
Driving the
AT42QT2160
QMatrix Sensor
IC

Application Note
AT42QTAN0040

10702A–AT42–07/08
Driving the AT42QT2160 QMatrix Sensor IC

1. Introduction
This application note shows how the AT42QT2160-MMU (QT2160) 16-key QMatrix™
Sensor IC can be connected to a microprocessor to provide touch input functionality.
Example code is provided to demonstrate how easily the QT2160 can be incorporated
into a design. The code can be run “as is” or used as a starting point for QT2160-
based projects. The example compiles to under 1 Kbyte of code including all
necessary I2C-compatible driver functions.

The example code is written in the C programming language and can easily be
adapted for many processor types. See Section 6 on page 8 for a listing of the
complete program.

Figure 1-1. Circuit Configuration for the Example Project

2. Overview of the QT2160

2.1 Introduction
The QT2160 is designed for use with up to 16 keys and a slider (constructed from 2
keys up to 8 keys). There are three dedicated general-purpose input/outputs (GPIO),
which can be used as inputs (for example, for mechanical switches) or as driven
outputs. There are eight shared general-purpose outputs (GPO). Pulse switch
modulation (PWM) control can be applied to all GPIO and GPO pins.

Keys are configured in a matrix format that minimizes the number of required scan
lines and device pins. The key electrodes can be designed into a conventional printed
circuit board (PCB) or flexible printed circuit board (FPCB) as a copper pattern, or as
printed conductive ink on plastic film. The QT2160 can be fine tuned to optimize
operation with the electrode design.

Full details of the QT2160 can be found in the QT2160 datasheet, which should be
read in conjunction with this application note.

Host MCU

Vdd

QMatrix Key
Array

8 Discrete Keys
(keys 8 15)–

5-Key Slider
(keys 0 4)–

P0.3

P0.6

P0.7

QT2160

Vdd

GPIO3

GPO0

GPO1

GPO2

GPO3

SDA

SCL

CHANGE

2.2 QT2160 Host Interface
The QT2160 connects to a host controller by means of an I2C-compatible serial interface. This
uses a common two-wire connection between the host QT2160 and other I2C-compatible
devices in the system. The bus protocol takes care of all addressing functions and bidirectional
data transfer. Full details can be found in the Philips document “The I2C-Bus Specification”.

In addition, the QT2160 features a CHANGE pin, which can be used either to wake the host in a
battery-powered application or as an interrupt signal to inform the host when the QT2160 status
has changed. The CHANGE pin can be left unconnected in systems where the QT2160 is polled
via the I2C-compatible bus on a regular basis.

2.3 QT2160 Programming Model
All communication with the QT2160 takes place via a set of addressable, 8-bit registers. All read
and write operations to the registers are made via the I2C-compatible bus. The protocol for
performing reads and writes is based on that used for standard serial EEPROM devices and is
fully described in the QT2160 datasheet. The example code presented in this application note
includes a suitable I2C-compatible driver.

3. The Example QT2160 Project

3.1 Introduction
The example project shows how to use the host interface to read real-time touch information
from the QT2160. It also shows how the discrete output pins of the QT2160 can be
simultaneously driven to reflect the touch status.

3.2 Circuit Configuration
Figure 1-1 on page 1 shows the circuit used for this example. Representative touch keys are
connected to the X/Y drive signals as described in the datasheet. The example uses a five-key
slider comprising keys 0 – 4, and eight discrete keys connected as keys 8 – 15. Connection to
the host microcontroller uses the two I2C-compatible pins (SCL and SDA) and the CHANGE pin.
The example uses LEDs on QT2160 pins GPO0 to GPO3 to indicate touches on keys 8 – 11. It
also uses an LED on GPIO3 to indicate the slider position by means of the PWM function.

The following points should be noted:

• The QT2160 I2C-compatible slave address can be selected via pins I2CA1 and I2CA0. The
demonstration program uses address 0x0d, which is selected by connecting I2CA1 = I2CA0
= Vss.

• Pull-up resistors are required on the I2C-compatible signals (SCL and SDA). Either discrete
pull-up resistors or the host microcontroller’s weak pull-ups can be used. Ensure that the
pull-up resistors are connected to the same Vdd level as the QT2160.

• The CHANGE pin has open-drain characteristics and requires a pull-up resistor.

