

April 2002

HI-1570

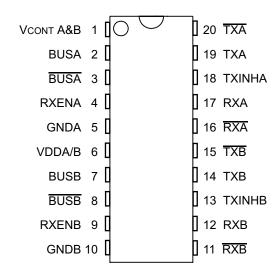
MIL-STD-1553 / 1760

5V Monolithic Dual Variable AmplitudeTransceiver

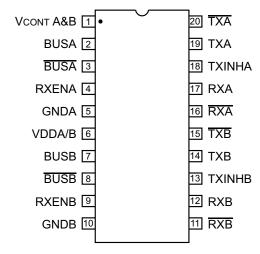
DESCRIPTION

The HI-1570 is a low power CMOS dual +5V transceiver with the ability to vary the amplitude of the transmitter outputs. It is designed to meet the requirements of the MIL-STD-1553 / 1760 specifications.

The transmitter section of each channel takes complementary CMOS / TTL digital input data and converts it to bi-phase Manchester encoded 1553 signals suitable for driving the bus isolation transformer. Separate transmitter inhibit control signals are provided for each transmitter. A single pin allows the user to control the transmitter output amplitude.


The receiver section of each channel converts the 1553 bi-phase bus data to complimentary CMOS / TTL data suitable for inputting to a Manchester decoder. Each receiver has a separate enable input which can be used to force the output of the receiver to a logic 0.

To minimize the package size for this function, the transmitter outputs are internally connected to the receiver inputs, so that only two pins are required for connection to each coupling transformer. For designs requiring independent access to transmitter and receiver 1553 signals, please contact your Holt Sales representative.


FEATURES

- Compliant to MIL-STD-1553A & B, MIL-STD-1760, ARINC 708A
- CMOS technology for low standby power
- Single +5V power supply
- Variable transmitter output amplitude
- Smallest footprint available in 20 pin plastic ESOIC (thermally enhanced SOIC) package
- Less than 1.0W maximum power dissipation
- Available in DIP and small outline (ESOIC) package options
- Military processing options
- Industry standard pin configurations

PIN CONFIGURATIONS

20 Pin Ceramic DIP package

20 Pin Plastic ESOIC - WB package

PIN DESCRIPTIONS

PIN	SYMBOL	FUNCTION	DESCRIPTION
1	VCONT A/B	analog Input	Transmit output amplitude control (0 - 5 Vdc, see Figure 4)
2	BUSA	analog output	MIL-STD-1533 bus driver A, positive signal
3	BUSA	analog output	MIL-STD-1553 bus driver A, negative signal
4	RXENA	digital input	Receiver A enable. If low, forces RXA and RXA low
5	GNDA	power supply	Ground for channel A
6	VDDA/B	power supply	+5 volt power for both channel A and channel B
7	BUSB	analog output	MIL-STD-1533 bus driver B, positive signal
8	BUSB	analog output	MIL-STD-1553 bus driver B, negative signal
9	RXENB	digital input	Receiver B enable. If low, forces RXB and RXB low
10	GNDB	power supply	Ground for channel B
11	RXB	digital output	Receiver B output, inverted
12	RXB	digital output	Receiver B output, non-inverted
13	TXINHB	digital input	Transmit inhibit, channel B. If high BUSB, BUSB disabled
14	TXB	digital input	Transmitter B digital data input, non-inverted
15	TXB	digital input	Transmitter B digital data input, inverted
16	RXA	digital output	Receiver A output, inverted
17	RXA	digital output	Receiver A output, non-inverted
18	TXINHA	digital input	Transmit inhibit, channel A. If high BUSA, BUSA disabled
19	TXA	digital input	Transmitter A digital data input, non-inverted
20	TXA	digital input	Transmitter A digital data input, inverted

