

14 BIT HYBRID CONTROL DIFFERENTIAL TRANSMITTER

DESCRIPTION

The HSCDX-14* series are the smallest solid state control differential transmitters available. They are high reliability units consisting of two 36 pin double DIP packages.

Input isolation transformers are available but will seldom be required because the solid state signal input is true differential with high AC and DC common mode rejection. The AC analog output signals are the sin and cos of the difference between the synchro or resolver angle input and the digital angle input, modulated by the carrier frequency.

The HSCDX-14 is part of Data Device Corporation's second generation of hybrid synchro-digital conversion products, which includes S/D converters. D/S converters, control transformers. and multi-speed converters.

APPLICATIONS

Control differential transmitters (CDX) subtract digital angles from analog synchro or resolver angles. They are used to provide angle offsets or correction angles when a resolver or synchro type output is required, and are especially adapted to computer controlled systems.

Because of their small size and low power requirements, the HSCDX-14 series of control differential transmitters is especially ideal for remotely located and hard to access equipment where high MTBF is critical. They are well suited to the most stringent and severe industrial or military ground and avionics applications, In conjunction with other devices, they are readily adapted for closed loop control. Designed for printed circuit board mounting by standard techniques, the HSCDX-14 can be readily incorporated into other equipment by the OEM user.

FEATURES

- ACCURACY: ±4 Minutes Normal Accuracy ±2 Minutes High Accuracy
- SIGNAL AND REF. INPUTS: Internal solid state isolation or external isolation transformers All common L-L voltage levels and frequencies
- LOGIC INPUT: TTL and CMOS compatible 14 bit parallel binary angle
- POWER REQUIRED: +15V DC and logic voltage supply

*Patented

FIGURE 1. BLOCK DIAGRAM

TECHNICAL INFORMATION

1. INTRODUCTION

As shown in the block diagram Figure 1, the HSCDX-14 control differential transmitter consists of two control transformer modules. One module is a complete unit with an input option, DC voltage generator, and a sin output. This module, with synchro, resolver, or transformer input, is called the HSCT-14 series and is described in a separate data sheet. The second HSCDX-14 module is a cos output control transformer and is called the HCCT-14. It relies on the first module for input conditioning and for DC voltage transformation.

The HSCDX-14 has two inputs: an analog synchro or resolver signal, and a 14 bit digital angle. It provides two AC outputs which are the sin and cos respectively of the difference between the synchro or resolver angle A and the digital angle B. The outputs ride on the internal D.C. Reference V and are modulated at the carrier freguency.

Power for the internal CMOS logic in both units must be provided at pins V_L . The user connects pin V_L to the +6.2V internal power supply when the external logic supply voltage is less than 6.2V, and to the external logic supply when the logic voltage is \geqslant 6.2V.

Pin $-V_S$ provides the negative power supply voltage for the internal op-amps. This voltage is usually chosen to be either 0 to minimize power consumption, or -7V to optimize the common mode voltage or voltage range of the input option. Pin V' is used to bring the internal analog ground to normal ground potential when $V_L = 6.2V$ and $-V_S = -7V$.

As indicated in Figure 1, there are three types of input options: an electronic Scott-T for direct synchro input (HSCDX); as ignal conditioner for direct resolver input (HRCDX); and a voltage follower buffer (HXCDX). Depending on the line voltage, there are actually six possible options: two HSCDX, three HRCDX, and one HXCDX. The HXCDX input requires an external signal conditioner such as a synchro or resolver isolation transformer or a solid state buffer.

Interconnection layout is not critical. The analog outputs are derived from op-amps, have low output impedance, and are short circuit proof.