• LEDs are connected to the appropriate pins of the QT2160 using inverting buffers as
described in the datasheet.

The example code assumes the following port assignments on the host microcontroller:

• SDA is connected to P0.6.

• SCL is connected to P0.7.

• CHANGE is connected to P0.3.
2
10702A–AT42–07/08

Driving the AT42QT2160

Driving the AT42QT2160
3.3 Interface Timing
Figure 3-1 illustrates the interface timing used in the example. The QT2160 signals any change
in its sense status by driving the CHANGE pin low. In this context, sense status includes bytes 2
through 6 of the address map. In response to the QT2160 driving CHANGE low, the host reads
all of bytes 2 – 6. The QT2160 releases the CHANGE pin when all changed bytes have been
read. Handshaking logic within the QT2160 guarantees that any unread changes in any status
byte will cause CHANGE to be driven low, even if this occurs while the device is being read.

Figure 3-1. QT2160 Interface Timing

4. Demonstration Program

4.1 The main() Function
A simplified flowchart for the QT2160 demonstration program is shown in Figure 4-1. The
program flow is encapsulated in the main() function of the C code (see Section 6 on page 8).

Figure 4-1. Simplified Flowchart for the Demonstration Program

Status read Status read Status readI2C-comaptible

Change in
status

Cleared by
read

Change in status
during read

Cleared by following
read

CHANGE

Main()

Establish comms
to QT2160

Read QT2160
Status

Display Status
on LEDs

Low

High
CHANGE

pin?

Initialize
QT2160

No

Yes
RES set?
3
10702A–AT42–07/08

During initialization, the program establishes communication with the QT2160 and then sets it
up for the required operating mode. In the main loop, the program monitors the CHANGE pin. If
the CHANGE pin is low, the program reads the five status bytes. It then writes the state of the
discrete keys back to the QT2160 pins GPO0 to GPO3 and writes the slider position back to the
PWM driver for GPIO3. The effect of touching the keys and slider is thus displayed on LEDs
connected to I/O pins of the QT2160.

4.2 QT2160 Initialization
Initialization occurs at the start of the main() function, as follows:

1. The demonstration program establishes the initial communication with QT2160 by
reading its Chip-ID. The QT2160 takes several milliseconds to initialize itself after
power-up. During this time, it may not acknowledge (ACK) its slave address. The
WriteQtI2c() function repeatedly attempts to send the slave address until the ACK is
received.

2. Once the device has been read successfully, the returned chip ID is checked. If the
wrong ID is returned, the demonstration program goes no further.

Depending on the construction of the touch keys being used, it may be necessary to adjust the
touch-related registers. This should be done in the initialization code.

4.3 Main Loop
Following initialization, the remainder of the main() function consists of a main loop, as follows:

1. The state of the CHANGE pin is sampled.

2. If CHANGE is asserted low, the status registers (addresses 2 – 6) are read into the
five-byte QtStatus[] array. Reading these registers restores the CHANGE pin to the
inactive (high) state.

3. If the RES bit in the “General Status” register is set, indicating that the QT2160 has
been reset, the device is initialized. This will occur after initial power up but may also
occur if, for example, the RST pin is pulled low at any time. The demonstration program
changes a few registers from their default values. Note that all the QT2160’s registers
are set to default values every time the device is reset (refer to the QT2160 datasheet
for the default values). The demonstration program makes the following changes:

a. GPIO3 is set for output mode in “GPIO-Direction” (address 73).

b. GPIO3 is set for PWM mode in “GPIO-PWM” (address 75).

c. The “RESOLUTION” field is set to 8-bit in Slider-Options (address 21).

d. Finally, a calibration cycle is initiated.

4. If RES is not set, the touch status is processed. The states of the discrete touch keys
8 – 5 from “Key Status 2” are returned in QtStatus[2]. Key states output by the QT2160
are fully debounced and can be used in an application without further processing.
QtStatus[2] is simply written back to “GPO Drive 1” at address 70 and the LEDs
indicate the touch state.

5. If the SDET bit in the “General Status” register is set, the slider touch position in
QtStatus[3] is written to “PWM Level” at address 76.
4
10702A–AT42–07/08

Driving the AT42QT2160

Driving the AT42QT2160
5. I2C-compatible Driver

5.1 I2C-compatible Communication
I2C-compatible communication is a major aspect of any program involving the QT2160. Some
form of I2C-compatible driver must be written to handle read and write operations to the device.
Most current microprocessors include a hardware I2C-compatible master function, which could
be programmed to efficiently handle these transfers, but the driver code will always be specific to
the hardware. The example code in this application note includes a software-based
I2C-compatible driver using two port pins of the host microcontroller. It could easily be ported to
many processor types.

