

5V Linear Controller/Driver

Description

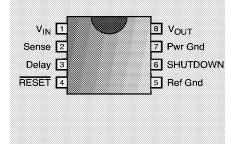
The CS-8128 contains all the necessary control circuitry to implement a 5V linear regulator. An external pass device is used to produce superior performance compared to conventional monolithic regulators. The CS-8128 with a TIP42 PNP transistor typically provides a 100mV dropout voltage at 500mA, increasing to 350mV at 3A. Quiescent current at 500mA is only 5mA. Monolithic regulators cannot approach these figures because their power transistors do not provide the high beta and excellent saturation characteristics at high currents. The CS-8128 is compatible with a wide variety of external transistors, allowing flexibility for thermal, space, and cost management.

The CS-8128 includes thermal shutdown and externally programmable current limit and over-voltage shutdown, making it suitable for use in automotive and switching regulator post regulator applications. An optional external RC filter added to the CS-8128 supply pin provides EMC hardening. The SENSE pin

Pwr Gnd

allows remote sensing of the output voltage for improved regulation.

An active microprocessor RESET function is included on-chip with externally programmable delay time. During power-up, or after detection of any error in the regulated output, the RESET pin will remain in the low state for the duration of the delay. Types of errors include short circuit, low input voltage, overvoltage shutdown, thermal shutdown, or others that cause the output to become unregulated. This function is independent of the input voltage and will function correctly with an output voltage as low as 1V. Hysteresis is included in both the reset and delay comparators for noise immunity and to prevent oscillations. A latching discharge circuit is used to discharge the delay capacitor, even when triggered by a relatively short fault condition. This circuit improves upon the commonly used SCR structure by providing improved noise immunity and full capacitor discharge (0.2V typ).


SHUTDOWN

Features

- Externally Set Delay for Reset
- 60V Load Dump Protection
- Internal Thermal Overload Protection
- 3% Output Accuracy
- Active RESET
- **Noise Immunity**
- On Chip EMC Hardening Protection Incorporated
- **Externally Set Current** Limit
- **Externally Set** Overvoltage Shutdown

Package Options

8L SO & 8L PDIP

口 Power Gnd Voltage Shutdown Vоит IC Reference Ref Gnd Gnd V_{IN} Sense PRE-REGULATOR Regulated Supply Shutdown for Circuit Bias Bandgap Reference Delay

Delay Comparator

Block Diagram

Over

Cherry Semiconductor Corporation 2000 South County Trail East Greenwich, Rhode Island 02818-1530 Tel: (401)885-3600 Fax (401)885-5786 email: info@cherry-semi.com

A **CHERRY** Company

RESET

Absolute Maximum Ratings

Power Dissipation	Internally Limited
Input Voltage	
Output Current	Externally Limited
ESD Susceptibility (Human Body Model)	
Operating Temperature	40°C to 125°C
Junction Temperature	45°C to 150°C
Storage Temperature	–55°C to 150°C
Lead Temperature Soldering	
Wave Solder (through hole styles only)	10 sec. max, 260°C peak
Reflow (SMD styles only)	

 $\begin{tabular}{ll} \textbf{Electrical Characteristics:} & T_A=-40°C to $+125°C$, T_J=-40°C to $+150°C$, V_{IN}=6 to $26V$, I_{OUT}=5 to $500mA$, Per Test Circuit (unless otherwise noted) \\ \end{tabular}$

14.50.00	TEST CONFIDENCE				
Output Stage (V _{OUT})					
Output Voltage		4.85	5.00	5.15	V
Dropout Voltage	$I_{OUT} = 500 \text{mA}$, note 1		0.1	0.6	V
Supply Current I _Q	$I_{OUT} \le 10 \text{mA}$ $I_{OUT} \le 500 \text{mA}$ $I_{OUT} \le 3A$, note 1		4 5 30	8 15	mA
Line Regulation	$6V \le V_{IN} \le 26V$, $I_{OUT} = 5mA$		12	50	mV
Load Regulation	$5V \le I_{OUT} \le 500 \text{mA}$, $V_{IN} = 14V$		2	50	mV
Ripple Rejection	$f = 120Hz, 7V \le V_{IN} \le 17V,$ $I_{OUT} = 350mA$	60	70		dB
${ m V_{IN}}$ Overvoltage Shutdown		32		40	V
Maximum Line Transient	V _{OUT} ≤ 5.5V, note 1	60	120		V