2. POWER SUPPLIES

Two power supplies are required: +15 VDC nominal supply and a logic voltage supply VL. The +15V supply can vary from +11 to +16.5V with no change in the specifications. The logic supply voltage can range from +4.5V to the voltage of the +15V supply. The logic supply is used in two ways, depending on the nature of the digital logic. When the digital input logic is TTL or DTL, current is drawn from the logic supply by 22K pull-up resistors (see Figure 2). When the logic supply voltage is greater than 6.2V, the logic supply must provide power to drive the internal CMOS logic through pin V $_{\rm L}$.

A power supply for $-V_S$, which supplies the negative power supply voltages for the internal op-amps, is optional. $-V_S$ may be any voltage between ground and a negative voltage fifteen volts less than the positive logic supply voltage V_L . For instance, if $V_L = 6.2V$, $-V_S$ can range from 0V to -8.8V. For minimum power dissipation, $-V_S$ is connected to normal ground, and no connection is made to V'. The internal ground will then be at 3.9V. As $-V_S$ is made more negative, the common mode of the solid state input options HSCT-14 and HRCT-14 increases, the input voltage range of the buffer input option HXCT-14 increases, and the voltage of the internal ground V_S may be decreased. If $V_L = 6.2V$ and $-V_S = -7V$, V' may be grounded so that V is at normal ground potential. The solid state input common mode, the buffer input voltage range, and the power consumed will all be increased as indicated in the specifications table.

While testing or evaluating the HSCDX-14 series, it is advisable to limit the power supply currents. Limit the +15V supply current to 75 mA, and the logic supply current to 5 mA. Power supply transients greater than 18V may damage the module.