FUNCTIONAL DESCRIPTION

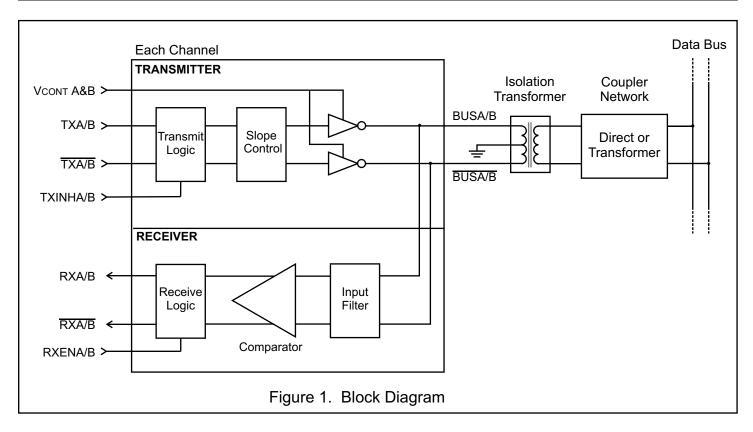
The HI-1570 data bus transceiver contains differential voltage source drivers and differential receivers. They are intended for applications using a MIL-STD-1553 A/B data bus. The device produces a trapezoidal output waveform during transmission.

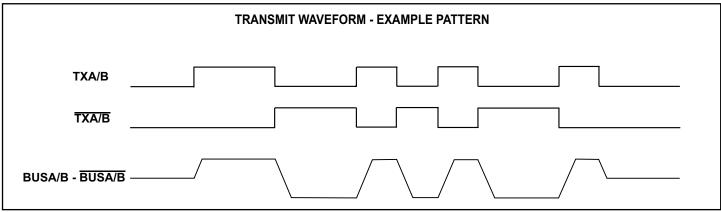
TRANSMITTER

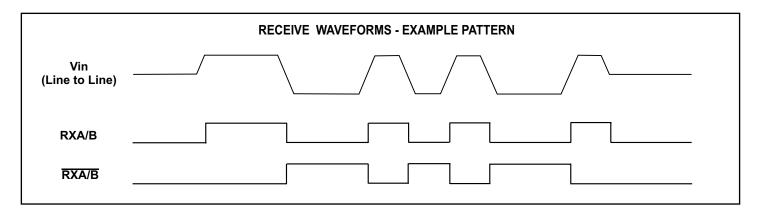
Data input to the device's transmitter section is from the complimentary CMOS /TTL inputs TXA/B and $\overline{TXA/B}$. The transmitter accepts Manchester II bi-phase data and converts it to differential voltages on BUSA/B and $\overline{BUSA/B}$. The transceiver outputs are either direct or transformer coupled to the MIL-STD-1553 data bus. Both coupling methods produce a nominal voltage on the bus of 7.5 volts peak to peak at VCONT A&B = 5.0 Vdc. Refer to Figure 4 for transmitter output amplitudes at other values of VCONT A&B between 0 - 5 Vdc. (Contact your Holt Sales Representative about the 0 - 10 Vdc Control Voltage option).

The transmitter is automatically inhibited and placed in the high impedance state when both TXA/B and TXA/B are either at a logic "1" or logic "0" simultaneously. A logic "1" applied to the TXINHA/B input will force the transmitter to the high impedance state, regardless of the state of TXA/B and TXA/B.

RECEIVER


The receiver accepts bi-phase differential data from the MIL-STD-1553 bus through the same direct or transformer coupled interface as the transmitter. The receiver's differential input stage drives a filter and threshold comparator that produces CMOS/TTL data at the RXA/B and RXA/B output pins.


Each set of receiver outputs can be independently forced to a logic "0" by setting RXENA or RXENB low.


MIL-STD-1553 BUS INTERFACE

A direct coupled interface (see Figure 2) uses a 1:2.5 ratio isolation transformer and two 55 ohm isolation resistors between the transformer and the bus.

In a transformer coupled interface (see Figure 3), the transceiver is connected to a 1:1.79 isolation transformer which in turn is connected to a 1:1.4 coupling transformer. The transformer coupled method also requires two coupling resistors equal to 75% of the bus characteristic impedance (Zo) between the coupling transformer and the bus.