■ RESET and Delay Functions

Delay Charge Current	$V_{\mathrm{Delay}} = 2V$	5	10	15	μA
$\overline{ ext{RESET}}$ Threshold $ ext{V}_{ ext{RT}_{H}}$ $ ext{V}_{ ext{RT}_{T}}$	V _{OUT} Increasing V _{OUT} Decreasing	4.65 4.50	4.90 4.70	V _{OUT} -0.10 V _{OUT} -0.15	V V
RESET Hysteresis V _R	ou.	150	200	250	mV
Delay Threshold V_{DTC} V_{DTD}	Charge Discharge	3.25 2.80	3.50 3.00	3.75 3.40	V V
Delay Hysteresis, V_{DH}	$V_{ m DTC}$ - $V_{ m DTD}$	200	400	800	mV
RESET Output Voltage Low	$1V < V_{OUT} < V_{RTL}$, $3k\Omega$ to V_{OUT}			0.4	V
RESET Output Leakage Current	$V_D > V_{DTC}$, $V_{OUT} > V_{RTH}$			10	μΑ
Delay Capacitor (V _{dis}) Discharge Voltage	Discharge Latched "ON", $V_{OUT} > V_{RTH}$		0.2	0.5	V
Delay Time	$C_{Delay} = 0.1 \mu F$, note 2	16	32	48	ms
Drive Current $V_{SENSE} = 0V$		25	250		mΑ

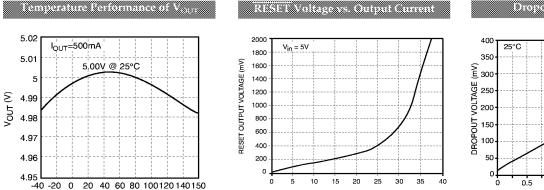
Note 1: Dependent on characteristics of external transistor.

Note 2: Delay Time =
$$\frac{C_{Delay} \mathbf{x} V_{DTC}}{I_{Charge}} = C_{Delay} \mathbf{x} 3.5 \mathbf{x} 10^5$$
(Typical)

\mathbf{C}	
S	
1	
οó	
\sim	
•	

Package Pin Description

ACLACIED S		EUNERION
8L SO & PDIP		
1	V _{IN}	Unregulated supply voltage to the IC.
2	Sense	Kelvin connection which allows remote sensing of output voltage for improved regulation.
3	Delay	Timing CAP for RESET function
4	RESET	CMOS/TTL compatible open collector output. $\overline{\text{RESET}}$ goes low whenever V_{OUT} drops below 6% of it's typical value.
5	Ref Gnd	Ground connection
6	SHUTDOWN	Overvoltage shutdown control input.
7	Pwr Gnd	Ground connection
8	V _{OUT}	Supplies base current to PNP pass transistor or threshold voltage to FET pass transistor.


Typical Performance Characteristics

RESET OUTPUT CURRENT (mA)

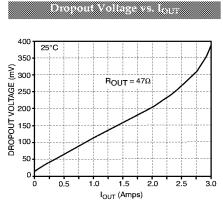
I_{OUT} = 3A

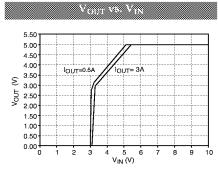
 $\begin{array}{l} I_{OUT} = 0.5 A \\ R_{OUT} = 330 \Omega \end{array}$