	d signal amplitude	ranges.				
PARAMETER	VALUE					
RESOLUTION	14 bits					
ACCURACY			•			
Normal Accuracy	±4 minutes max					
High Accuracy Option "a"	±2 minutes max					
SOLID STATE BUFFER INPUT (H		DX UNITS)				
Carrier Frequency Range Synchro and Resolver Input Cha	47 – 1000 Hz					
Voltage Options and Minimum		(Balanced)				
1	ZIN	ZIN. Eac				
Synchro (HSCDX)	Line to Line		<u> </u>			
90V L-L (Option H) 11.8V L-L (Option L)	130 KΩ 17.5 KΩ	85 KΩ 11.5 KΩ	1			
	ZIN	ZIN				
Resolver (HRCDX)	Single Ended	Differential	ZIN, Each Line to GND			
90V L-L (Option H)	175 ΚΩ	350 KΩ	175 KΩ			
26V L-L (Option M)	50 KΩ	100 ΚΩ	50 KΩ			
11.8V L-L (Option L)	23 KΩ	46 KΩ	23 KΩ			
Common Mode Range (DC C						
90V L-L (Option H)	-Vs = 0V 150V max	VL = +6.2V and 300V ma	- v5 / v			
26V L-L (Option M)	45V max	90V ma				
11.8V L-L (Option L)	20V max	60V ma	×			
VOLTAGE FOLLOWER INPUT (F	OR TRANSFORM	IFR LINITS)				
HXCT Input Characteristics						
Carrier Frequency Range	47 — 1000 Hz					
Voltage Range Vs = 0V	1V rms nominal; 1.15V max; 0.1V min					
VL = +6.2 and −Vs = −7V	3V rms nominal; 3.5V max; 0.1V min					
Max Voltage Without Damage	15V rms continuous					
Input Impedance	100V peak transient $Z_{IN} > 10 M\Omega$ (transient protected voltage follower).					
	2110 > 10 10122 (1		u voltage tonowerr			
TRANSFORMER CHARACTERIS						
400 Hz SIGNAL TRANSFORME Carrier Frequency Range	R 360 – 1000 Hz					
Minimum Input Impedances (Ba						
	Synchro ZIN	(Z _{so}) Resolve	r ZIN			
		100 }				
90V L-L (Option 4H)	180 KΩ		- 30 ΚΩ			
26V L-L (Option 4M)	_	30 1				
26V L-L (Option 4M) 11.8V L-L (Option 4L)	_ 20 KΩ	30 H				
26V L-L (Option 4M) 11.8V L-L (Option 4L) Breakdown Voltage to GND	- 20 ΚΩ 700	30 1				
26V L-L (Option 4M) 11.8V L-L (Option 4L) Breakdown Voltage to GND 60 Hz SIGNAL TRANSFORMER Carrier Frequency Range	 20 KΩ 700 47 440 Hz	30 F 30 F IV peak	Ω			
26V L-L (Option 4M) 11.8V L-L (Option 4L) Breakdown Voltage to GND 60 Hz SIGNAL TRANSFORMER Carrier Frequency Range Input Voltage Range	 20 KΩ 700 47 440 Hz 10 100V rms	30 F 30 F IV peak L-L; 90V rms L-L	. nominal			
26V L-L (Option 4M) 11.8V L-L (Option 4L) Breakdown Voltage to GND 60 Hz SIGNAL TRANSFORMER Carrier Frequency Range Input Voltage Range Input Impedance	20 KΩ 700 47 - 440 Hz 10 100V rms 148 KΩ min L-L	30 H 30 H IV peak L-L; 90V rms L-L balanced resistin	. nominal			
26V L-L (Option 4M) 11.8V L-L (Option 4L) Breakdown Voltage to GND 60 Hz SIGNAL TRANSFORMER Carrier Frequency Range Input Voltage Range		30 h 30 h 30 h 30 h 30 h 30 peak L-L; 90V rms L-L 30 peak 31 peak 32 peak 33 peak 34 peak 35 peak 36 peak 36 peak 37 peak 38 peak 38 peak 38 peak 38 peak 38 peak 38 peak 38 peak 38 peak 38 peak 39 peak 30 p	CΩ . nominal re			
26V L-L (Option 4M) 11.8V L-L (Option 4L) Breakdown Voltage to GND 60 Hz SIGNAL TRANSFORMER Carrier Frequency Range Input Voltage Range Input Impedance Input Common Mode Voltages Output Description	20 KΩ 700 47 – 440 Hz 10 – 100V rms 148 KΩ min L-L :500V rms, rms Resolver output derived from oi	30 h 30 h 30 h V peak L-L; 90V rms L-L , balanced resistiv sformer isolated ,+sin (+S) and -i p-amps. Short cir	cos (−C)			
26V L-L (Option 4M) 11.8V L-L (Option 4L) Breakdown Voltage to GND 60 Hz SIGNAL TRANSFORMER Carrier Frequency Range Input Voltage Range Input Impedance Input Common Mode Voltages	20 KΩ 700 47 – 440 Hz 10 – 100V rms 148 KΩ min L-L :500V rms, tran Resolver output derived from oi 1.0V rms nominal	30 h 30 h 30 h 30 h 30 h 30 peak L-L; 90V rms L-L balanced resistiv sformer isolated ,+sin (+S) and p-amps. Short cir riding on DC refer	. nominal re cos (-C) cuit proof, ence V.			
26V L-L (Option 4M) 11.8V L-L (Option 4L) Breakdown Voltage to GND 60 Hz SIGNAL TRANSFORMER Carrier Frequency Range Input Voltage Range Input Impedance Input Common Mode Voltages Output Description	20 KΩ 700 47 – 440 Hz 10 – 100V rms 148 KΩ min L-1 500V rms, tran Resolver output derived from o 1.0V rms nominal Output voltage	30 h 30 h 30 h 30 h 30 h 30 peak L-L; 90V rms L-L , balanced resistiv sformer isolated , +sin (+S) and — p-amps. Short cir riding on DC refer level tracks inpu	nominal re cos (-C) cuit proof, entere V. t level.			
