
Document No. U10503EJ4V0UM00 (4th edition)
Date Published May 1998 N CP(K)

Printed in Japan
© 1993, 1994, 1995, 1998

User ’s Manual

µPD7701x Family
Digital Signal Processor

Architecture

µPD77015
µPD77016
µPD77017
µPD77018
µPD77018A
µPD77019

2

[MEMO]

3

 NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade

the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly

dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be

used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be

stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement

tools including work bench and floor should be grounded. The operator should be grounded using wrist strap.

Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards

with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it

is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices

behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using

a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered

to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device

and related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the

initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function

have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers.

Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-

on for devices having reset function.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States

and/or other countries.

PC/AT is a trademark of IBM Corporation.

InterTools is a trademark of TASKING, Inc.

4

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these
products may be prohibited without governmental license. To export or re-export some or all of these products from a
country other than Japan may also be prohibited without a license from that country. Please call an NEC sales
representative.

License not needed: µPD77016, µPD77019-013

The customer must judge the need for licence: µPD77015, µPD77017, µPD77018, µPD77018A, µPD77019

The information in this document is subject to change without notice.
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated “quality assurance program“ for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

M7 96.5

5

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000

800-366-9782
Fax: 408-588-6130

800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 65-253-8311
Fax: 65-250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951

NEC do Brasil S.A.
Cumbica-Guarulhos-SP, Brasil
Tel: 011-6465-6810
Fax: 011-6465-6829

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

J98. 2

6

MAJOR REVISIONS IN THIS EDITION

Page Description

Throughout Addition of descriptions of µPD77018A and 77019.

Throughout Deletion of Chapter 5 Assembly Instructions

p.30 Addition of 2.1.2 (2) 116-pin plastic BGA

p.41 Addition of BGA package numbers to 2.3.2 Pin function of µPD77015, 77017, 77018, 77018A, and
77019

p.62 Addition of Note 1 to Table 3-7. Initialized Pins and Their Initial Statuses

p.67 Addition of Table 3-8. Pin Status in HALT Mode

p.69 Addition of Table 3-9. Pin Status in STOP Mode

p.96 Change of Caution in Figure 3-25. External Interrupt Timing

p.97 Addition of Caution to Table 3-17. Interrupt Vector Table

p.116 Change of status during reset of DA0-DA15 (13) and X/Y in Table 3-20. Pin Status

p.166 Addition of description to 3.7.3 (3) (C) I/O timing of non-standard serial clock

p.175 Change of descriptions of HD0-HD7 in Table 3-33. The Pin Status during and after Hardware Reset

p.183, 184 Change of 3.7.4 (5) (c) Interrupts and addition of Caution to this section

p.207 Addition of 4.3.1 (2) Parameters for self-boot of µPD77019-013

p.214 Addition of description of high-speed simulator (SM77016-H) to 5.1.2 Software simulator

p.216 Change of part number of 5.2.2 (3) Adapter for EB-77017 board

p.230 to 232 Addition of A.3 CPU Registers to Be Initialized and Initial Values to A.6 Status of Output Pins

during Reset to Release STOP mode

The mark shows major revised points.

7

PREFACE

Readers : This manual should be read by engineers who wish to understand the functions of the µPD7701x

family for designing software or hardware application systems.

Purpose : This document describes the hardware and software functions provided in the µPD7701x family

products in the order shown below. This manual is designed to be used as a reference manual

when developing application system hardware or software using µPD7701x products.

Organization : This manual consists of the following sections:

• Chapter 1Overview

• Chapter 2Pin Functions

• Chapter 3Architecture

• Chapter 4Boot Function

• Chapter 5Development Tools

• Appendix ADevice Summary

• Appendix BOrdering Information

• Appendix C Index

How to read : This manual assumes that readers possess basic knowledge on electric/electronic circuits, logic

circuits, and microcomputers.

The µPD7701x family consists of the µPD77016, 77015 , 77017, 77018, 77018A, and 77019.

Unless otherwise specified, “µPD7701x” refers to the entire family. If there are some differences

in function or operation among family products, they are described under their respective names.

• To understand all the µPD7701x functions :

Read this manual from Chapter 1 “Overview” through Chapter 4 “Boot Function” to gain a

detailed understanding of the functions of this family.

• If you are a hardware engineer :

Read this manual from Chapter 1 “Overview” through Chapter 4 “Boot Function”. You will

learn various useful points for configuring a hardware system as well as gain a detailed

understanding of the functions of this family. Chapter 3 “Architecture” describes the related

interface levels of the on-chip function blocks.

• If you are a software engineer :

Read this manual from Chapter 1 “Overview” through Chapter 4 “Boot Function”. You will

learn various useful points for programming a software application as well as gain a detailed

understanding of the functions of this family. Chapter 5 “Development Tools” introduces

software development tools, additional tools for this family, and evaluation systems. Refer

to “µPD7701x Family User’s Manual Instructions.”

• If you use this document as a reference manual :

Note that an index is provided at the end of this manual. This index can be used to search

a word based on a key word. Chapter 3 “Architecture” provides descriptions of internal device

architecture on a top-down basis to facilitate searching a specific function.

Appendix A “Device summary” summarizes various key points on the use of this device, such

as instruction memory map, data memory map, and peripheral register map.

8

Legends : Data weight : Upper digit is left and lower is right.

Active low : XXX (a line is drawn over the name of pin or signal.)

Memory map address : Top-Higher, Bottom-Lower

Note : Explanation for the Note in the text.

Caution : Description that should be read carefully

Remarks : Complementary explanation for the text

Bolded text : Important items

Numerical expression : Binary ... 0bXXXX

 Decimal ... XXXX

 Hexadecimal ... 0xXXXX

{ } : Either of the items enclosed within { } can be selected.

9

Related Documents : Also use the following documents:

[Documents related to µPD7701x family]

• Data sheet

Part Number µPD77016 µPD77015 µPD77017 µPD77018 µPD77018A µPD77019 µPD77019-013

Document Number U10891E U10902E U11849E U13053E

• User’s manual and brochure

Document Name Document Number

Brochure U12395E

User’s Manual Architecture This manual

Instructions U13116E

Application Note Basic software U11958E

[Documents related to development tools]

Document Name Document Number

IE-77016-98/PC User’s Manual Hardware EEU-1541

IE77016-CM-EM6 User’s Manual EEU-1506

EB-77017 User’s Manual U12660E

Some of the above related documents are preliminary versions but are not so specified here.

Caution The above related documents are subject to change without notice. Be
sure to use the latest edition of the document when you design your
system.

10

[MEMO]

11

CONTENTS (1/3)

Chapter 1 Overview.. 19
1.1 Products of µPD7701x Family ... 20
1.2 Features of µPD7701x Family ... 21

1.2.1 Common features ... 21

1.2.2 Features of µPD77016 ... 21

1.2.3 Features of µPD77015, 77017, 77018, 77018A, and 77019 .. 21

1.3 Main Applications of µPD7701x Family ... 23

Chapter 2 Pin Functions 25
2.1 Pin Configurations 26

2.1.1 Pin configuration of µPD77016 .. 26

2.1.2 Pin configuration of µPD77015, 77017, 77018, 77018A, and 77019 ... 28

2.2 Pin Organizations 32
2.2.1 Pin organization of µPD77016 ... 32

2.2.2 Pin organization of µPD77015, 77017, 77018, 77018A, and 77019 .. 33

2.2.3 Comparison in pin configurations of µPD7701x family ... 34

2.3 Pin Functions 35
2.3.1 Pin function of µPD77016 .. 35

2.3.2 Pin function of µPD77015, 77017, 77018, 77018A, and 77019 ... 41

2.4 Handling of Unused Pins .. 4 7

Chapter 3 Architecture 49
3.1 Overall Block Organization ... 4 9
3.2 Buses 51

3.2.1 Main bus ... 51

3.2.2 Data bus ... 53

3.3 System Control Units 57
3.3.1 Clock generator .. 57

3.3.2 Reset function .. 61

3.3.3 Pipeline architecture ... 63

3.3.4 Standby function .. 66

3.4 Program Control Unit 71
3.4.1 Block configuration ... 71

3.4.2 Program execution control block .. 72

3.4.3 Flow control block ... 86

3.4.4 Interrupt .. 94

3.4.5 Error status register (ESR) ... 110

3.5 Data Addressing Unit 111
3.5.1 Block configuration ... 111

3.5.2 Data memory space ... 112

3.5.3 Addressing mode ... 124

3.6 Operation Unit 135
3.6.1 Block configuration ... 136

3.6.2 General-purpose registers and data formats ... 136

3.6.3 Operation functions of multiply accumulator (MAC) and MAC input shifter (MSFT) 141

3.6.4 Operation functions of arithmetic and logic unit (ALU) ... 147

12

CONTENTS (2/3)

3.6.5 Operation functions of barrel shifter (BSFT)... 149

3.7 Peripheral Units 151
3.7.1 Block configuration ... 151

3.7.2 Peripheral registers .. 152

3.7.3 Serial interface ... 153

3.7.4 Host interface ... 171

3.7.5 General-purpose input/output port ... 185

3.7.6 Wait controller .. 194

3.7.7 Debug interface (JTAG) .. 195

Chapter 4 Boot Function 199
4.1 General 200
4.2 Boot Modes 201

4.2.1 Classification of boot modes .. 201

4.3 Boot at Reset 205
4.3.1 Self-boot operation ... 205

4.3.2 Host boot operation .. 208

4.4 Boot Subroutine (reboot) .. 210
4.4.1 Parameters of X memory word or byte reboot ... 210

4.4.2 Parameters of Y memory word or byte reboot ... 211

4.4.3 Parameters for host reboot ... 211

4.5 Boot Time 212

Chapter 5 Development Tools 213
5.1 Software Tools 213

5.1.1 Integrated development environment work bench (WB77016) .. 214

5.1.2 Software simulator (SM77016, SM77016-H) .. 214

5.1.3 C compiler (InterToolsTM 77016) ... 214

5.1.4 System software for in-circuit emulator (ID77016) ... 214

5.2 Hardware Tools 215
5.2.1 In-circuit emulator ... 215

5.2.2 Options for in-circuit emulators ... 215

Appendix A Device Summary 217
A.1 Register List 217

A.1.1 CPU registers ... 217

A.1.2 Peripheral registers .. 221

A.2 Interrupt Vector Table 230
A.3 CPU Registers to Be Initialized and Initial Values .. 230
A.4 Memory-Mapped Registers to Be Initialized and Initial Values 231
A.5 Pins to Be Initialized and Initial Status .. 231
A.6 Status of Output Pins during Reset to Release STOP Mode ... 232
A.7 Memory Map 233

A.7.1 Instruction memory map ... 233

A.7.2 Data memory map (X/Y) ... 233

13

CONTENTS (3/3)

Appendix B Ordering Information 235
B.1 Ordering Information 235
B.2 Mask Option 236

B.2.1 Disabling CLKOUT output .. 236

B.2.2 Clock multiple ... 236

B.3 Mask ROM Ordering Format ... 236

Appendix C Index 237
C.1 Key Words 237
C.2 Acronyms, etc. 242

14

2-1 160-pin Plastic QFP ... 26

2-2 100-pin Plastic TQFP ... 28

2-3 116-Pin Plastic BGA ... 30

2-4 Pin Organization of µPD77016 .. 32

2-5 Pin Organization of µPD77015, 77017, 77018, 77018A, and 77019 ... 33

2-6 Comparison in Pin Configurations of µPD7701x Family .. 34

3-1 Overall Block Organization ... 50

3-2 Clock Circuit of µPD77016 ... 57

3-3 Clock Timing of µPD77016 .. 58

3-4 Clock Circuit of µPD77015, 77017, 77018, 77018A, 77019 .. 59

3-5 Clock Timing of µPD77015, 77017, 77018, 77018A, 77019 .. 60

3-6 Reset Timing .. 63

3-7 Pipeline Image ... 64

(a) Pipeline image 1 .. 64

(b) Pipeline image 2 .. 64

3-8 HALT Mode .. 67

(a) Releasing from HALT mode (by using interrupt) .. 67

(b) Timing of setting HALT mode ... 68

(c) Timing of releasing HALT mode ... 68

3-9 Program Control Unit ... 71

3-10 Instruction Memory Space ... 72

3-11 Instruction Memory Operation Timing .. 75

(a) Read operation timing .. 75

(b) Write operation timing .. 75

3-12 Instruction Memory Control Banks and IWTR Field Configuration... 76

3-13 Valid Timing of Instruction Memory Wait Control .. 78

3-14 Example of External Instruction Memory Interface .. 79

3-15 Normal Operation of PC ... 80

3-16 Timing of Unconditional Immediate Jump .. 83

3-17 Timing of Unconditional Indirect Jump ... 83

3-18 Timing of Conditional Immediate Jump (condition satisfied: branch) ... 84

3-19 Timing of Conditional Immediate Jump (condition not satisfied: pass) .. 84

3-20 Format of RC.. 88

3-21 Example of Repeat Instruction (repetition of 2 times) .. 90

3-22 Repeat Execution Timing (repetition of 2 times) .. 90

3-23 Format of LC .. 91

3-24 Loop Execution Timing (example of 2 loops operation) ... 93

3-25 External Interrupt Timing .. 96

3-26 Multiple Interrupt Processings .. 103

3-27 Interrupt Acknowledging Timing ... 105

3-28 Timing by RETI Instruction ... 106

(a) Unconditional ... 106

(b) Conditional instruction: Condition satisfied .. 106

3-29 Interrupt Delay Timing (one-cycle delay) .. 107

LIST OF FIGURES (1/3)

Figure No. Title Page

15

3-30 Interrupt Delay Timing (two-cycle delay) .. 108

3-31 Data Addressing Unit ... 111

3-32 X/Y Data Memory Map ... 112

3-33 Timing of Data Memory Read Cycle .. 117

(a) Without wait cycles .. 117

(b) With wait cycles ... 117

3-34 Timing of Data Memory Write Cycle ... 118

(a) Without wait cycles .. 118

(b) With wait cycles ... 118

3-35 Data Memory Control Bank and DWTR Field Configuration .. 120

(a) µPD77016 .. 120

(b) µPD77015, 77017, 77018, 77018A, 77019 ... 120

3-36 Bus Arbitration Procedure .. 122

3-37 Reversing Bits of DPn .. 128

3-38 Division of DPn... 130

3-39 Mapping of Ordinary Modulo Operation ... 131

3-40 Mapping of Modulo Adjustment .. 131

3-41 Operation Unit .. 136

3-42 Formats of General-purpose Registers .. 137

3-43 Data Exchange between General-purpose Registers and Data Memory .. 138

3-44 Signed-Signed Multiply .. 142

3-45 Signed-Unsigned Multiply .. 142

3-46 Unsigned-Unsigned Multiply .. 143

3-47 Accumulative Multiplication .. 145

3-48 1-Bit Shift Accumulative Multiplication.. 145

3-49 16-Bit Shift Accumulative Multiplication.. 146

3-50 Barrel Shifter Operations .. 150

3-51 Peripheral Units .. 151

3-52 Serial Interface ... 153

3-53 Function Diagram of Serial Interface (1 channel) ... 156

3-54 Serial Interface Output timing ... 163

(a) Continuous data ... 163

(b) Non-continuous data .. 163

3-55 Serial Interface Input timing ... 165

(a) SICM = 1, SIEF = 0; Continuous mode ... 165

(b) SICM = 0, SIEF = 1; Single mode ... 165

3-56 Serial Interfaces - Operation of the Serial Clock Counter .. 166

3-57 Host Interface ... 171

3-58 Function Diagram of Host Interface ... 173

3-59 Host Read Sequence (µPD7701x —> host): HDT read without wait .. 179

3-60 Host Write Sequence (µPD7701x <— host): HDT write without wait .. 180

3-61 General-purpose Input/Output Port .. 185

3-62 Wait Controller ... 194

3-63 Appearance of JTAG Pins .. 197

LIST OF FIGURES (2/3)

Figure No. Title Page

16

3-64 The JTAG Pin Processing .. 197

(a) µPD77016 .. 197

(b) µPD77015, 77017, 77018, 77018A, 77019 ... 198

4-1 Example of Self-boot System Configuration .. 202

(a) µPD77016 .. 202

(b) µPD77015, 77017, 77018, 77018A, 77019 ... 202

4-2 Configuration Example of Host Boot System ... 203

(a) µPD77016 .. 203

(b) µPD77015, 77017, 77018, 77018A, 77019 ... 203

4-3 Illustration of Word Boot ... 204

4-4 Illustration of Byte Boot .. 204

4-5 Host Boot Procedure .. 208

LIST OF FIGURES (3/3)

Figure No. Title Page

17

1-1 Features of µPD7701x Family ... 22

2-1 Handling of Unused Pins ... 47

3-1 Registers Connected to Main Bus ... 52

3-2 Functional Block and Bus .. 53

3-3 Registers and Memories Connected to X Data Bus... 54

3-4 Registers and Memories Connected to Y Data Bus ... 55

3-5 CPU Registers to Be Initialized and Their Initial Values ... 61

3-6 Initialized Memory-mapped Registers and Their Initial Values .. 62

3-7 Initialized Pins and Their Initial Statuses .. 62

3-8 Pin Status in HALT Mode ... 67

3-9 Pin Status in STOP Mode .. 69

3-10 Output Pin Status during Reset Period after Releasing STOP Mode .. 70

3-11 Capacity of Internal Instruction Memory... 73

3-12 Capacity of External Memory ... 73

3-13 Pin Statuses ... 74

3-14 Set Values of IWTR Fields and Number of Wait Cycles ... 77

3-15 Classification of Branch Instructions .. 82

3-16 Interrupt Causes... 94

3-17 Interrupt Vector Table ... 97

3-18 ROM and RAM Capacities ... 113

3-19 Capacity of External Data Memory .. 114

3-20 Pin Status ... 116

3-21 Set Value of DWTR Field and Number of Wait Cycles ... 121

3-22 Simultaneous Access to X and Y Memory Spaces .. 123

3-23 Modifying Data Pointers ... 129

(a) Operation ... 129

(b) Value range .. 130

3-24 Formats of General-purpose Registers .. 137

3-25 Accumulative Multiplication Function ... 144

3-26 Memory Mapping of Peripheral Registers .. 152

3-27 Status Indicators of Serial Input/output Interfaces ... 155

3-28 Pins Status during and after Hardware Reset .. 157

3-29 Conditions of Serial Input/output Error Flags Settings ... 159

3-30 Functions of SST (SST1:0x3801:X/:Y, SST2:0x3803:X/:Y) ... 160

3-31 Combination of SICM and SIEF Bits .. 161

3-32 Status Indicators of Host Read/write Interface ... 173

3-33 The Pins Status during and after Hardware Reset... 175

3-34 Function of HST (0x3807:X/:Y) .. 177

3-35 Conditions of Host Input/Output Error Flags Settings .. 178

3-36 Selecting Host Interface Registers ... 178

3-37 Port Command Register (PCD - 0x3805:X/:Y) ... 188

3-38 Test Instructions ... 196

LIST OF TABLES (1/2)

Table No. Title Page

18

LIST OF TABLES (2/2)

Table No. Title Page

4-1 P0 and P1 Reset Values and Boot Modes ... 205

4-2 Parameters for Self-booting (0x4000: Y) .. 206

4-3 Memory Map of Parameters for Word Boot ... 206

4-4 Memory Map of Parameters for Byte Boot ... 207

4-5 Boot Subroutine Entry Points ... 210

4-6 Boot Time ... 212

µPD7701x Family User's Manual 19

 1

 2

 3

 4

 5

 6

 A

 B

 C

Chapter 1

 Overview

As the 21st century approaches, multi-media systems that do not only compute numeric

data and process information as conventional computer systems do, but can also process

images and sounds, which are important interfacing elements for human beings, have come

in the limelight. Another important feature of multi-media systems is that they must provide

a real-time processing capability. As a result, the quantity of information that must be

communicated and processed is substantially increasing, the current architecture which

heavily depends on the CPU for processing information, must be reviewed, and data

processing systems that facilitate organizing multi-media systems are being increasingly

demanded.

The µPD7701x family is a collection of 16-bit fixed-point digital signal processors (DSPs) of

the new generation that have been developed for digital signal processing applications,

including multi-media systems, which require high speed and high accuracy.

Their internal circuit consists of eight 40-bit general-purpose registers that are used to load/

store or input/output data, a multiply accumulator that performs an operation of “16 bits ×
16 bits + 40 bits —> 40 bits”, a 40-bit ALU, and a 40-bit barrel shifter.

By employing as the basic technology the Harvard architecture, in which the instruction

memory space and the data memory space are separated, and by separating the data

memory space into X and Y memory areas, the µPD7701x family can execute flexible,

high-speed data transfer.

These DSPs are provided with two serial interfaces, a host interface, and general-purpose

I/O ports as peripherals. Because these interface registers are mapped on the data memory

space, various peripheral control operations can be performed by all addressing modes

provided for the data memory.

The basic operation of the µPD7701x family is executed by using a pipeline of three stages:

instruction fetch, instruction decode, and instruction execution. Some instructions, however,

do not use this pipeline, but are designed so that their execution results can be used by the

next instruction. Therefore, you can program your applications without having to pay any

special attention to the pipeline.

µPD7701x Family User's Manual20

1.1 Products of µPD7701x Family

The µPD7701x family consists of the following products:

• µPD77016

• µPD77015

• µPD77017

• µPD77018

• µPD77018A

• µPD77019

Chapter 1 Overview 1.1 Products of µPD7701x Family

µPD7701x Family User's Manual 21

1.2 Features of µPD7701x Family
The µPD7701x family is provided with sophisticated next-generation DSP functions in
addition to standard DSP technological features. The features common to all the models in
the µPD7701x family and the features of each model are described below. Table 1-1 shows
the differences among the µPD7701x family products.

1.2.1 Common features
• High-speed instruction cycle:

30 ns (µPD77016, 77015, 77017, 77018)

16.6 ns (µPD77018A, 77019)

• Harvard architecture eliminating bus neck

• Three stage pipeline architecture

• Rational combination of parallel instructions

• Multiply accumulator capable of executing 3-operand instructions (trinomial operation)

• Eight 40-bit general-purpose registers

• Eight data memory pointer registers (four each for X and Y memories)

• Dual data memory space promising flexible, high-speed data transfer

• Many addressing mode enabling flexible memory access

• Head room format eliminating operational overflow

• Various internal peripheral interfaces

• Many external interfaces

• Interrupt functions covering wide range of applications (internal: 6 levels, external: 4
levels)

• Hardware loop mechanism minimizing overhead

• Programmable external memory access wait

• Boot ROM

• Debug function (JTAG port)

• Standby function by HALT instruction

1.2.2 Features of µPD77016
The µPD77016 is the basic model of the µPD7701x family. Because it supports an external
memory area of sufficient capacity for both instructions and data in addition to the common
features of the µPD7701x family, the µPD77016 can cover a wide range of applications.

1.2.3 Features of µPD77015, 77017, 77018, 77018A, and 77019
The µPD77015, 77017, 77018, 77018A, and 77019 are ideally suited for compact and
economical embedded systems, being provided with a clock multiplier circuit (mask option),
a crystal oscillator circuit, a single, 3-V power supply, a power down function, and a 100-pin
TQFP package in addition to the common features of the µPD7701x family. The only
difference among these models is the capacity of the internal ROM and RAM. Select the
model best suited to your application.

The µPD77019-013 invalidates the internal ROM of the µPD77019. Because mask
processing is not necessary, use this model when only the internal RAM is used.

Chapter 1 Overview 1.2 Features of µPD7701x Family

µPD7701x Family User's Manual22

Table 1-1. Features of µPD7701x Family

Items µPD7701x family

µPD77016 µPD77015 µPD77017 µPD77018 µPD77018A µPD77019

Instruction cycle 30 ns(@ max. clock rate) 16.6 ns (@ max. clock rate)

Clock rate Ext. 66 MHz Ext. 33 MHz (x1 mask option) Ext. 60 MHz (x1 mask option),

(@ max. rate) Ext. 16.5 MHz (x2 mask option) Ext. 30 MHz (x2 mask option),

Ext. 8.25 MHz (x4 mask option) Ext. 20 MHz (x3 mask option),

Ext. 4.125 MHz (x8 mask option) Ext. 15 MHz (x4 mask option),

Ext. 33 MHz crystal (x1 mask option) Ext. 7.5 MHz (x8 mask option)

Ext. 60 MHz crystal (x1 mask option)

Parallel instruction execution Trinomial operation & parallel load/store

Binomial operation & parallel load/store

Monomial operation & Conditional

Register-to-register transfer & Conditional

Branch & Conditional

Hardware loop Nesting of up to 4 levels

Conditional instruction Conditional operation, conditional transfer, conditional branch by combining standard
conditional instructions with other instructions

Multiply accumulator 16 bits × 16 bits + 40 bits —> 40 bits

(such as trinomial operation: R0 = R0 + R1H * R2L)

Accumulator 40-bit inputs and 40-bit output (binomial and monomial)

General register Eight 40-bits registers (R0-R7)

Data memory pointer Four pointers for X memory (DP0-DP3), Four pointers for Y memory (DP4-DP7)

Interrupt Internal: 6 levels (6 causes), External: 4 levels (4 causes)

3-stage pipeline processing Instruction fetch, instruction decode, instruction execution

Instruction memory Boot ROM 256 words (for boot function)

(32 bits/word) Int. ROM n/a 4 K words 12 K words 24 K words 24 K words 24 K words

Int. RAM 1.5 K words 256 words 256 words 256 words 256 words 4K words

Ext. area 48 K words n/a n/a n/a n/a n/a

X data memory Int. ROM n/a 2 K words 4 K words 12 K words 12 K words 12 K words

(16 bits/word) Int. RAM 2 K words 1 K words 2 K words 3 K words 3 K words 3 K words

Ext. area 48 K words 16 K words 16 K words 16 K words 16 K words 16 K words

Y data memory Int. ROM n/a 2 K words 4 K words 12 K words 12 K words 12 K words

(16 bits/word) Int. RAM 2 K words 1 K words 2 K words 3 K words 3 K words 3 K words

Ext. area 48 K words 16 K words 16 K words 16 K words 16 K words 16 K words

Serial interface 2 channels 2 channels (without SORQ2, SIAK2 signals)

Host interface 8-bit parallel

I/O port Four ports (signal direction specifiable independently)

Supply voltage +5 V ± 10 % +2.7 to +3.6 V

Standby function Entered when HALT instruction is executed.

Powerdown function n/a Entered when STOP instruction is executed

Package 160-pin plastic 100-pin plastic TQFP 100-pin plastic 100-pin plastic
QFP TQFP, 116-pin TQFP

plastic BGA

Miscellaneous Debugging function (JTAG port)

CMOS technology

Remark n/a: not available

Chapter 1 Overview 1.2 Features of µPD7701x Family

µPD7701x Family User's Manual 23

1.3 Main Applications of µPD7701x Family
As its name implies, a DSP is a device developed for digital signal processing. DSPs

employing next generation technology, such as the µPD7701x family, are also provided

with the functions of a general-purpose CPU, including a memory access capability and

interrupt functions. Therefore, the µPD7701x can cover a wide range of applications. The

main applications of these DSPs are listed below, by field.

General signal processing
• Digital filter (FIR filter, BIQUAD filter, etc.)

• High-speed Fourier transformation

• Hilbert transformation

• Relative processing

• Adaptive filter

Communication field
• High-speed modem (V.32, etc.)

• Digital cellular telephone (voice codec, equalizer, etc.)

• MPEG

• Echo canceler

• Adaptive equalizer

• Digital PBX

• DTMF encoder/decoder

• FAX

• Spread spectrum communication

• Multiplexed communication

Sound/acoustic
• Voice recognition

• Sound coding/decoding (ADPCM, PARCOR, etc.)

• Speech synthesis (phoneme synthesis, rule synthesis, etc.)

• Synthesizer

• Electronic musical instrument

• Sound field control

• Sound effects

Chapter 1 Overview 1.3 Main Applications of µPD7701x Family

µPD7701x Family User's Manual24

Image processing/graphics
• Affine transformation

• 2-dimension orthogonal transformation (Fourier transformation, Hadamard transformation,

KL transformation, etc.)

• Filtering (smoothing, median filter, etc.)

• Various operators (Laplacian, Sobel, etc.)

• Ray tracing, Mandelbrot

• CAD (3D graphics, etc.)

• Virtual reality

• Image compression/expansion (DCT, run length, variable-length coding)

• Image recognition

• Computer animation

Control
• Navigation system

• Disc control (CD, LD, etc.)

• Various servo systems (PID, AC servo, etc.)