ABSOLUTE MAXIMUM RATINGS

RECOMMENDED OPERATING CONDITIONS

Supply voltage (VDD)	-0.3 V to +7 V
Logic input voltage range	-0.3 V dc to +5.5 V
Receiver differential voltage	10 Vp-p
Driver peak output current	+1.0 A
Power dissipation at 25°C ceramic DIL, derate	1.0 W 7mW/°C
Solder Temperature	275°C for 10 sec.
Junction Temperature	175°C
Storage Temperature	-65°C to +150°C

Supply Voltage
VDD 5V ±5%
Temperature Range
Industrial Screening40°C to +85°C Hi-Temp Screening55°C to +125°C Military Screening55°C to +125°C

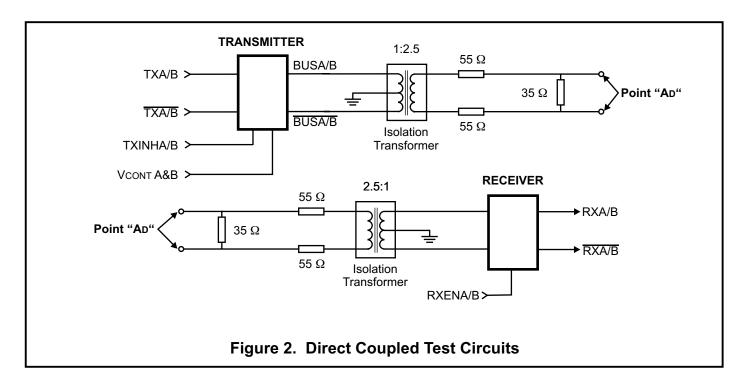
NOTE: Stresses above absolute maximum ratings or outside recommended operating conditions may cause permanent damage to the device. These are stress ratings only. Operation at the limits is not recommended.

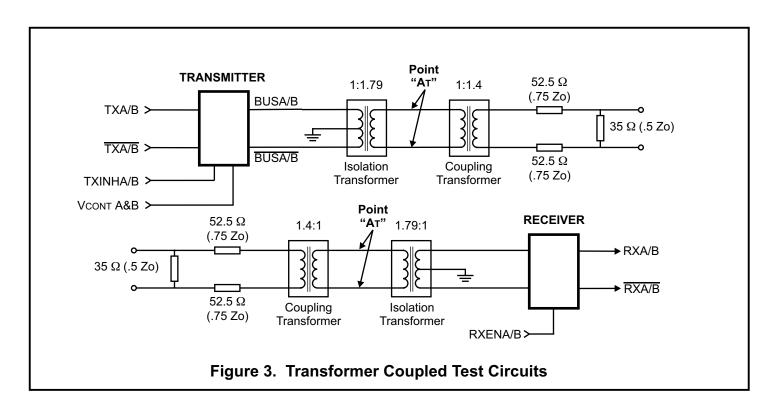
DC ELECTRICAL CHARACTERISTICS

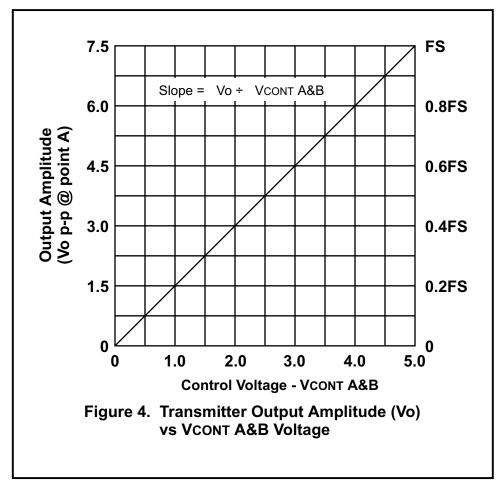
VDD = 5.0V, GND = 0V, Vcont A/B = 5.0V, TA = Operating Temperature Range (unless otherwise specified).