26V L-L (Option 4M) 11.8V L-L (Option 4L) Breakdown Voltage to GND 60 Hz SIGNAL TRANSFORMER Carrier Frequency Range Input Voltage Range Input Unitage Range Input Common Mode Voltages Output Description Output Voltage Power Required	20 KΩ 700 47 – 440 Hz 10 – 100V rms 148 KΩ min L-1 500V rms, tran Resolver output derived from o 1.0V rms nominal Output voltage	30 h 30 h 30 h 30 h 30 h 30 peak L-L; 90V rms L-L balanced resistiv sformer isolated ,+sin (+S) and p-amps. Short cir riding on DC refer	nominal re cos (-C) cuit proof, entere V. t level.			
26V L-L (Option 4M) 11.8V L-L (Option 4L) Breakdown Voltage to GND 60 Hz SIGNAL TRANSFORMER Carrier Frequency Range Input Voltage Range Input Unpedance Input Common Mode Voltages Output Description Output Voltage Power Required DIGITAL INPUT	20 KΩ 700 47 – 440 Hz 10 – 100V rms, tran 148 KΩ min L-l 500V rms, tran Resolver output derived from oj 1.0V rms nominal Output voltage 4 mA typ, 7 mA	30) 30) 30) 30) 30) 30) 30) 30)	nominal re cos (-C) cuit proof, ence V. t tevel, supply			
26V L-L (Option 4M) 11.8V L-L (Option 4L) Breakdown Voltage to GND 60 Hz SIGNAL TRANSFORMER Carrier Frequency Range Input Voltage Range Input Unitage Range Input Common Mode Voltages Output Description Output Voltage Power Required	20 KΩ 700 47 – 440 Hz 10 – 100V rms, tran 148 KΩ min L-l 500V rms, tran Resolver output derived from oj 1.0V rms nominal Output voltage 4 mA typ, 7 mA	30 h 30 h 30 h 30 h 30 h 30 peak L-L; 90V rms L-L , balanced resistiv sformer isolated , +sin (+S) and — p-amps. Short cir riding on DC refer level tracks inpu	nominal re cos (-C) cuit proof, ence V, t tevel, supply			
26V L-L (Option 4M) 11.8V L-L (Option 4L) Breakdown Voltage to GND 60 Hz SIGNAL TRANSFORMER Carrier Frequency Range Input Voltage Range Input Impedance Input Common Mode Voltages Output Description Output Voltage Power Required DIGITAL INPUT Logic Type Coding	47 – 440 Hz 10 – 100V rms 148 KΩ min L-L : 500V rms, tran Resolver output derived from oi 1.0V rms nominal Output voltage 4 mA typ, 7 mA TTL/DTL/CMO supply voltage Natural binary a	30) 30) 30) 30) 30) 30) 30) 30)	nominal re cos (-C) cuit proof, ence V, t level, supply			
26V L-L (Option 4M) 11.8V L-L (Option 4L) Breakdown Voltage to GND 60 Hz SIGNAL TRANSFORMER Carrier Frequency Range Input Voltage Range Input Lommon Mode Voltages Output Description Output Voltage Power Required DIGITAL INPUT Logic Type Coding Number of Bits	20 KΩ 7000 47 – 440 Hz 10 – 100V rms 148 KΩ min L-L 5500V rms, tran Resolver output derived from to 1.0V rms nominal Output voltage 4 mA typ, 7 mA	30 h 30 h 30 h N peak L-L, 90V rms L-L , balanced resistiv sformer isolated ,+sin (+S) and p-amps. Short cirr riding on D Crefer level tracks inpu max from +15V S compatible, des	. nominal re cos (-C) cuit proof, ence V. t level, supply pending on logic			
26V L-L (Option 4M) 11.8V L-L (Option 4L) Breakdown Voltage to GND 60 Hz SIGNAL TRANSFORMER Carrier Frequency Range Input Voltage Range Input Impedance Input Common Mode Voltages Output Description Output Voltage Power Required DIGITAL INPUT Logic Type Coding	20 KΩ 7000 47 – 440 Hz 10 – 100V rms 148 KΩ min L-L 5500V rms, tran Resolver output derived from to 1.0V rms nominal Output voltage 4 mA typ, 7 mA	30) 30) 30) 30) 30) 30) 30) 30)	. nominal re cos (-C) cuit proof, ence V. t level, supply pending on logic			
26V L-L (Option 4M) 11.8V L-L (Option 4L) Breakdown Voltage to GND 60 Hz SIGNAL TRANSFORMER Carrier Frequency Range Input Voltage Range Input Lommon Mode Voltages Output Description Output Voltage Power Required DIGITAL INPUT Logic Type Coding Number of Bits	20 KΩ 7000 47 – 440 Hz 10 – 100V rms 148 KΩ min L-L 5500V rms, tran Resolver output derived from to 1.0V rms nominal Output voltage 4 mA typ, 7 mA	30 h 30 h 30 h N peak L-L, 90V rms L-L , balanced resistiv sformer isolated ,+sin (+S) and p-amps. Short cirr riding on D Crefer level tracks inpu max from +15V S compatible, des	. nominal re cos (-C) cuit proof, ence V. t level, supply pending on logic			