The I2C-compatible communication sequences used to read and write data to the QT2160 are
fully described in the QT2160 datasheet.

5.2 Design Approach
The driver presented here uses bit-banging techniques to manage the I2C-compatible interface.
The driver is structured in three layers:

• In the bottom layer, code-macros are used to drive the SCL and SDA pins and to create
START and STOP conditions on the I2C-compatible bus.

• In the middle layer, the SendByte() and GetByte() functions sequence the transmission and
reception of bytes including handling the ACK bit.

• In the top layer, the WriteQtI2c() and ReadQtI2c() functions can be called by an application to
transfer one or more bytes to and from the QT2160. Note that for the sake of clarity, the driver
is simplified (for example, it includes no timeouts).

The following sections describe the driver and should be read in conjunction with the code
listing.

5.3 Macros
Table 5-1 describes the various code macros used to drive the SCL and SDA pins. Any macro
that changes the state of a pin includes a fixed 5 µs delay following the edge. The 5 µs delay
ensures the 100 kHz I2C-compatible specification is met and results in a bus clock rate of around
66 kHz.

Table 5-1. Code Macros for the I2C-compatible Bus Functions

Macro Description

I2cDelay
Generates a program-delay to guarantee I2C-compatible timing
requirements. The constant BUS_DELAY should be adjusted to
produce a 5 µs delay.

SetHiSCL

Floats the SCL pin. SCL is then pulled high by the pull-up resistor.
Note: the QT2160 may extend the low clock-phase. This means that
after floating the pin, the driver waits until the high state is achieved
before continuing.

SetLoSCL
Drives the SCL pin low. There is no need to wait for the pin to achieve
the low state.

SetHiSDA
Floats the SDA pin. SDA is then pulled high by the pull-up resistor.
After floating the pin, the driver waits until the high state is achieved
before continuing.
5
10702A–AT42–07/08

5.4 SendByte()
The SendByte() function transmits a single byte onto the I2C-compatible bus. The byte is
supplied as an input parameter. SendByte() returns I2C_OK if the byte is acknowledged or
I2C_FAIL if a NACK is returned.

5.5 GetByte()
The GetByte() function receives a single byte and terminates it with either ACK or NACK. NACK
should be specified for the last byte of an I2C-compatible read transfer. GetByte() returns the
received byte.

5.6 WriteQtI2c()
The flowchart for the WriteQtI2c() function is shown in Figure 5-1.

Figure 5-1. Flowchart for the WriteQtI2c() Function

SetLoSDA
Drives the SDA pin low. There is no need to wait for the pin to achieve
the low state.

FloatSDA
This simply floats the SDA pin so that the QT2160 can drive SDA
during data-reads or ACK cycles.

SendSTART Outputs the START condition

SendSTOP Outputs the STOP condition

SendCLOCK Pulses the SCL pin high-low

Table 5-1. Code Macros for the I2C-compatible Bus Functions (Continued)

Macro Description

WriteQtI2c()

Send I2C START

Result?

Send (Slave-address
+ WRITE)

Send I2C STOP

OK

Fail

Result?

Send (Write-Address)

OK

Fail

Length = 0?
Yes

No

Decrement Length

Send (Next Data byte)

Send I2C STOP

Return Result
6
10702A–AT42–07/08

Driving the AT42QT2160

Driving the AT42QT2160
The WriteQtI2c() function writes one or more bytes to the QT2160 as specified in the datasheet.
It accepts four input parameters:

• SlaveAddress: The QT2160 I2C-compatible address as selected at pins I2CA1 and I2CA0.

• WriteAddress: The address of the first QT2160 register to be written.

• WriteLength: The number of bytes to be written.

• WritePtr: A pointer to the first byte to be written. The pointer should point to a byte array.

The function returns I2C_OK if the entire write transfer is acknowledged (ACK), or I2C_FAIL if a
NACK is returned.