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
Operating Voltage	VDD		4.75	5	5.25	V
Total Supply Current	ICC1	Not Transmitting		14	22	mA
	ICC2	Transmit one channel @ 50% duty cycle		200	340	mA
	ICC3	Transmit one channel @ 100% duty cycle		400	615	mA
Power Dissipation	PD1	Not Transmitting			0.4	W
	PD2	Transmit one channel @ 100% duty cycle			0.95	W
Min. Input Voltage (HI)	Vih	Digital inputs	2.0	1.4		V
Max. Input Voltage (LO)	VIL	Digital inputs		1.4	0.8	V
Min. Input Current (HI)	lін	Vıн = 4.9V, Digital inputs			20	μA
Max. Input Current (LO)	lıL	VIL = 0.1V, Digital inputs	-20			μA
Min. Output Voltage (HI)	Voн	louτ = -0.4mA, Digital outputs	2.7			V
Max. Output Voltage (LO)	Vih	louт = 4.0mA, Digital outputs			0.4	V
RECEIVER (Measured at Point "AD" in	Figure 2 unles	s otherwise specified)				
Input resistance	Rin	Differential	20			Kohm
Input capacitance	CIN	Differential			5	pF
Common mode rejection ratio	CMRR		40			dB
Input Level	Vin	Differential			8	Vp-p
Input common mode voltage	Vicm		-5.0		5.0	V-pk
Threshold Voltage - Direct-coupled Detect	VTHD	1 Mhz Sine Wave (Measured at Point "Ap" in Figure 2)	1.15		20.0	Vp-p
No Detect	VTHND				0.28	Vp-p
Threshold Voltage - Transformer-coupled Detect	VTHD	1 MHz Sine Wave	0.86		14.0	Vp-p
No Detect	VTHND	(Measured at Point "At" in Figure 3)			0.20	Vp-p

DC ELECTRICAL CHARACTERISTICS (cont.)


VDD = 5.0V, GND = 0V, Vcont A/B = 5.0V, TA = Operating Temperature Range (unless otherwise specified).


	PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
TRANSMITTER	(Measured at Point "AD" in Fi	igure 2 unless	otherwise specified)				
Output Voltage	Direct coupled	Vouт	35 ohm load (Measured at Point "Ap" in Figure 2)	7.0		9.0	Vp-p
	Transformer coupled	Vouт	70 ohm load (Measured at Point "At" in Figure 3)	20.0		27.0	Vp-p
Output Noise		Von	Differential, inhibited			10.0	mVp-p
Output Dynamic Offset Voltage Direct coupled		Vdyn	35 ohm load (Measured at Point "Ap" in Figure 2)	-90		90	mV
	Transformer coupled	VDYN	70 ohm load (Measured at Point "Ατ" in Figure 3)	-250		250	mV
Output Resistance		Rout	Differential, not transmitting	10			Kohm
Output Capacitance		Соит	1 MHz sine wave			15	pF
Control Line Resistance		RCONT			5		Kohm


AC ELECTRICAL CHARACTERISTICS

 $VDD = 5.0V, \ GND = 0V, \ VCONT \ A/B = 5.0V, \ TA = Operating \ Temperature \ Range \ \ (unless \ otherwise \ specified).$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
RECEIVER (Measured at Point "Ap" in Figure 2)						
Receiver Delay	tDR	From input zero crossing to RXA/B or RXA/B			450	ns
Receiver Enable Delay	tREN	From RXENA/B rising or falling edge to		40		ns
	u ve v	RXA/B or RXA/B				
TRANSMITTER (Measured	at Point "A _D " i	in Figure 2)				
Driver Delay	tDT	TXA/B, TXA/B to BUSA/B, BUSA/B			150	ns
Rise time	tr	35 ohm load	100		300	ns
Fall Time	tf	35 ohm load	100		300	ns
Inhibit Delay	tDI-H	Inhibited output	·		100	ns
	tDI-L	Active output			150	ns

HEAT SINK - ESOIC PACKAGE

The HI-1570PSI/T/M all use a 20-pin thermally enhanced SOIC package. The package includes a metal heat sink located on the bottom surface of the device. This heat sink should be soldered down to the printed circuit board for optimum thermal dissipation. The heat sink is electrically connected to the VDD supply of the chip and

DESIGN CONSIDERATIONS

Please refer to Application Note AN-500 for information regarding design and PC board layout considerations when using Holt's MIL-STD-1553 transceivers.