26V L-L (Option 4M) 11.8V L-L (Option 4L) Breakdown Voltage to GND 60 Hz SIGNAL TRANSFORMER Carrier Frequency Range Input Voltage Range Input Common Mode Voltages Output Description Output Voltage Power Required DIGITAL INPUT Logic Type Coding Number of Bits Loading ANALOG OUTPUTS Outputs e.	20 KΩ 7000 47 - 440 Hz 10 - 100V rms 148 KΩ min L-1 : 500V rms, tran Resolver output derived from oi 1.0V rms nominal Output voltage 4 mA typ, 7 mA TTL/DTL/CMO: supply voltage Natural binary a 14 : 1μA max (trans	30) 30) 30) 30) 30) 30) 30) 30)	cos (-C) cuit proof, ence V, t tevel, supply conding on logic c			
26V L-L (Option 4M) 11.8V L-L (Option 4L) Breakdown Voltage to GND 60 Hz SIGNAL TRANSFORMER Carrier Frequency Range Input Voltage Range Input Lommon Mode Voltages Output Description Output Voltage Power Required DIGITAL INPUT Logic Type Coding Number of Bits Loading ANALOG OUTPUTS Outputs e. e = + sin (A-B) cos \u00f3t	20 KΩ 7000 47 = 440 Hz 10 = 100V rms 148 KΩ min L-L 5500V rms, tran Resolver output derived from oi 1,0V rms nominal Output voltage 4 mA typ, 7 mA TTL/DTL/CMO supply voltage Natural binary a 14 ±1μA max (trans	30) 30) 30) 30) 30) 30) 30) 30)	. nominal re cos (-C) cuit proof. ence V. t level, supply ending on logic c MOS)			
26V L-L (Option 4M) 11.8V L-L (Option 4L) Breakdown Voltage to GND 60 Hz SIGNAL TRANSFORMER Carrier Frequency Range Input Voltage Range Input Unitage Range Input Lommon Mode Voltages Output Description Output Voltage Power Required DIGITAL INPUT Logic Type Coding Number of Bits Loading ANALOG OUTPUTS Outputs e: e = +sin (A-B) cos ωt and e * +cos (A-B) cos ωt Scale Factor Error	20 KΩ 7000 47 = 440 Hz 10 = 100V rms, 148 KΩ min L-L 500V rms, tran Resolver output derived from oi 1.0V rms nominal Output voltage 4 mA typ, 7 mA TTL/DTL/CMO: supply voltage Natural binary a 14 11μA max (trans	30) 30) 30) 30) 30) 30) 30) 30)	. nominal re cos (-C) cuit proof, ence V. t level, supply mending on logic c MOS)			
26V L-L (Option 4M) 11.8V L-L (Option 4L) Breakdown Voltage to GND 60 Hz SIGNAL TRANSFORMER Carrier Frequency Range Input Voltage Range Input Unitage Range Input Common Mode Voltages Output Voltage Power Required DIGITAL INPUT Logic Type Coding Number of Bits Loading ANALOG OUTPUTS Outputs e: e = +sin (A.B) cos ωt and e = +cos (A.B) cos ωt Scale Factor Error Scale Factor Variation With	20 KΩ 7000 47 = 440 Hz 10 = 100V rms 148 KΩ min L-1 5500V rms, tran Resolver output derived from oi 1.0V rms nominal Output voltage 4 mA typ, 7 mA TTL/DTL/CMO: supply voltage Natural binary a 14 11μA max (trans	30) 30) 30) 30) 30) 30) 30) 30)	. nominal re cos (-C) cuit proof, ence V. t level, supply mending on logic c MOS)			
26V L-L (Option 4M) 11.8V L-L (Option 4L) Breakdown Voltage to GND 60 Hz SIGNAL TRANSFORMER Carrier Frequency Range Input Voltage Range Input Unbedance Input Common Mode Voltages Output Description Output Voltage Power Required DIGITAL INPUT Logic Type Coding Number of Bits Loading ANALOG OUTPUTS Outputs e: e = +sin (A.B) cos ωt and e = +cos (A.B) cos ωt Scale Factor Error Scale Factor Variation With Digital Angle B	20 KΩ 7000 47 - 440 Hz 10 - 100V rms, 148 KΩ min L-1 500V rms, tran Resolver output derived from on 1.0V rms nominal Output voltage 4 mA typ, 7 mA TTL/DTL/CMO: supply voltage Natural binary a 14 1 μA max (trans	30) 30) 30) 30) 30) 30) 30) 30)	. nominal re cos (-C) cuit proof, ence V, t tevel, supply bending on logic c MOS)			
26V L-L (Option 4M) 11.8V L-L (Option 4L) Breakdown Voltage to GND 60 Hz SIGNAL TRANSFORMER Carrier Frequency Range Input Voltage Range Input Unitage Range Input Common Mode Voltages Output Voltage Power Required DIGITAL INPUT Logic Type Coding Number of Bits Loading ANALOG OUTPUTS Outputs e: e = +sin (A.B) cos ωt and e = +cos (A.B) cos ωt Scale Factor Error Scale Factor Variation With	20 KΩ 7000 47 = 440 Hz 10 = 100V rms 148 KΩ min L-L 5500V rms, tran Resolver output derived from oi 1.0V rms nominal Output voltage 4 mA typ, 7 mA TTL/DTL/CMO supply voltage Natural binary a 14 :1μA max (trans) A = Synchro or i B = digital inpu :2% max labsoli :0.25% max 1V rms loperate	30) 30) 30) 30) 30) 30) 30) 30)	. nominal re cos (-C) cuit proof, ence V, t tevel, supply bending on logic c MOS)			

