum, is used in terminal. 3/ The input voltage l less than 10 mA.	ntion, whereb this table. imits on PFI	by the most negative val Negative current shall and WDI may be exceeded	pecified. .ue is a minimu . be defined as d provided the	input	current	is limi	ted to	kHz
<pre>OSC IN frequency with external capacitor 1/ V_{CC} = 3.0 V to 5.5 V 2/ The algebraic conver maximum, is used in terminal. 3/ The input voltage l less than 10 mA. 4/ WDL is guaranteed t</pre>	V, V _{BATT} = 2. ntion, where this table. imits on PFI o be in the m ange. WDI is Ω.	T _A = +25°C <u>5</u> / 8 V unless otherwise sp by the most negative val Negative current shall and WDI may be exceeded mid-level (inactive) sta s internally biased to 3	becified. .ue is a minimu . be defined as d provided the ate if WDI is -	um and s conv input float	d the mos ventional c current	t positir current is limi	ted to the	
<pre>OSC IN frequency with external capacitor 1/ V_{CC} = 3.0 V to 5.5 V 2/ The algebraic conver maximum, is used in terminal. 3/ The input voltage l less than 10 mA. 4/ WDI is guaranteed t operating voltage r approximately 125 k</pre>	V, V _{BATT} = 2. ntion, where this table. imits on PFI o be in the m ange. WDI is Ω.	T _A = +25°C <u>5</u> / 8 V unless otherwise sp by the most negative val Negative current shall and WDI may be exceeded mid-level (inactive) sta s internally biased to 3	becified. .ue is a minimu . be defined as d provided the ate if WDI is -	um and s conv input float	d the mos ventional c current	t positir current is limi	ted to the	
<pre>OSC IN frequency with external capacitor 1/ V_{CC} = 3.0 V to 5.5 V 2/ The algebraic conver maximum, is used in terminal. 3/ The input voltage l less than 10 mA. 4/ WDI is guaranteed t operating voltage r approximately 125 k 5/ Design characterist STAM</pre>	V, V _{BATT} = 2. ntion, where this table. imits on PFI o be in the m ange. WDI is Ω.	T _A = +25°C <u>5</u> / 8 V unless otherwise sp by the most negative val Negative current shall and WDI may be exceeded hid-level (inactive) sta s internally biased to 3 ed.	becified. .ue is a minimu . be defined as d provided the ate if WDI is -	um and s conv input float	d the mos ventional c current	t positir current is limi	ted to the of	

■ 9004708 0002745 920 **■**

Device type		01		02	
Case outline	E	2	E	2	
Terminal number		Termi	nal symbol		
1	TEST	NC	VBATT	NC	
2	NC	TEST	VOUT	V _{BATT}	
3	v _{cc}	NC	v _{cc}	V _{OUT}	
4	LLIN	v _{cc}	GND	v _{cc}	
5	GND	LLIN	BATT ON	GND	
6	LOW LINE	NC	LOW LINE	NC	
7	osc _{in}	GND	OSCIN	BATT ON	
8	OSC SEL	LOW LINE	OSC SEL	LOW LINE	
9	PFI	OSC IN	PFI	oscin	
10	PFO	OSC SEL	PFO	OSC SEL	
11	WDI	NC	WD I	NC	
12		PFI	NC	PFI	
13	CEIN	PFO	LLIN	PFO	
14	VDO	WDI	WDO	WDI	
15	RESET	CEOUT	RESET	NC	
16	RESET	NC	RESET	NC	
17		CEIN		LLIN	
18		WDO	•••		
19		RESET		RESET	
20		RESET		RESET	
NC = No connect	FIC	WRE 1. <u>Term</u>	inal connection	<u>18</u> .	
	2		SIZE		5962-931
STANDARDIZE MILITARY DRAW ENSE ELECTRONICS SU DAYTON, OHIO 4	I ng Pply ce	NTER	λ	REVISION LEVEL	SHEET

9004708 0002746 867

÷

•

🔳 9004708 0002747 7T3 🔳

4. QUALITY ASSURANCE PROVISIONS

4.1 <u>Sampling and inspection</u>. For device class M, sampling and inspection procedures shall be in accordance with MIL-STD-883 (see 3.1 herein). For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-I-38535 and the device manufacturer's QM plan.

4.2 <u>Screening</u>. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. For device classes Q and V, screening shall be in accordance with MIL-1-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection.

- 4.2.1 Additional criteria for device classes M.
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein.
- 4.2.2 Additional criteria for device classes Q and V.
 - a. The burn-in test duration, test condition and test temperature or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-I-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-I-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015.
 - b. Interim and final electrical test parameters shall be as specified in table II herein.
 - c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in appendix B of MIL-I-38535.

4.3 <u>Qualification inspection for device classes Q and V</u>. Qualification inspection for device classes Q and V shall be in accordance with MIL-I-38535. Inspections to be performed shall be those specified in MIL-I-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

4.4 <u>Conformance inspection</u>. Quality conformance inspection for device class M shall be in accordance with MIL-STD-883 (see 3.1 herein) and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). Technology conformance inspection for classes Q and V shall be in accordance with MIL-I-38535 including groups A, B, C, D, and E inspections and as specified herein except where option 2 of MIL-I-38535 permits alternate in-line control testing.