 $R_{OUT} = 47\Omega$

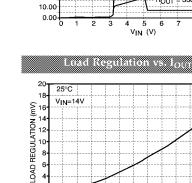
100.00

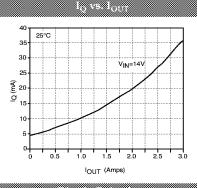
90.00

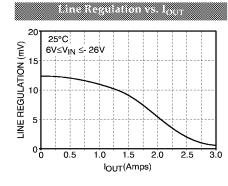

80.00

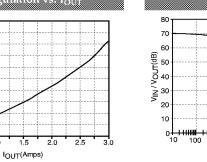

70.00

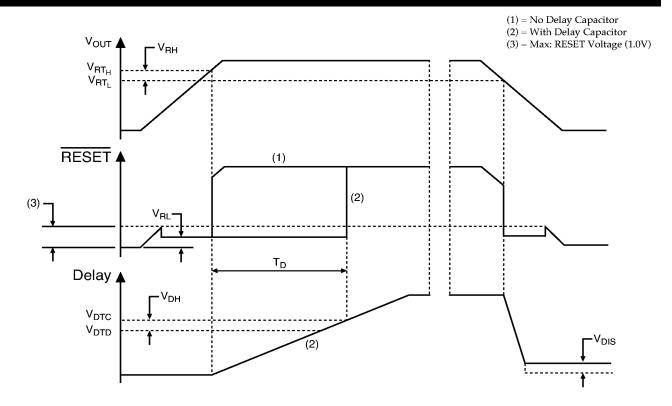
60.00


50.00 40.00 30.00


20.00



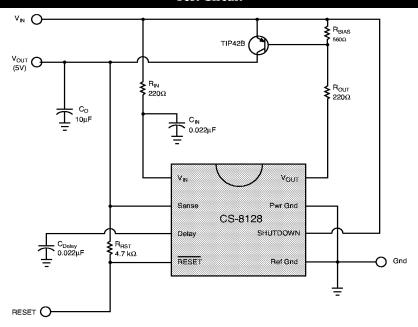



JUNCTION TEMPERATURE (°C)

RESET Circuit Functional Description

The CS-8128 $\overline{\text{RESET}}$ function is very precise, has hysteresis on both the $\overline{\text{RESET}}$ and DELAY comparators, a latching DELAY capacitor discharge circuit, and operation down to 1V.

The reset circuit output is an open collector type with ON and OFF parameters as specified. The reset output NPN transistor is controlled by the Low Voltage Inhibit and Reset Delay circuits (see Block Diagram).



This circuit monitors output voltage, and when output voltage is below V_{RTL} , causes the reset output transistor to be in the ON (saturation) state. When the output voltage is above V_{RTH} , this circuit permits the reset output transistor to go into the OFF state if allowed by the reset Delay circuit.

This circuit provides a programmable (by external capacitor) delay on the \overline{RESET} output pin. The Delay pin provides source current to the external delay capacitor only when the Low Voltage Inhibit circuit indicates that output voltage is above V_{RT_H} . Otherwise, the Delay pin sinks current to ground (used to discharge the Delay capacitor). The discharge current is latched ON when the output voltage is below V_{RT_L} . The Delay capacitor is fully discharged anytime the output voltage falls out of regulation, even for a short period of time. This feature ensures a controlled \overline{RESET} pulse is generated following the detection of an error condition. The circuit allows the \overline{RESET} output transistor to go to the OFF (open) state only when the voltage on the Delay pin is higher than V_{DTC} .

Test Circuit

Application Information

The CS-8128 includes an over voltage shutdown circuit which is activated by connecting the SHUTDOWN pin to the input. Shutdown typically occurs at 36V. Grounding the SHUTDOWN pin disables this function. With the overvoltage shutdown disabled, the CS-8128 will continue to regulate during an overvoltage condition (typically to over 100V).

Thermal Shartleyer

The CS-8128 includes a thermal shutdown circuit that disables the output when junction temperature exceeds approximately 180°C. This is a self-protection feature designed to protect the CS-8128. The thermal shutdown circuit does not monitor the temperature of the pass transistor, which will probably be much hotter. To optimize thermal shutdown, board design should minimize the difference in temperature of the CS-8128 and the pass device.

External Component Selection

External Pass Device - Select a pass device that will deliver the desired output current, withstand the maximum expected input voltage, and dissipate the resulting power. The CS-8128 is compatible with a wide variety of Bipolar and FET pass transistors.

Output Capacitor - An output capacitor is required for stability in most applications. Though a $10\mu F$ capacitor should be sufficient, regulator stability is dependent on the characteristics of the pass transistor. Capacitor effective series resistance (ESR) also factors in system stability. Some bench work may be required to determine the capacitor characteristics required for use in a particular application.