SPECIFICATIONS

PARAMETER	VALUE					
ANALOG OUTPUTS (Cont'd)						
Internal D.C. Reference V						
Voltage		ninal when -Vs -Vs voltage levi	= 0. Can be set to zero			
Current Capability	±1 mA	- v S vortage levi	514.			
Bias Voltage						
Voltage	6.2 V D C					
Current Capability .	±0.1 mA					
Buffered +Sin A and —Cos A (+BS and —BC)	1					
Voltage Level	1 V rms nom	inal				
Current Capability	±1 mA					
	 					
DYNAMIC CHARACTERISTICS Input Rate		anariaa rata lim	sited only by rate of			
Input hate		Maximum conversion rate limited only by rate at which digital input changes				
Settling Time	1	Witch digital input changes				
For Normal Tracking	No lag error	No lag error				
For 179° step change	10μs to final value					
TEMPERATURE RANGE						
Operating	1					
-1 Option		-55°C to +125°C				
-3 Option	0°C to 70°C					
Storage	_55°C to +135°C					
POWER SUPPLIES						
Voltage	+15 VDC	Logic	-Vs			
	1	Supply	(Optional)			
Voltage Limits	+11V to	+4.5V to	0 to (V _L – 15V)			
	+16.5V	+15 supply voltage	15 ()			
Max Voltage Without Damage	+18V	+18V	-(18V-V _L)			
Current or Impedance	+50 mA*	Z _{1N} = 5 KΩ	_			
	max	min	max			
*Does not include current requir	red by 60 Hz ac	tive transformer.				