- 4.4.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 4, 5, 6, 7, and 8 in table I, method 5005 of MIL-STD-883 shall be omitted.

4.4.2 <u>Group C inspection</u>. The group C inspection end-point electrical parameters shall be as specified in table 11 herein.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-93125
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 11

DESC FORM 193A JUL 91

🔲 9004708 0002748 63T 📰

Test requirements	Subgroups (in accordance with MIL-STD-883, TM 5005, table I)	Subgroups (in accordance with MIL-I-38535, table III)	
	Device class M	Device class Q	Device class V_
Interim electrical parameters (see 4.2)	1	1	1
Final electrical parameters (see 4.2)	1,2,3, <u>1</u> / 9,10,11	1,2,3, <u>1</u> / 9,10,11	1,2,3, <u>1</u> / 9,10,11
Group A test requirements (see 4.4)	1, 2, 3 , 9, 10, 11	1, 2, 3, 9, 10, 11	1, 2, 3, 9, 10, 11
Group C end-point electrical parameters (see 4.4)	1, 9	1, 9	1,2,3,9, 10,11
Group D end-point electrical parameters (see 4.4)	1, 9	1, 9	1, 9
Group E end-point electrical parameters (see 4.4)			

TABLE II. Electrical test requirements.

 $\underline{1}$ PDA applies to subgroup 1.

4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883:

- a. Test condition A, B, C or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005.
- b. $T_A = +125^{\circ}C$, minimum.
- c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

4.4.2.2 <u>Additional criteria for device classes Q and V</u>. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-1-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-1-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005.

4.4.3 <u>Group D inspection</u>. The group D inspection end-point electrical parameters shall be as specified in table II herein.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-93125
DEFENSE ELECTRONICS SUPPLY CENTER		REVISION LEVEL	SHEET
DAYTON, OHIO 45444		A	12

DESC FORM 193A JUL 91

🔳 9004708 0002749 576 🔳

4.4.5 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation nardness assured (see 3.5 herein). RHA levels for device classes Q and V shall be M, D, R, and H and for device class M shall be M and D.

a. End-point electrical parameters shall be as specified in table II herein.

b. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-I-38535, appendix A, for the RHA level being tested. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-I-38535 for the RHA environment and level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table 1 at T_A = +25°C ±5°C, after exposure, to the subgroups specified in table 1

c. When specified in the purchase order or contract, a copy of the RHA delta limits shall be supplied.

5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-STD-883 (see 3.1 herein) for device class M and MIL-I-38535 for device classes Q and V.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.

6.1.2 <u>Substitutability</u>. Device class Q devices will replace device class M devices.

6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal.

6.3 <u>Record of users</u>. Military and industrial users shall inform Defense Electronics Supply Center when a system application requires configuration control and which SMD's are applicable to that system. DESC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DESC-EC, telephone (513) 296-6047.

6.4 <u>Comments</u>. Comments on this drawing should be directed to DESC-EC, Dayton, Ohio 45444-5270, or telephone (513) 296-5377.

6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-I-38535 and MIL-STD-1331.

6.6 <u>One part - one part number system</u>. The one part - one part number system described below has been developed to allow for transitions between identical generic devices covered by the three major microcircuit requirements documents (MIL-H-38534, MIL-I-38535, and 1.2.1 of MIL-STD-883) without the necessity for the generation of unique PIN's. The three military requirements documents represent different class levels, and previously when a device manufacturer upgraded military product from one class level to another, the benefits of the upgraded product were unavailable to the Original Equipment Manufacturer (OEM), that was contractually locked into the original unique PIN. By establishing a one part number system covering all three documents, the OEM can acquire to the highest class level available for a given generic device to meet system needs without modifying the original contract parts selection criteria.

Military documentation format	Example PIN <u>under new system</u>	Manufacturing source listing	Document <u>Listing</u>
New MIL-H-38534 Standardized Military Drawings	5962-XXXXXZZ(H or K)YY	QML-38534	MIL-BUL-103
New MIL-I-38535 Standardized Military Drawings	5962-XXXXXZZ(Q or V)YY	QML - 38535	MIL-BUL-103
New 1.2.1 of MIL-STD-883 Standardized Military Drawings	5962-XXXXXZZ(M)YY	MIL-BUL-103	MIL-BUL-103

STANDARDIZED Military Drawing Defense Electronics Supply Center	SIZE A		5962-93125
DEFENSE ELECTRONICS SUPPLY CENTER		REVISION LEVEL	SHEET
DAYTON, OHIO 45444		A	13

DESC FORM 193A

JUL 91

9004708 0002750 298 🖿

6.7 <u>Sources of supply</u>.

6.7.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DESC-EC and have agreed to this drawing.

6.7.2 <u>Approved sources of supply for device class M</u>. Approved sources of supply for class M are listed in MIL-BUL-103. The vendors listed in MIL-BUL-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DESC-EC.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-93125
DEFENSE ELECTRONICS SUPPLY CENTER		REVISION LEVEL	SHEET
Dayton, ohio 45444		A	14

DESC FORM 193A JUL 91

9004708 0002751 124 📟

٠

.