5.7 ReadQtI2c()
The flowchart for ReadQtI2c() is shown in Figure 5-2.

Figure 5-2. Flowchart for the ReadQtI2c() Function

The ReadQtI2c() function reads one or more bytes to the QT2160 as specified in the datasheet.
It accepts four input parameters:

• SlaveAddress: The QT2160 I2C-compatible address as selected at pins I2CA1 and I2CA0.

• ReadAddress: The address of the first QT2160 register to be read.

• ReadLength: The number of bytes to be read.

• ReadPtr: A pointer to a byte-array where the read data should be saved.

The function returns I2C_OK if the entire read transfer is completed correctly.

Note that the WriteQtI2c() function is called to set the address-pointer within the QT2160.

ReadQtI2c()

Send I2C START

Result?

Send (Slave-address
+ READ)

Send I2C STOP

OK

Fail

Length = 0?

Yes

No

Decrement Length

Read (Next Data byte)

Send I2C STOP

Return Result

Write Address-pointer
using WriteQtI2c()

Result?

OK

Fail
7
10702A–AT42–07/08

6. Source Code
/*===

Project: AT42QT2160-MMU Example Code

===*/

typedef unsigned char uint8_t;

enum { /* QT2160 registers */

 QT_CHIP_ID = 0, QT_CODE_VERSION, QT_GENERAL_STATUS, QT_KEY_STATUS_1,

 QT_KEY_STATUS_2, QT_SLIDER_POSITION, QT_GPIO_READ, QT_CALIBRATE = 10,

 QT_RESET, QT_LP_MODE, QT_AWAKE_TIMEOUT = 14, QT_NEG_DRIFT_COMP,

 QT_POS_DRIFT_COMP, QT_DI_LIMIT, QT_NEG_RECAL_DELAY, QT_DRIFT_HOLD_TIME,

 QT_SLIDER_CONTROL, QT_SLIDER_OPTIONS, QT_KEY_CONTROL, QT_KEY_NTHR = 38,

 QT_KEY_BL = 54, QT_GPO_DRIVE = 70, QT_GPIO_DRIVE, QT_GPIO_DIR = 73,

 QT_GPO_PWM, QT_GPIO_PWM, QT_PWM_LEVEL, QT_GPIO_WAKE,

 QT_COMM_CHG_KEYS_1, QT_COMM_CHG_KEYS_2

 };

#define QT2160_ID 0x11 /* Chip ID (read from device-address 0) */

#define QT_STATUS_SDET 0x01 /* bitmask for Slider-detect bit at device-address 2 */

#define QT_STATUS_RES 0x80 /* bitmask for Reset bit at device-address 2 */

#define QT_GPIO_1 0x04 /* bitmask for GPIO1 */

#define QT_GPIO_2 0x08 /* bitmask for GPIO2 */

#define QT_GPIO_3 0x10 /* bitmask for GPIO3 */

#define SLIDER_8BIT_RES 0x00 /* 8-bit resolution (written to device-address 21) */

#define CHANGE_ASSERTED_LOW 0 /* asserted state for /CHANGE pin */

#define QT2160_I2C_ADDRESS 0x0d /* I2C address used by demo. I2CA1 = I2CA0 = 0 */

uint8_t QtStatus[5]; /* application storage for QT2160 device-status */

uint8_t QtData; /* data buffer used for single-byte read and write transfers */

/* Port-assignment for QT2160-interface pins */

sbit SCL = P0 ^ 7;

sbit SDA = P0 ^ 6;

sbit CHANGE_PIN = P0 ^ 3;

/* I2C driver – Function prototypes */

uint8_t WriteQtI2c (uint8_t SlaveAddress,

uint8_t WriteAddress, uint8_t WriteLength, uint8_t *WritePtr);

uint8_t ReadQtI2c (uint8_t SlaveAddress,

uint8_t ReadAddress, uint8_t ReadLength, uint8_t *ReadPtr);
8
10702A–AT42–07/08

Driving the AT42QT2160

Driving the AT42QT2160
/*===

 Function: main()

===*/

void main (void)

{

/*------------------------------- Initialisation -------------------------------------*/

/* (1) Establish communication with the QT2160 touch-sensor */

 /* wait for successful transfer at the QT2160's address - Read Chip-ID */

 while (!ReadQtI2c (QT2160_I2C_ADDRESS, QT_CHIP_ID, 1, &QtData));