Converter Modules (Two)

Type Size Weight

Size

Weight

400 Hz Transformer Modules Type

Size Weight 60 Hz Transformer Modules Type

36 pin double DIP 0.78 x 1.9 x 0.21 inch (2.0 x 4.8 x 0.53 cm) 1 oz max (28 g)

Encapsulated module. Signal input uses 2 modules (T1A and T2B). Ref uses 1 module (T2). 0.8 x 0.6 x 0.3 inch (2 x 1.5 x 0.8 cm) 0.4 oz max (11 o)

Encapsulated module. Signal transformer and reference transformer each consist of one such module 1.125 x 1.125 x 0.42 inch (2.86 x 2.86 x 1.07 cm) 0.7 oz max (20 o)

3. SYNCHRO AND RESOLVER INPUT (ANGLE A) Solid State Buffer Input (HSCDX and HRCDX):

The solid state signal and reference inputs are true differential inputs with high AC and DC common mode rejection, so that separate isolation transformers will seldom be required, Input impedance is maintained with power off. The common mode voltage range (recurrent AC peak + DC common mode voltage) depends on -Vs and should not exceed the following values:

INPUT	IF -V _S = 0		MAX TRANSIENT PEAK VOLTAGE
90V L-L	150V Peak	300V Peak	350V
26V L-L	45V Peak	90V Peak	150V
11.8V L-L	20V Peak	60V Peak	150V

90V fine-to-line systems generally have voltage transients which exceed the 350V specification listed above. These transients can destroy the thin film input resistor network in the hybrid. Therefore, 90V L-L solid state input modules should always be protected by installing voltage suppressors as shown below.

CR 4 and CR5 are 1N6137, 200V by polarity transient voltage suppressors or equivalent

CONNECTIONS FOR VOLTAGE TRANSIENT SUPPRESSORS

Voltage Follower Buffer Input:

HXCDX units require a signal isolation transformer, a Scott-T, or a similar signal conditioner. They may be preferred in applications where the signal conditioner can be integrated with other components, as in many multiplexed systems. The HXCDX-14 input is high impedance and compatible with any device providing resolver type signals of appropriate amplitude riding on internal analog ground V. The maximum input voltage amplitude depends on -VS and will be greater if the magnitude of -VS is increased, as discussed in the Power Supplies section.

The 60 Hz signal transformer 24126 is an active device with opamp outputs, and requires connection to the +15V power supply as shown below. An active transformer is provided because a passive transformer would be much larger at 60 Hz than at 400 Hz.

4. DIGITAL INPUT ANGLE B

The logic 0 level is from 0 to .3V L and the logic 1 level from .7 V_L to V_L . For TTL/DTL logic, V_L is 6.2V (see Figure 2), so 22K pull-up resistors to +5V should be added by the user to each digital input line.

5. OUTPUTS SIN (A-B) AND COS (A-B)

The outputs e are AC voltages \sin (A-B) \cos ω t, and \cos (A-B) \cos ω t, at the carrier frequency. The amplitude of e is 0.38 mV per LSB of angle difference A-B, where 1 LSB = .02197 degrees = 1.318 minutes. The maximum output amplitude reached is 1 volt rms nominal, which represents an angular difference of $\pm 90^\circ$. The phase of the modulation \cos ω t indicates whether the angle difference A-B is positive or negative. The maximum loading is 1 mA rms.