• Control of laser printer and copier

• Robot

• NC control

• Fuzzy control

Measurement
• Spectrum analyzer

• Function generator

• Pattern matching

• Lock-in amplifier

• Box car integrator

• Various analysis systems (vibration analysis, transient analysis)

General numeric processing and others
• Data enciphering/deciphering

• Use as numerical processor

• Neural system

Chapter 1 Overview 1.3 Main Applications of µPD7701x Family

25µPD7701x Family User's Manual

BSTB : Bus Strobe

CLKIN : Clock Input

CLKOUT : Clock Output

D0-D15 : 16-bit Data Bus

DA0-DA15 : External Data Memory
Address Bus

GND : Ground

HA0, HA1 : Host Data Access

HCS : Host Chip Select

HD0-HD7 : Host Data Bus

HOLDAK : Hold Acknowledge

HOLDRQ : Hold Request

HRD : Host Read

HRE : Host Read Enable

HWE : Host Write Enable

HWR : Host Write

IA0-IA15 : External Instruction
Memory Address Bus

I.C. : Internally Connected

ID0-ID31 : External Instruction
Memory Data Bus

INT1-INT4 : Interrupt

MRD : Memory Read Output

MWR : Memory Write Output

NC : Non-connection

P0-P3 : Port

PWR : Program Memory Write
Strobe

RESET : Reset

SCK1, SCK2 : Serial Clock Input

SI1, SI2 : Serial Data Input

SIAK1, SIAK2 : Serial Input Acknowledge

SIEN1, SIEN2 : Serial Input Enable

SO1, SO2 : Serial Data Output

SOEN1, SOEN2 : Serial Output Enable

SORQ1, SORQ2 : Serial Output Request

TCK : Test Clock

TDI : Test Data Input

TDO : Test Data Output

TICE : Test for In-circuit
Emulator

TMS : Test Mode Select

VDD : Power Supply

WAIT : Wait Input

X / Y : X / Y Memory Select

X1, X2 : Crystal Connection

 1

 2

 3

 4

 5

 6

 A

 B

 C

Chapter 2

 Pin Functions

This chapter describes the pin configurations and pin functions of the µPD7701x family.

The following are the pin names:

26 µPD7701x Family User's Manual

2.1 Pin Configurations

2.1.1 Pin configuration of µPD77016

• µPD77016GM-KMD: 160-pin plastic QFP (fine pitch) (24 × 24 mm)

Figure 2-1. 160-pin Plastic QFP

Chapter 2 Pin Functions 2.1 Pin Configurations

120 IA0
119 IA1
118 IA2
117 IA3
116 VDD
115 GND
114 IA4
113 IA5
112 IA6
111 IA7
110 IA8
109 IA9
108 IA10
107 IA11
106 VDD
105 GND
104 IA12
103 IA13
102 IA14
101 IA15
100 TMS
99 TDI
98 TCK
97 TICE
96 TDO
95 VDD
94 GND
93 HWE
92 HRE
91 HD0
90 HD1
89 HD2
88 HD3
87 HD4
86 HD5
85 HD6
84 HD7
83 HA1
82 HA0
81 HWR

N
C

ID
0

ID
1

ID
2

ID
3

ID
4

ID
5

ID
6

ID
7

V
D

D
G

N
D

ID
8

ID
9

ID
10

ID
11

ID
12

ID
13

ID
14

ID
15

V
D

D
G

N
D

ID
16

ID
17

ID
18

ID
19

ID
20

ID
21

ID
22

ID
23

V
D

D
G

N
D

P
W

R
ID

24
ID

25
ID

26
ID

27
ID

28
ID

29
ID

30
ID

31

121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160

D
15

D
14

D
13

D
12

G
N

D
V

D
D

D
11

D
10 D
9

D
8

D
7

D
6

D
5

D
4

G
N

D
V

D
D

D
3

D
2

D
1

D
0

G
N

D
V

D
D

S
I1

S
IE

N
1

S
C

K
1

S
IA

K
1

S
O

1
S

O
R

Q
1

S
O

E
N

1
G

N
D

V
D

D
S

O
E

N
2

S
O

R
Q

2
S

O
2

S
IA

K
2

S
C

K
2

S
IE

N
2

S
I2

H
C

S
H

R
D

80797877767574737271706968676665646362616059585756555453525150494847464544434241

RESET
INT4
INT3
INT2
INT1

WAIT
HOLDRQ

CLKIN
P3
P2
P1
P0

CLKOUT
GND
VDD

MWR
MRD

BSTB
HOLDAK

X/Y
DA15
DA14
DA13
DA12
GND
VDD

DA11
DA10
DA9
DA8
DA7
DA6
DA5
DA4
GND
VDD
DA3
DA2
DA1
DA0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

27µPD7701x Family User's Manual

Pin No. Pin name

1 RESET

2 INT4

3 INT3

4 INT2

5 INT1

6 WAIT

7 HOLDRQ

8 CLKIN

9 P3

10 P2

11 P1

12 P0

13 CLKOUT

14 GND

15 VDD

16 MWR

17 MRD

18 BSTB

19 HOLDAK

20 X/Y

21 DA15

22 DA14

23 DA13

24 DA12

25 GND

26 VDD

27 DA11

28 DA10

29 DA9

30 DA8

31 DA7

32 DA6

33 DA5

34 DA4

35 GND

36 VDD

37 DA3

38 DA2

39 DA1

40 DA0

Pin No. Pin name

41 D15

42 D14

43 D13

44 D12

45 GND

46 VDD

47 D11

48 D10

49 D9

50 D8

51 D7

52 D6

53 D5

54 D4

55 GND

56 VDD

57 D3

58 D2

59 D1

60 D0

61 GND

62 VDD

63 SI1

64 SIEN1

65 SCK1

66 SIAK1

67 SO1

68 SORQ1

69 SOEN1

70 GND

71 VDD

72 SOEN2

73 SORQ2

74 SO2

75 SIAK2

76 SCK2

77 SIEN2

78 SI2

79 HCS

80 HRD

Pin No. Pin name

121 ID31

122 ID30

123 ID29

124 ID28

125 ID27

126 ID26

127 ID25

128 ID24

129 PWR

130 GND

131 VDD

132 ID23

133 ID22

134 ID21

135 ID20

136 ID19

137 ID18

138 ID17

139 ID16

140 GND

141 VDD

142 ID15

143 ID14

144 ID13

145 ID12

146 ID11

147 ID10

148 ID9

149 ID8

150 GND

151 VDD

152 ID7

153 ID6

154 ID5

155 ID4

156 ID3

157 ID2

158 ID1

159 ID0

160 NC

Pin No. Pin name

81 HWR

82 HA0

83 HA1

84 HD7

85 HD6

86 HD5

87 HD4

88 HD3

89 HD2

90 HD1

91 HD0

92 HRE

93 HWE

94 GND

95 VDD

96 TDO

97 TICE

98 TCK

99 TDI

100 TMS

101 IA15

102 IA14

103 IA13

104 IA12

105 GND

106 VDD

107 IA11

108 IA10

109 IA9

110 IA8

111 IA7

112 IA6

113 IA5

114 IA4

115 GND

116 VDD

117 IA3

118 IA2

119 IA1

120 IA0

Chapter 2 Pin Functions 2.1 Pin Configurations

28 µPD7701x Family User's Manual

2.1.2 Pin configuration of µPD77015, 77017, 77018, 77018A, and 77019

(1) 100-pin plastic TQFP (FINE PITCH) (14 × 14 mm)

• µPD77015GC-×××-9EU

• µPD77017GC-×××-9EU

• µPD77018GC-×××-9EU

• µPD77018AGC-×××-9EU

• µPD77019GC-×××-9EU

Figure 2-2. 100-pin Plastic TQFP

Chapter 2 Pin Functions 2.1 Pin Configurations

75 HD2
74 HD3
73 HD4
72 HD5
71 HD6
70 HD7
69 VDD

68 GND
67 HWE
66 HRE
65 P0
64 P1
63 P2
62 P3
61 SI2
60 SIEN2
59 SCK2
58 SO2
57 SOEN2
56 VDD

55 GND
54 SOEN1
53 SORQ1
52 SO1
51 SIAK1

H
D

1

76

H
D

0

77

H
C

S

78

H
R

D

79

H
W

R

80

H
A

0

81

H
A

1

82

G
N

D

83
X

2
84

X
1

85

V
D

D

86

C
LK

O
U

T

87

T
D

O

88

T
IC

E

89

T
C

K

90

T
D

I

91

T
M

S

92

H
O

LD
R

Q

93

H
O

LD
A

K

94

M
W

R

95

G
N

D

96

V
D

D

97

M
R

D

98

B
S

T
B

99

W
A

IT

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

RESET
INT4
INT3
INT2
INT1

I.C.
X/Y

DA13
DA12
GND
VDD

DA11
DA10

DA9
DA8
DA7
DA6
DA5
DA4
GND
VDD

DA3
DA2
DA1
DA0

50494847464544434241403938373635343332313029282726

S
C

K
1

S
IE

N
1

S
I1D
0

D
1

D
2

D
3

V
D

D

G
N

DD
4

D
5

D
6

D
7

V
D

D

G
N

DD
8

D
9

D
10

D
11V
D

D

G
N

D
D

12
D

13
D

14
D

15

100

29µPD7701x Family User's Manual

Pin No. Pin name

1 RESET

2 INT4

3 INT3

4 INT2

5 INT1

6 I.C.Note

7 X/Y

8 DA13

9 DA12

10 GND

11 VDD

12 DA11

13 DA10

14 DA9

15 DA8

16 DA7

17 DA6

18 DA5

19 DA4

20 GND

21 VDD

22 DA3

23 DA2

24 DA1

25 DA0

Pin No. Pin name

26 D15

27 D14

28 D13

29 D12

30 GND

31 VDD

32 D11

33 D10

34 D9

35 D8

36 GND

37 VDD

38 D7

39 D6

40 D5

41 D4

42 GND

43 VDD

44 D3

45 D2

46 D1

47 D0

48 SI1

49 SIEN1

50 SCK1

Pin No. Pin name

51 SIAK1

52 SO1

53 SORQ1

54 SOEN1

55 GND

56 VDD

57 SOEN2

58 SO2

59 SCK2

60 SIEN2

61 SI2

62 P3

63 P2

64 P1

65 P0

66 HRE

67 HWE

68 GND

69 VDD

70 HD7

71 HD6

72 HD5

73 HD4

74 HD3

75 HD2

Pin No. Pin name

76 HD1

77 HD0

78 HCS

79 HRD

80 HWR

81 HA0

82 HA1

83 GND

84 X2

85 X1

86 VDD

87 CLKOUT

88 TDO

89 TICE

90 TCK

91 TDI

92 TMS

93 HOLDRQ

94 HOLDAK

95 MWR

96 GND

97 VDD

98 MRD

99 BSTB

100 WAIT

Note Leave this pin unconnected because the I.C. pin is connected to internal circuits.

Chapter 2 Pin Functions 2.1 Pin Configurations

30 µPD7701x Family User's Manual

 (2) 116-pin plastic BGA (FINE PITCH) (12 × 12 mm)

• µPD77018AS9-×××-YJC

Figure 2-3. 116-Pin Plastic BGA

N

13
12
11
10
9
8
7
6
5
4
3
2
1

M L K J H G F E D C B A A B C D E F G H J K L M N

Index mark

(Bottom View) (Top View)

Chapter 2 Pin Functions 2.1 Pin Configurations

31µPD7701x Family User's Manual

Pin No. Pin name

A2 BSTB

A3 VDD

A4 MWR

A5 HOLDAK

A6 TDI

A7 TDO

A8 VDD

A9 HA1

A10 HRD

A11 HCS

A12 HD0

B1 WAIT

B2 VDD

B3 VDD

B4 GND

B5 HOLDRQ

B6 TCK

B7 CLKOUT

B8 X2

B9 HA0

B10 VDD

B11 HD1

B12 HD2

B13 HD3

C1 RESET

C2 VDD

C3 VDD

C4 MRD

C5 GND

Pin No. Pin name

C6 TMS

C7 TICE

C8 X1

C9 GND

C10 HWR

C11 VDD

C12 VDD

C13 HD5

D1 INT2

D2 INT4

D3 INT3

D11 HD4

D12 VDD

D13 VDD

E1 X/Y

E2 INT1

E3 I.C.Note

E11 HD6

E12 HD7

E13 HWE

F1 VDD

F2 DA13

F3 DA12

F11 GND

F12 P0

F13 HRE

G1 DA10

G2 GND

G3 DA11

Pin No. Pin name

G11 P1

G12 P3

G13 P2

H1 DA7

H2 DA9

H3 DA8

H11 SI2

H12 SCK2

H13 SIEN2

J1 DA4

J2 DA6

J3 DA5

J11 SO2

J12 SOEN2

J13 VDD

K1 VDD

K2 VDD

K3 GND

K11 GND

K12 GND

K13 SOEN1

L1 DA3

L2 VDD

L3 D14

L4 GND

L5 D10

L6 GND

L7 D6

L8 GND

Pin No. Pin name

L9 D2

L10 D0

L11 GND

L12 SIAK1

L13 SORQ1

M1 DA2

M2 DA1

M3 DA0

M4 GND

M5 D11

M6 D9

M7 D7

M8 D5

M9 D3

M10 GND

M11 GND

M12 SCK1

M13 SO1

N2 D15

N3 D13

N4 D12

N5 VDD

N6 D8

N7 VDD

N8 D4

N9 VDD

N10 D1

N11 SI1

N12 SIEN1

Note Leave this pin unconnected because the I.C. pin is connected to internal circuits.

Chapter 2 Pin Functions 2.1 Pin Configurations

32 µPD7701x Family User's Manual

+5 V

VDDSO1
SORQ1
SOEN1
SCK1
SI1
SIEN1
SIAK1
SO2
SORQ2
SOEN2
SCK2
SI2
SIEN2
SIAK2
P0-P3
HCS
HA0, HA1
HRD
HRE
HWR
HWE
HD0-HD7
TDO, TICE
TCK, TDI, TMS

RESET
INT1
INT2
INT3
INT4

CLKIN
CLKOUT

PWR
IA0-IA15
ID0-ID31

Serial
interface

 #1

Serial
interface

 #2

Port

Host
interface

Debug
interface

(4)

(2)

(8)

(2)

(3)

GND

X/Y
DA0-DA15

D0-D15
WAIT
MRD
MWR

HOLDRQ
BSTB

HOLDAK

(32)

(16)

(16)

(16)
External

data memory

Data bus
control

External
instruction
memory

Clock

Reset,
Interrupt

Chapter 2 Pin Functions 2.2 Pin Organizations

2.2 Pin Organizations
This section describes the pin connections shown in section 2.1 by function.

2.2.1 Pin organization of µPD77016

The figure below shows the pin organization of the µPD77016.

Figure 2-4. Pin Organization of µPD77016

33µPD7701x Family User's Manual

2.2.2 Pin organization of µPD77015, 77017, 77018, 77018A, and 77019

The figure below shows the pin organization of the µPD77015, 77017, 77018, 77018A, and

77019.

Figure 2-5. Pin Organization of µPD77015, 77017, 77018, 77018A, and 77019

+3 V

VDDSO1
SORQ1
SOEN1
SCK1
SI1
SIEN1
SIAK1
SO2
SOEN2
SCK2
SI2
SIEN2

P0-P3

HCS
HA0, HA1
HRD
HRE
HWR
HWE
HD0-HD7
TDO, TICE
TCK, TDI, TMS

X1
X2

CLKOUT

Serial
interface

#1

Serial
interface

#2

Port

Host
interface

Debug
interface

(4)

(2)

(8)

(2)

(3)

GND

X/Y
DA0-DA13

D0-D15
WAIT
MRD
MWR

HOLDRQ
BSTB

HOLDAK

(14)

(16)
External

data memory

Data bus
control

Clock

Reset,
Interrupt

RESET
INT1
INT2
INT3
INT4

Chapter 2 Pin Functions 2.2 Pin Organizations

34 µPD7701x Family User's Manual

2.2.3 Comparison in pin configurations of µPD7701x family

Some pins of the µPD77016 are different in configuration from those of the µPD77015,

77017, 77018, 77018A, and 77019 as shown in the comparative figure below.

Figure 2-6. Comparison in Pin Configurations of µPD7701x Family

Chapter 2 Pin Functions 2.2 Pin Organizations

+3 V +5 V

SO1

SORQ1

SOEN1

SCK1

SI1

SIEN1

SIAK1

SO2

SORQ2

SOEN2

SCK2

SI2

SIEN2

SIAK2

Serial
interface

#1

Serial
interface

#2

44
Port

Host
interface

22

88

HCS

HA0, HA1

HRD

HRE

HWR

HWE

HD0-HD7

P0-P3

VDD

TDO

TICE

TCK

TDI

TMS

Debug
interface

1616

1416
X/Y

DA0-DA15

D0-D15

WAIT

MRD

MWR

HOLDRQ

BSTB

HOLDAK

DA0-DA13

PWR

IA0-IA15

ID0-ID31
32

16

X1

X2

CLKIN

CLKOUT

RESET

INT1

INT2

INT3

INT4

GND

µ

µ

PD77015, 77017, 77018, 77018A, 77019

PD77016

Reset,
Interrupt

Clock

Data bus
control

Data
memory
interface

Instruction
memory
interface

Remark Italicized pins are those which separate the µPD77016 from
the other family members.

35µPD7701x Family User's Manual

2.3 Pin Functions

2.3.1 Pin function of µPD77016

(1) Power supply

Pin name Pin No. I/O Function

VDD 15, 26, 36, 46, — +5-V power supply. Connect all these pins to a +5-V
56, 62, 71, 95, power supply.
106, 116, 131,
141, 151

GND 14, 25, 35, 45, — Ground. Connect all these pins to 0 V.
55, 61, 70, 94,
105, 115, 130,
140, 150

(2) System control

Pin name Pin No. I/O Function

CLKIN 8 Input Clock input. Always supply the clock in normal device
operation. In the standby mode, however, clock supply
may be stopped.

CLKOUT 13 Output Internal system clock output. Clock divided by two in
synchronization with CLKIN. Used for processing by
an external circuit in synchronization with the instruction
cycle of the µPD77016.

RESET 1 Input Internal system reset signal input. Initializes the
hardware of the device. Be sure to input the RESET
signal after power application to the device.

(3) Interrupt

Pin name Pin No. I/O Function

INT1-INT4 5-2 Input External interrupt inputs. These interrupt inputs can
be masked and are detected at the falling edge. If
interrupts conflict, a one level recording function is
available for each input.

Chapter 2 Pin Functions 2.3 Pin Functions

36 µPD7701x Family User's Manual

Chapter 2 Pin Functions 2.3 Pin Functions

(4) External data memory interface

Pin name Pin No. I/O Function

X / Y 20 Output Memory space select signal output.
(3S) • 0: Selects X memory space.

• 1: Selects Y memory space.
The X and Y memory spaces of an external memory
cannot be accessed at the same time.

DA0-DA15 40 - 37 Output Address bus for external data memory.
34 - 27 (3S) • Accesses an external memory.
24 - 21 When external memory is not accessed, this bus

keeps outputting the address of the external memory
memory location accessed last. If the external has
never been accessed after reset, it outputs a low
level (0x0000).

D0-D15 60 - 57, I/O (3S) 16-bit data bus.
54 - 47, • Accesses an external memory.
44 - 41

MRD 17 Output Read output.
(3S) • External memory read.

MWR 16 Output Write output.
(3S) • External memory write.

WAIT 6 Input Wait signal input. Wait cycles specified by DWTR
(data memory wait cycle register) are inserted when
the external data memory is accessed, and this
signal is sampled at the end of the wait cycles.
While the WAIT signal is active (low level), wait
cycles are unconditionally inserted.
• 0: Wait
• 1: No wait (If the wait cycle specified by DWTR has

been completed.)

HOLDRQ 7 Input Hold request signal input. An external circuit asserts
this signal active (low level) when it uses the data
memory bus.
• 0: Hold request
• 1: No request

BSTB 18 Output Bus strobe signal output. This signal is asserted
active (low level) when the µPD77016 uses the
external data bus.
• 0: µPD77016 uses the bus.
• 1: µPD77016 does not use the bus.

HOLDAK 19 Output Hold acknowledge signal output. This signal is
asserted active (low level) when an external circuit
requests HOLDRQ and then the external circuit is
enabled to use the data memory bus.
• 0: Enables the external circuit to use the data memory

bus.
• 1: Prevents the external circuit from using the data

memory bus.

Remark “3S” in the “I/O” column of the above table stands for three-state pin, and these pins go into a high-
impedance state when the external data memory is not accessed and when the bus is released
(HOLDAK = 0).

37µPD7701x Family User's Manual

(5) Serial interface

Pin name Pin No. I/O Function

SCK1 65 Input Serial #1 channel clock input. Signals related to
serial input/output are sampled in synchronization
with this signal.

SORQ1 68 Output Serial #1 channel output request signal output. This
signal is asserted active (high level) before serial
data is output.
• 0: Serial data is not output.
• 1: Serial data is output.

SOEN1 69 Input Serial #1 channel output enable signal input. This
signal is asserted active (high level) to inform the
µPD77016 that the external circuit is ready to accept
serial output data.
• 0: Not ready to accept serial data output.
• 1: Ready to accept serial data output

SO1 67 Output Serial #1 channel data output. This signal is output
(3S) in synchronization with the rising of SCK1.

SIEN1 64 Input Serial #1 channel input enable signal input. This
signal is asserted active (high level) to inform the
µPD77016 that the external circuit is ready to supply
serial data.
• 0: Not ready to supply serial data.
• 1: Ready to supply serial data.

SI1 63 Input Serial #1 channel data input. This signal is input in
synchronization with the falling of SCK1.

SIAK1 66 Output Serial #1 channel input acknowledge signal output.
This signal informs the external circuit that the
µPD77016 is ready to input serial data.
• 0: Not ready to accept serial data input.
• 1: Ready to accept serial data input.

SCK2 76 Input Serial #2 channel clock input. Signals related to
serial input/output are sampled in synchronization
with this signal.

SORQ2 73 Output Serial #2 channel output request signal output. This
signal is asserted active (high level) before serial
data is output.
• 0: Serial data is not output.
• 1: Serial data is output.

Remark “3S” in the “I/O” column of the above table stands for three-state pin, and these pins go into a high-
impedance state when data output have been finished or RESET is input.

Chapter 2 Pin Functions 2.3 Pin Functions

38 µPD7701x Family User's Manual

Pin name Pin No. I/O Function

SOEN2 72 Input Serial #2 channel output enable signal input. This
signal is asserted active (high level) to inform the
µPD77016 that the external circuit is ready to accept
serial data output.
• 0: Not ready to accept serial data output.
• 1: Ready to accept serial data input

SO2 74 Output Serial #2 channel data output. This signal is output
(3S) in synchronization with the rising of SCK2.

SIEN2 77 Input Serial #2 channel input enable signal. This signal is
asserted active (high level) to inform the µPD77016
that the external circuit is ready for supplying serial
data.
• 0: Not ready to supply serial data
• 1: Ready to supply serial data

SI2 78 Input Serial #2 channel data input. This signal is input in
synchronization with the falling of SCK2.

SIAK2 75 Output Serial #2 channel input acknowledge signal output.
This signal informs the external circuit that the
µPD77016 is ready to input serial data.
• 0: Not ready to accept serial data input.
• 1: Ready to accept serial data input.

Remark “3S” in the “I/O” column of the above table stands for three-state pin, and these pins go into a high-
impedance state when data output have been finished or RESET is input.

Chapter 2 Pin Functions 2.3 Pin Functions

39µPD7701x Family User's Manual

(6) Host interface

Pin name Pin No. I/O Function

HA1 83 Input Specifies the register to be accessed by HD0 through
HD7.
• 0: When the µPD77016 is read (HRD = 0), the host

transmission data register (HDT (out)) is
accessed: when it is written (HWR = 0), the host
receive data register (HDT (in)) is accessed.

• 1: The host interface status register (HST) is
accessed.

HA0 82 Input Specifies the register to be accessed by HD0 through
HD7.
• 0: Bits 7 through 0 of HST, HDT (out), and HDT (in)

are accessed.
• 1: Bits 15 through 8 of HST, HDT (out), and HDT

(in) are accessed.

HCS 79 Input Chip select input.

HRD 80 Input Host read input. Pulse read from the host. Data is
output in synchronization with the falling of this signal.

HWR 81 Input Host write input. Pulse written from the host. Data is
input in synchronization with the rising of this signal.

HRE 92 Output Host read enable output. When this signal is active
(low level), the host can access the µPD77016 for
read.
• 0: Host can access for read.
• 1: Host cannot access for read.

HWE 93 Output Host write enable output. When this signal is active
(low level), the host can access the µPD77016 for
write.
• 0: Host can access for write.
• 1: Host cannot access for write

HD0-HD7 91-84 I/O (3S) 8-bit host data bus

Remark “3S” in the “I/O” column of the above table stands for three-state pin, and these pins go into a high-
impedance state when host does not access the µPD7701x’s host interface.

(7) I/O port

Pin name Pin No. I/O Function

P0-P3 12-9 I/O General-purpose I/O port. Each pin can be set in the
input or output mode independently by PCD (port
command register). Data is input or output via PCD
and PDT (port data register).

Chapter 2 Pin Functions 2.3 Pin Functions

40 µPD7701x Family User's Manual

(8) External instruction memory interface

Pin name Pin No. I/O Function

IA0-IA15 120 - 117, Output External instruction memory address bus.
114 - 107, (3S) Even when the internal instruction memory of the
104 - 101 µPD77016 is accessed, the address internally

accessed is output to an external device. At this
time, the data output from the external instruction
memory is ignored.

ID0-ID31 159 - 152, I/O (3S) 32-bit instruction input
149 - 142,
139 - 132,
128 - 121,

PWR 129 Output Program memory write strobe.
(3S) While the µPD77016 is performing a boot operation,

this signal is used as a write strobe to the external
instruction memory when the program is loaded to
the external instruction memory, instead of the
internal memory.

Remark “3S” in the “I/O” column of the above table stands for three-state pin, and these pins go into a high-
impedance state when the hardware reset signal is input.

(9) Debug interface

Pin name Pin No. I/O Function

TDO 96 Output Used for debugging.

TICE 97 Output Used for debugging.

TCK 98 Input Used for debugging.

TDI 99 Input Used for debugging.

TMS 100 Input Used for debugging.

(10) Other

Pin name Pin No. I/O Function

NC 160 — Non-connection

Chapter 2 Pin Functions 2.3 Pin Functions

41µPD7701x Family User's Manual

2.3.2 Pin function of µPD77015, 77017, 77018, 77018A, and 77019

Because the pin numbers differ depending on the package, refer to the pin numbers of the

package used.

(1) Power supply

Pin name Pin No. I/O Function
TQFP BGA

VDD 11, 21, A3, A8, B2 — +3-V power supply. Connect all these pins to a
31, 37, B3, B10, C2, +3-V power supply.
43, 56, C3, C11,
69, 86, C12, D12,
97 D13, F1, J13,

K1, K2, L2,
N5, N7, N9

GND 10, 20, B4, C5, C9, — Ground. Connect all these pins to 0 V.
30, 36, F11, G2, K3,
42, 55, K11, K12,
68, 83, L4, L6, L8,
96 L11, M4,

M10, M11

(2) System control

Pin name Pin No. I/O Function

TQFP BGA

X1 85 C8 Input Clock input or crystal oscillator connection. Use
this pin to input an external clock. Always supply
the clock in normal device operation. In the stop
mode, however, clock supply may be stopped.

X2 84 B8 — Crystal oscillator connection. When using an
external clock, leave this pin open. Always leave
this pin on the µPD77019-013 open.

CLKOUT 87 B7 Output Internal system clock output. Output synchronized
with the clock input or crystal oscillation frequency
supplied to X1. Use this pin when processing in
synchronization with the instruction cycle of the
µPD77015, 77017, 77018, 77018A, or 77019 is
necessary for the external circuit. Output of the
internal system clock can be also suppressed
(fixed to low level) by mask option.

RESET 1 C1 Input Internal system reset signal input. Initializes the
hardware of the device. Be sure to input the
RESET signal after power application to the
device.

(3) Interrupt

Pin name Pin No. I/O Function

TQFP BGA

INT1-INT4 5-2 E2, D1, Input External interrupt inputs. These interrupt inputs
D3, D2 can be masked and are detected at the falling

edge. If interrupts conflict, a one level recording
function is available for each input.

Chapter 2 Pin Functions 2.3 Pin Functions

42 µPD7701x Family User's Manual

Chapter 2 Pin Functions 2.3 Pin Functions

(4) External data memory interface

Pin name Pin No. I/O Function
TQFP BGA

X / Y 7 E1 Output Memory space select signal output.
(3S) • 0: Selects X memory space.

• 1: Selects Y memory space.
The X and Y memory spaces of an external
memory cannot be accessed at the same time.

DA0-DA13 25 - 22, M3 - M1, Output Address bus for external data memory.
19 - 12 L1, J1, J3, (3S) • Accesses an external memory.
8, 9 J2, H1, H3, When the external memory is not accessed, this

H2, G1, bus keeps outputting the address of the external
G3, F3, F2 memory location accessed last. If the external

memory has never been accessed after reset, it
outputs a low level (0x0000).

D0-D15 47 - 44, L10, N10, I/O (3S) 16-bit data bus.
41 - 38, L9, M9, N8, Accesses an external memory.
35 - 32, M8, L7, M7,
29 - 26 N6, M6, L5,

M5, N4, N3,
L3, N2

MRD 98 C4 Output Read output.
(3S) External memory read.

MWR 95 A4 Output Write output.
(3S) External memory write.