THERMAL CHARACTERISTICS

therefore must be isolated from all other signals.

PART NUMBER	PACKAGE STYLE	CONDITION	Ø _{JA}	JUNCTION TEMPERATURE			
PART NOWIDER	PACKAGE STILL		ØJΑ	T _A =25°C	T _A =85°C	T _A =125°C	
HI-1570PSI HI-1570PST	20-pin Thermally enhanced plastic SOIC (ESOIC)	Heat sink unsoldered	54°C/W	93°C	153°C	193°C	
HI-1570PSM		Heat sink soldered	47°C/W	84°C	144°C	184°C	
HI-1570CDI HI-1570CDT HI-1570CDM	20-pin Ceramic side-brazed DIP	Socketed	62°C/W	102°C	162°C	202°C	

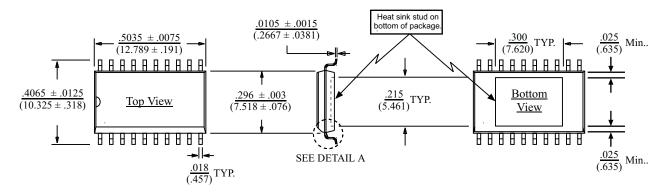
Data taken at VDD=5.0V, continuous transmission at 1Mbit/s (2MHz), single transmitter enabled.

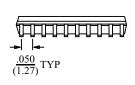
ORDERING INFORMATION

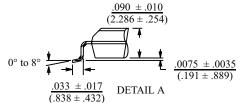
PART NUMBER	IDLE STATE	PACKAGE DESCRIPTION	TEMPERATURE RANGE	PROCESS FLOW	BURN IN	LEAD FINISH
HI-1570PSI	0	20 PIN PLASTIC ESOIC - WB	-40°C TO +85°C	I	NO	SOLDER
HI-1570PST	0	20 PIN PLASTIC ESOIC - WB	-55°C TO +125°C	Т	NO	SOLDER
HI-1570PSM	0	20 PIN PLASTIC ESOIC - WB	-55°C TO +125°C	М	YES	SOLDER
HI-1570CDI	0	20 PIN CERAMIC SIDE BRAZED DIP	-40°C TO +85°C	I	NO	GOLD
HI-1570CDT	0	20 PIN CERAMIC SIDE BRAZED DIP	-55°C TO +125°C	Т	NO	GOLD
HI-1570CDM	0	20 PIN CERAMIC SIDE BRAZED DIP	-55°C TO +125°C	М	YES	SOLDER

Legend: ESOIC - Thermally Enhanced Small Outline Package (SOIC w/built-in heat sink)

WB - Wide Body

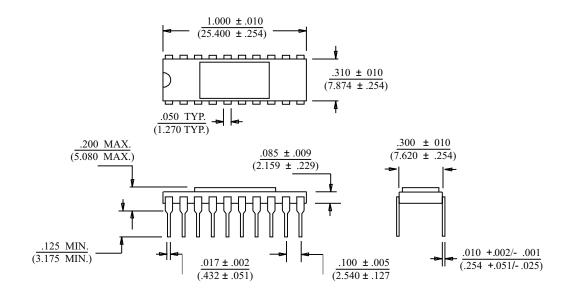

PACKAGE DIMENSIONS


inches (millimeters)


20-PIN PLASTIC SMALL OUTLINE (ESOIC) - WB

(Wide Body, Thermally Enhanced)

Package Type: 24HEW



20-PIN CERAMIC SIDE-BRAZED DIP

PACKAGE TYPE: 20C