/* (2) Check that the responding device is a QT2160! */

 while (QtData != QT2160_ID);

/*------------------------ End of Initialisation -------------------------------------*/

/*------------------------ Main Loop ---*/

 while (1) {

 if (CHANGE_PIN == CHANGE_ASSERTED_LOW) /* test /CHANGE pin */

 {

 /* If /CHANGE is asserted, read all status-bytes */

 ReadQtI2c (QT2160_I2C_ADDRESS, QT_GENERAL_STATUS, 5, QtStatus);

 /* reading these registers will restore /CHANGE pin to the inactive (hi) state */

 /* Has device just reset? */

 if (QtStatus[0] & QT_STATUS_RES)

 {

 /* After any reset, configure device for demo requirements:

 The demo uses power-up default values for all touch-related registers.

 All keys are enabled by default and the slider is set to use 5-keys. */

 QtData = QT_GPIO_3;

 /* Set GPIO3 for output mode */

 WriteQtI2c (QT2160_I2C_ADDRESS, QT_GPIO_DIR, 1, &QtData);

 /* Configure GPIO3 for PWM mode */

 WriteQtI2c (QT2160_I2C_ADDRESS, QT_GPIO_PWM, 1, &QtData);

 /* Configure Slider for 8-bit resolution */

 QtData = SLIDER_8BIT_RES;

 WriteQtI2c (QT2160_I2C_ADDRESS, QT_SLIDER_OPTIONS, 1, &QtData);

 /* Send calibrate command */

 QtData = 1;

 WriteQtI2c (QT2160_I2C_ADDRESS, QT_CALIBRATE, 1, &QtData);

 }
9
10702A–AT42–07/08

 else

 {

 /* write key-states back to the QT2160 LEDs */

 WriteQtI2c (QT2160_I2C_ADDRESS, QT_GPO_DRIVE, 1, &QtStatus[2]);

 /* Update the PWM level if the slider is touched */

 if (QtStatus[0] & QT_STATUS_SDET)

 WriteQtI2c (QT2160_I2C_ADDRESS, QT_PWM_LEVEL, 1, &QtStatus[3]);

 } /* End if (QtStatus[0] & QT_STATUS_RES) */

 } /* End if (CHANGE_PIN..) */

 } /* End while (1) */

/*------------------------ End of Main Loop ---*/

}

/*------------------------------ I2C Driver ---*/

/* The following code is the I2C driver */

/* ------------ I2C Driver Defines --------------- */

#define ACK 0

#define NACK 1

#define I2C_OK 1

#define I2C_FAIL 0

#define READ_FLAG 0x01

#define BUS_DELAY 23

/*------------ I2C Code Macros ------------------- */

#define I2cDelay for (i = 0; i < BUS_DELAY; i++)

#define SetHiSCL {SCL = 1; while (!SCL); I2cDelay;}

#define SetLoSCL {SCL = 0; I2cDelay;}

#define SetHiSDA {SDA = 1; while (!SDA); I2cDelay;}

#define SetLoSDA {SDA = 0; I2cDelay;}

#define FloatSDA {SDA = 1;}

#define SendSTART {SetLoSDA; SetLoSCL;}

#define SendSTOP {SetLoSDA; SetHiSCL; SetHiSDA;}

#define SendCLOCK {SetHiSCL; SetLoSCL;}

/*--- */
10
10702A–AT42–07/08

Driving the AT42QT2160

Driving the AT42QT2160
/*===

 Function: SendByte()

 Input: Byte to send

 Output: I2C_OK if device ACKs, I2C_FAIL if device NACKs

==*/

uint8_t SendByte (uint8_t TxByte)

{

 uint8_t i,b, Result = I2C_OK;

 for (b = 0; b < 8; b++)

 {

 if (TxByte & 0x80)

 SetHiSDA

 else

 SetLoSDA

 SendCLOCK

 TxByte <<= 1; /* shift out data byte */

 }

 FloatSDA /* prepare to receive ACK bit */

 SetHiSCL /* read ACK bit */

 if (SDA == 1)

 Result = I2C_FAIL;

 SetLoSCL

 return Result;

}

/*===

 Function: GetByte()

 Input: State of ACK bit to send

 Output: Received byte

==*/

uint8_t GetByte (uint8_t AckBit)

{

 uint8_t i,b, RxByte = 0;

 FloatSDA

 for (b = 0; b < 8; b++)