WAIT 100 B1 Input Wait signal input. Wait cycles specified by DWTR
(data memory wait cycle register) are inserted
when the external data memory is accessed, and
this signal is sampled at the end of the wait cycles.
While the WAIT signal is active (low level), wait
cycles are unconditionally inserted.
• 0: Wait
• 1: No wait (However, if the wait cycle specified

by DWTR has been completed.)

HOLDRQ 93 B5 Input Hold request signal input. An external circuit
asserts this signal active (low level) when it uses
the data memory bus.
• 0: Hold request
• 1: No wait

BSTB 99 A2 Output Bus strobe signal output. This signal is asserted
active (low level) when the µPD77015, 77017, 77018,
77018A, or 77019 uses the external data bus.
• 0: µPD77015, 77017, 77018, 77018A, or 77019

uses the bus.
• 1: µPD77015, 77017, 77018, 77018A, or 77019

does not use the bus.

HOLDAK 94 A5 Output Hold acknowledge signal output. This signal is
asserted active (low level) when an external
circuit requests HOLDRQ and then the external
circuit is enabled to use the data memory bus.
• 0: Enables the external circuit to use the data

memory bus.
• 1: Does not enable the external circuit to use the

data memory bus.

Remark “3S” in the “I/O” column of the above table stands for three-state pin, and these pins go into a high-
impedance state when the external data memory is not accessed and when the bus is released
(HOLDAK = 0).

43µPD7701x Family User's Manual

(5) Serial interface

Pin name Pin No. I/O Function
TQFP BGA

SCK1 50 M12 Input Serial #1 channel clock input. Signals related to
serial input/output are sampled in synchronization
with this signal.

SORQ1 53 L13 Output Serial #1 channel output request signal output.
This signal is asserted active (high level) before
serial data is output.
• 0: Serial data is not output.
• 1: Serial data is output.

SOEN1 54 K13 Input Serial #1 channel output enable signal input.
This signal is asserted active (high level) to
inform the µPD77015, 77017, 77018, 77018A, or
77019 that the external circuit is ready to accept
serial output data.
• 0: Not ready to accept serial data output.
• 1: Ready to accept serial data output

SO1 52 M13 Output Serial #1 channel data output. This signal is
(3S) output in synchronization with the rising of

SCK1.

SIEN1 49 N12 Input Serial #1 channel input enable signal input. This
signal is asserted active (high level) to inform
the µPD77015, 77017, 77018, 77018A, or 77019
that the external circuit is ready to supply serial
data.
• 0: Not ready to supply serial data.
• 1: Ready to supply serial data.

SI1 48 N11 Input Serial #1 channel data input. This signal is input
in synchronization with the falling of SCK1.

SIAK1 51 L12 Output Serial #1 channel input acknowledge signal
output. This signal informs the external circuit
that the µPD77015, 77017, 77018, 77018A or
77019 is ready to input serial data.
• 0: Not ready to accept serial data input.
• 1: Ready to accept serial data input.

SCK2 59 H12 Input Serial #2 channel clock input. Signals related to
serial input/output are sampled in synchronization
with this signal.

Remark “3S” in the “I/O” column of the above table stands for three-state pin, and these pins go into a high-
impedance state when data output have been finished or RESET is input.

Chapter 2 Pin Functions 2.3 Pin Functions

44 µPD7701x Family User's Manual

Pin name Pin No. I/O Function

TQFP BGA

SOEN2 57 J12 Input Serial #2 channel output enable signal input.
This signal is asserted active (high level) to
inform the µPD77015, 77017, 77018, 77018A, or
77019 that the external circuit is ready to accept
serial data output.
• 0: Not ready to accept serial data output.
• 1: Ready to accept serial data input

SO2 58 J11 Output Serial #2 channel data output. This signal is
(3S) output in synchronization with the rising of

SCK2.

SIEN2 60 H13 Input Serial #2 channel input enable signal. This
signal is asserted active (high level) to inform
the µPD77015, 77017, 77018, 77018A, or 77019
that the external circuit is ready to supply serial
data.
• 0: Not ready to supply serial data
• 1: Ready to supply serial data

SI2 61 H11 Input Serial #2 channel data input. This signal is input
in synchronization with the falling of SCK2.

Remark “3S” in the “I/O” column of the above table stands for three-state pin, and these pins go into a high-
impedance state when data output have been finished or RESET is input.

Chapter 2 Pin Functions 2.3 Pin Functions

45µPD7701x Family User's Manual

(6) Host interface

Pin name Pin No. I/O Function
TQFP BGA

HA1 82 A9 Input Specifies the register to be accessed by HD0
through HD7.
• 0: When the µPD77015, 77017, 77018, 77018A,

or 77019 is read (HRD = 0), the host
transmission data register (HDT (out)) is
accessed: when it is written (HWR = 0), the
host receive data register (HDT (in)) is
accessed.

• 1: The host interface status register (HST) is
accessed.

HA0 81 B9 Input Specifies the register to be accessed by HD0
through HD7.
• 0: Bits 7 through 0 of HST, HDT (out), and HDT

(in) are accessed.
• 1: Bits 15 through 8 of HST, HDT (out), and HDT

(in) are accessed.

HCS 78 A11 Input Chip select input

HRD 79 A10 Input Host read input. Pulse read from the host. Data
is output in synchronization with the falling of
this signal.

HWR 80 C10 Input Host write input. Pulse written from the host.
Data is input in synchronization with the rising of
this signal.

HRE 66 F13 Output Host read enable output. When this signal is
active (low level), the host can access the
µPD77015, 77017, 77018, 77018A, or 77019 for
read.
• 0: Host can access for read.
• 1: Host cannot access for read.

HWE 67 E13 Output Host write enable output. When this signal is
active (low level), the host can access the
µPD77015, 77017, 77018, 77018A, or 77019 for
write.
• 0: Host can access for write.
• 1: Host cannot access for write

HD0-HD7 77-70 A12, I/O (3S) 8-bit host data bus
B11 - B13,
D11, C13,
E11, E12

Remark “3S” in the “I/O” column of the above table stands for three-state pin, and these pins go into a high-
impedance state when the host does not access the µPD7701x’s host interface.

(7) I/O port

Pin name Pin No. I/O Function

TQFP BGA

P0-P3 65-62 F12, I/O General-purpose I/O port. Each pin can be set in
G11, the input or output mode independently by PCD
G13, (port command register). Data is input or output
G12 via PCD and PDT (port data register).

Chapter 2 Pin Functions 2.3 Pin Functions

46 µPD7701x Family User's Manual

(8) Debug interface

Pin name Pin No. I/O Function
TQFP BGA

TDO 88 A7 Output Used for debugging.

TICE 89 C7 Output Used for debugging.

TCK 90 B6 Input Used for debugging.

TDI 91 A6 Input Used for debugging.

TMS 92 C6 Input Used for debugging.

(9) Others

Pin name Pin No. I/O Function
TQFP BGA

I.C. 6 E3 — Internally connected: Open this pin.

Caution Be sure not to connect the I.C. pin. If any signal is applied
to the I.C. pin or if the I.C. pin status is read out, normal
operation of the device is not guaranteed.

Chapter 2 Pin Functions 2.3 Pin Functions

47µPD7701x Family User's Manual

Chapter 2 Pin Functions 2.4 Handling of Unused Pins

2.4 Handling of Unused Pins
It is recommended that unused pins be connected as shown in the table below.

Table 2-1. Handling of Unused Pins

Pin Direction Recommended Connection

INT1-INT4 I Connect to VDD.

X / Y O Open

DA0-DA15 O Open

D0-D15Note 1 I/O Connect to VDD via pull-up resistor, or to GND via pull-down resistor.

MRD, MWR O Open

WAIT I Connect to VDD.

HOLDRQ I Connect to VDD.

BSTB O Open

HOLDAK O Open

SCK1, SCK2 I Connect to VDD or GND.

SI1, SI2 I Connect to VDD or GND.

SIEN1, SIEN2 I Connect to GND.

SOEN1, SOEN2 I Connect to GND.

SORQ1, SORQ2 O Open

SO1, SO2 O Open

SIAK1, SIAK2 O Open

HA0, HA1 I Connect to VDD or GND.

HCS, HRD, HWR I Connect to VDD.

HRE, HWE O Open

HD0-HD7Note 2 I/O Connect to VDD via pull-up resistor, or to GND via pull-down resistor.

P0-P3 I/O Connect to VDD via pull-up resistor, or to GND via pull-down resistor.

ID0-ID31 I/O Connect to VDD via pull-up resistor, or to GND via pull-down resistor.

IA0-IA15 O Open

PWR O Open

TCK I Connect to GND via pull-down resistor.

TDO,TICE O Open

TMS, TDI I Open (pulled up internally)

CLKOUT O Open

48 µPD7701x Family User's Manual

Chapter 2 Pin Functions 2.4 Handling of Unused Pins

Remark I: Input pin, O: Output pin, I/O: I/O pin

Notes 1. These pins may be left open if the external data memory is not accessed by program. To reduce the
current consumption by using the halt mode or stop mode, however, observe the recommended
connection.

2. These pins may be left open if HCS, HRD, and HWR are fixed to high level.
To reduce the current consumption by using the halt mode or stop mode, however, observe the
recommended connection.

µPD7701x Family User's Manual 49

 1

 2

 3

 4

 5

 6

 A

 B

 C

Chapter 3

Architecture

This chapter describes the architecture of the µPD7701x family by dividing it into several

physical blocks and explaining the functions of each block. The overall organization is

described in section 3.1, and the details (units) are then described in section 3.2 and following

sections.

3.1 Overall Block Organization
This section divides the physical structure of the µPD7701x family into several functional

blocks for explanation.

The µPD7701x family consists of the following internal units:

• Buses (main bus, X data bus, and Y data bus)

Refer to section 3.2 “Buses.”

• System control units

Refer to section 3.3 “System Control Units.”

• Program control unit

Refer to section 3.4 “Program Control Unit.”

• Data addressing unit

Refer to section 3.5 “Data Addressing Unit.”

• Operation unit

Refer to section 3.6 “Operation Unit.”

• Peripheral unit

Refer to section 3.7 “Peripheral Unit.”

Figure 3-1 illustrates the block organization. Refer to the corresponding sections for the

functions of the respective blocks.

µPD7701x Family User's Manual50

Figure 3-1. Overall Block Organization

Chapter 3 Architecture 3.1 Overall Block Organization

External data
memory interface

Serial interface #1

Serial interface #2

Host interface

General-purpose
I/O port

Debug interface
(JTAG)

Clock, Reset

Program control unit (See section 3.4)

Main bus (See section 3.2.1)

Operation unit
(See section 3.6)

Data addressing unit
(See section 3.5)

Peripheral unit
(See section 3.7)

External Internal

X data bus (See section 3.2.2)

Y data bus (See section 3.2.2)

Peripheral bus

X data
memory

Y data
memory

R0-R7
MAC,
ALU,

BSFT

LOOP
control
stack

Interrupt
control

Flow
control

Program
execution
control

Instruction
memory

PC
stack

Serial I/O

Wait controller

Host I/O

Port

JTAG I/O

External instruction
memory

System control unit (See section 3.3)

System
clock Reset Standby

Instruction
execution
pipeline

Clock generator

External interrupt
INT1-INT4

µPD7701x Family User's Manual 51

3.2 Buses
A bus transfers data between external devices and the processor. The µPD7701x family is

provided with the following three types of buses:

• Main bus

• X data bus

• Y data bus

3.2.1 Main bus

(1) Function

This 16-bit bus connects the general-purpose registers (R0-R7) and control registers, etc. It

transfers data when the following instructions are executed:

• Register-to-register transfer instruction

This instruction transfers data between the L part of a general-purpose register and a non-

general-purpose register. These registers are listed in Table 3-1. Note that this instruction

transfers only the L part of a general-purpose register.

For details, refer to “µPD7701x Family User’s Manual Instructions.”

Caution A general-purpose register consists of 40 bits. These 40
bits are divided into three parts: L (lower 16 bits), H (16
bits in the middle), and E (higher 8 bits). For details, refer
to section 3.6.2 "General-purpose registers and data
formats."

• Immediate value setting instruction

This instruction sets immediate data to a specified register. Of the registers listed in Table

3-1, the following can be specified.

• General-purpose registers (L part (R0L-R7L) only)

• Data pointers (DP0-DP7)

• Index registers (DN0-DN7)

• Modulo registers (DMX, DMY)

For the details of this instruction, refer to “µPD7701x Family User’s Manual Instructions.”

Chapter 3 Architecture 3.2 Buses

µPD7701x Family User's Manual52

(2) Registers connected to main bus

The table shown below lists the registers connected to the main bus.

Table 3-1. Registers Connected to Main Bus

Register name Assembler-reserved name Load (L)/store (S)

General-purpose register R0L-R7L (L part of R0-R7) L/S

Data pointer DP0-DP7 L/S

Index register DN0-DN7 L/S

Modulo register DMX, DMY L/S

Stack STK L/S

Stack pointer SP L/S

Loop counter LC L/S

Loop stack (LSTK) LSR1, LSR2, LSR3 L/S

Loop stack pointer LSP L/S

Status register SR L/S

Interrupt enable flag stack register EIR L/S

Error status register ESR L/S

Chapter 3 Architecture 3.2 Buses

µPD7701x Family User's Manual 53

3.2.2 Data bus

(1) Function

This 16-bit bus connects the general-purpose registers, X and Y data memories, and internal

peripherals. It transfers data when the following instructions are executed.

• Parallel load/store instruction

• Partial load/store instruction

• Direct addressing load/store instruction

• Immediate value index load/store instruction

For the details of the load/store instruction, refer to “µPD7701x Family User’s Manual

Instructions.”

The data bus is classified into X data bus, Y data bus, and peripheral bus. The logical and

physical relations among these buses are shown in Table 3-2.

Table 3-2. Functional Block and Bus

Functional block Relations among X data bus, Y data bus, and peripheral bus

Internal memory peripherals X and Y data buses are logically and physically separated.
Therefore, both the X and Y data buses are validated for transfer
by a single instruction.

Internal peripheral X and Y data buses are logically and physically connected.
Even when a peripheral-related register is accessed from X or
Y memory space, therefore, the same peripheral register is
accessed as long as the address is the same. At this time,
however, the peripheral register cannot be accessed
simultaneously from the X and Y data memory spaces with a
single instruction.

External memory Although the X and Y data buses are logically separated, they
are physically common. Therefore, the X and Y external
memories cannot be accessed simultaneously with a single
instruction.

Chapter 3 Architecture 3.2 Buses

µPD7701x Family User's Manual54

(2) X data bus

This 16-bit bus connects the general-purpose registers, X data memory, and the bus from

the internal peripherals. This bus transfers data when the following instructions are executed:

• Parallel load/store instruction (for X memory)

• Partial load/store instruction (for X memory)

• Direct addressing load/store instruction (for X memory)

• Immediate value index load/store instruction (for X memory)

Cautions 1. Although the X and Y data buses are separated inside the
device, a single data bus is commonly used externally.
Thus, an instruction that accesses both external memories
cannot be executed in the same instruction cycle.

2. The same peripheral register is accessed for internal
peripheral regardless of whether the X or Y memory is
accessed, as long as the address is the same.

3. Even in the case of 2 above, a peripheral register cannot
be accessed from both the X and Y memory spaces in the
same instruction cycle.

The table shown below shows the registers and memories connected to the X data bus.

Table 3-3. Registers and Memories Connected to X Data Bus

Register/memory name Assembler-reserved name Load (L)/store (S)

General-purpose register R0-R7 L/S
R0E-R7E
R0H-R7H
R0L-R7L
R0EH-R7EH

X internal RAM — L/S

X internal ROM — from ROM to bus only
(not for the µPD77016)

External memory — L/S

Internal peripheral — L/S

Caution A general-purpose register consists of 40 bits. These 40
bits are divided into three parts: L (lower 16 bits), H (16
bits in the middle), and E (higher 8 bits). Any of these parts
can be specified for transfer. For details, refer to section
3.6.2 "General-purpose registers and data formats."

Chapter 3 Architecture 3.2 Buses

µPD7701x Family User's Manual 55

(3) Y data bus

This 16-bit bus connects the general-purpose registers, Y data memory, and the bus from

the internal peripherals. This bus transfers data when the following instructions are executed:

• Parallel load/store instruction (for Y memory)

• Partial load/store instruction (for Y memory)

• Direct addressing load/store instruction (for Y memory)

• Immediate value index load/store instruction (for Y memory)

Cautions 1. Although the X and Y data buses are separated inside the
device, a single data bus is commonly used externally.
Thus, an instruction that accesses both external memories
cannot be executed in the same instruction cycle.

2. The same peripheral register is accessed for internal
peripheral units regardless of whether the X or Y memory
is accessed, as long as the address is the same.

3. Even in the case of 2 above, a peripheral register cannot
be accessed from both the X and Y memory spaces in the
same instruction cycle.

Table 3-4 shows the registers and memories connected to the Y data bus.

Table 3-4. Registers and Memories Connected to Y Data Bus

Register/memory name Assembler-reserved name Load (L)/store (S)

General-purpose register R0 - R7 L/S
R0E - R7E
R0H - R7H
R0L - R7L
R0EH - R7EH

Y internal RAM — L/S

Y internal ROM — from ROM to bus only
(not for the µPD77016)

External memory — L/S

Internal peripheral — L/S

Caution A general-purpose register consists of 40 bits. These 40
bits are divided into three parts: L (lower 16 bits), H (16
bits in the middle), and E (higher 8 bits). Any of these parts
can be specified for transfer. For details, refer to section
3.6.2 "General-purpose registers and data formats."

Chapter 3 Architecture 3.2 Buses

µPD7701x Family User's Manual56

(4) Peripheral bus

This 16-bit bus connects the internal peripheral registers and the X/Y data buses. The

peripheral registers are commonly mapped on the X/Y memory spaces. Data is transferred

by executing the following instructions.

• Parallel load/store instruction (for peripheral register)

• Partial load/store instruction (for peripheral register)

• Direct addressing load/store instruction (for peripheral register)

• Immediate value index load/store instruction (for peripheral register)

For the details of the peripheral bus, refer to section 3.7 "Peripheral Units."

Cautions 1. The same peripheral register is accessed for internal
peripheral regardless of whether the X or Y memory is
accessed, as long as the address is the same.

2. Even in the case of 1 above, a peripheral register cannot
be accessed from both the X and Y memory spaces in the
same instruction cycle.

Chapter 3 Architecture 3.2 Buses

µPD7701x Family User's Manual 57

3.3 System Control Units
The following basic functions, which support the digital signal processor operations of the

µPD7701x family, are called system control units:

• Clock generator

• Reset function

• Pipeline architecture

• Standby function

3.3.1 Clock generator

The clock generator is a circuit that generates and controls the system clock supplied to the

CPU. The configuration of this circuit differs between the µPD77016 and µPD77015/77017/

77018/77018A/77019.

(1) µPD77016

An internal system clock is generated from an external clock input to the CLKIN pin. This

internal system clock serves as a reference of the internal basic timing of the device. The

internal system clock is also output from the CLKOUT pin to establish synchronization between

external devices and the µPD77016. At this time, the frequency ratio of the external clock to

the internal system clock is 2 : 1.

Figure 3-2 shows the clock circuit, and Figure 3-3 shows the timing requirements.

Figure 3-2. Clock Circuit of µPD77016

CLKIN

CLKOUT

1/2

Divider

Internal system clock

Chapter 3 Architecture 3.3 System Control Units

µPD7701x Family User's Manual58

Figure 3-3. Clock Timing of µPD77016

(2) µPD77015, 77017, 77018, 77018A, 77019

[External clock input]

An internal system clock is generated from an external clock input to the X1 pin. This internal

system clock serves a reference of the internal basic timing.

The internal system clock is also output from the CLKOUT pin to establish synchronization

between external devices and µPD77015, 77017, 77018, 77018A, 77019 (this function can

be disabled by mask option).

The external clock is multiplied by PLL. The multiple can be specified by mask option. At

this time, the frequency ratio of the external clock to the internal system clock is selected

from the following alternatives:

• 1 (external) : 1 (internal)

• 1 (external) : 2 (internal)

• 1 (external) : 3 (internal) (for µPD77018A and 77019 only)

• 1 (external) : 4 (internal)

• 1 (external) : 8 (internal)

Assuming that the internal system clock frequency is 33 MHz, for example, the input clock

frequencies are as follows:

• 1 : 1 —> external 33 MHz

• 1 : 2 —> external 16.5 MHz

• 1 : 3 —> external 11 MHz (for µPD77018A and 77019 only)

• 1 : 4 —> external 8.25 MHz

• 1 : 8 —> external 4.125 MHz

Chapter 3 Architecture 3.3 System Control Units

CLKIN

CLKOUT

tcCI

twCIH twCIL

trfCI trfCI

twCO

tcCO trfCO trfCO

twCO

µPD7701x Family User's Manual 59

[When using crystal resonator]

If a frequency ratio of 1 : 1 is selected by mask option, a crystal resonator can be connected

across the X1 and X2 pins to configure a self-oscillation circuit.

Figure 3-4 shows the clock circuit of the µPD77015, 77017, 77018, 77018A, and 77019 and

Figure 3-5 shows the timing.

For how to order mask option, refer to Appendix B “Ordering Information.”

Figure 3-4. Clock Circuit of µPD77015, 77017, 77018, 77018A, 77019

Cautions 1. Be sure to specify a multiple of 1 by mask option when
using a crystal resonator with the µPD77015, 77017, 77018,
77018A, or 77019. The processor does not operate with
any other multiples.

2. The multiplication factor of the mask option of the
µPD77019-013 is fixed to 4. The crystal resonator cannot
be used with this model.

Chapter 3 Architecture 3.3 System Control Units

Remark NU: Not use (leave this pin open.)

(a) To supply external clock

STOP mode

NU

X1

X2

External
clock PLL control

circuit

CLKOUT

Internal
system
clock

(b) To use crystal resonator

C1

C2

X1

X2

CLKOUT

Internal
system
clock

STOP mode

System clock
oscillation

circuit

µPD7701x Family User's Manual60

(3) Clock operation in standby mode

The operating status of the system clock is in the HALT/STOP mode is as follows:

STOP mode HALT mode

µPD77016 — enable to stop

µPD77015/77017/77018 ext. clock + PLL stops 1/8 of ext. clock × PLL factor

/77018A/77019 crystal resonator stops 1/8 of crystal resonator frequency

Figure 3-5. Clock Timing of µPD77015, 77017, 77018, 77018A, 77019

Chapter 3 Architecture 3.3 System Control Units

X1

Internal clock

CLKOUT

twCXH twCXL

tcCX trfCX trfCX

tcC

twCO twCO

tcCO trfCO trfCO

µPD7701x Family User's Manual 61

3.3.2 Reset function

The hardware of the device is reset when the signal input to the RESET pin is activated (low

level). The purpose of resetting is to correctly initialize the device before program execution.

The registers and pins to be initialized, and their initial values are shown in Tables 3-5 to

3-7. Figure 3-6 shows the reset timing.

For details of how the value of each pin and each register changes depending on the

respective boot operations, refer to Chapter 4 “Boot Function.”

Table 3-5. CPU Registers to Be Initialized and Their Initial Values

Register name Initial value Description

SR 0xF000 Interrupts of all sources are enabled but interrupts
are disabled generally at all the present and past
levels. Loop operation is not performed.

PC 0 Address 0 is a boot area and execution branches to
address 0x200 after boot processing has ended.
Therefore, the reset entry as a user area is at
address 0x200.

SP 0 —

LC 0b1xxx xxxx xxxx xxxx Indicates that loop operation is not performed.
The count value itself is undefined.

LSP 0 —

RC 0b1xxx xxxx xxxx xxxx Indicates that repeat operation is not performed.
The count value itself is undefined.

EIR 0xFFFF Indicates that all the interrupts are disabled at all
the present and past levels.

ESR 0 —

Chapter 3 Architecture 3.3 System Control Units

µPD7701x Family User's Manual62

Table 3-6. Initialized Memory-mapped Registers and Their Initial
Values

Register name Initial value Description

SST1, SST2 0x0002 The serial interface is initialized as follows:

• MSB first for both input and output
• 16-bit length for both input and output
• Wait is not used for load/store of SDT
• Status transition mode
• Clears error flag of SDT load/store
• Data store to SDT enabled
• No data to be loaded from SDT

PCD 0x0000 The I/O ports are initialized as follows:

• No bit manipulation
• No mode setting

HST 0x0301 The host interface is initialized as follows:

• Wait is not used for HDT access
• Disables HRE and HWE functions
• Clears UF0 and UF1 to zero
• Clears error flag for host read/write
• Clears error flag of HDT load/store
• Disables read from host
• Enables write to host

Table 3-7. Initialized Pins and Their Initial Statuses

Pin name Initial Status

X/Y Low-level outputNote 1

DA0-DA15 Low-level outputNote 1

D0-D15 High-impedance

IA0-IA15 Note 2 Low-level output (high-impedance during reset)

ID0-ID31 Note 2 High-impedance

PWR Note 2 High-level output (high-impedance during reset)

MRD, MWR, BSTB High-level output Note 1

SORQ1, SORQ2, SIAK1, SIAK2 Low-level output

SO1, SO2 High-impedance

HRE, HWE High-level output

P0-P3 Input status

TICE Low-level output

Notes 1. These pins go into a high-impedance state when the bus is released (HOLDAK = 0).

The bus can be released even during reset when HOLDRQ = 0.

2. µPD77016 only.

Chapter 3 Architecture 3.3 System Control Units

µPD7701x Family User's Manual 63

Figure 3-6. Reset Timing

3.3.3 Pipeline architecture

The µPD7701x family employs pipeline architecture to enhance the execution speed.

Generally, one instruction completes its processing via several machine cycles each of which

performs elemental processing. The instructions of the µPD7701x family have the following

three machine cycles:

F : instruction fetch cycle

Reads an op code from the instruction memory.

D : decode cycle

Decodes the read op code.

E : execution cycle

Executes the decoded result.

The part that executes each machine cycle is called a pipeline stage. Each stage

independently completes processing with the same number of clocks (1 cycle). Therefore,

an instruction under execution enters stages one after another without wait time. In addition,

three instructions can exist in the respective three stages at the same time. In other words,

it seems as if one instruction were processed with the execution time of one stage as long as

the instruction passes through the pipelines without any instruction stream fault. The number

of clock cycles in one stage is called one instruction cycle, which is 30 ns in the case that

operates with a 33-MHz clock.

Chapter 3 Architecture 3.3 System Control Units

RESET

tw (RL) trec (R)

µPD7701x Family User's Manual64

Figure 3-7 provides images of pipeline operation. Figure 3-7(a) is a conceptional illustration

that shows the flow of executed instructions when viewed from each pipeline stage. Figure

3-7(b) shows the sequence in which instructions are executed in pipeline, from the viewpoint

of each instruction.

Figure 3-7. Pipeline Image

(a) Pipeline image 1

(b) Pipeline image 2

Chapter 3 Architecture 3.3 System Control Units

cycle

1 instruction cycle

D E
Time

Instruction J Instruction I Instruction H

Instruction K Instruction J Instruction I

Instruction L Instruction K Instruction J

F cycle cycle

Fn: fetch cycle of instruction n
Dn: decode cycle of instruction n
En: execution cycle of instruction n

Time

In
st

ru
ct

io
n

se
qu

en
ce

PC n n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7 n + 8 n + 9 n + 10 n + 11

Instruction 1
(address n) F1 D1 E1

Instruction 2
(address n + 1) F2 D2 E2

Instruction 3
(address n + 2) F3 D3 E3

Instruction 4
(address n + 3)

F4 D4 E4

Remarks

µPD7701x Family User's Manual 65

(1) Successive MAC, ALU, Barrelshifter operations

When an instruction performing arithmetic/logic operations uses the result of the operation

executed by the preceding instruction as an input operand, the result of the operation is

written to a general-purpose register and, at the same time, input to the operation unit for the

operation by the subsequent instruction. Consequently, programming can be done without

having to be aware of the pipeline.

(2) Branch instruction

If a pipeline hazard occurs as a result of executing a branch instruction, the pipeline is

replenished again with a NOP instruction inserted into the delay slot. Though the execution

time is consequently extended, this does not cause erroneous application operation, and

there is no need for users to consider the pipeline operation even in programming branch

instructions.

For further details about pipeline timing with branch instructions refer to section 3.4.2 “Program

execution control block”.

Caution The delay due to the processing of the pipeline must be
taken into account in the following cases:

• Instructions that control interrupts (by setting EIR, etc.)
requires two instruction cycles to update the interrupt
control information (refer to section 3.4.4 “Interrupt”).

• When a value is set to DPn by using a Inter-register
transfer instruction or immediate value setting
instruction, the memory cannot be accessed by using the
value set to DPn as an address until the instruction that
follow the instruction that has set a value to DPn.

Example:
inst#1 DP0 = 0x0100 ;
inst#2 NOP ; DP0 cannot be used here!
inst#3 R0L = *DP0 ;

• The branch instruction cannot be written within three
instructions before the loop end (refer to section 3.4.3
“Flow control block”).

Chapter 3 Architecture 3.3 System Control Units

µPD7701x Family User's Manual66

3.3.4 Standby function

The µPD7701x family is provided with a standby function that stops the device to reduce the

current consumption. The device enters a standby status when an appropriate instruction is

executed. This status is called a standby mode. The standby mode is set by two types of

instructions: HALT and STOP. The µPD77016 does not have the STOP mode.