The outputs e ride on V, the D.C. Reference. When $-V_s$ is grounded, $V=\pm 3.9V$ nominal. A difference circuit as shown, may be used to reference e with respect to normal ground instead of V, and also to provide gain.

6. DYNAMIC CHARACTERISTICS

The HSCDX-14 differential control transmitter is essentially a fast logic

circuit. During normal tracking, when the synchro or resolver update information is continuously available and the digital input is updated in LSB steps, there is no lag error in the output, and it is continuously available. If an instantaneous 179° step occurs in either input, the settling time to within final accuracy is 10µs.

RELIABILITY

The use of MSI and thin film resistor networks, as well as careful thermal design, results in very high MTBF values. Summaries of MTBF calculations are available on request.

FIGURE 2. INTERCONNECT DIAGRAM

CONTROL TRANSFORMER MODULE DIAGRAMS

1. Mechanical Outline (HSCT, HRCT, HXCT, and HCCT) 36 pin double DIP

PACKAGE IS KOVAR WITH ELECTROLESS NICKEL PLATING PINS ARE KOVAR WITH GOLD PLATING: (50 # INCH MIN). CASE IS ELECTRICALLY FLOATING

2. Pin Assignments

	EUNCTION					
PIN	HSCT	HRCT	HXCT	HCCT	PIN	FUNCTION
,	S1	S1	NC	N.C.	19	TP 3
2	S2	S2	N.C	N.C.	20	TP 1
3	S3	S3	+SIN	- C	21	BIT 14 LSB
	S4	N.C	-cos	+S	22	BIT 13
5	+BS	+BS	+BS	-BC (TP)	23	BIT 12
6	-BC	-BC	-BC	+BS (TP)	24	BIT 11
7	· VI				25	BIT 10
8	+ 15∨				26	BIT 9
9	GND				27	BIT 8
10					28	BIT 7
11					29	BIT 6
12	V'				30	BIT 5
13	6 2 V	6.2V	6.2V	NC	31	BIT 4
14	TP 4				32	BIT 3
15	e				33	BIT 2
16	TP 5				34	BIT 1 MSB
17	NC				35	TP6
18	TP2				36	TP7

Note Test Points TP are for Factory Use Only

Note:

Mechanical outlines and schematic diagrams for all signal transformers (400 Hz, 21044 to 21048 and 60 Hz, 24126) can be found with HSDC-8915 product information.

ORDERING INFORMATION

The HSCDX differential control transmitters consist of two control transformer modules:

> A sin output with choice of synchrol resolver or voltage follower buffer input (HSCT, HRCT, or HXCT).

A cos output without choice of input (HCCT).

If signal isolation transformers are required for HXCDX units, they must be ordered separately from part 2 below

1. Order a differential control transmitter consisting of two hybrid modules as follows:

2. 400 Hz and 60 Hz transformers may be ordered by part number (P/N) as follows.

		Ref.	L·L	Part Numbers	
Type	Frequency	Voltage	Voltage	Ref. Xfmr.	Signal Xfmr.
Synchro	400 Hz	115V	90 V	21049	21045*
Synchro	400 Hz	26∨	11.8V	21049	21044*
Resolver	400 Hz	115V	90∨	21049	21048*
Resolver	400 Hz	26∨	26∨	21049	21047*
Resolver	400 Hz	26∨	11.8∨	21049	21046*
Synchro	60 Hz	115V	90∨	24133-1 [†]	24126-1 [†]

* The part number for each 400 Hz synchro or resolver isolation transformer includes two separate modules as shown in the line drawings.

†-1 and -3 indicates operating temperature ranges available.

3. Order each sin or cos control transformer module as follows. Part 1 of the ordering information describes the alternatives in each portion of the part number.

HSCT = Control transformer with solid state

HRCT = Control transformer with solid state resolver input

HXCT = Control transformer with voltage

follower buffer input

HCCT = Cosine control transformer

synchro input