 {

 RxByte <<= 1; /* shift in data byte */

 SetHiSCL;
11
10702A–AT42–07/08

 if (SDA)

 RxByte |= 1;

 SetLoSCL;

 }

 if (AckBit) /* send ACK bit */

 SetLoSDA

 else

 SetHiSDA

 SendCLOCK

 return RxByte;

}

/*===

 Function: WriteQtI2c() Executes multi-byte write to QT-device

 Input: SlaveAddress = Device address on the I2C bus

 WriteAddress = Register address

 WriteLength = Number of bytes to write

 WritePtr = Pointer to byte array containing write-data

 Output: I2C_OK if transfer completes, I2C_FAIL if device NACKs

==*/

uint8_t WriteQtI2c (uint8_t SlaveAddress,

uint8_t WriteAddress, uint8_t WriteLength, uint8_t *WritePtr)

{

 uint8_t i, Result;

 do { /* attempt to address device until ACK is received */

 SendSTART;

 if ((Result = SendByte (SlaveAddress << 1)) != I2C_OK)

 SendSTOP;

 } while (Result != I2C_OK);

 /* write address-pointer to device */

 Result = SendByte (WriteAddress);

 while ((Result == I2C_OK) && WriteLength--)

 Result = SendByte (*WritePtr++);

 SendSTOP; /* terminate transfer */

 return Result;

}

12
10702A–AT42–07/08

Driving the AT42QT2160

Driving the AT42QT2160
/*===

 Function: ReadQtI2c() Executes multi-byte read from QT-device

 Input: SlaveAddress = Device address on the I2C bus

 ReadAddress = Register address

 ReadLength = Number of bytes to read

 ReadPtr = Pointer to byte array for read-data

 Output: I2C_OK if transfer completes, I2C_FAIL if device NACKs

==*/

uint8_t ReadQtI2c (uint8_t SlaveAddress,

uint8_t ReadAddress, uint8_t ReadLength, uint8_t *ReadPtr)

{

 uint8_t i, Result;

 /* write address-pointer to device */

 Result = WriteQtI2c (SlaveAddress, ReadAddress, 0, 0);

 if (Result == I2C_OK)

 {

 do { /* attempt to address device until ACK is received */

 SendSTART;

 if ((Result = SendByte ((SlaveAddress << 1) + READ_FLAG)) != I2C_OK)

 SendSTOP;

 } while (Result != I2C_OK);

 do {

 *ReadPtr++ = GetByte (--ReadLength);

 } while (ReadLength);

 SendSTOP; /* terminate transfer */

 }

 return Result;

}

/*--------------------------End of I2C Driver ---------------------------------------*/
13
10702A–AT42–07/08

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Touch Technology Division
1 Mitchell Point
Ensign Way
Hamble
Southampton
Hampshire SO31 4RF
United Kingdom
Tel: (44) 23-8056-5600
Fax: (44) 23-8045-3939

Product Contact

Web Site
www.atmel.com

Technical Support
qprox.support@atmel.com

Sales Contact
qprox.sales@atmel.com

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel and QRG Ltd. products. No license, express or implied, by estoppel or otherwise,
to any intellectual property right is granted by this document or in connection with the sale of Atmel or QRG Ltd. products. EXCEPT AS SET FORTH IN ATMEL’S
TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE WHERE ATMEL IS THE SELLER OR QRG LTD.’S CONDITIONS OF SALE AND PROVI-
SION OF SERVICES WHERE QRG LTD. IS THE SELLER, ATMEL AND QRG LTD. ASSUME NO LIABILITY WHATSOEVER AND DISCLAIM ANY EXPRESS,
IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL OR QRG LTD. BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL AND QRG LTD. HAVE
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel and QRG Ltd. make no representations or warranties with respect to the accuracy or complete-
ness of the contents of this document and reserve the right to make changes to specifications and product descriptions at any time without notice. Atmel and QRG
Ltd. do not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel and QRG Ltd. products are not approved
for use in automotive applications, medical applications (including, but not limited to, life support systems and other medical equipment), avionics, nuclear applica-
tions, or other high risk applications (e.g., applications that, if they fail, can be reasonably expected to result in significant personal injury or death).

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks, QSlide™,
QMatrix™, QTouch™ and others are trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of
others.
10702A–AT42–07/08