(1) Standby mode by HALT instruction

This standby mode is common to all models of the µPD7701x family and is called HALT

mode. This mode is set by the HALT instruction. The current consumption of the device in

the HALT mode is reduced. The HALT mode is set or released as follows:

(a) The HALT mode is set by executing the HALT instruction.

(b) At this time, the registers and internal memory retain the status immediately

before the HALT mode is set, and the current consumption of the device

decreases. The status of each pin of the device is shown in Table 3-8.

(c) This mode is released by using an external/internal interrupt (which is not

masked) or hardware reset (refer to section 3.4.4 “Interrupt”).

(d) When the HALT mode has been released by using an interrupt, the return

address to which execution returns after the interrupt processing is the

address of the instruction next to the HALT instruction. Before the HALT

mode is released, a heat-up cycle (NOP) of one instruction cycle is inserted

so that the system can restore from the power-down status.

(e) For the µPD77016 only in this mode, the external clock may be stopped

(fixed to high or low level). To release this mode by using an interrupt,

however, the clock must be restored before the interrupt is executed.

Chapter 3 Architecture 3.3 System Control Units

µPD7701x Family User's Manual 67

Table 3-8. Pin Status in HALT Mode

Pin name When HOLDRQ is Active When HOLDRQ is Inactive
 (low level) (high level)

CLKOUTNote ×1/8 clock output

X/Y High impedance Low level

IA0 - IA15 Retains status immediately before

DA13 - DA0 High impedance Retains status immediately before

D15 - D0 High impedance

MRD/MWR High impedance High level

HOLDAK Low level High level

BSTB High level

SORQ1, SIAK1, SO1, SO2 Retains status immediately before

HRE, HWE, HD7 - HD0

P3 - P0

TDO, TICE

Caution Fix the input pins and pins that go into a high-impedance
state in the HALT mode to the high or low level.

Note With the µPD77015, 77017, 77018, 77018A, and 77019, if CLKOUT is activated low by mask option, it
remains low.

 Figure 3-8 (a) illustrates how the HALT mode is released by using an interrupt. Figure 3-8

(b) and (c) show the timings of setting and releasing the HALT mode, respectively.

Figure 3-8. HALT Mode

(a) Releasing from HALT mode (by using interrupt)

Instruction next to HALT instruction

Stop status External interrupt input
(INT1-INT4) or internal
interrupt input

Interrupt
processing

RETI

HALT

0x210
0x214
0x218
0x21C•

•
•

Chapter 3 Architecture 3.3 System Control Units

µPD7701x Family User's Manual68

(b) Timing of setting HALT mode

(c) Timing of releasing HALT mode

iid1iif1

iid2iif2

Clock

Pipeline
stops

Power-down
status

ifn : instruction fetch
iifn : interrupt instruction fetch
iidn : interrupt instruction decode
iexn: interrupt instruction execution

Remarks

nopif2

iex1

iex2

iif1if2 iif2

Interrupt processing
instruction #1

Interrupt processing
instruction #2

pc

heat

INT accept

Chapter 3 Architecture 3.3 System Control Units

id1if1 halt

nopif2

nopif2

Clock

Pipeline
stops

Power-down
status

Clock can be stopped from here (only PD77016).µ

if : instruction fetch
id: instruction decode

Remarks

µPD7701x Family User's Manual 69

(2) Standby mode by STOP instruction

This mode, called STOP mode, can be set with the µPD77015/77017/77018/77018A/77019

only. The STOP mode is set by executing the STOP instruction. In this mode, the current

consumption of the device is reduced to several tens of µA. The STOP mode is set or

released as follows:

1. The STOP mode is set when the STOP instruction is executed.

2. At this time, the status of each pin of the device is as shown in Table 3-9.

3. The clock circuit and PLL stop, and the current consumption of the device is

reduced to several tens of µA or less.

4. The device is released from the STOP mode only by hardware reset. At this

time, PLL takes some time to be released from the mode. Therefore, assert

the reset signal active for at least 1 ms.

Table 3-9. Pin Status in STOP Mode

Pin name When HOLDRQ is Active When HOLDRQ is Inactive

 (low level) (high level)

CLKOUT Low level

X/Y High impedance Low level

DA13 - DA0 High impedance Retains status immediately before

D15 - D0 High impedance

MRD/MWR High impedance High level

HOLDAK Low level High level

BSTB High level

SORQ1, SIAK1, SO1, SO2 Retains status immediately before

HRE, HWE, HD7 - HD0

P3 - P0

TDO, TICE

Caution Fix the input pins and pins that go into a high-impedance
state in the STOP mode to the high or low level.

When the STOP mode is released by means of hardware reset, the output pins are initialized.

Some output pins, however, are in the undefined status until the PLL of the device is stabilized,

and their operation is not guaranteed.

Table 3-10 shows the status of each output pin during the reset period following releasing

the STOP mode.

Chapter 3 Architecture 3.3 System Control Units

µPD7701x Family User's Manual70

Table 3-10. Output Pin Status during Reset Period after Releasing
STOP Mode

Pin name Initialized status Status during reset of STOP mode release

CLKOUT system clock Note undefined Note

X/Y low level undefined

DA0-DA13 0x0000

D0-D15 high-impedance

MRD high level

MWR

BSTB

HOLDAK

HD0-HD7 high-impedance

HRE high level

HWE

SO1, SO2 high-impedance

SIAK1 low level

SORQ1

P0-P3 input mode

Note When CLKOUT is fixed to low level by mask option, low level is output in even status of Initializing or status
during reset for releasing STOP mode.

Chapter 3 Architecture 3.3 System Control Units

µPD7701x Family User's Manual 71

3.4 Program Control Unit
This unit controls program execution. Data can be loaded from or stored to the registers in

this unit via the main bus. This unit plays a role in execution of the following instructions:

• General instruction execution

• Branch instruction

• Hardware loop instruction

• Interrupt (Although an interrupt is not an instruction, PC, STK, SP, SR, and EIR are

automatically controlled by INTC.)

Execution of these instructions is controlled by the following three blocks of the program

control unit:

• Program execution control block

• Flow control block

• Interrupt control block

Section 3.4.1 “Block configuration” shows a detailed block diagram of the program control

unit. Section 3.4.2 “Program execution control block” through section 3.4.4 “Interrupt” describe

the details of the functions of the respective blocks.

3.4.1 Block configuration

Figure 3-9 shows the block configuration of the program control unit.

Figure 3-9. Program Control Unit

Chapter 3 Architecture 3.4 Program Control Unit

Main bus (16 bits)

RC [16]LSP [16]LC [16]LEA [16]LSA [16]

LRC

16 16 1616 16
(Note)

LSR3LSR2LSR1

LSTK
[48 x 4 levels]

PC [16]

16

EIR [16]

16

SR [16]

16

SP [16]

16

STK
[16 x 15
levels]

16

INTC

Note RC cannot directly transfer data via the main bus.

Interrupt control block
Instruction memory,
external instruction memory
(µPD77016 only)

Program
execution

control block
Flow control block

µPD7701x Family User's Manual72

3.4.2 Program execution control block

Program execution is controlled by the following registers:

• Program counter (PC)

• Stack (STK)

• Stack pointer (SP)

(1) Program counter (PC)

This is a 16-bit register that holds the address of the instruction currently under execution

when the program is executed. Therefore, the range of the value the PC can take is the

entire memory space.

Caution The PC can take any value as long as it is in the range of
16 bits, but the portion that is not defined as the instruction
memory space or the portion that is reserved for the system
must not be accessed.

(a) Instruction memory

The instruction memory space of the µPD7701x family is shown below.

Figure 3-10. Instruction Memory Space

Chapter 3 Architecture 3.4 Program Control Unit

µPD77016

0xFFFF

0x4000
0x3FFF

0x0800
0x07FF

0x0240
0x023F
0x0200
0x01FF
0x0100
0x00FF
0x0000

External instruction
memory

(48K words)

System (14K words)

Internal instruction
RAM (1.5K words)

Vector area (64 words)

System (256 words)

Boot-up ROM (256 words)

System
(44K words)

System
(15.25K words)

Vector area (64 words)

System (256 words)

Internal instruction
ROM (4K words)

Internal instruction
RAM (256 words)

Internal instruction
RAM (256 words)

Internal instruction
RAM (256 words)

System
(36K words)

System
(15.25K words)

Vector area (64 words)

System (256 words)

Internal instruction
ROM (12K words)

System
(24K words)

System
(15.25K words)

Vector area (64 words)

System (256 words)

Internal instruction
ROM (24K words)

0xA000
0x9FFF

System
(24K words)

Internal instruction
RAM (4K words)

Vector area (64 words)

System (256 words)

System (11.5K words)

Internal instruction
ROM (24K words)

0x1200
0x11FF

No program or data must be stored to the addresses reserved for the system, nor must these
addresses be accessed. If any of these addresses is accessed, normal operation of the PD7701x
family is not guaranteed.

µ
Caution

0x5000
0x4FFF

0x0300
0x02FF

0x7000
0x6FFF

µPD77015 µPD77017 µPD77018, 77018A µPD77019Note

Note The PD77019-013 does not have the internal ROM of the PD77019. µµ

Boot-up ROM (256 words) Boot-up ROM (256 words) Boot-up ROM (256 words) Boot-up ROM (256 words)

µPD7701x Family User's Manual 73

(b) Internal instruction memory

The µPD7701x family is provided with ROM or RAM as an internal instruction memory.

The capacity of the internal instruction memory differs depending on the model, as shown

in Table 3-11. The internal ROM of the µPD77019-013 cannot be used.

Table 3-11. Capacity of Internal Instruction Memory

Part number Internal ROM capacity Internal RAM capacity

µPD77016 None 1.5K words

µPD77015 4K words 256 words

µPD77017 12K words

µPD77018 24K words

µPD77018A

µPD77019 4 K words

(c) External instruction memory

The µPD7701x can be connected with an external instruction memory. The capacity of

this external memory is shown in Table 3-12.

Table 3-12. Capacity of External Memory

Part number External instruction memory capacity

µPD77016 48K words

µPD77015 None

µPD77017

µPD77018

µPD77018A

µPD77019

(d) Interfacing external instruction memory

The µPD77016 can be connected with an external instruction memory. The application

program, however, cannot handle the external instruction memory as data. The application

program can access the external instruction memory only in the following two cases:

• When the program has been booted from the data memory or the host interface to the

external memory by using the internal reboot function (Refer to Chapter 4 “Boot

Function.”)

• When execution is branched to the external instruction memory space by using a branch

instruction

The interface that connects an external instruction memory to the µPD77016 is explained

in the following sections.

Chapter 3 Architecture 3.4 Program Control Unit

µPD7701x Family User's Manual74

(e) Hardware for external instruction memory expansion

The following pins are used for interfacing the external instruction memory:

• IA0-IA15 : 16 bits of address lines that provide an instruction memory address. IA15 is

the MSB, and IA0 is the LSB.

• ID0-ID31 : 32-bit data bus that transfers instruction codes. ID31 is the MSB, and ID0 is

the LSB.

• PWR : Signal line that generates a write strobe signal to the instruction memory.

Active low.

Table 3-13. Pin Statuses

Pin I/O During reset Initial after reset No external memory accesses

IA0-IA15 O Hi-Z L Internal memory address currently
accessed

ID0-ID31 I/O Hi-Z Hi-Z Hi-Z

PWR O Hi-Z H H

Figure 3-11 shows the operation timing.

Chapter 3 Architecture 3.4 Program Control Unit

µPD7701x Family User's Manual 75

Figure 3-11. Instruction Memory Operation Timing

(a) Read operation timing

(b) Write operation timing

CLKOUT

IA0-IA15

ID0-ID31

tsIDW thIDW

PWR

thIA

td (IAV-IWV)
twIW

tsuIW

Hi-Z Hi-Z

CLKOUT

IA0-IA15

ID0-ID31

PWR

RESET

tdIA thIA

tsuID thID

tdIW

Hi-Z

Hi-Z

Chapter 3 Architecture 3.4 Program Control Unit

µPD7701x Family User's Manual76

(f) Wait function of external instruction memory

• IWTR (instruction memory wait cycle register)

The external instruction memory interface does not have a hardware wait function that is

effected through handshaking, but is provided with a programmable wait function that is

controlled via software. An instruction memory wait cycle register (IWTR) is provided as

one of the internal peripheral registers, and the predetermined number of wait cycles can

be selected and set to this register by the application program.

IWTR is a 16-bit register. The number of wait cycles, at what one wait cycle corresponds

to one internal system clock cycle can be specified by setting bits 2 to 7 of this register.

The three fields of this register, IB-ID fields, each consisting of 2 bits, correspond to three

16K-word banks which correspond to the external memory that accounts for the 3/4 of

the 64K-word memory space, and wait cycles can be independently inserted to each of

the three banks.

Figure 3-12 illustrates the image of this control. Table 3-14 shows the relations between

the value set to each field of IWTR and the number of wait cycles.

Figure 3-12. Instruction Memory Control Banks and IWTR Field
Configuration

Instruction memory

ID field
16K words

IC field
16K words

IB field
16K words

Internal instruction
memory area
16K words

0xFFFF

0xC000
0xBFFF

0x8000
0x7FFF

0x4000
0x3FFF

0x0000

ID field IC field IB field ——IWTR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Chapter 3 Architecture 3.4 Program Control Unit

µPD7701x Family User's Manual 77

Table 3-14. Set Values of IWTR Fields and Number of Wait Cycles

Bits No. of wait cycles Remarks

0 0 0 1 cycle access:

Connects SRAM with access time of 8 ns (at 33 MHz)

0 1 1 2 cycle access:

Connects SRAM with access time of 35 ns (at 33 MHz)

1 0 3 4 cycle access:

Connects SRAM with access time of 85 ns (at 33 MHz)

1 1 7 8 cycle access:

Connects mask ROM with access time of 150 ns (at 33 MHz)

Cautions 1. Data written to bits 15 through 8, 1, and 0 are ignored. The
contents of bits 15 through 8, 1, and 0 are undefined when
they are read.

2. With the µPD77015/77017/77018/77018A/77019, data written
to IWTR is ignored, and undefined data is read from IWTR.

Chapter 3 Architecture 3.4 Program Control Unit

µPD7701x Family User's Manual78

• Timing of instruction memory wait controller

Wait control to IWTR by using a store instruction becomes valid starting from instruction

fetch immediately after the execution cycle of the store instruction. Figure 3-13 shows the

timing.

Figure 3-13. Valid Timing of Instruction Memory Wait Control

Chapter 3 Architecture 3.4 Program Control Unit

if4 id4 ex4

if1 id1 ex1

if2 id2 ex2

if3 id3 ex3

if : instruction fetch
id : instruction decode
ex: instruction execution

Instruction storing data to IWTR

First instruction for which
specification of IWTR is valid

Remarks

µPD7701x Family User's Manual 79

• External instruction memory interface example

Based on the above description, Figure 3-14 shows an example of a simple instruction memory

interface. In this example, the external instruction memory has a capacity of 32K words, and

the read/write timing without wait control and 1-wait read timing are shown.

Figure 3-14. Example of External Instruction Memory Interface

Chapter 3 Architecture 3.4 Program Control Unit

CLKOUT

IA0-IA15

D0-D7

A0-A14

OE

WR

CS

ID0-ID31

IA0-IA15

PWR

µPD77016 SRAM (4 x 32K words x 8 bits)

ID0-ID31

PWR

No wait read
(IWTR=0x0000)

1 internal wait cycle read
(IWTR=0x0054)

 No wait write
(IWTR=0x0000)

µPD7701x Family User's Manual80

(2) Stack (STK) and stack pointer (SP)

Stack (STK) is a register file dedicated to saving/restoring PC and consists of 16 bits by 15

levels.

It is used to:

• Save return address when a subroutine is called

• Save the current address under execution when an interrupt occurs

For the details of the interrupt, refer to section 3.4.4 “Interrupt.”

A pointer register that points to the stack level (called stack top) that is currently to be accessed

is called stack pointer (SP). SP consists of 16 bits, but setting a value other than 0 to 15 to

this pointer is prohibited. The stack top and SP are connected to the main bus; therefore,

data can be exchanged with a general-purpose register via the main bus.

When the stack overflows or underflows, stack error flag (ste) of ESR is set to 1.

Remark Do not write the RET or RETI instruction just after the inter-register transfer instruction to load from/
store to STK or SP.

(3) Related instructions

The operations of the program counter (PC), stack (STK), and stack pointer (SP) can be

viewed from the following two points:

• Instruction execution and PC operation

• Branch instruction and operations of PC, SP, and STK

(a) Instruction execution and PC (normal operation)

The value of PC is incremented each time an instruction is fetched. Figure 3-15 shows

the image when this PC operation is combined with pipeline execution.

Figure 3-15. Normal Operation of PC

Chapter 3 Architecture 3.4 Program Control Unit

Fn: fetch cycle of instruction n
Dn: decode cycle of instruction n
En: execution cycle of instruction n

Time

In
st

ru
ct

io
n

se
qu

en
ce

PC n n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7 n + 8 n + 9 n + 10 n + 11

Instruction 1
(address n) F1 D1 E1

Instruction 2
(address n + 1) F2 D2 E2

Instruction 3
(address n + 2) F3 D3 E3

Instruction 4
(address n + 3)

F4 D4 E4

Remarks

µPD7701x Family User's Manual 81

(b) Branch instruction and operations of PC, SP, and STK

The branch instructions are classified into the following three types:

<1> Jump and subroutine call

The branch instructions are further subdivided into these two types of instructions,

depending on whether the address of the instruction under opcode fetch (value of the

PC) is saved to the stack or not.

• JMP instruction

Does not save the address of the instruction under opcode fetch to the stack. Therefore,

program flow cannot automatically return to the branch source address from the branch

destination address.

• Subroutine call instruction :

Saves the address of the instruction under opcode fetch (address of the instruction next

to the subroutine call instruction) to the stack. To return program flow from the branch

destination address to the branch source address, the return instruction is used.

<2> Branch viewed from PC setting format

The branch instructions can be classified into the following two types when viewed from

the format in which the branch destination address is set to the PC:

• Immediate jump/call

This format is called immediate jump or immediate call. The JMP/CALL instructions for

which a numeric value is coded as an operand execute branch in this format. At this

time, the numeric value is added to or subtracted from the current PC value as 16-bit 2’s

complement. Therefore this is in fact a relative branch, relative to the current PC value.

Program flow can be branched in the range of ±32K words, i.e., in the entire 64K-word

space.

Caution When this instruction is written in assembler, write a direct
branch destination address or label as the operand. The
assembler calculates the correct relative branch distance
to the current PC value automatically.

• Register indirect jump/call

This format is called register indirect jump or register indirect call. The JMP/CALL

instructions for which DPn register is described as an operand execute branch in this

format. At this time, the value of the DPn register is directly set to the PC.

Chapter 3 Architecture 3.4 Program Control Unit

µPD7701x Family User's Manual82

<3> Conditional or unconditional branch

The µPD7701x family does not have dedicated conditional branch or conditional return

instructions. Conditional branch is realized by combining conditional instructions and

branch instructions, and conditional return is realized by combining conditional instructions

and return instructions. These are classified into the following two types:

• Unconditional JMP/CALL/RET instructions

These instructions always (unconditionally) branch (JMP/CALL/RETurn).

• Conditional JMP/CALL/RET instructions

These instructions branch (JMP/CALL/RETurn) only when the condition of the

combined conditional instructions is true.

Table 3-15 summarizes the above discussion. Note that, although the processing

execution sequence when branch takes place does not differ depending on whether the

instruction is conditional or unconditional, the actual execution time is 1 instruction cycle

longer when a conditional instruction is used in combination. Although this is not indicated

in the table, if the condition of a conditional branch instruction is not satisfied, delay due

to pipeline hazard does not occur (refer to Figures 3-16 to 3-19).

Table 3-15. Classification of Branch Instructions

Instruction name Condition Address specification Word Instruction

judgment length cycles

Jump instruction Unconditional PC relative 1 2

Conditional 3

Unconditional Register indirect absolute 1 3

Conditional

Subroutine call instruction Unconditional PC relative 1 2

Conditional 3

Indirect subroutine call instruction Unconditional Register indirect absolute 1 3

Conditional

Return instruction Unconditional — 1 2

Conditional 3

Interrupt return instruction Unconditional — 1 2

Conditional 3

Caution Above number of instruction cycles are valid if the
condition is satisfied and program flow branches. If the
condition is not satisfied, even the conditional branch
occupies one instruction cycle because the branch is not
performed and no pipeline hazard occurs.

Chapter 3 Architecture 3.4 Program Control Unit

µPD7701x Family User's Manual 83

Figures 3-16 to 3-19 show the timing of the following instructions:

• Unconditional immediate jump

• Unconditional indirect jump

• Conditional immediate jump (condition satisfied: jump)

• Conditional immediate jump (condition not satisfied: pass)

The meanings of the symbols in each figure are as follows (n=0,1,2,..):
ifn : instruction fetch jifn : jump destination instruction fetch
idn : instruction decode exn : instruction execution
ia : instruction address operation addr : address output
p : purge push : stack push
pop : stack pop jdec : jump destination decode
popi : interrupt pop

Figure 3-16. Timing of Unconditional Immediate Jump

Figure 3-17. Timing of Unconditional Indirect Jump

Chapter 3 Architecture 3.4 Program Control Unit

id5jif5 ex5

id1if1 ex1

nopif2

nopif3

id4jif4

Clock

—

ex4

JMP
instruction

Next
instruction

Instruction
at JMP
destination

Next
instruction

addr

—

Next
instruction

id1if1 addr

nopif2

id3jif3

id4jif4

Clock

ex3

ex4

ia

JMP
instruction

Next
instruction

Instruction
at JMP
destination

Next
instruction

—

µPD7701x Family User's Manual84

Figure 3-18. Timing of Conditional Immediate Jump
(condition satisfied: branch)

Figure 3-19. Timing of Conditional Immediate Jump
(condition not satisfied: pass)

Chapter 3 Architecture 3.4 Program Control Unit

id5jif5 ex5

id1if1 idec

nopif2

nopif3

id4jif4

Clock

—

ex4

Conditional
JMP
instruction

Next
instruction

Instruction
at JMP
destination

Next
instruction

addr

—

Next
instruction

ia

id5if5 ex5

id1if1 idec

id2if2

id3if3

id4if4

Clock

ex3

ex4

Conditional
JMP
instruction

Next
instruction

Next
instruction

Next
instruction

ex2

Next
instruction

µPD7701x Family User's Manual 85

(c) Operation of subroutine call/return

Subroutine call is executed by the CALL instruction. When the CALL instruction is

executed, execution branches in the following procedure:

1. The value of SP is incremented (pre-increment).

2. The value of PC (address next to the CALL instruction) is saved to the STK

indicated by SP.

3. The branch destination address is set to the PC. At this time, if the branch

destination is given as a numeric value, the numeric value is added to or

subtracted from the current PC value as 2’s complement. If the branch

destination is given by the DPn register, the value of the DPn register is

directly set to the PC.

To return execution from a subroutine, the RET instruction is used. This instruction is

executed in the following procedure:

1. The value in the STK indicated by the SP is restored to the PC.

2. The value of SP is decremented (post-decrement).

Remark For the timing of the CALL instruction, refer to the timing of the JMP instruction.
The timing of the CALL instruction is the same as that of the JMP instruction, except that
the return address is saved to the stack. The timing of the return instruction is the same
as that of the immediate jump instruction, i.e. it takes two instruction cycles.

(d) Operation when interrupt occurs

When an interrupt occurs, the address of the instruction under opcode fetch (address of

the instruction when the interrupt is acknowledged) is saved to the stack, and the branch

destination address is set to the PC. To return from the interrupt, the RETI (return from

Interrupt) instruction is used.

For the operation of the interrupt, refer to section 3.4.4 “Interrupt.”

Chapter 3 Architecture 3.4 Program Control Unit

µPD7701x Family User's Manual86

3.4.3 Flow control block

In general, a high-level language provides sophisticated flow control syntax (e.g., for loop

and while loop of the C language). The µPD7701x family is provided with hardware that

allows this flow control to be directly described as assembly instructions, and performs loop/

repeat operation without any timing overhead. The loop/repeat control circuit controls the

loop/repeat operations.

Flow control is managed by the following registers and functional blocks:

• Repeat counter (RC)

This 16-bit counter register holds the number of repetitions of a repeat instruction.

• Loop start address register (LSA)

This 16-bit register holds the loop start address during loop execution.

• Loop end address register (LEA)

This 16-bit register holds the loop end address during loop execution.

• Loop counter (LC)

An initial value is set to this 16-bit register when execution of the LOOP instruction is

started. Each time loop is executed once, the value of this register is decremented. When

the current value of the register reaches 0, it indicates the end of the loop.

• Loop stack (LSTK)

The LSTK is a register file with 3 × 16 bits × 4 levels to save and store the LSA, LEA and

LC values. It saves the LSA, LEA and LC values by the loop instruction. The values are

restored to the LSA, LEA and LC upon loop termination or by the loop pop instruction.

This file serves as one of the following three 16-bit registers for input/output to/from the

main bus with inter-register transfer instruction.

• LSR1: Saves/restores loop start address (stack for LSA)

• LSR2: Saves/restores loop end address (stack for LEA)

• LSR3: Saves/restores loop counter (stack for LC)

If LSR1 is specified for the inter-register transfer instruction source, the LSP is decremented

after transfer. If LSR1 is specified for the inter-register transfer instruction destination, data

is transferred after the LSP is incremented.

[Software loop stack]

If a loop over 4 levels causes a loop stack overflow, the return address is lost and

processing cannot return normally.

When you know in advance that there is a loop over 4 levels, the contents of the stack

should be saved to memory prior to stack overflow, so that a normal return can be executed

even though another loop operation is performed. This method is called software loop

stack.

In this case, note that the contents stored should be rewritten to the loop stack in

correspondence with stack level, when stack contents are saved to memory. A software

loop stack programming example is shown below.

Chapter 3 Architecture 3.4 Program Control Unit

µPD7701x Family User's Manual 87

Software loop stack example:

• Push (DP0: Save address)

R0L = *DP0– –

R0L = LSR3;

*DP0– – = R0L;

R0L = LSR2;

*DP0– – = R0L;

R0L = LSR1;

*DP0– – = R0L;

• Pop (DP0: Restore address)

R0L = *DP0++;

LSR1 = R0L;

R0L = *DP0++;

LSR2 = R0L;

R0L = *DP0++;

LSR3 = R0L;

• Loop stack pointer (LSP)

This pointer indicates the current position of LSTK. Although this is a 16-bit register, the

value that can be set to it is 0 to 4.

The LSP value can be input/output to/from the main bus with inter-register transfer

instruction. The LSP value becomes 0 by reset.

The LSP is incremented/decremented by 3 bits (bits 2 to 0). Bits 15 to 3 are fixed to 0.

The LSP is incremented in the following cases:

• When the LSA, LEA, and LC values are saved to the LSTK by the loop instruction

• When the LSR1 is specified for the inter-register transfer instruction destination

The LSP is decremented in the following cases:

• When the LSTK value is returned to the LSA, LEA, and LC upon loop termination or

by the loop pop instruction

• When LSR1 is specified for the inter-register transfer instruction source

Cautions 1. When the value of LSP is not between 0 to 4, a stack
overflow or underflow occured indicating an error.

2. Do not set the LSP value between 5 and 0xFFFF.

Chapter 3 Architecture 3.4 Program Control Unit

µPD7701x Family User's Manual88

• Loop/repeat controller (LRC)

This circuit controls the loop and repeat instructions.

Caution All the above registers, except RC, are connected to the
main bus, so that data can be transferred between them
and general-purpose registers.

Flow control has the following two functions:

• Repeat function (REP instruction)

• Loop function (LOOP instruction, LPOP instruction)

(1) Repeat function

The repeat function that is written by the REP instruction realizes repetition of one instruction

on a count basis. The instruction to be repeated the repeat target instruction, follows

immediately the REP instruction itself.

(a) Format of repeat counter (RC)

Figure 3-20 shows the format of the repeat counter (RC).

Figure 3-20. Format of RC

Caution During the entire repeat operation no interrupt will be
acknowledged. For further details refer to section 3.4.4
“Interrupts”.

Chapter 3 Architecture 3.4 Program Control Unit

RF=0: repeat in progress
RF=1: end of repeat (not in progress)

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Count value setting field
 Setting range: 1 to 32767

Repeat flag (RF): automatically controlled by the repeat controller.

RF

µPD7701x Family User's Manual 89

(b) Summary of repeat function

The repeat function can be summarized as follows:

• A single instruction is repeated.

• The number of repetitions can be directly given as a numeric value or by

using a general-purpose register (R0L-R7L).

• The number of repetitions ranges from 1 to 32767.

• The value of PC is not incremented during repeat operation.

• RC is decremented each time the instruction is repeated, and repeat ends

when the instruction has been repeated the specified number of times.

• The repeat function depends on RC only, and is not counted as nesting of

loop instructions.

(c) Procedure of repeat function execution

When the REP instruction is executed, the repeat function is implemented in the following

procedure.

1. The number of repetitions given as the parameter of the REP instruction is

set to RC.