BIAS Resistor - This resistor provides bias current for the CS-8128 output stage, and prevents the pass device from

"leaking". It also speeds the turn-off of the pass device during an overvoltage transient. For proper operation over temperature, the recommended value is 560Ω , although it may be increased or decreased for a particular application.

R_{OUT} **Resistor** - This resistor controls the drive current available to the pass transistor. It also determines regulator start-up current and short circuit current limit. For bipolar pass transistors, it can be selected by use of the following formulae:

$$R_{OUT} = \frac{V_{IN(min)} - 1V}{I_{OUT(max)}} \times \beta_{Q_1}^{****}$$

*** β_{Q_1} = Pass transistor minimum β @ maximum output current.

Typical start-up current and current limit can be calculated as follows:

$$I_{START} \approx \frac{4V}{R_{OUT}} + 5mA$$

$$I_{Limit} \approx \frac{V_{IN} - 1V}{R_{OUT}} \times B_{Q_1}$$
 @ Current Limit

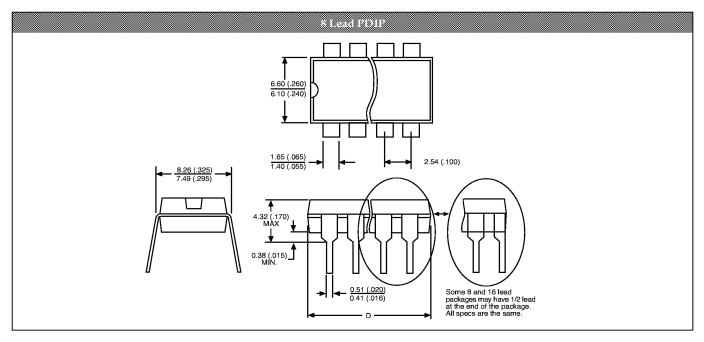
For example, if the minimum input voltage is 6V, maximum output current is 1Amp, and minimum transistor β @ 1Amp is 60, then R_{OUT} can be calculated as follows:

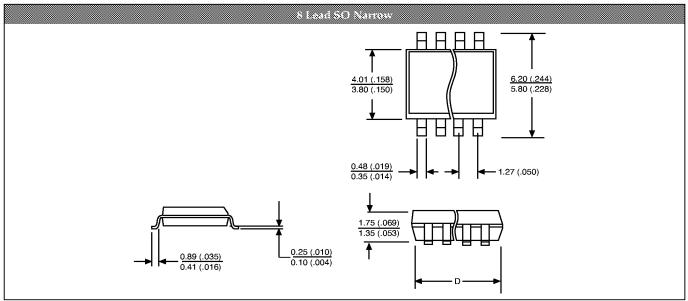
$$R_{OUT} \approx \frac{6V - 1V}{1Amp} \times 60 = 300\Omega$$

$$I_{Start} \approx \frac{4V}{300\Omega} + 5mA = 18.3mA$$

With $V_{\text{IN}} = 14 \text{V}$, and a pass transistor β of 40 @ current limit

$$I_{Limit} \approx \frac{14V - 1V}{300\Omega} \times 40 = 1.7 Amps$$


Package Specification


PACKAGE DIMENSIONS IS NOT UNCHEST

	D			
Lead Count	Met	tric	Eng	glish
	Max	Min	Max	Min
8L PDIP	9.40	9.14	.370	.360
8L SO Narrow	5.00	4.80	.197	.188

Therma	l Data	8 Lead PDIP	8 Lead SO Narrow	
RΘ _{JC}	typ	52	45	°C/W
$\overline{R\Theta_{JA}}$	typ	100	165	°C/W

Part Number	Description
CS-8128N8	8 Lead PDIP
CS-8128D8	8 Lead SO Narrow
CS-8128DR8	8 Lead SO Narrow Tape & Reel

Cherry Semiconductor Corporation reserves the right to make changes to the specifications without notice. Please contact Cherry Semiconductor Corporation for the latest available information.

6/30/97 © 1997 Cherry Semiconductor Corporation