2. The value of PC is incremented, and the instruction immediately after the

REP instruction is repeated. At this time, an invalid cycle of one instruction

cycle is generated.

3. During repeat operation, PC holds a next address of this instruction that has

been repeated.

4. The value of RC is decremented each time the instruction has been repeated

once. After the instruction has been repeated the specified number of times,

repeat ends.

5. When repeat ends, the value of PC is incremented. When execution shifts

from the instruction that has been repeated to the next instruction, the pipeline

stages are successive. Therefore, no overhead occurs when repeat ends.

For the repeat instruction, refer to “µPD7701x Family User’s Manual Instructions”.

Chapter 3 Architecture 3.4 Program Control Unit

µPD7701x Family User's Manual90

(d) Repeat execution timing

The following figures show an example in which the REP instruction is repeated two

times.

Figure 3-21 shows the assembly program, and Figure 3-22 shows the execution timing.

Figure 3-21. Example of Repeat Instruction (repetition of 2 times)

REP 2;

R0 /= R1;

Figure 3-22. Repeat Execution Timing (repetition of 2 times)

Chapter 3 Architecture 3.4 Program Control Unit

id3if3 ex3

id2if2 ex2

id2if2 ex2

nopif2 —

id4if4 ex4

id1if1 RC
RF

1
x

RF
RC

Clock

Repeat
instruction

Instruction
next to one to
be repeated

Instruction to
be repeated

1
x

Next
instruction

Instruction to
be repeated

Instruction to
be repeated

RF: repeat flag

Updating instruction register and program counter
is stopped at this time.

Updates program counter instruction register

Remarks

0
1

RC--

0
2

RC--

1
0

1
0

RC: repeat counter

µPD7701x Family User's Manual 91

(2) Loop function

The loop function that is described by using the LOOP instruction realizes loop flow of an

instruction group consisting of 2 to 255 instructions on a count basis. Nesting of loop is

supported by a four level hardware loop stack. To escape from the loop at any point, the

LPOP instruction is provided, so that flexible loop control is performed.

(a) Format of loop counter (LC)

Figure 3-23 shows the format of the loop counter (LC).

Figure 3-23. Format of LC

Remark The loop flag LC is also contained in the status register (SR) (refer to section 3.4.4 “Interrupt”).

(b) Summary of loop function

The loop function can be summarized as follows:

• Groups 2 to 255 instructions as a loop element.

• The number of loops can be given directly by a numeric value or by using a

general-purpose register (R0L-R7L).

• The number of loops ranges from 1 to 32767.

• Nesting of up to 4 levels can be realized by the loop stack.

• Execution can be escaped from the loop when:

(1) The count value reaches 1

(2) The LPOP instruction and then JMP instruction are executed

Remark For interrupt processing in conjunction with loop operations (refer to section 3.4.4 “Interrupt”).

Chapter 3 Architecture 3.4 Program Control Unit

LF=0: loop in progress
LF=1: end of loop (not in progress)

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Count value setting field
 Setting range: 1 to 32767

Loop flag (LF): automatically controlled by the loop controller.

LF

µPD7701x Family User's Manual92

(c) Loop function execution procedure

When the LOOP instruction is executed, the loop function is implemented in the following

procedure:

<1> When loop is started

1. The value of LSP is incremented (pre-increment).

2. The current LSA, LEA, and LC are saved to LSTK indicated by LSP.

3. The loop start address is set to LSA.

4. The loop end address is calculated and set to LEA.

5. The number of loops is set to LC.

<2> During loop operation

1. The value of LC is decremented if the values of PC and LEA are equal.

2. The value of LSA is set to PC if LC is not 1. If LC is 1, the loop end processing

is executed.

<3> Loop end processing

1. The value of PC is incremented.

2. The value of LSTK indicated by LSP is restored to LSA, LEA, and LC.

3. The value of LSP is decremented (post-decrement).

<4> Loop end processing by LPOP instruction

The LPOP instruction discards one level of loop by performing the following processing.

1. Restores the value of LSTK indicated by LSP to LSA, LEA, and LC.

2. Decrements the value of LSP (post-decrement).

For the LOOP and LPOP instructions, refer to “µPD7701x Family User’s Manual

Instructions”.

Caution The LPOP instruction does not automatically control PC
for escaping from the loop. Therefore, execute the LPOP
instruction after escaping from the loop by using the JMP
instruction, or execute the LPOP instruction and then
escape from the loop by using the JMP instruction (Refer
to “ µPD7701x Family User’s Manual Instructions”).

Chapter 3 Architecture 3.4 Program Control Unit

µPD7701x Family User's Manual 93

(d) Timing of loop execution (example of two loops operation)

Figure 3-24 shows an example of the LOOP instruction execution timing. In this example,

two loops operation in which a group of two instructions is executed only once is performed.

Figure 3-24. Loop Execution Timing (example of 2 loops operation)

Chapter 3 Architecture 3.4 Program Control Unit

Clock

Loop
instruction if1 id1 +Isp

push
lea=
set

LF
LC

1
x

1
x

0
2

0
2

LC-

0
1

pop

0
0

1
0

1
0

1
0

if2 nop

if2 id2 ex2

if3 id3 ex3

if3 id3 ex3

if2 id2 ex2

if4 id4 ex4

Loop escape address

First instruction
in loop

First instruction
in loop (1st fetch)

Second instruction
in loop (1st fetch)

First instruction
in loop (2nd fetch)

Second instruction
in loop (2nd fetch)

First instruction
after loop

Remarks LF: loop flag LC: loop counter

µPD7701x Family User's Manual94

3.4.4 Interrupt

The µPD7701x family has powerful interrupt functions. This section describes the following

functions:

• Interrupt cause

• Interrupt control function

• Interrupt acknowledgment condition

• Hardware condition of external interrupt

• Interrupt vector

(1) Interrupt cause

There is a total of 10 interrupt causes available including internal and external interrupts.

• Internal interrupt : Caused by events specified by internal peripherals.

Six internal causes are available.

• External interrupt: Triggered by external causes via hardware signal pins.

Four external causes are available.

Table 3-16 lists all the interrupt causes.

Table 3-16. Interrupt Causes

Internal/external Interrupt cause

Internal SI1 input

Completion of serial interface #1 input

SO1 output

Enabling output of serial interface #1

SI2 input

Completion of serial interface #2 input

SO2 output

Enabling output of serial interface #2

HI input

Completion of host interface input

HO output

Enabling output of host interface

External INT1

Falling edge of external signal pin INT1

INT2

Falling edge of external signal pin INT2

INT3

Falling edge of external signal pin INT3

INT4

Falling edge of external signal pin INT4

Chapter 3 Architecture 3.4 Program Control Unit

µPD7701x Family User's Manual 95

(2) Interrupt control function

All interrupt causes, regardless of whether they are internal or external, are handled as

independent events and at independent levels. Here is the summary of the functions to

control the interrupts:

• Each interrupt cause can be enabled or disabled independently.

• All interrupts can be enabled or disabled as one group (global enable).

• A stack for global interrupt enable function is provided, so that multiple (nesting of)

interrupts can be handled.

• The interrupt vectors (entry points of interrupt servicing routine at interrupt

acknowledgement) for all interrupt causes are fixed.

• When an interrupt has been acknowledged, the current instruction is aborted, and

program execution control is transferred to the specified entry point.

• After the interrupt servicing routine is executed completely, control is returned to the

instruction that was suspended by the interrupt.

• When an interrupt request is issued during the execution of Jump or some other

instructions, a delay cycle is inserted before the interrupt is acknowledged.

(3) Interrupt acknowledgment condition

When an interrupt request is generated by an interrupt cause, the interrupt will be

acknowledged if both following conditions are satisfied:

• Global interrupt enable (EI) flag value is 0 (enable).

• Interrupt cause enable flag value corresponding to the requested interrupt is 0 (enable).

Note, however, that acknowledging the interrupt is delayed in any of the following cases:

• While a jump instruction is fetched, decoded, or executed

• While a repeat instruction or a repeat target instruction is fetched, decoded, or executed

• While a loop instruction is fetched, decoded, or executed

• While a loop termination instruction (instruction at loop end address) is fetched

Chapter 3 Architecture 3.4 Program Control Unit

µPD7701x Family User's Manual96

(4) Hardware conditions of external interrupt

External interrupts (INT1-INT4) are acknowledged when the falling edges of the corresponding

pins have been detected. To issue several interrupt requests successively, make the

corresponding pin to high and then to low, for each interrupt request, to create a falling edge.

Note that each of the high and low levels must have enough duration for the system to

recognize level changes.

Figure 3-25 shows external interrupt timing.

Figure 3-25. External Interrupt Timing

Caution In case of the µPD77015, 77017, 77018, 77018A, and 77019,
if the processor is in HALT mode, the active (low) time of
an external interrupt INT1-INT4 has to be extended to
minimum 8 ×tw(INTL), since the CLKOUT period during HALT
mode is extended to 8 times longer.

Chapter 3 Architecture 3.4 Program Control Unit

tw(INTL)

CLKOUT

INT1-INT4

IA0-IA15 Interrupt vector

µPD7701x Family User's Manual 97

(5) Interrupt vector

Every interrupt cause has a dedicated entry point (also called vector). These vectors for

interrupt causes are sequentially set from the start position (address 0x200) of the internal

instruction area, creating a 64-word table. Each cause is assigned four instruction addresses.

If interrupt servicing is not completed within four instructions including the interrupt return

instruction (RETI), execution must branch beyond address 0x240 for service completion.

(a) Interrupt vector table

Table 3-17 shows the interrupt vector table.

Table 3-17. Interrupt Vector Table

Vector Internal/external Interrupt cause

0x200 Internal Reset

0x204 — Reserved

0x208 — Reserved

0x20C — Reserved

0x210 External INT1

0x214 External INT2

0x218 External INT3

0x21C External INT4

0x220 Internal SI1 input

0x224 Internal SO1 output

0x228 Internal SI2 input

0x22C Internal SO2 output

0x230 Internal HI input

0x234 Internal HO output

0x238 — Reserved

0x23C — Reserved

Cautions 1. Although the reset signal is not an interrupt, it is treated
as a vector entry as if it is an interrupt.

2. It is recommended that the vector of unused interrupt
causes be branched to an abnormality processing routine.

3. Because the vector area of the mask ROM model also exists
in the internal RAM area, this area must be booted up. Also
because the entry after reset is address 0x200, booting up
address 0x200 is necessary even when the internal
instruction RAM and interrupts are not used.

Chapter 3 Architecture 3.4 Program Control Unit

µPD7701x Family User's Manual98

Chapter 3 Architecture 3.4 Program Control Unit

(b) Example of processing of interrupt vector

See the following example.

#define SI1 0x3800

#define SO1 0x3800

int_vec imseg at 0x200

 :

 :

org 0x220

(0x220) JMP INPUT

(0x221) NOP

(0x222) NOP

(0x223) NOP

(0x224) R0H=*DP4++

(0x225) *SO1:y=R0H

(0x226) RETI

(0x227) NOP

(0x228) NOP

(0x229) RETI

(0x22A) NOP

(0x22B) NOP

 :

 :

; Main program segment

main imseg

 :

 :

INPUT: R0H=*SI1:y

 R1=*DP0

 R1=R1+R0H*R2H

 *DP0=R1H

 RETI

; Definitions

; address of serial input register

; address of serial output register

; Interrupt vector table

; start of vector table

; serial input #1 interrupt vector

; branches to application area for

; more than 4 instructions

;

;

; serial output #1 interrupt vector

; interrupt service less than 4 instructions

; fetch data from y-memory

; transter it to serial output #1

; return from interrupt

;

; serial input #2 interrupt

; serial input #2 is not used (RETI

; instruction cannot be written at

; brginning of vector)

;

; start at 0x240 (automatically located

; to 0x240 by the Linker)

; serial input #1 interrupt servicing routine

; fetch data from serial input #1

;

;

;

; return from interrupt

µPD7701x Family User's Manual 99

(6) Interrupt control software

Interrupts are controlled by the following registers (refer to Figure 3-9 “Program Control Unit”):

• Status register (SR)

• Interrupt enable flag stack register (EIR)

(a) Status register (SR)

This is a 16-bit register that enables or disables all the interrupts (general interrupt enable/

disable), and enables or disables each interrupt cause separately. When the value of a

bit of this register is 0, the corresponding interrupt is enabled; when the bit is 1, the

interrupt is disabled.

The values of SR can be read and written by executing the register-to-register transfer

instruction. This register is set to 0xF000 at reset.

<1> Interrupt enable flags (EI: enable interrupt, EP: enable interrupt previous,

EB: enable interrupt before)

The EI, EP, and EB flags enable or disable all the interrupts. When the value of these

flags is 0, the interrupts are enabled; when it is 1, the interrupts are disabled. These

three flags, EI (enable interrupt), EP (enable interrupt previous), and EB (enable interrupt

before), enable or disable the current interrupts, and interrupts one levels before and two

levels before.

These flags are the same as the EI, EP, EB flags at bits 15-13 of the EIR register (refer to

section (b) “Interrupt enable flag stack register”). Therefore, the values of bits 15-13 of

the SR are always the same as those of the EIR register.

The following nesting of interrupt and stack manipulation are handled by the EI, EP, and

EB flags and E3 through E15 flags of the EIR register (refer to section (b) “Interrupt

enable flag stack register”).

When interrupt has been acknowledged;

value of EB —> E3 of EIR register

value of EP —> shifted to EB

value of EI —> shifted to EP

EI —> set to 1 (all interrupt disable)

Vice versa at RETI instruction;

value of EI —> wasted

value of EP —> shifted to EI

value of EB —> shifted to EP

value of E3 of EIR register —> EB

Chapter 3 Architecture 3.4 Program Control Unit

EI

15 14

EB

13

LF

12 11 10 9 8 7 6 5 4 3 2 1 0

ho hi so2 si2 so1 si1 int4 int3 int2 int1
EP

Interrupt enable flag Reserved Interrupt enable flag for each cause

On-chip I/O device External interrupt master

µPD7701x Family User's Manual100

Chapter 3 Architecture 3.4 Program Control Unit

For multiple interrupts, refer to section (b) “Interrupt enable flag stack register”.

The interrupt flag before updating is valid while a transfer instruction which specifies SR

as the destination is fetched and executed, that is, between the transfer instruction and

the next instruction, and between the next instruction and the instruction that follows.

Example of changing interrupt enable flag (enabled —> disabled)

Initial status:EI=0; (interrupt enabled)

R0L=EIR;

R0=R0|0x8000;

EIR=R0L;

Next instruction; May branch to interrupt servicing

Instruction that follows;

Caution To rewrite the EP and EB flag, be sure to disable all the
interrupts (EI = 1).

<2> Loop flag (LF)

This flag indicates whether execution is in a loop or not. The value “0” shows that the

execution is in a loop, and “1” for not in a loop.

Caution Do not change this flag when modifying any interrupt mask
flags. Modify interrupt mask flags always by reading the
current SR contents and mask only the dedicted flags (refer
to following examples).

<3> Reserved flags

A write to these flags is ignored. Undefined values are returned when these flags are

read.

<4> Interrupt enable flags for each cause

These flags enable or disable the corresponding interrupt causes. When the value of

any of these flags is 0, the corresponding interrupt is enabled; when it is 1, the interrupt is

disabled. The values of these flags are not affected even when the respective interrupts

have been acknowledged. There are the following five types of these flags, totaling 10.

• External interrupts 1-4 : Interrupts from external interrupt pins (INT1-INT4).

• SI1, SI2 : Interrupts that occur when serial input has been completed and data has

been received by the serial data register (SDT: for input).

µPD7701x Family User's Manual 101

; disable interrupts generally here: via EIR register

; set EI = 1 (general interrupt disabled)

; write back to EIR

; wait until interrupt disable becomes valid

; disable external INT1 via SR register

; set INT1 = 1 (disabled)

; write back to SR

• SO1, SO2 : Interrupts that occur when serial output has been completed and transmit

data can be written to the serial data register (SDT: for output).

• HI : Interrupt that occurs when host interface input has been completed and

data has been received by the host data register (HDT: for reception).

• HO : Interrupt that occurs when host interface output has been completed and

transmit data can be written to the host data register (HDT: for transmission).

Caution To rewrite any of the above flags, be sure to disable all
interrupts (EI = 1).

Example of rewriting interrupt enable flag for each cause (enabled —> disabled)

R0L=EIR

R0=R0|0x8000

EIR=R0L

NOP

R0L=SR

R0=R0|0x0001

SR=R0L

(b) Interrupt enable flag stack register (EIR)

This 16-bit register stacks the general interrupt enable flags. When a bit of this register is

0, the corresponding interrupt is enabled; when the bit is 1, the interrupt is disabled.

The values of EIR can be read and written by executing the register-to-register transfer

instruction.

The value of this register is set to 0xFFFF at reset.

When an interrupt has been acknowledged, the contents of this register are shifted 1 bit

to the right, and the bit EI is set to 1 to disable all interrupts generally. The register

contents are shifted 1 bit to the left by execution of the interrupt return instruction RETI

where E15 is set to 1 simultaneously. Cause of them, multiple interrupts of up to 16

levels are guaranteed.

Bits 15-13 (EI, EP, EB) are the same as the bits 15-13 of the SR register.

The interrupt enable/disable status can be changed by writing EIR with the register-to-

register transfer instruction. However, note that this change will be valid three instructions

after writing EIR.

Chapter 3 Architecture 3.4 Program Control Unit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EI EP EB E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15

µPD7701x Family User's Manual102

Example of enabling interrupt (disabled status —> enabled)

Initial status:EI=1 (interrupt disabled)

R0L=EIR;

R0=R0&0x7FFF;

EIR=R0L;

Instruction 1; Interrupt disabled during this period

Instruction 2;

Instruction 3; Interrupt enabled

<1> EIR and multiple interrupts

As described earlier, a multiple interrupt system can be configured by using the EIR

register. This paragraph describes the concept of multiple interrupts, taking an example

shown in Figure 3-26 and focusing on EIR.

[Prerequisite]

All interrupts are enabled by the corresponding interrupt enable flags.

[Process]

(1) Clear the EI bit to 0 to enable all interrupts.

(2) INT1 is acknowledged, and control is transferred to the INT1 servicing routine. At this time,
the contents of the EIR register are shifted 1 bit to the right, and one level of interrupt status is
stacked. At the same time, bit 15 (EI) is set to 1, disabling the other interrupts.

(3) The interrupts are enabled (EI=0) in the INT1 servicing routine.

(4) INT2 is acknowledged, and control is transferred to the INT2 servicing routine. In the same
manner as before, the contents of EIR are shifted 1 bit to the right, and EI is set to 1, disabling
the interrupts.

(5) INT3 request is generated while the INT2 servicing routine is executed. However, this interrupt
is not acknowledged because it is disabled, but recorded.

(6) When the INT2 servicing routine is ended in the RETI instruction, the contents of EIR are
shifted 1 bit to the left. Consequently, the status before acknowledging the INT2 interrupt is
restored. In this status, EI=0, enabling the interrupts.

(7) The recorded INT3 is now acknowledged, and control is transferred to the INT3 servicing
routine. The contents of EIR are shifted 1 bit to the right again, and EI is set to 1. If necessary,
clear EI to 0.

(8) When the INT3 servicing routine is ended in the RETI instruction, the contents of EIR are
shifted 1 bit to the left, and the status before INT3 was acknowledged is restored (INT1 is
being processed).

(9) Execution of the INT1 servicing routine continues. When the RETI instruction is executed at
the end of this routine, the status before INT1 was acknowledged is restored.

Chapter 3 Architecture 3.4 Program Control Unit

µPD7701x Family User's Manual 103

Figure 3-26. Multiple Interrupt Processings

<2> Differences between SR and EIR

The most significant three bits of the SR and EIR registers (EI, EP, and EB) are accessed

as common bits. The EI bit directly enables or disables the current interrupt, and therefore

care must be exercised in manipulating this bit. The differences between SR and EIR

are as follows, when the EI bit is manipulated:

• To enable the interrupts, the EI bit of either the SR or EIR register can be used.

• To disable the interrupts, use of the EI bit of the EIR register is recommended.

There is no problem when the interrupts are enabled by the EI bit because the interrupts

have been disabled up to that point. When the interrupts are disabled, however, the

following situation may arise:

EI=0 EIR=0111...

EIR=1011...

EIR=0111...

INT1

INT2

RETI

EI=0 EIR=0011...

Main program

INT1 servicing routine

Interruption is allowed

EIR=1001...

INT3

RETI EIR=0011...

INT2 servicing routine

Interruption is not allowed

RETI

INT3 servicing routine

Interruption is allowed

EIR=1001...

EIR=0011...

EIR=0001...

EI=0

Chapter 3 Architecture 3.4 Program Control Unit

µPD7701x Family User's Manual104

Chapter 3 Architecture 3.4 Program Control Unit

R0L=SR

R1L=SR

R1=R1|0x0001

SR=R1L

RETI

R0=R0|0x8000

SR=R0L

 :

 :

In this case, writing data to the SR register is ignored while the interrupt is serviced. To

avoid this situation, it is recommended to use the EI bit of the EIR register, rather than

that of the SR register, to disable the interrupts.

(7) Interrupt sequence

(a) Acknowledging an interrupt

When an interrupt has been acknowledged, the following operations are performed:

• An instruction that was fetched immediately before the interrupt has been acknowledged

is kept pending.

• The EIR register is shifted 1 bit to the right to stack 1 level.

• The EI bit is set to 1 to disable the interrupts.

• SP is incremented.

• The address of the pending instruction is saved to STK specified by SP.

• A specified interrupt vector address is set to PC, and execution branches to interrupt

servicing routine.

Figure 3-27 shows timing of acknowledging an interrupt.

; disable interrupt generally here: via SR register

<– Interrupt occurs and jump to interrupt servicing routine:

; Interrupt servicing routine

; This routine disables INT1 interrupt individually

;

; set INT1=1 (disabled)

; write back to SR

; return from interrupt

<– SR has changed meanwhile

; set EI=1

; write back to SR

µPD7701x Family User's Manual 105

Figure 3-27. Interrupt Acknowledging Timing

(b) Returning from interrupt

When the RETI instruction (interrupt return) is executed, the following are processed in

two to three instruction cycles, and execution returns from the interrupt servicing routine.

• The value of STK indicated by SP is restored to PC.

• SP is decremented.

• The EIR register is shifted to the left, and interrupt enable flags are restored.

• Execution branches to the return address (the instruction that was kept pending when

the interrupt was acknowledged).

Figure 3-28 (a) and (b) shows the return timings by using an unconditional RETI instruction

and a conditional RETI instruction with the condition satisfied, respectively.

Chapter 3 Architecture 3.4 Program Control Unit

if1

Clock

ifn : instruction fetch
idn : instruction decode
exn: instruction execution

Remarks

id1 ex1Instr #1

iif1 iid1 iex1
Interrupt
servicing

instruction #1

iif2 iid2 iex2
Interrupt
servicing

instruction #2

Interrupt
judgment

Fetch save
data

Interrupt
servicing

Synchro-
nization

Synchro-
nization

Interrupt
request

INT

Interrupt request signal

Interrupt disabled

EI: disable

iifn : interrupt instruction fetch
iidn : interrupt instruction decode
iexn: interrupt instruction execution

Purged and no execution

µPD7701x Family User's Manual106

Figure 3-28. Timing by RETI Instruction

(a) Unconditional

(b) Conditional instruction: Condition satisfied

Chapter 3 Architecture 3.4 Program Control Unit

Clock

Interrupt acknowledge delay signal

ifn : instruction fetch

rexn: interrupt return destination instruction execution

RETI

Instruction of
address next to RETI

rif1 rid1 rex1
Instruction next to one
at which interrupt was

acknowledged

if1 id1 popi

addr

if2 nop —

idn: instruction decode rifn : interrupt return destination instruction fetch
ridn : interrupt return destination instruction decode

Clock

Interrupt acknowledge delay signal

RETI

Instruction at address
next to that of RETI + 1

rif1 rid1 rex1
Instruction next to one
at which interrupt was

acknowledged

if1 id1

addr

if3 nop —

Instruction of
address next to RETI if2 nop —

jdec
popi

µPD7701x Family User's Manual 107

(8) Delaying interrupt acknowledgment

In the course of acknowledging an interrupt, registers SP, STK, and PC are automatically

managed. To prevent conflicts with instructions that address these registers, acknowledging

an interrupt is delayed when any of the following instructions that may cause such a conflict

is executed. Note that the interrupt acknowledgement itself (branching to the interrupt

servicing routine) still introduces only a single delay cycle.

Caution Interrupt is not acknowledged under following conditions
and interrupt request is held until interrupt enables;
• During peripheral I/O wait function
• During external memory access wait cycles
• During repeat process

(a) Instructions generating delay of one instruction cycle

The following instructions cause a delay of interrupt acknowledgment of one instruction

cycle:

• Decoding of unconditional JMP instruction (PC-relative jump by immediate data)

• Decoding of unconditional CALL instruction (PC-relative jump by immediate data)

• Decoding of unconditional RET instruction

• Decoding of unconditional RETI instruction

• Decoding of FINT instruction

• Fetching of loop end instruction

Figure 3-29 illustrates how an interrupt is delayed that occurs during the processing of

any of these instructions.

Figure 3-29. Interrupt Delay Timing (one-cycle delay)

Chapter 3 Architecture 3.4 Program Control Unit

Clock

Interrupt acknowledgment delay signal

JMP instruction if1 id1 addr

ia Fetching the first instruction of the interrupt servicing routine is
prevented in this cycle.

jifn, jidn, jexn: fetch, decode, or execution of instruction at branch destination
iifn, iidn, iexn: fetch, decode, or execution of interrupt routine

Remarks

ia: branch destination address calculation

Instruction at address
next to that of

JMP instruction
if2 nop —

First instruction at
branch destination

jif1 nop —

addr: address

First instruction in
interrupt routine

iif1 iid1 iex1

(Interrupt)

µPD7701x Family User's Manual108

(b) Instructions generating delay of two instruction cycles

The following instructions cause a delay of interrupt acknowledgment of two instruction

cycles:

• Decoding of onditional JMP instruction (PC-relative jump by immediate data)

• Decoding of conditional CALL instruction (PC-relative jump by immediate data)

• Decoding of conditional RET instruction

• Decoding of conditional RETI instruction

• Decoding of unconditional/conditional register-indirect JMP instruction

• Decoding of unconditional/conditional register-indirect CALL instruction

• Decoding of REP instruction

• Decoding of LOOP instruction

Figure 3-30 illustrates how an interrupt is delayed that occurs during the execution of any

of these instructions.

Figure 3-30. Interrupt Delay Timing (two-cycle delay)

Chapter 3 Architecture 3.4 Program Control Unit

Clock

Interrupt acknowledgment delay signal

ifn: fetch of instruction n
idn: decode of instruction n
exn: execution of instruction n
jifn, jidn, jexn: fetch, decode, or execution of instruction at branch destination
iifn, iidn, iexn: fetch, decode, or execution of interrupt routine

Remarks

Conditional
JMP instruction

ia: branch destination address calculation

if1 id1 addr

ia Fetching the first instruction of the interrupt servicing
routine is prevented in between these cycles.

Instruction at address next
to that of conditional

JMP instruction
if2 nop —

Instruction at address next
to that of conditional
JMP instruction + 1

if3 nop —

First instruction at
branch destination

jif1 nop —

addr: address

First instruction in
interrupt routine

iif1 iid1 iex1

(Interrupt)

ex1

µPD7701x Family User's Manual 109

(9) Conflict and recording of interrupt

(a) Recording interrupt

When an interrupt has been acknowledged, an interrupt servicing program is executed.

During the execution, the global interrupt enable flag “EI” is automatically set to 1 (disable).

Therefore, if another interrupt occurs during this period, it is not acknowledged immediately,

but is recorded classified by the cause. When the interrupt servicing program has been

ended in the RETI (return from interrupt) instruction, the EI flag is cleared to 0, enabling

other interrupts. Consequently, the recorded interrupt is acknowledged and processed.

This interrupt recording function works not only when EI is 1, but also when the

corresponding interrupt enable flags are set to the disable state.

Cautions 1. All interrupt request are recorded, disregarding the settings
of all interrupt enable/disable flags.

2. Only one level of interrupt can be recorded per cause.

3. The internal flag that records the occurrence of an interrupt
is not cleared unless the corresponding interrupt is
acknowledged.

4. The FINT instruction discards all interrupt requests. For
further details refer to µPD7701x Family User’s Manual
Instructions.

(b) Priority of interrupt

It is undefined which interrupt is served first if two or more interrupts occur at the same

time.

Chapter 3 Architecture 3.4 Program Control Unit

µPD7701x Family User's Manual110

3.4.5 Error status register (ESR)

This 16-bit register holds error flags which indicate some error status’s of the processor. A

write to bits 15-4 of this register is ignored. Undefined values are returned when these flags

are read.

Bits 3-0 of ESR are set to 1 when an error occurs. The values of these bits are not clear to

0 unless a hardware reset is applied or they are rewritten by program (inter-register instruction).

The values of ESR can be read and written by executing the inter-register transfer instruction.

The value of this register is cleared to 0 at reset.

(a) ovf: Overflow error flag

This flag is set to 1 if an overflow occurs while the operation unit calculates data in the

40-bit two's complement format.

(b) ste: Stack error flag

This flag is set to 1 when the stack overflows or underflows.

(c) lse: Loop stack error flag

This flag is set to 1 when the loop stack overflows or underflows.

(d) bac: Bus access error flag

This flag is set to 1 when prohibited parallel data memory access combination is executed.

Combinations of prohibited parallel data memory access are as follows;

• Internal ROM and Internal ROM

• Internal ROM and External area

• External area and External area

• Peripheral area and Peripheral area

Chapter 3 Architecture 3.4 Program Control Unit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ovf ste lse bacESR

µPD7701x Family User's Manual 111

3.5 Data Addressing Unit
Generally, a DSP is required to access a large quantity of data flexibly and efficiently.

The µPD7701x family is provided with dedicated data addressing units to efficiently access

the data memory spaces.

3.5.1 Block configuration

Figure 3-31 is the block diagram of the data address unit.

Figure 3-31. Data Addressing Unit

Chapter 3 Architecture 3.5 Data Addressing Unit

Main bus (16 bits)
X data bus

X memory

16

MUX

16

XBRC

DP0

DP1

DP2

DP3

16

XAA

DN0

DN1

DN2

DN3

Immediate
value16

16

16

MUX

16

DMX

Immediate
value

16

16

1616

Y data bus

Y memory

16

MUX

16

YBRC

DP4

DP5

DP6

DP7

16

YAA

DN4

DN5

DN6

DN7

Immediate
value

16

16

16

MUX

16

DMY

Immediate
value

16

16

1616

16

µPD7701x Family User's Manual112

3.5.2 Data memory space

The devices of the µPD7701x family have two independent data memory spaces, X and Y,

to which data can be accessed flexibly. Each of the X and Y data memory spaces is divided

into internal memory and external memory areas. The internal memory area can always be

accessed at high speeds as an internal resource of the device. The internal memory areas

of both the X and Y memory spaces can be accessed simultaneously. The external memory

area allows connection of memories of various speed range, using the incorporated software

and hardware wait functions. In addition, the internal memory area is further divided into

ROM and RAM areas.

This subsection describes the memory spaces.

(1) X and Y memory spaces

The devices of the µPD7701x family have two independent data memory spaces: X and Y.

These spaces are respectively accessed via the X and Y data buses described earlier in this

chapter (refer to section 3.2.2 “Data bus”). The features of these memory spaces are as

follows:

• One word consists of 16 bits.

• Both X and Y spaces have 64K words.

Although the memory maps of the X and Y memory spaces are the same, there are some

differences among the products in the µPD7701x family. The following figure shows the X

and Y memory maps of each product in the family.

Figure 3-32. X/Y Data Memory Map

Chapter 3 Architecture 3.5 Data Addressing Unit

0xFFFF

0x4000
0x3FFF

µ µ µPD77016

0x3840
0x383F
0x3800
0x37FF

0x0800
0x07FF

0x0000

External data
memory

(48K words)

System (1984 words)

Peripheral (64 words)

System
(12K words)

PD77015

0x0400
0x03FF

External data
memory

(16K words)

System (1984 words)

Peripheral (64 words)

System
(13K words)

Data RAM (1K words)

0xC000
0xBFFF

0x4800
0x47FF

System
(30K words)

Data ROM
(2K words)

PD77017

0x0800
0x07FF

External data
memory

(16K words)

System (1984 words)

Peripheral (64 words)

System
(12K words)

0x5000
0x4FFF

System
(28K words)

Data ROM
(4K words)

µ PD77018, 77018A,
77019Note

0x0C00
0x0BFF

External data
memory

(16K words)

System (1984 words)

Peripheral (64 words)

System
(11K words)

0x7000
0x6FFF

System
(20K words)

Data ROM
(12K words)

µ µ

Data RAM
(2K words)

Data RAM
(2K words)

Data RAM
(3K words)

Note The PD77019-013 does not have the internal ROM of the PD77019.

No program or data must be stored to the addresses reserved for the system,
nor must these addresses be accessed. If any of these addresses is accessed,
normal operation of the PD7701x family is not guaranteed.µ

Caution

µPD7701x Family User's Manual 113

(2) Internal data memory

As shown by the memory map in Figure 3-32, a 16K-word area starting from address 0

functions as an internal area of the µPD77016. With the µPD77015, 77017, 77018, 77018A,

and 77019, a 48K-word area starting from address 0 is used as the internal area. The

internal area is divided into a ROM area, RAM area, peripheral area, and system area, of

which the ROM and RAM areas are used as a data memory. The capacity of the internal

data memory differs by processor type, which allows users to select the device best suited

to their application.

For the details of the peripheral area, refer to section 3.7.2 “Peripheral registers”.

Caution Accessing system areas is prohibited.

(a) Internal ROM and RAM

As described above, the capacities of the internal ROM and RAM areas can be selected.

The table below lists the available capacity options.

Note that the internal ROM of the µPD77019-013 cannot be used.

Table 3-18. ROM and RAM Capacities

ROM RAM

Part number X Y X Y

µPD77016 None None 2K words 2K words

µPD77015 2K words 2K words 1K words 1K words

µPD77017 4K words 4K words 2K words 2K words

µPD77018 12K words 12K words 3K words 3K words
µPD77018A
µPD77019

Chapter 3 Architecture 3.5 Data Addressing Unit

µPD7701x Family User's Manual114

(3) External data memory interface

(a) External data memory capacity

As shown in Figure 3-32, the µPD7701x family can expand the memory capacity by

using an external data memory. The expandable capacity differs by processor type, as

shown in the table below.

Table 3-19. Capacity of External Data Memory

Part number X external data memory Y external data memory

µPD77016 48K words 48K words

µPD77015 16K words 16K words

µPD77017

µPD77018

µPD77018A

µPD77019

(b) Interface signals of external data memory

When using the external data memory, bear in mind the following differences from the

internal data memory:

• As described in section 3.2.2 “Data bus”, the external data bus is shared by the X and

Y data buses. Therefore, the X and Y spaces, which are logically separated when viewed

from the program, can be considered as a single memory space if the X/Y select signal is

regarded as one of the address bits.

• An wait function is available which is effected by the data memory wait cycle register

(DWTR) and the WAIT pin.

The external data memory interface uses the following pins:

<1> DA0-DA15 (address output pins)

These output pins constitute a 16-bit address bus. Note, however, that the µPD77015,

77017, 77018, 77018A, and 77019 are not provided with the DA14 and DA15 pins.

All these pins go into a high-impedance state while the bus is released.

They output a low level immediately after reset.

The statuses of these pins are not changed when the external data memory is not accessed

(address output continues).

<2> X/Y (X/Y output pin)

This pin outputs a low level if the address bus DA0-DA15 accesses the X memory space;

it outputs a high level if the Y memory is accessed.

This pin goes into a high-impedance state while the bus is released.

Chapter 3 Architecture 3.5 Data Addressing Unit

µPD7701x Family User's Manual 115

<3> D0-D15 (data input/output pin)

These pins constitute a 16-bit data bus.

They go into a high-impedance state while the bus is released, or when the external data

memory is not accessed.

<4> MRD (memory read output pin)

This pin outputs the read strobe signal for the external data memory.

It goes into a high-impedance state while the bus is released.

Data is latched and MRD is switched in synchronization with the rising edge of CLKOUT.

<5> MWR (memory write output pin)

This pin outputs the write strobe signal for the external data memory.

It goes into a high-impedance state while the bus is released.

Data is output and MWR is switched in synchronization with the rising edge of CLKOUT.

<6> WAIT (wait input pin)

The µPD7701x inserts wait cycle(s) if this pin is made low when the external data memory

is accessed.

<7> HOLDRQ (bus hold request input pin)

This pin inputs a signal requesting occupancy of the bus.

It is used to arbitrate the bus in a system where two or more CPUs, including the µPD7701x,

shares the bus.

When this signal is made low, the bus is released to an external device after the current

bus cycle has been completed.

<8> BSTB (bus strobe output pin)

This pin outputs a signal requesting use of the external data bus.

When the bus is controlled by the µPD7701x serving as a bus master, this signal functions

as a bus strobe signal and indicates that the bus is accessed.

In the bus slave status, this signal functions as an external data bus request signal in

response to the HOLDRQ signal output by a bus master.

<9> HOLDAK (bus hold acknowledge output pin)

This pin outputs a signal permitting an external device to use the bus.

It outputs a low level while the bus is released to an external device.

Chapter 3 Architecture 3.5 Data Addressing Unit

µPD7701x Family User's Manual116

Table 3-20. Pin Status

Pin I/O During reset Initial after reset No external memory During bus

access release

DA0-DA15 (13Note) O L L previous Hi-Z

X/Y O H L previous Hi-Z

D0-D15 I/O Hi-Z Hi-Z Hi-Z Hi-Z

MRD O H H H Hi-Z

MWR O H H H Hi-Z

WAIT I – – – –

HOLDRQ I – – – L

BSTB O H H H H/L

HOLDAK O previous previous H L

Note The µPD77015, 77017, 77018, 77018A, and 77019 are not provided with DA14 and DA15.

(c) Data memory access timing

Figure 3-33 (a) shows a read cycle without wait cycles, and Figure 3-34 (a) shows a write

cycle without wait cycles. Figure 3-33 (b) shows a read cycle with wait cycles, and Figure

3-34 (b) shows a write cycle with wait cycles. If data memory read cycles are successively

generated, MRD remains low.

Chapter 3 Architecture 3.5 Data Addressing Unit

µPD7701x Family User's Manual 117

Figure 3-33. Timing of Data Memory Read Cycle

(a) Without wait cycles

(b) With wait cycles

Chapter 3 Architecture 3.5 Data Addressing Unit

CLKOUT

tdDA

DA0-DA15,
X/Y

D0-D15

thDDRDtsuDDRD

MRD

thDRtdDR

CLKOUT

MRD

DA0-DA15,
X/Y

tdDA

D0-D15

thDDRDtsuDDRD

thDRtdDR

tsuWA thWA tsuWA thWA

WAIT

µPD7701x Family User's Manual118

Figure 3-34. Timing of Data Memory Write Cycle

(a) Without wait cycles

(b) With wait cycles

Chapter 3 Architecture 3.5 Data Addressing Unit

DA0-DA15,
X/Y

tdDA

twDWH

CLKOUT

D0-D15

MWR

tvDDWD
tvDDWD thDDWD

tdDW tsuDW

twDWL

WAIT

tsuWA thWA tsuWA thWA

CLKOUT

DA0-DA15,
X/Y

tdDA

tvDDWDtvDDWD thDDWD

MWR

D0-D15

tsuDW

twDWH

tdDW

twDWL

µPD7701x Family User's Manual 119

(d) Wait controller

The wait controller enables access of an external data memory with a long access time,

and inserts wait cycle(s) during external data memory access cycles. This wait function

can be controlled in the following two ways:

• By hardware signal pin

The WAIT pin is provided, so that any number of wait cycles can be inserted by means of

handshaking by hardware.

• By DWTR (data memory wait cycle register)

The number of wait cycles specified in advance by software can be set to DWTR which is

mapped to the memory space as a peripheral register.

The WAIT signal is a negative logic input signal and is sampled at the rising edge of

CLKOUT when the external data memory is accessed. While this signal is active (low

level), the corresponding cycle serves as a wait cycle (refer to (c) “Data memory access

timing”).

<1> DWTR (data memory wait cycle register)

DWTR is a register that implements a programmable wait function controlled by software.

This register is provided as one of the peripheral registers. The number of wait cycles

specified in advance can be selected and set to this register by the application program.

DWTR is a 16-bit register and is divided into fields as follows, for each processor type:

• The DWTR of the µPD77016 consists of six fields of two bits each. These six fields

correspond to six 16K-word banks corresponding to the external memory. The six 16K-

word banks are created by dividing each of the 64K-word external X and Y memory

spaces by four. For each bank, the number of wait cycles can be set independently.

• The DWTR of the µPD77015, 77017, 77018, 77018A, and 77019 consists two 2-bit

fields, which correspond to the two 16K-word banks external X and Y memory. The two

16K-word banks are created by dividing each of the 64K-word external X and Y memory

space by four. For each bank, the number of wait cycles can be set independently.

Figure 3-35 (a) shows the image of controlling the DWTR of the µPD77016. Figure 3-35

(b) shows the image of controlling the DWTR of the µPD77015, 77017, 77018, 77018A,

and 77019. Table 3-21 shows the relations between the value set to each field of DWTR

and the number of wait cycles.

Chapter 3 Architecture 3.5 Data Addressing Unit

µPD7701x Family User's Manual120

Figure 3-35. Data Memory Control Bank and DWTR Field
Configuration

(a) µPD77016

(b) µPD77015, 77017, 77018, 77018A, 77019

Caution • With the µPD77016, writing data to bits 9, 8, 1, and 0 is
ignored. These bits are undefined when read.

• With the µPD77015, 77017, 77018, 77018A, and 77019,
writing data to bits 13-8 and 5-0 is ignored. These bits
are undefined when read.

X data memory

D field
16K words

C field
16K words

B field
16K words

0xFFFF

0xC000
0xBFFF

0x8000
0x7FFF

0x4000
0x3FFF

0x0000

DWTR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Y data memory

H field
16K words

G field
16K words

F field
16K words

0xFFFF

0xC000
0xBFFF

0x8000
0x7FFF

0x4000
0x3FFF

0x0000

D field C field B fieldH field G field F field

X data memory

D field
16K words

0xFFFF

0xC000
0xBFFF

0x8000
0x7FFF

0x4000
0x3FFF

0x0000

DWTR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Y data memory

H field
16K words

0xFFFF

0xC000
0xBFFF

0x8000
0x7FFF

0x4000
0x3FFF

0x0000

D fieldH field

Chapter 3 Architecture 3.5 Data Addressing Unit

µPD7701x Family User's Manual 121

Table 3-21. Set Value of DWTR Field and Number of Wait Cycles

Bit Wait cycles Remark

0 0 0 1-cycle access:

SRAM etc. with an access time of about 8 ns is connected (at 33 MHz).

0 1 1 2-cycle access:

SRAM etc. with an access time of about 35 ns is connected (at 33 MHz).

1 0 3 4-cycle access:

SRAM etc. with an access time of about 85 ns is connected (at 33 MHz).

1 1 7 8-cycle access:

Mask ROM etc. with an access time of about 150 ns is connected (at 33
MHz)

Caution When DWTR is set, the specified number of wait cycles
becomes valid when an instruction immediately after the
instruction that has set the data to DWTR is executed.

<2> Overlapping operation by WAIT pin and DWTR

If the hardware control by the WAIT pin and the software control by DWTR are implemented

simultaneously, the following operation is performed:

(1) In the external data memory access cycle, the number of wait cycles specified by

DWTR is unconditionally inserted.

(2) At this time, the status of the WAIT pin is sampled at the rising edge of the last cycle

of all the memory cycles. While the WAIT pin is active (low), wait cycles are

continuously inserted.

Chapter 3 Architecture 3.5 Data Addressing Unit

µPD7701x Family User's Manual122

(e) Bus arbitration

The µPD7701x family is provided with the bus arbitration function to support memory

configuration of multiple bus masters. It is considered that the typical multiple bus masters

share the memory in the following combination:

• µPD7701x (master) – µPD7701x (slave)

• µPD7701x – host CPU

• µPD7701x – DMA controller

Care must be exercised if the supply voltage of each bus master differs from that of the

others.

Figure 3-36 shows a typical example of bus arbitration. The operations are as follows:

<1> When the µPD7701x family executes an instruction to access the common memory,

BSTB becomes active (low).

<2> The external device makes HOLDRQ active (low).

<3> The µPD7701x family makes HOLDAK active after the bus cycle has been completed

(after the accesses are completed if accesses are successively generated).

<4> The external device uses the bus.

<5> The external device makes HOLDRQ inactive (high) after completing access.

<6> The µPD7701x family makes HOLDAK inactive (high) to resume bus access.

Figure 3-36. Bus Arbitration Procedure

Note 1

CLKOUT
(output)

BSTB
(output)

<1>

HOLDRQ
(input)

<2> <5>

HOLDAK
(output)

<3> <6>

X/Y (output)
DA0-DA15 (output)

D0-D15 (I/O)

External
device
access

<4>

Bus released

Hi-Z
Note 2 Note 3

Bus idle

Note 1. BSTB becomes high when the last access has been completed.
 2. External memory access: the last access if successible accesses are generated.
 3. Previous value: i.e., not Hi-Z (no external memory access).

Chapter 3 Architecture 3.5 Data Addressing Unit

µPD7701x Family User's Manual 123

(4) Restriction of simultaneous access

As described earlier, the µPD7701x family divides its memory space in various ways. The

µPD7701x family has a function to access two memory spaces, X and Y, simultaneously by

means of parallel load, etc. This paragraph describes the combination of memory spaces in

which access can be made. Table 3-22 shows the combination of memory spaces which

can be simultaneously accessed.

Table 3-22. Simultaneous Access to X and Y Memory Spaces

X memory area via X data bus

Internal Internal External Peripheral

ROM RAM memory register

Internal ROM — OK — OK

Internal RAM OK OK OK OK

External memory — OK — OK

Peripheral register OK OK OK —

Remark OK : Can be simultaneously accessed
— : Cannot be simultaneously accessed

Y memory
area
via
Y data
bus

Chapter 3 Architecture 3.5 Data Addressing Unit

µPD7701x Family User's Manual124

3.5.3 Addressing mode

The µPD7701x family is provided with a powerful architecture to realize high-speed, flexible

data memory access. The X and Y memory areas are addressed by completely independent

but functionally identically addressing units. This subsection describes the architecture and

addressing modes implemented.

(1) Function of each part of addressing unit

The functions of the registers and functional blocks shown in Figure 3-31 are as follows:

(a) Data pointers (DP0-DP7)

These eight 16-bit registers are used for indirect addressing. DP0-DP3 are used to specify

an address of the X memory space, while DP4-DP7 are used to specify an address of the

Y memory space.

The values of DP0-DP7 can be input/output via the main bus.

(b) Index registers (DN0-DN7)

These eight 16-bit registers modify DP0-DP7. After the memory has been accessed,

DPn is modified by the value of DNn (n: 0-7, each corresponds respectively). The values

of DN0-DN7 can be input/output via the main bus.

The valid number range of this register is given by –32768 (0x8000) to +32767 (0x7FFF).

(c) Modulo registers (DMX, DMY)

These two 16-bit registers specify the ring count range when DP0-DP7 are modified

during the ring count operation performed.

The ring count range for DP0-DP3 is specified by DMX. DMY is used to specify that for

DP4-DP7.

The values of DMX and DMY can be input/output via the main bus.

The valid number range of this register is given by +1 (0x0001) to +32767 (0x7FFF).

(d) Address ALUs (XAA, YAA: X and Y Address ALUs)

These two 16-bit ALUs are used to modify DP0-DP7.

XAA is used to modify DP0-DP3, while YAA modifies DP4-DP7.

(e) Bit reverse circuits (XBRC, YBRC: X and Y Bit Reverse Circuits)

When a bit reverse access is performed, these circuits output an address that reverses

the order of the DP0-DP7 values, so that the highest bit becomes the lowest, and vice

versa.

(f) Multiplexer (MUX)

This circuit selects one of several signals for output.

Chapter 3 Architecture 3.5 Data Addressing Unit

µPD7701x Family User's Manual 125

(2) Types of addressing modes

The data memory addressing modes are hierarchically classified below.

There are one type of direct addressing mode and seven types of indirect addressing modes

that are implemented by using data pointers (DPs) as the base address indicator.

• Direct addressing

• Indirect addressing

* DPn (no change)

* DPn++ (post increment)

* DPn– – (post decrement)

* DPn## (post index addition)

* DPn%% (post modulo index addition)

* !DPn## (pre-bit reverse and post index addition)

* DPn##imm (immediate addition)

(a) Direct addressing

Direct addressing is to directly express an address value and address division (X or Y) in

an instruction word. Data of 16 bits is exchanged between a specified address of a

specified division (X or Y) and a general-purpose register via X or Y data bus.

For details, refer to “µPD7701x Family User’s Manual Instructions”.

Example 1: Load

R0H = *0x1234:X;

16-bit data is loaded to the H part (middle 16 bits) of general-purpose register R0 from

address 0x1234 of the X memory.

Example 2: Store

*0x1234:X = R0H;

16-bit data is stored to address 0x1234 of the X memory from the H part (middle 16 bits)

of general-purpose register R0.

Caution The X and Y memory spaces cannot be accessed
simultaneously by means of direct addressing.

Chapter 3 Architecture 3.5 Data Addressing Unit

µPD7701x Family User's Manual126

(b) Indirect addressing

In all the indirect addressing modes, the DPn register (data pointer) is used. The basic

features of indirect addressing are summarized below.

• As the address value, the current value of specified DPn is output in all the

modes except the bit reverse index addition mode. In the bit reverse index

addition mode, the current value of the specified DPn is reversed and output

(refer to Figure 3-37).

• If it is specified to modify DPn, DPn is modified after the data memory has been

accessed.

• The modified DPn value, i.e. the new address, is effective from the next

instruction onwards.

• DPn alone cannot be modified.

• If an immediate value has been set to DPn, either by an inter-register transfer

or an immediate value set instruction, the new address is effective from the next

but one following instruction (refer to “µPD7701x Family User’s Manual

Instructions”).

• DP0-DP3 are used to access the X memory space, and DP4-DP7 are used to

access the Y memory space.

Each indirect addressing mode is described next.

<1> *DPn (no change)

The memory is accessed with the value of DPn. The value of DPn is preserved after the

access has been completed.

Example:

R1L = *DP0;

16-bit data is loaded from the X memory address indicated by the value of DP0 to the L

part (lower 16 bits) of R1.

<2> *DPn++ (post increment)

The memory is accessed with the value of DPn. The value of DPn is incremented (+1)

after the access has been completed.

Example:

R2H = *DP4++;

16-bit data is loaded from the Y memory address indicated by the value of DP4 to the H

part (middle 16 bits) of R2, and then the value of DP4 is incremented.

Chapter 3 Architecture 3.5 Data Addressing Unit

µPD7701x Family User's Manual 127

<3> *DPn– – (post decrement)

The memory is accessed with the value of DPn. The value of DPn is decremented (–1)

after the access has been completed.

Example:

R3E = *DP1--;

8-bit data (the lower 8 bits of the 16 bits) is loaded from the X memory address indicated

by the value of DP1 to the E part (higher 8 bits) of R3, and then the value of DP1 is

decremented.

<4> *DPn## (post index addition)

The memory is accessed with the value of DPn. After the access has been completed,

the value of DNn is added to DPn. Note that the n-th index register DNn corresponds

only to the n-th data pointer DPn (e.g. DN1 to DP1).

The valid number range of DNn is given by –32768 (0x8000) to +32767 (0x7FFF).

Example:

R4L = *DP5##;

16-bit data is loaded from the Y memory address specified by the value of DP5 to the L

part (lower 16 bits) of R4, and then the value of DN5 is added to DP5.

<5> *DPn%% (post modulo index addition)

The memory is accessed with the value of DPn. After the access has been completed,

the value of DNn is added to DPn. In addition, modulo adjustment is made by DMX or

DMY (DMX is used when n=0-3, and DMY is used when n=4-7). Note that the n-th index

register DNn corresponds only to the n-th data pointer DPn (e.g. DN1 to DP1).

The valid number range of DNn is given by –32768 (0x8000) to +32767 (0x7FFF).

For the details of modulo index addition and modulo adjustment, refer to <9> “Modulo

index addition and cyclic buffer”.

Example:

R5H = *DP3%%;

16-bit data is loaded from the X memory address specified by the value of DP3 to the H

part (middle 16 bits) of R5. Then the value of DN3 is added to DP3, and modulo adjustment

is made by DMX.

Chapter 3 Architecture 3.5 Data Addressing Unit

µPD7701x Family User's Manual128

<6> *!DPn## (pre-bit reverse and post index addition)

The memory is accessed by using the value that reverses the order of the DPn values,

as shown in Figure 3-37, and the value of DNn is added to DPn after the access has

been completed. Note that the value of DNn having the same number as that of DPn

must be added to DPn (for example, DN1 to DP1). This function is suitable for applications

such as FFT.

Figure 3-37. Reversing Bits of DPn

Example:

R6H = *!DP6##;

16-bit data is loaded from the Y memory address specified by the reserved bits of DP6 to

the H part (middle 16 bits) of R6, and then value of DN6 is added to DP6.

Remark DPn is not modified by bit-reversed access to the address, and the bit-reversed address is not fed
back to DPn. After bit-reversed access, the value of DNn is added to the value of DP6 (original DP6
value) before bit reversion.

Chapter 3 Architecture 3.5 Data Addressing Unit

Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

Bit
0DPn

Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

Bit
0

Address

••••••••

••••••••

µPD7701x Family User's Manual 129

<7> *DPn##imm (post immediate addition)

The memory is accessed with the value of DPn, and immediate value imm is added to

DPn after the access has been completed.

The valid number range of imm is given by –32768 (0x8000) to +32767 (0x7FFF).

Example:

R7L = *DP2##100;

16-bit data is loaded from the X memory address specified by the value of DP2 to the L

part (lower 16 bits) of R7, and then immediate value “100” is added to DP2.

Caution The immediate addition addressing mode cannot be used
to access the X and Y memories simultaneously.

<8> Modifying data pointers

Table 3-23 summarizes how the data pointers are modified as a result of accessing the

memory in the above addressing modes.

Table 3-23. Modifying Data Pointers

(a) Operation

Example Operation

DPn No modification

DPn++ DPn <— DPn + 1

DPn– – DPn <— DPn – 1

DPn## DPn <— DPn + DNn

(Values of corresponding DN0-DN7 are added to DP0-DP7).

Example: DP0 <— DP0 + DN0

DPn%% (n=0-3) DPn = ((DPL + DNn) mod (DMX + 1)) + DPH

(n=4-7) DPn = ((DPL + DNn) mod (DMY + 1)) + DPH

!DPn## Reverses bits of DPn and then accesses memory.

After memory has been accessed, DPn <— DPn + DNn

DPn##imm DPn <— DPn + imm

Chapter 3 Architecture 3.5 Data Addressing Unit

µPD7701x Family User's Manual130

(b) Value range

Hexadecimal Decimal

DPn 0x0000 to 0xFFFF 0 to +65535

DNn 0x8000 to 0x7FFF –32768 to +32767

DMX/DMY 0x0001 to 0x7FFF 1 to +32767

imm 0x8000 to 0x7FFF –32768 to +32767

<9> Modulo index addition and cyclic buffer

The modulo index addition mode is provided for configuring a cyclic buffer (also called a

ring buffer).

• Rule of operation

After the memory has been accessed by using the value of DPn, DPn is modified. At this

time, the operation is performed according to the following rules:

(1) Executes operation of DPL = DPL + DNn.

(2) If DPL ≤ DMa as a result,

DPn = DPL + DPH is treated as the operation result.

If not (i.e., when DPL > DMa),

DPn = (DPL + DNn) mod (DMa + 1) + DPH is treated as the operation result.

Where,

DPH : lower k bits of the initial value of DPn, which is 0, if the value of DMa is in the

range of [2k, 2(k-1)] (Refer to Figure 3-38.)

DPL : value of lower k bits of DPn in the above case (Refer to Figure 3-38.)

DMa : specified DPn corresponding to DMX or DMY

Remark The process (2) above is called modulo adjustment.

Figure 3-38. Division of DPn

Chapter 3 Architecture 3.5 Data Addressing Unit

DMa

DPn

Bit
15

Bit
14

Bit
k

Bit
k-1

Bit
k-2

Bit
0

0 1 D D

Bit
k

Bit
k-1

Bit
k-2

Bit
0

DPL

· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

DPH

Bit
15

Bit
14

0 · · · · · ·

µPD7701x Family User's Manual 131

• Meaning

The ordinary modulo operation can be considered as the mapping shown in Figure 3-39.

Figure 3-39. Mapping of Ordinary Modulo Operation

In contrast, modulo adjustment can be considered as the mapping shown in Figure 3-40.

Figure 3-40. Mapping of Modulo Adjustment

The difference between the two in terms of the range is that the usable buffer size in

Figure 3-39 is M, while it is M+1 in Figure 3-40, where the value set to DMa is M, because

the range in this case corresponding to the size of the buffer. Consequently, the maximum

buffer size of 0x8000 can be used, as described below, despite the maximum set value

of DMa is 0x7FFF.

2M
2M – 1
2M – 2

M + 2
M + 1

M
M – 1
M – 2

2
1
0

M
M – 1
M – 2

2
1
0

Domain (x) Mapping Range (y)

x < M
x > M

y = x
y = x mod (M+1)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

M – 3

2M
2M – 1
2M – 2

M + 2
M + 1

M
M – 1
M – 2

2
1
0

M
M – 1
M – 2

2
1
0

Domain (x) Mapping Range (y)

y = x mod M

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 3 Architecture 3.5 Data Addressing Unit

µPD7701x Family User's Manual132

• Operation range of ring count

The first address of the range in which a ring count operation is executed in connection

with the modulo index addition is determined by the values of the data pointer and modulo

register.

Where the value of the modulo register (DMX/Y) is 2k-1≤DMX/Y<2k, the starting address

of the ring count operation is the 16-bit value whose higher “16–k” bits are the same as

those of the data pointer and whose lower k bits are zeros. The end address is the value

whose higher “16–k” bits are the same as those of the data pointer and whose lower k

bits are the same as those of the modulo register. The higher “16–k” bits of the data

pointer always remain unchanged.

Ring Count Operation Range

When DMa is set as follows,

ring count start address and end address are like follows.

• Restriction

Observe the following restrictions in executing modulo addressing:

• Keep the range of DMa to [1-0x7FFF].

• Make sure that the absolute value of the value of DNn does not exceed DMa.

Caution Because 0 cannot be set to DMa, a cyclic buffer with buffer
size = 1 cannot be configured.

Chapter 3 Architecture 3.5 Data Addressing Unit

0 0 · · · · · · · · · 0 1 D · · · · · · D

k k-1 015

DMa

“ 0 ”

X X · · · · · · · · · X 0 · · · · · · · · 0

k k-1 015

Start address
of DPn

DPH

X X · · · · · · · · · X 1 D · · · · · · D

k k-1 015

End address
of DPn

DPH Lower part (under k-1) of DMa

“ 0 ”

µPD7701x Family User's Manual 133

• Example of modulo index addition

An example of operation process when a cyclic buffer is configured by using modulo

index addition is shown below.

Example 1.

DMX=0x7;

DN0=1;

DP0=0x0;

At this time, the value of DP0 is updated as follows by means of modulo index

addition:

DP0=0x0

↓ 0x0+1

DP0=0x1

↓ 0x1+1

DP0=0x2

↓ 0x2+1

DP0=0x3

↓ 0x3+1

DP0=0x4

↓ 0x4+1

DP0=0x5

↓ 0x5+1

DP0=0x6

↓ 0x6+1

DP0=0x7

↓ 0x7+1=0x8 → 0x8–(0x7+1)=0x0

DP0=0x0

↓ 0x0+1

DP0=0x1

↓ 0x1+1

DP0=0x2

↓ 0x2+1

DP0=0x3

↓ 0x3+1

DP0=0x4

:

Chapter 3 Architecture 3.5 Data Addressing Unit

µPD7701x Family User's Manual134

Example 2.

DMX=0xA;

DN0=3;

DP0=0x10;

At this time, the value of DP0 is updated as follows by

means of modulo index addition:

DP0=0x10

↓ 0x10+3

DP0=0x13

↓ 0x13+3

DP0=0x16

↓ 0x16+3

DP0=0x19

↓ 0x19+3=0x1C → 0x1C-(0xA+1)=0x11

DP0=0x11

↓ 0x11+3

DP0=0x14

↓ 0x14+3

DP0=0x17

↓ 0x17+3

DP0=0x1A

↓ 0x1A+3=0x1D → 0x1D-(0xA+1)=0x12

DP0=0x12
•
•
•

Chapter 3 Architecture 3.5 Data Addressing Unit

µPD7701x Family User's Manual 135

3.6 Operation Unit
The general-purpose registers in this unit are source of all operands and destination of all

results of arithmetic/logic operations. The general-purpose registers are connected to the

• main bus for inter-register transfers

• X and Y data bus for data exchange with the data memories and peripheral registers

All kinds of arithmetic/logic operations which are part of the following instruction types are

carried out in the operation unit:

• trinomial instructions

all operations which involve 3 input operands, e.g.

MADD: R0 = R0 + R1H * R2H

• binomial instructions

all operations which involve 2 input operands, e.g.

ADD: R0 = R2 + R3

• monomial instructions

all operations which involve 1 input operand, e.g.

NEG: R0 = –R1

The section describes in details the functions and data formats of the general-purpose registers

R0-R7, of the multiplier /accumulator MAC and the MAC input shifter MSFT, of the arithmetic/

logic unit ALU, and of the barrel shifter BSFT. For the block diagram of this unit, refer to

section 3.6.1 “Block configuration”.

Chapter 3 Architecture 3.6 Operation Unit

µPD7701x Family User's Manual136

3.6.1 Block configuration

Figure 3-41 is the block diagram of the operation unit.

Figure 3-41. Operation Unit

3.6.2 General-purpose registers and data formats

The features of the general-purpose registers are as follows:

• 40-bit registers

• Eight registers (R0-R7) available

• Function as input/output parameters of operation instructions

(only general-purpose registers, in addition to immediate data, can be described as

parameters of operation instructions)

• Exchange data with X and Y data memories and peripheral registers (load/store function)

• Transfer data with other registers

Chapter 3 Architecture 3.6 Operation Unit

X data bus (16 bits)

Y data bus (16 bits)

R0-R7
(40 bits x 8)

MSFT
MUX

MAC ALU BSFT

Main bus (16 bits)

16 16

16

40

40
40

40

16 160/1/16 bits

16

Immediate value

40

40

R0-R7: General-purpose registers
MAC: Multiply accumulator

MSFT: MAC input shifter
ALU: Arithmetic logical unit

BSFT: Barrel shifter

µPD7701x Family User's Manual 137

(1) Partitioning of the general-purpose registers

Although a general-purpose register consists of 40 bits, the register is divided into three

parts, as follows, so that only a specified part of the register can be used to transfer and

load/store data or to execute arithmetic operations. In this case, the three parts are exclusive

to each other.

• L part : bits 15-0 (lower 16 bits)

• H part : bits 31-16 (middle 16 bits)

• E part : bits 39-32 (higher 8 bits)

Depending on the type of arithmetic/logic operation respectively data transfer different parts

of a general-purpose register are involved, as shown in Table 3-24.

The figure below shows these five formats (except R0HL-R7HL) with assembly names.

Table 3-24. Formats of General-purpose Registers

R0-R7 R0L-R7L R0H-R7H R0E-R7E R0HL-R7HL R0EH-R7EH

40 bits 16 bits 16 bits 8 bits 32 bits 24 bits

MAC multiply/accumulate X X X – – –

MAC exclusive multiply X – X – – –

ALU X – – – X –

BSFT X X – – – –

X/Y bus transfer X X X X – X

inter-register transfer – X – – – –

Figure 3-42. Formats of General-purpose Registers

Chapter 3 Architecture 3.6 Operation Unit

R0-R7 D

39 0

R0EH-R7EH D

39 0

R0E-R7E X

39 0

R0H-R7H X

39 0

R0L-R7L X

39 0

16 15

X

32 31

D

32 31 16 15

X D

D

Remarks D: numeric value
X: invalid

16 15

µPD7701x Family User's Manual138

Chapter 3 Architecture 3.6 Operation Unit

Figure 3-43 shows data exchange between general-purpose registers and data memory.

Figure 3-43. Data Exchange between General-purpose Registers and
Data Memory

rl

rh

re

reh

ro

15 0

1615 0323139
rlrhre

x/y memory

15 0

1615 0323139

S

S

15 0

1615 0323139

1615 0323139

15 0

S

S

15 0

1615 0323139
S

S

0

Memory
 General-purpose register

General-purpose register
 Memory

rl

rh

re

–

–

Operation
examples

Unsigned
multiply
increment,
decrement

Signed multiply

Store/restore of
40 bit numbers

Signed multiply

MAC/ALU
operations
barrel shifter

Number format in
general register

16 bit unsigned

16 bit signed
fixed point
without sign
extension

Extension

16 bit signed
fixed point with
sign extension

40 bit signed
fixed point

Remarks Changed

Unchanged

.

.

µPD7701x Family User's Manual 139

(2) Numeric format

The general-purpose registers of the µPD7701x family can process fixed-point and integer

data. The architecture places an emphasis on operations of fixed-point data, however.

(a) Fixed-point format

The fixed-point format uses the position between bits 31 and 30 as the decimal point.

Fixed-point data can be expressed in three ways: in 40-bit, 32-bit, and 16-bit units.

Remark The absolute value of data never exceeds 1 in the 32-bit fixed-point format or 16-bit fixed-point
format. As long as an accumulative operation is executed on a general-purpose register with these
formats as operands, therefore, the E part functions as an overflow absorbing area (called a head
room). This function allows omission of judgment of overflow when 256 accumulative operations are
performed even if it is assumed that an overflow of 1LSB (of the E part) occurs as a result of one
accumulative operation.

Chapter 3 Architecture 3.6 Operation Unit

40-bit data format (input for addition/subtraction/and/or/xor)

D

39 0 S: sign
D: numeric value
X: invalid

S

38

0x80’0000’0000 to 0x7F’FFFF’FFFF (–256 to (+256–2))–31

31 30

.

39 032

X D

32-bit data format (input for exponent instruction)

S

31

0x800’0000 to 0x7FFF’FFFF (–1 to (+1–2))–31

.

39 0

X

16-bit data format (input for multiplication instruction)

S D X

16 1532 31

0x8000 to 0x7FFF (–1 to (+1–2))–15

.

µPD7701x Family User's Manual140

(b) Integer format

The integer format is illustrated below.

Chapter 3 Architecture 3.6 Operation Unit

39 016 15

16-bit data format (input for multiplication and shift instructions)

0x0000 to 0xFFFF (0 to 65535)

D: numeric value
X: invalid

DX

µPD7701x Family User's Manual 141

3.6.3 Operation functions of multiply accumulator (MAC) and MAC input
shifter (MSFT)

The multiply accumulator performs the following functions:

• Multiplication

MPY: ro = rh * rh’

• Extends multiplication and its result to 40 bits and adds the result to specified general-

purpose register

MADD: ro = ro + rh * rh’ (signed-signed multiply)

MSUB: ro = ro – rh * rh’ (signed-signed multiply)

SUMA: ro = ro + rh * rl (signed-unsigned multiply)

UUMA: ro = ro + rl * rl’ (unsigned-unsigned multiply)

• Extends multiplication and its result to 40 bits and adds the result to the result of shifting

specified general-purpose register 1/16 bits to the right

MAS1: ro = (ro>>1) + rh * rh’

MAS16: ro = (ro>>16) + rh * rh’

Caution MAC, ALU, and BSFT cannot operate simultaneously.

(1) Multiplication function

The multiplication function is implemented by the multiply accumulator (MAC). This function

can be implemented in the following three ways, depending on the data type to be handled:

• Signed-signed multiply

• Signed-unsigned multiply

• Unsigned-unsigned multiply

(a) Signed-signed multiply

Both of the two operands are of signed 16-bit fixed-point type. Therefore, data is set to

the H part of a general-purpose register whose bit 31 indicates the sign. A representation

of this operation process is illustrated in Figure 3-44.

Chapter 3 Architecture 3.6 Operation Unit

µPD7701x Family User's Manual142

Figure 3-44. Signed-Signed Multiply

Remarks 1. If multiplication between 0x8000 (–1) is executed, the result is 0x00’8000’0000. However,
because +1 cannot be expressed in the range of the 32-bit fixed-point format, an overflow
occurs (extension bit re = 0x00 is different from the sign bit of the 32-bit format in this case).
However, the value is accurate when viewed from the point of the 40-bit format (0x00’8000’0000
= +1).

2. Since a multiplication of two 16-bit values produces maximum 31 valid bits, the LSB of the result
registers is always 0.

(b) Signed-unsigned multiply

One of the two operands is set to the H part of a general-purpose register in the 16-bit

fixed-point type, where bit 31 of the register indicates a sign. The other parameter is set

to the L part of a general-purpose register in the integer format. Figure 3-45 shows the

image of this operation process.

Figure 3-45. Signed-Unsigned Multiply

Caution There is no exclusive instruction that executes this
operation. This operation is performed as part of the sign-
unsign multiply add instruction.

Chapter 3 Architecture 3.6 Operation Unit

rh S

39 016 15

rl

39 032 31 16 15

ro S

39 032 31 30 16 15

×

=

.

.

.

Part of SUMA: ro = rh * rl

0x××’8000’×××× to 0x××’7FFF’×××× (–1 to (+1–2))–15

0x××’××××’0000 to 0x××’××××’FFFF (0 to (+2–2))–15

0xFF’0001’0000 to 0x00’FFFD’0002 (– (2–2) to (+1–2) (+2–2))–15 –15 –15

32 31 30

rh S

39 032 31 30 16 15

rh’ S

39 032 31 30 16 15

ro S

39 032 31 30 16 15

×

=

.

.

.

0x××’8000’×××× to 0××× ’7FFF’×××× (–1 to (+1–2))–15

MPY: ro = rh * rh’

0x××’8000’×××× to 0××× ’7FFF’×××× (–1 to (+1–2))–15

0xFF’8001’0000 to 0x00’8000’0000 ((–1–2) to +1)–15

µPD7701x Family User's Manual 143

(c) Unsigned-unsigned multiply

Both of the two operands are set to the L parts of general-purpose registers in the integer

format. Figure 3-46 shows the image of this operation process.

Figure 3-46. Unsigned-Unsigned Multiply

Caution There is no exclusive instruction that executes this
operation. This operation is performed as part of the
unsign-unsign multiply add instruction.

(2) Accumulative multiplication function (trinomial operation)

All the trinomial operations executed by the µPD7701x family are accumulative multiplication.

The accumulative multiplication can be implemented in the following three ways, depending

on the shift command to the register that is used for the accumulative operation (two

accumulative operations, accumulative addition and accumulative subtraction, can be

executed, however). At this time, the shift processing is executed by the MAC input shifter

(MSFT).

• Accumulative multiplication

• 1-bit shift accumulative multiplication

• 16-bit shift accumulative multiplication

The accumulative multiplication can also be classified into the following three types by the

data type of the parameters used for the operation:

• Signed-signed multiply

• Signed-unsigned multiply

• Unsigned-unsigned multiply

Chapter 3 Architecture 3.6 Operation Unit

rl

39 032 31 16 15

rl’

39 032 31 16 15

ro

39 1 032 31 16 15

×

=

.

.

.

Part of UUMA: ro = rl * rl’

0x××’××××’0000 to 0x××’××××’FFFF (0 to (+2–2))–15

0x××’××××’0000 to 0x××’××××’FFFF (0 to (+2–2))–15

0x00’0000’0000 to 0x01’FFFC’0002 (0 to (+2–2))–15 2

µPD7701x Family User's Manual144

In all, therefore, the following six types of trinomial operation instructions are available:

• Multiply add (signed-signed multiply and accumulative add)

• Multiply sub (signed-signed multiply and accumulative sub)

• Sign-unsign multiply add (signed-unsigned multipy and accumulative add)

• Unsign-unsign multiply add (unsigned-unsigned multiply and accumulative add)

• 1-bit shift multiply add (signed-signed multiply and accumulative add after 1-bit shift)

• 16-bit shift multiply add (signed-signed multiply and accumulative add after 16-bit shift)

The accumulative multiplication function implements trinomial operations where three

parameters are used. Of these, two are the parameters for multiplication and the other is for

accumulative operation. General-purpose registers are specified for these parameters. In

this case, registers can be specified in duplicate.

Table 3-25 shows these combination.

Table 3-25. Accumulative Multiplication Function

Signed-signed Signed-unsigned Unsigned-unsigned

MSFT ro = ro ± rh * rh’ ro = ro + rh * rl ro = ro + rl * rl’
0 bit (MADD, MSUB) (SUMA) (UUMA)

Multiply/ MSFT ro = (ro>>1) + rh * rh’ — —
accumulate 1 bit (MAS1)

MSFT ro = (ro>>16) + rh * rh’ — —
16 bit (MAS16)

Exclusive multiply ro = rh * rh’ — —
(Binomial operation) (MPY)

(a) Accumulative multiplication

The multiplier input operands are of (signed) 16-bit fixed point type. The multiplication

result is added to respectively subtracted from a 40-bit fixed-point operand. The related

instructions are:

MADD: ro = ro + rh * rh’

MSUB: ro = ro – rh * rh’

Figure 3-47 shows the image of this operation.

Chapter 3 Architecture 3.6 Operation Unit

µPD7701x Family User's Manual 145

Figure 3-47. Accumulative Multiplication

(b) 1-bit shift accumulative multiplication

The multiplier input operands are of (signed) 16-bit fixed point type. The multiplication

result is added to a 1 bit right shifted 40-bit fixed-point operand. The related instruction

is:

MAS1: ro = (ro>>1) + rh * rh’

Figure 3-48 shows the image of this operation:

Figure 3-48. 1-Bit Shift Accumulative Multiplication

ro

39 032 31 30 16 15

rh

39 032 31 30 16 15
±

=

.S

.S

rh’

39 032 31 30 16 15
×

.S

ro

39 032 31 30 16 15

.S

ro

39 032 31 16 15

rh

39 032 31 30 16 15

1-bit arithmetic right shift

=

.S

.S

rh’

39 032 31 30 16 15

+

.S

ro

39 032 31 30 16 15

.S

39 032 31 30 16 15

.

×

S S

Chapter 3 Architecture 3.6 Operation Unit

µPD7701x Family User's Manual146

(c) 16-bit shift accumulative multiplication

The multiplier input operands are of (signed) 16-bit fixed point type. The multiplication

result is added to a 16 bit right shifted 40-bit fixed-point operand. The related instruction

is:

MAS16: ro = (ro>>16) + rh * rh’

Figure 3-49 shows the image of this operation:

Figure 3-49. 16-Bit Shift Accumulative Multiplication

Chapter 3 Architecture 3.6 Operation Unit

S S S S S S S S

ro

39 032 31 16 15

rh

39 032 31 30 16 15

16-bit arithmetic right shift

=

.S

S

rh’

39 032 31 30 16 15

+

.S

ro

39 032 31 30 16 15

.S

39 032 31 30 16 15

.

×

SS S S S S S S S

µPD7701x Family User's Manual 147

3.6.4 Operation functions of arithmetic and logic unit (ALU)

The arithmetic and logic unit (ALU) executes an arithmetic or logical operation on two or one

40-bit input data, and outputs one 40-bit data.

As both two operands for a binomial operation, general-purpose registers can be specified,

or a register can be specified as one of the operands with immediate data specified as the

other (immediate data cannot be used with the LT instruction, however). If general-purpose

registers are specified as both operands, they can be in duplicate. Any general-purpose

register can be specified for a monomial operation. It is also possible to specify any general-

purpose register to store the result of the operation.

Caution MAC, ALU, and BSFT cannot operate simultaneously.

(1) Arithmetic operation instruction

(a) Binomial arithmetic operation

The following binomial arithmetic operation instructions are available. For each instruction,

refer to “µPD7701x Family User’s Manual Instructions.”

• Multiply instruction (MPY: executed by MAC)

• Add instruction (ADD)

• Immediate add instruction (IADD)

• Subtract instruction (SUB)

• Immediate subtract instruction (ISUB)

• Less-than instruction (LT)

(b) Monomial arithmetic operation

The following monomial arithmetic operation instructions are available. For each

instruction, refer to “µPD7701x Family User’s Manual Instructions.”

• Clear instruction (CLR)

• Increment instruction (INC)

• Decrement instruction (DEC)

• Absolute value instruction (ABS)

• Two’s complement instruction (NEG)

• Clip instruction (CLIP)

• Round instruction (RND)

• Exponent instruction (EXP)

• Substitute instruction (PUT) (mainly used for data transfer between general-purpose

registers)

• Accumulative addition instruction (ACA)

• Accumulative subtraction instruction (ACS)

• Division instruction (DIV)

Chapter 3 Architecture 3.6 Operation Unit

µPD7701x Family User's Manual148

(2) Logical operation instruction

(a) Binomial logical operation

The following binomial logical operation instructions are available. For each instruction,

refer to “µPD7701x Family User’s Manual Instructions.”

• And instruction (AND)

• Immediate and instruction (IAND)

• Or instruction (OR)

• Immediate or instruction (IOR)

• Exclusive or instruction (XOR)

• Immediate exclusive or instruction (IXOR)

(b) Monomial logical operation

The following monomial logical operation instruction is available. For each instruction,

refer to “µPD7701x Family User’s Manual Instructions.”

• One’s complement instruction (NOT)

Caution The number range of immediate data is 0-0xFFFF (0-65536),
and set to bit 15-0. Each operation is executed with 40-bit
data that 39-16 are 0 extended to this immediate 16-bit data.

Chapter 3 Architecture 3.6 Operation Unit

µPD7701x Family User's Manual 149

3.6.5 Operation functions of barrel shifter (BSFT)

The barrel shifter (BSFT) executes shift operations. All the shift operations are binomial

operations. The BSFT outputs any shift pattern as 40-bit data in one instruction cycle in

response to 40-bit input data.

As both two operands for a binomial operation, general-purpose registers can be specified,

or a register can be specified as one of the operands with immediate data specified as the

other. If general-purpose registers are specified as both operands, they can be in duplicate.

Any general-purpose register can be specified for a monomial operation. It is also possible

to specify any general-purpose register to store the result of the operation.

Caution MAC, ALU, and BSFT cannot operate simultaneously.

(1) Shift operation instruction

All the shift operations are binomial operations. The following shift operations instructions

are available. For each instruction, refer to “µPD7701x Family User’s Manual Instructions.”

• Arithmetic right shift instruction (SRA)

• Immediate arithmetic right shift instruction (ISRA)

• Logical right shift instruction (SRL)

• Immediate logical right shift instruction (ISRL)

• Logical left instruction (SLL)

• Immediate logical left shift instruction (ISLL)

Caution The number range of general-purpose register or
immediate data as shift value is 0-0x27 (0-39), and set to
bit 5-0. The values of bit 15-6 are ignored.

Chapter 3 Architecture 3.6 Operation Unit

µPD7701x Family User's Manual150

(2) Shift operation function

Figure 3-50 shows each BSFT operations.

Figure 3-50. Barrel Shifter Operations

Chapter 3 Architecture 3.6 Operation Unit

39 3231 1615 0

rlrhreSro’

39 3231 1615 0

n arithmetic right shift

39 3231 1615 0

…Sro S

n × “S”


39 3231 1615 0

rlrhrero’

39 3231 1615 0

n logical right shift

39 3231 1615 0

…0ro 0

n × “0”



39 3231 1615 0

rlrhrero’

39 3231 1615 0

n logical left shift

39 3231 1615 0

… 0ro 0

n × “0”



“0”

“0”

• Arithmetic right shift: ro = ro’ sra n, ro = ro’ sra rl

• Logical right shift: ro = ro’ srl n, ro = ro’ srl rl

• Logical left shift: ro = ro’ sll n, ro = ro’ sll rl

Shift number: n = 0 to 39, specified by
- immediate value
- bit 5-0 of rl part of general-purpose register

µPD7701x Family User's Manual 151

3.7 Peripheral Units
The µPD7701x family is provided with the five peripheral interface functions as listed below.

• Serial interface

• Host interface

• General-purpose I/O port

• Wait control functionNote 1

• Debug interfaceNote 2

Notes 1. Although the wait control function is not a peripheral function in terms of the general meaning of
“peripheral”, it is treated in the same manner as a peripheral control function with the µPD7701x family.

2. The debug interface cannot be used by the user program.

When handling these peripherals from the user application, access the peripheral registers

mapped to the internal memory area.

3.7.1 Block configuration

Figure 3-51 shows the block configuration of the peripheral units.

Figure 3-51. Peripheral Units

Chapter 3 Architecture 3.7 Peripheral Units

Y data bus (16 bits)

X data bus (16 bits)

P
er

ip
he

ra
l b

us
 (

16
 b

its
)

Serial
interface #1SI1, SO1

Wait
controller

Host
interfaceHD0-HD7

PortP0-P3

Serial
interface #2SI2, SO2

interface for
debugging

TDO
TICE
TCK
TDI

TMS

µPD7701x Family User's Manual152

3.7.2 Peripheral registers

The internal peripheral units can be used by accessing the corresponding peripheral registers

mapped in the internal data memory space. Table 3-26 shows the mapping of the peripheral

registers in the memory space, and the outline of each register.

Table 3-26. Memory Mapping of Peripheral Registers

X/Y memory Register Function Peripheral R/W

address name name

0x3800 SDT1 Serial data register 1 SIO R/W

0x3801 SST1 Serial status register 1 SIO R/W

0x3802 SDT2 Serial data register 2 SIO R/W

0x3803 SST2 Serial status register 2 SIO R/W

0x3804 PDT Port data register IOP R/W

0x3805 PCD Port command register IOP R/W

0x3806 HDT Host data register HIO R/W

0x3807 HST Host status register HIO R/W

0x3808 DWTR Data memory wait cycle register WTR R/W

0x3809 IWTR Instruction memory wait cycle register WTR R/W

0x380A-0x383F Reserved Do not access this area . — —

Cautions 1. The register names in this table are not reserved words of
the assembler or C language. When using these names
with the assembler or C language, the user must explicitly
define them.

2. The same register can be accessed, as long as the address
is the same, from both the X and Y memory spaces.

3. Even different registers cannot be accessed from both the
X and Y memory spaces at the same time.

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual 153

3.7.3 Serial interface

The µPD7701x family is provided with two channels of serial interfaces, both of which are of

the same structure. The main features of these serial interfaces are as follows:

• Clock supply

Separate external clock for serial channels 1 and 2, common clock for serial input and

output of one channel

• Data word format

Serial input/output data word length 8 or 16 bits, to specify separately for input and output

of each channel

MSB-first or LSB-first data format, to specify separately for input and output of each channel

• Internal data bus connection

Access of all registers via peripheral bus, connected to X and Y buses

• Internal handshake

Internal synchronization by means of polling, wait, or interrupt

• External handshake

External synchronization by means of dedicated status signals

Each serial interface control circuit (SCTL) controls the pins and registers for the serial

interface. Figure 3-52 shows the block diagram of the serial interface.

Figure 3-52. Serial Interface

Chapter 3 Architecture 3.7 Peripheral Units

Peripheral bus (16 bits)

16

SDT1 (in)

16

SIS1

16

SDT1 (out)

16

SOS1

16

SST1

SI1 SO1

SCTL

SCK1 SIEN1 SIAK1 SOEN1 SORQ1

16

SDT2 (in)

16

SIS2

16

SDT2 (out)

16

SOS2

16

SST2

SI2 SO2

SCTL

SCK2 SIEN2 SIAK2 SOEN2 SORQ2

Note Not provided to the PD77015, 77017, 77018, 77018A, and 77019.µ

Note Note

µPD7701x Family User's Manual154

[Operational outline of serial interface]

This section explains the internal logical operations of the serial interface of the µPD7701x

family (for detailed timing, refer to Figures 3-54 and 3-55).

To transfer data through serial interface, double buffers are provided for both input and output.

Serial input is performed by the following registers:

• SIS register (serial input shift register) : Inputs serial data from the SI pin 1 bit at a

time, and outputs 16-bit parallel data to SDT

(in).

• SDT (in) register (serial data input register) : Inputs 16-bit parallel data from the SIS

register and outputs 16-bit parallel data to

the peripheral bus.

Serial output is performed by the following registers:

• SDT (out) (serial data output register) : Writes 16-bit parallel data from the peripheral

bus and outputs 16-bit parallel data to SOS.

• SOS (serial output shift register) : Inputs 16-bit parallel data from SDT (out)

and outputs serial data from the SO pin 1 bit

at a time.

The serial interface is accessed from an external device by using the 1-bit serial data input

pin (SI) and output pin (SO).

In the µPD7701x, serial input/output is performed by using 8-/16-bit parallel input data register

SDT (in) and output data register SDT (out). Because data transfer is automatically performed

from SIS to SDT (in) and from SDT (out) to SOS, it does not have to be directly controlled by

program.

Internal flags are provided to synchronize serial data transfer and to monitor the status of

each of the dedicated external pins and registers.

• SIAK (serial input acknowledge) : This is an external pin that monitors the status of SIS.

SIAK = high level (SIS is empty.) → Input of new serial data can be started.

SIAK = low level (SIS is not empty.) → Valid data still exists in SIS. New serial data

cannot be input.

• SORQ (serial output request) : This is an external pin that monitors the status of

SOS.

SORQ = high level (SOS is not empty.) → Data to be output still exists in SOS. (Data can

be output by making SOEN high.)

SORQ = low level (SOS is empty.) → No data to be output exists in SOS.

• SLEF flag (serial load enable flag) : This flag monitors the status of SDT (in) (this is a flag

in the serial status register (SST)).

SLEF = 1 (SDT (in) is not empty.) → Valid input data exists in SDT (in).

SLEF = 0 (SDT (in) is empty.) → Input data that can be loaded from SDT (in)

does not exist.

• SSEF flag (serial store enable flag): This flag monitors the status of SDT (out) (this is a

flag in the serial status register (SST)).

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual 155

SSEF = 1 (SDT (out) is empty.) → New output data can be stored to SDT (out).

SSEF = 0 (SDT (out) is not empty.) → Valid output data still exists in SDT (out).

Whether data can be actually transferred to the serial input pin (SI) and serial output pin

(SO) after appropriate control signals and serial clock have been input is automatically

determind by the internal hardware.

• If an attempt is made to output serial data from the SO pin when the SOS register has no

data (SORQ = low level), the SO pin goes into a high-impedance state.

• If an attempt is made to input new serial data to the SIS register before the current data of

the SIS register is transferred to the SDT (in) register (SIAK = low level), the new data is

not written over the current data of the SIS register.

In addition to this hardware control, loading from the SDT (in) register and storing to the SDT

(out) register are completely controlled in software. Correctly load or store data by <1>

checking SLEF/SSEF or <2> using an interrupt, so that valid data is not written over or that

the same data is not loaded or stored two times.

When successively inputting or outputting serial data, keep in mind the following points:

(1) When polling with status flag

Make sure that data transfer is not disrupted by always monitoring the status of the

SLEF flag (status flag of SDT (in) register) or SSEF flag (status flag of SDT (out)

register).

(2) When using serial input interrupt

If an interrupt occurs, immediately load serial data.

(3) When using serial output interrupt

Because the interrupt cannot be used when the first data is transferred (the same

applies when a single data is output), do not use an interrupt for transfer. When

inputting or outputting the next data and if an interrupt occurs, immediately store the

serial data. Before storing the last data, disable the interrupt so that the next interrupt

does not occur.

The status of the serial input/output interface and operation block diagram are shown below.

Table 3-27. Status Indicators of Serial Input/output Interfaces

Register Status indicator Status Comments

SIS SIAK pin High: empty Serial input accepted

Serial output
Low: not empty Serial input not accepted

SDT(in) SLEF flag 1: not empty Data can be loaded from SDT(in)

0: empty Data cannot be loaded from SDT(in)

SOS SORQ pin High: not empty Serial output possible

Serial output
Low: empty Serial output not possible

SDT(out) SSEF flag 1: empty Data can be stored to SDT(out)

0: not empty Data cannot be stored to SDT(out)

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual156

Figure 3-53. Function Diagram of Serial Interface (1 channel)

(1) Pins of serial interface

The µPD7701x has two sarial interface channels.

The number suffixed to a serial interface pin indicates a channel. All the serial interface

signals, except the clock and data signals, are active-high.

Remark The µPD77015, 77017, 77018, 77018A, and 77019 are not provided with the SORQ2 and SIAK2
pins.

(a) SCK1 and SCK2 (serial clock - input)

These are clock input pins for serial data input or output.

Serial data are input and output, and serial interface signals are output and sampled in

synchronization with the SCK signal.

(b) SORQ1 and SORQ2 (serial output request - output)

These pins output serial data output request signals.

The output signals change its status at the rising edge of SCK.

When serial data is written to the serial data output register, these pins are asserted

active (high level). When SOEN and SORQ are asserted active, serial output is started.

These pins are deasserted inactive (low level) after serial output has been started.

These pins are deasserted inactive at hardware reset.

Chapter 3 Architecture 3.7 Peripheral Units

SDT (in)

SIS

SDT (out)

SOS

bit 1 bit 0

SSEF SLEF

Load

SST Reg.

························

16

16

INT

16

Serial Parallel Parallel Serial

16

16

Store

INT

Peripheral bus (16 bits)

SCK

SI

SIAK

SIEN

SO

SORQ

SOEN

µPD7701x Family User's Manual 157

(c) SOEN1 and SOEN2 (serial output enable - input)

These pins input serial data output enable signals.

These signals are sampled at the falling edge of SCK.

They are asserted active (high level) when the external device is ready to input serial

output data. When SOEN and SORQ are asserted active, serial output is started.

(d) SO1 and SO2 (serial data output - output)

These pins output serial data.

The status of the output data changes at the rising edge of SCK.

When output is completed, these pins go into a high-impedance state.

(e) SIEN1 and SIEN2 (serial input enable - input)

These pins input serial data input enable signals.

These signals are sampled at the falling edge of SCK.

They are asserted active (high level) when the external device is ready for outputting

serial input data. Serial input is started when SIEN and SIAK are asserted active.

(f) SIAK1 and SIAK2 (serial input acknowledge - output)

These pins output serial data input acknowledge signals.

These signals change its status at the rising edge of SCK.

They are asserted active (high level) when serial input is ready. When SIEN and SIAK

are asserted active, serial input is started. These signals are deasserted inactive (low

level) after serial input has been started.

These pins are deasserted inactive at hardware reset.

(g) SI1 and SI2 (serial data input - input)

These pins input serial data.

The input data is sampled at the falling edge of SCK.

Table 3-38. Pins Status during and after Hardware Reset

Pin I/O During reset After reset

SCK1, 2 I — —

SORQ1, 2 O L L

SOEN1, 2 I — —

SO1, 2 O Hi-Z Hi-Z

SIEN1, 2 I — —

SIAK1, 2 O L L

SI1, 2 O — —

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual158

Chapter 3 Architecture 3.7 Peripheral Units

(2) Registers of serial interface

The µPD7701x has two serial interface channels. The number suffixed to the registers of

the serial interface indicates the channel number.

(a) SDT1 and SDT2 (serial data registers: 0x3800:X/:Y, 0x3802:X/:Y)

A serial data register (SDT) is a 16-bit register that inputs or outputs serial data.

A value can be input to or output from SDT by using a register-to-register transfer

instruction.

When 8-bit data is input or output, the serial data is input to or output from the higher 8

bits of SDT.

<1> Serial data output register

This is a 16-bit register that sets serial data to be output.

When a store instruction is executed to SDT, data is input to this register from the peripheral

bus.

Output of SO can be selected from the MSB first or LSB first.

When the serial output shift register (SOS) becomes empty. the value of this register is

written to SOS.

<2> Serial data input register

This is a 16-bit register that reads serial input data.

When an instruction to load data from SDT is executed, the data of this register is output

to the peripheral bus.

Whether the data is output with the MSB first or LSB first can be selected when the data

is input.

When the last bit is input to the serial input shift register (SIS), the value of SIS is written

to this register.

(b) SST1 and SST2 (serial status register: 0x3801:X/:Y, 0x3803:X/:Y)

The serial status register (SST) is a 16-bit register that indicates the mode setting of

serial input/output and status.

This register indicates whether data is transferred with the MSB or LSB first, a bit length

(16 or 8 bits), specification of interface with the µPD7701x, overrun, and underrun.

A value can be input to or output from SST by using a register-to-register transfer

instruction.

The value of this register is 0x0002 at reset.

Table 3-30 shows the function of each bit of SST.

µPD7701x Family User's Manual 159

Table 3-29. Conditions of Serial Input/output Error Flags Settings

Error flag Set condition Reset condition

SSER Store to SDT while SSEF = 0 By hardware reset or by program

SLER Load from SDT while SLEF = 0

Changing serial output mode:

The serial output mode (such as data length: 8 or 16 bits and LSB/MSB first) is determined

by the setting of SST when data is stored to SDT (out).

Do not change the value of SST when SSEF = 0 (when data exists in SDT (out)).

Change the value of SST when SSEF = 1 (when SDT (out) is empty).

Changing serial input mode:

Do not change the value of SST when serial input is under execution.

If the serial successive input mode is set (SICM =), clear SICM to 0 when SLEF = 1,

change the serial input mode (such as data length: 8 or 16 bits and LSB/MSB first), and

then set SICM to 1 again.

The new value of SST becomes valid when data is input after the two data input to SDT

(in) and SIS have been loaded.

(c) SOS1 and SOS2 (serial output shift registers)

A serial output shift register (SOS) is a 16-bit shift register that outputs and shifts serial

data from SO at the rising edge of serial clock SCK.

When the specified number of bits have been output, new data is input from the serial

data output register SDT (out).

(d) SIS1 and SIS2 (serial input shift registers)

The serial input shift register (SIS) is a 16-bit shift register that receives and shifts the

data input from SI at the falling edge of serial clock SCK.

When the specified number of bits have been input, data is output to serial data input

register SDT (in).

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual160

Chapter 3 Architecture 3.7 Peripheral Units

Table 3-30. Functions of SST (SST1:0x3801:X/:Y, SST2:0x3803:X/:Y)

Bit Name Load/store (L/S) Bit function

15 SOTF L/S Serial output transfer format setting bit
• 0: Serial output with MSB first
• 1: Serial output with LSB first

14 SITF L/S Serial input transfer format setting bit
• 0: Serial input with MSB first
• 1: Serial input with LSB first

13 SOBL L/S Serial output word length setting bit
• 0: 16-bit serial output
• 1: 8-bit serial output

12 SIBL L/S Serial input word length setting bit
• 0: 16-bit serial input
• 1: 8-bit serial input

11 SSWE L/S SDT store wait enable bit
• 0: Does not use store wait function.
• 1: Uses store wait function.

Inserts wait cycles when µPD7701x stores data to SDT(out) with SSEF = 0.

10 SLWE L/S SDT load wait enable bit
• 0: Does not use load wait function.
• 1: Uses load wait function.

Inserts wait cycles when µPD7701x loads data from SDT(in) with SLEF = 0.

9 SICMNote L/S Serial input continuous mode setting flag
• 0: Enters single serial input mode after completion of current serial input.
• 1: Enters serial input continuous mode to start serial input.

8 SIEFNote L/S Single serial input enable flag
• 1: Starts serial input processing in single serial input mode (only once).

SIEF flag set to 1 is automatically reset in next instruction cycle.

7-4 Reserved — Reserved bits
• Value cannot be set to these bits.
• Undefined when read.

3 SSER L/S SDT store error flag
• 0: No error
• 1: Error (Set to 1 when µPD7701x stores data to SDT(out) with SSEF = 0.)
• Once set, this flag does not change its status until 0 is written by µPD7701x.

2 SLER L/S SDT load error flag
• 0: No error
• 1: Error (Set to 1 when µPD7701x loads data from SDT(in) with SLEF = 0.)
• Once set, this flag does not change its status until 0 is written by µPD7701x.

1 SSEF L SDT store enable flag
• Set to 1 when contents of SDT(out) is transferred to serial output shift register.
• Cleared to 0 when µPD7701x stores data to SDT(out).

0 SLEF L SDT load enable flag
• Set to 1 when contents of serial input shift register is transferred to SDT(in).
• Cleared to 0 when µPD7701x loads data from SDT(in).

Note Table 3-31 shows an example of combination of SICM and SIEF.
When continuous data such as speech data is input, use status 2 (SICM = 1, SIEF = 0).

Remark The SST setting after hardware reset
Initial SST after reset: 0x0002; • 16 bits input/output word length

• MSB-first for input and output
• No store/load wait function
• No serial input continuous mode
• Serial input not enabled

µPD7701x Family User's Manual 161

Table 3-31. Combination of SICM and SIEF Bits

Example of Bit 9 Bit 8 Function

combination SICM SIEF

1 0 0 • Status transition mode. This mode is also set when serial input is not performed.

• SIAK goes low. Even if this mode is set if SIAK is high, SIAK remains high until serial
input is started.

2 1 0 • Continuous serial input mode.

• SIAK outputs high level if serial input can be executed. After serial input has been
started, SIAK goes low. Serial input is enabled again when SDT (in) is loaded, and
SIAK outputs high level. If SDT(in) is empty, when a complete data word has been
shifted in, the contents of SIS is transferred immediately (in synchronization with the
SCK) to SDT(in) and SIAK goes high.

Refer to Figure 3-55 (a).

3 0 1 • Single serial input mode.

• SIAK outputs high level if serial input can be executed. After serial input has been
started, SIAK goes low. SIAK remains low level even if SDT is loaded.

• SIEF flag set to 1 is automatically reset in next instruction cycle.

Refer to Figure 3-55 (b).

4 1 1 • The setting of this combination is prohibited.

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual162

Chapter 3 Architecture 3.7 Peripheral Units

(3) Timing of serial interface

(a) Serial output timing

Generally, serial output is performed in the following steps. Operations in steps <1>

through <6> without SDT store wait cycles are illustrated in Figure 3-54 (a) and (b) for

continuous and non-continuous data, respectively.

<1> The application program executes a store to SDT (serial data register).

<2> Consequently, the SDT store enable flag (SSEF) of the serial status register (SST)

is cleared to 0, notifying the application program that no more data must be written

to SDT. If the SDT store wait enable bit (SSWE) is set, the SDT store wait function

is validated, automatically blocking a write access to SDT.

<3> If the serial output shift register (SOS) is empty, the data set to SDT is transferred

to SOS after 3 SCK cycles. The serial output request pin (SORQ) becomes active

(high), informing an external device of issuance of a serial output request.

<4> When the external device makes the serial output enable pin (SOEN) active (high

level) (a), this pin is sampled at the falling edge of the serial clock pin (SCK)

immediately afterNote 1 (b), at the next rising edge of SCK, SORQ becomes low

(c) and data output to the serial data output pin (SO) is started (d).

<5> After SDT has become empty, SSEF is set to 1, notifying the application program

that the next data can be written (a), the SDT store wait function, which has been

validated with SSWE = 1, is invalidated. At this time, an interrupt request is

generated by SO (b). However, the interrupt is serviced as a valid interrupt or is

recorded, depending on the status of the corresponding interrupt enable flag and

EI status (refer to 3.4.4 “Interrupt”).

<6> If the next data is not supplied when the output of the last bit data has been

completed, SO goes into a high-impedance state at the next rising edge of the

SCKNote 2.

Notes 1. Before SOEN becomes active, SCK must rise at least three times.

Bear this in mind especially in a system configuration where the clock is used in burst mode for only
inputting/outputting data.

2. Under the following conditions, SO does not go into a high-impedance state but successively outputs
the next data:
if the next data has been already supplied before the last bit is output, and if SOEN becomes active
before falling of SCK in the last bit output cycle and is sampled as valid (refer to Figure 3-54 (a)).

After the last bit has been output, the rising edge of SCK must be supplied at least once.

µPD7701x Family User's Manual 163

Chapter 3 Architecture 3.7 Peripheral Units

Figure 3-54. Serial Interface Output timing
(a) Continuous data

(b) Non-continuous data

SCK (Input)

SOEN (Input)

SO (Output)

SSEF (Status)

SORQ (Output)

Hi-z

3 × system clock

3 × SCK

Store to SDT
(1st data)

SDT SOS
(1st data)

Serial output interrupt
(For 2nd data)

4 × system clock

Store to SDT
(2nd data)

SDT SOS
(2nd data)

1st data (8 or 16 bits) 2nd data (8 or 16 bits)

4 × system clock

Serial output interrupt
(For 3rd data)

3 × system clock

Hi-z

<5>(b)

<5>(a)

<6>8/167/15543218/167/1554321

<5>(b)

<1>
<1>

Start condition:
SOS empty, SDT empty

<5>(a)

<4>(d) <4>(d)
<2>

<2>

<3> <3>

<4>(a)

<4>(b)

<4>(c)

<4>(b)

<4>(c)

SCK (Input)

SOEN (Input)

SO (Output)

SSEF (Status)

SORQ (Output)

Hi-z

3 × system clock

3 × SCK

Store to SDT
(1st data)

SDT SOS
(1st data)

Serial output interrupt
(For 2nd data)

4 × system clock

1st data (8 or 16 bits)

Hi-z
<6>

8/167/1554321

<5>(b)

<1>

Start condition:
SOS empty, SDT empty

<5>(a)

<4>(d)
<2>

<2>

<3>

<4>(a)

<4>(b)

<4>(c)

µPD7701x Family User's Manual164

(b) Timing of serial input

Generally, serial input is performed in the following steps. Operations in steps <1> through

<4> without SDT load wait cycles are illustrated in Figure 3-55 (a) and (b). Figure 3-55

(a) and (b) show operations of steps <1> through <4> for input mode of continuous and

single, respectively.

<1> Serial data input sequence is started when an external device makes the serial

input enable pin (SIEN) active (high level) with the serial input enable (SIAK) pin

being active (high level).

<2> Changes in SIEN in <1> are sampled at the falling edge of SCK immediately

afterNote 1 (a), SIAK goes low at the next rising edge of SCK (b), and inputting

data given to the serial data input pin (SI) is started from the falling edge of the

same SCK cycle (c). The data is loaded from the SI pin to the serial input shift

register (SIS) bit by bit in synchronization with the falling edge of SCK.

<3> SIAK becomes active (a) in synchronization with the rising edge of the SCK cycle,

in which the last bit of the specified number of bits is loaded, immediately before

the loading, informing the external device that the next data can be input. When

the last bit has been loadedNote 2 (b) and if the SDT load enable flag (SLEF) is 0,

the loaded bit is immediately transferred from SIS to SDTNote 3.

After that, SLEF changes to 1, informing the application program that the serial

input data word has been completed (c). If the data wait status is set with the

SDT load wait enable bit (SLWE) set to 1, the wait function is released. Although

an interrupt request is generated by SI (d) at this time, the interrupt is serviced as

a valid interrupt or is recorded, depending on the statuses of the corresponding

interrupt enable flags and the EI bit (refer to 3.4.4 “Interrupt”).

<4> When the application program executes a load from SDT (a), SLEF is cleared to

0, indicating that the input data is empty (b). If SLWE is 1 at this time, the SDT

load wait function is validated, automatically blocking further read access to SDT.

Notes 1. Before SIEN becomes active, SCK must rise at least three times. The hardware of the serial input/
output block performs a pipeline operation with SCK used as a timing clock.

Bear this in mind especially in a system configuration where the clock is used in burst mode for only
inputting/outputting data.

With a system configuration where the clock is successively supplied, exercise care in respect to the
first data after reset.

After the last bit has been output, the rising edge of SCK must be supplied at least two times.

2. If SIEN becomes active and sampled as valid before SCK falls in the last bit input cycle, the next data is
loaded from the successive next SCK cycle (refer to Figure 3-55).

3. SDTs are used separately for serial input and serial output.

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual 165

Chapter 3 Architecture 3.7 Peripheral Units

Figure 3-55. Serial Interface Input timing
(a) SICM = 1, SIEF = 0; Continuous mode

(b) SICM = 0, SIEF = 1; Single mode

SCK (Input)

SIEN (Input)

SI (Input)

SLEF (Status)

SIAK (Output)

3 × SCK

SICM=1, SIEF=0
SIS SDT
(1st data)

SIS SDT
(2nd data)

1st data (8 or 16 bits) 2nd data (8 or 16 bits)
4 × system clock

Serial input interrupt
(1st data)

3 × system clock

<3>(d)

8/167/15543218/167/1554321

<3>(c)
(SST Reg.)

Start condition:
SIS empty, SDT empty

<2>(b)

<4>(b)

<3>(a)

<1>

<2>(a)<2>(c) <3>(b)

3 × system
clock

Load from SDT
(1st data)

<4>(a)

SCK (Input)

SIEN (Input)

SI (Input)

SLEF (Status)

SIAK (Output)

3 × SCK

SICM=0, SIEF=1
SIS SDT
(1st data)

1st data (8 or 16 bits)
4 × system clock

Serial input interrupt
(1st data)

3 × system clock

<3>(d)

8/167/1554321

<3>(c)
Start condition:
SIS empty, SDT empty

<2>(b)

<4>(b)

<1>

<2>(a)<2>(c)

Load from SDT
(1st data)

<4>(a)(SST Reg.)

µPD7701x Family User's Manual166

(c) I/O timing of non-standard serial clock

Figure 3-56 shows the operation of the serial clock counter which are caused by non-standard serial clock.

Figure 3-56. Serial Interfaces - Operation of the Serial Clock Counter

Data can be input/output even when SIEN and SOEN are active. If a bit shift occurs, however, the I/O timing

cannot be corrected because a non-standard serial clock is input. By deasserting SIEN and SOEN inactive,

this bit shift can be corrected as shown above. In the above example, SIEN is input by counting SCK.

However, it is more accurate if SIEN is input depending on the status of SIAK.

– 1 6 6 5 2 1 0 – 1 – 1 – 1 – 1 6 5 1 0 – 1 6 5

correct input data

8 1 2 3 7 8 1 72 8 1 2 7 8 1 2

– 1 6 5 3 0 – 1 6 5 0 – 1 6 5 1 0 – 1 6 5

correct input data correct input data

8 1 2 3 7 8 1 72 8 1 2 7 8 1 2

1– 14

incorrect input data

input data lostincorrect input data

SCK (Input)

SIAK (Output)

SIEN (Input)

SCK Counter

SCK (Input)

SIAK (Output)

SIEN (Input)

SCK Counter

One serial clock lost:

Spike on serial clock:

Condition for counter to start down-count: SIAK=1 and SIEN=1 at falling edge of SCK

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual 167

(4) Handshake

There are three means to handshake with the serial interface of the µPD7701x family, which

can be implemented by application programs:

• Polling

• Wait

• Interrupt

Each format is described next.

(a) Polling

Synchronization of handshaking is established by always monitoring and evaluating the

SDT store enable flag (SSEF) and SDT load enable flag (SLEF) of the serial status register

(SST). Here is an example of serial output by means of polling:

/* Explicitly define SST1 and SO1 because they are not reserved

words. */

 #define SST1 0x3801

 #define SO1 0x3800

/*Disable internal interrupts SO1 and SI1.*/

 R0L = SR ;

 R0 = R1 | 0x0030 ;

 SR = R0L ;

 R0L = 0x0 ; Set serial status as follows:

 *SST1:X = R0L ; • MSB first output

; • MSB first input

; • 16-bit word output

; • 16-bit word input

; • SDT store wait function is not used.

; • SDT load wait function is not used.

; • Serial input is not performed.

; • Clear serial input/output error

; flag.

 POLL: R0L = *SST1:X ; Judge SSEF and loop to wait until

; store is enabled.

 R0 = R0 & 0x2 ;

 if (R0 == 0)jmp POLL ;

 *SO1:X = R1H ; Data of R1H is output because store is

enabled.

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual168

(b) Wait

Under the following conditions, execution of data exchanges with the SDT(in) and/or

SDT(out) registers cause instruction wait cycles:

• when the store wait function is enabled (SSWE = 1) and a store to SDT(out) for serial

output is to be executed, while SSEF = 0 (valid data exists in SDT(out)).

• when the load wait function is enabled (SLWE = 1) and a load from SDT(in) for serial input

is to be executed, while SLEF = 0 (valid data does not exist in SDT(in)).

The advantage of this format is that describing handshake procedures in the application

program is not needed, because the handshake procedure is automatically executed by

hardware. Here is an example of serial output by using the wait function:

/* Explicitly define SST1 and SO1 because they are not

reserved words. */

 #define SST1 0x3801

 #define SO1 0x3800

/* Disable internal interrupts SO1 and SI1. */

 R0L = SR ;

 R0 = R0 | 0x0030 ;

 SR = R0L ;

 R0L = 0x800 ; Set serial interface as follows:

 *SST1:X = R0L ; • MSB first output

; • MSB first input

; • 16-bit word output

; • 16-bit word input

; • SDT store wait function is used.

; • SDT load wait function is not used.

; • Serial input is not performed.

; • Clear serial input/output error flag.

 *SO1:X = R1H ; Data of R1H is output as soon as

; SSEF = 1.

Caution When data is written from the application program to SDT,
the wait is not released unless SDT is transferred to SOS
(i.e., unless all the bits of the previous data of SOS are
shifted out to the external device). If internal writing of
DSP and external reading do not correspond on a one-to-
one basis vis-a-vis SDT, a hang-up may occur.

During wait, interrupts are delayed (refer to secton 3.4.4
“Interrupt”).

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual 169

(c) Interrupt

Handshaking is established by interrupts, if data can be stored to SDT (out) and data can

be loaded from SDT (in). Therefore, the advantage of this format is that, even while

other processing is under execution, serial input/output can be executed independently

(asynchronously) of the processing. Here is an example of serial input/output using an

interrupt:

/* definition of serial I/O register names */
#define SST1 *0x3801:X
#define SI1 *0x3800:X
#define SO1 *0x3800:X

/* interrupt vector table entries */

SegSI1 IMSEG AT 0x220 ; sio#1 input interrupt routine

R0H = SI1 : load from SDT (in)
R0 = R0H*R1H ;
*DP0++ = R0H ; save to buffer
RETI ; return from interrupt

SegSO1 IMSEG AT 0x224 ; sio#1 output interrupt routine

R0H = *DP4++ ; read from buffer
SO1 = R0H ; save to SDT(out)
RETI ; return from interrupt
NOP ;

/* disable interrupts to initialize serial input/output */

R1L = EIR ; disable interrupts generally
R1 = R1 | 0x8000 ; EI = 1
EIR = R1L ;
NOP ; wait 2 cycles until
NOP ; EI = 1 effective

R0L = SR ; enable SI1 and SO1 interrupts
R0 = R0 & 0xFFCF ;
SR = R0L ;

R1 = R1 & 0x7FFF ; enable interrupts generally
EIR = R1L ;
FINT ; discard all pervious interrupts

; initialize SST1
R0L = 0x0200 ; input/output: MSB-first, 16-bit

; no load/store wait function

SST1 = R0L ; serial input continuous mode

SO1 = R0L ; dummy store (see below)

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual170

Cautions Note the following points when executing serial output
interrupt because the interrupt occurs after data has been
transferred from the SDT register to the serial output shift
register:

(1) Transfer first dummy data and then forcibly generate
an interrupt, or do not use interrupts during the
transfer of the first data.

(2) When transferring data in burst mode, first disable
interrupts immediately before the instruction which
transfers the last word to SDT, then execute the
instruction introduced in (1) after the completion of
the next burst data preparation, to transfer the next
burst data. This is because the first word of data to
be burst-transferred may not be completely prepared
if an interrupt is generated during the transfer of the
last burst data word.

Example:

; /* When last word is stored to SDT. */

R0L = SR ; /* (DI status during interrupt processing) */

R0 = R0 | 0x0020 ; /* SO1 interrupt is disabled. */

SR = R0L ;

*SO1: X = R0H ;

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual 171

3.7.4 Host interface

The µPD7701x family is provided with a host interface that transfers data with an external

host CPU and DMA controller. The features of this host interface are as follows:

• 8-bit parallel port

• Data range

Higher 8 or lower 8 bits are selected by address.

• Internal data bus connection

Connected to X and Y buses.

• Internal 16-bit, external 8-bit configuration

External device is interfaced through 8-bit data bus.

• Internal handshake

Handshake by means of polling, wait, or interrupt

• External handshake

Handshake by means of dedicated status signal.

A host interface control circuit (HCTL) controls the pins and registers.

Figure 3-57 shows the block diagram of the host interface.

Figure 3-57. Host Interface

Chapter 3 Architecture 3.7 Peripheral Units

Peripheral bus (16 bits)

16

HDT (in)

16

HDT (out)

16

HST

8
HCTL

HA0HD0-HD7 HA1 HCS HRD HWR HRE HWE

µPD7701x Family User's Manual172

 [Operational outline of host interface]

This section explains the internal logical operation of the host interface of the µPD7701x

family (for the detailed timing, refer to Figures 3-59 and 3-60).

One buffer stage is provided for both input and output to transfer data via host interface.

Host input is performed by using the following registers:

• HDT (in) register (host data input register):

Inputs 8-bit parallel data (higher byte and lower byte) from the HD0 through HD7 pins, and

output 16-bit parallel data to the peripheral bus.

Host output is performed by using the following registers:

• HDT (out) register (host data output register):

Writes 16-bit parallel data from the peripheral bus and outputs 8-bit parallel data (higher

byte and lower byte) from the HD0 through HD7 pins.

The host interface can be accessed from the external device by using 8 bits of host data I/O

pins. Internally, the interface can be accessed by using the parallel input register HDT (in)

and output register HDT (out).

To establish synchronization for host data transfer, the following internal flags are provided

to monitor the status of the dedicated external pins and registers.

• HWE (host write enable), HWEF (host write enable flag):

These are an external pin and a flag (flag of the host status register) that monitor the status

of HDT (in).

HWE = high level, HWEF = 0 (HDT (in) is not empty.) →

Valid data still exists in HDT (in). The host cannot write new data to HDT (in).

The µPD7701x can load data from HDT (in).

HWE = low level, HWEF = 1 (HDT (in) is empty.) →

The host can write new data to HDT (in).

The µPD7701x cannot load data from HDT (in).

• HRE (host read enable), HREF (host read enable flag):

These are an external pin and a flag (flag of the host status register) that monitors the status

of HDT (out).

HRE = high level, HREF = 0 (HDT (out) is empty.) →

Valid data does not exist in HDT (out).

The host can read data from HDT (out).

The µPD7701x can store output data to the HDT (out).

HRE = low level, HREF = 1 (HDT (out) is not empty.) →

The host can read new data from HDT (out).

The µPD7701x can store output data to HDT (out).

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual 173

Table 3-32. Status Indicators of Host Read/write Interface

Register Status indicator Status Comments

Host write HDT(in) HWE pin High: Not empty Host cannot write to HDT(in)

Low: Empty Host can write to HDT(in)

HWEF flag 1: Empty Data cannot be loaded from HDT (in)

0: Not empty Data can be loaded from HDT(in)

Host read HDT(out) HRE pin High: Empty No new data in HDT(out) to be read by
host

Low: Not empty Host can read data from HDT(out)

HREF flag 1: Not empty Data cannot be stored to HDT(out)

0: Empty Data can be stored to HDT(out)

Figure 3-58. Function Diagram of Host Interface

Chapter 3 Architecture 3.7 Peripheral Units

HDT (in) HDT (out)

bit 1 bit 0

HREF HWEF

Load
HST Reg.

························

16

16

INT

8 8

16

Store

INT

Peripheral bus (16 bits)

8 8
8 8

8

switch from HD0-HD7 to the busses

HWE HA1 HA0 HCS HRD HWR HD0-HD7 HRE

µPD7701x Family User's Manual174

(1) Pins of host interface

All control pins of the host interface are active-low.

(a) HCS (Host Chip Select - input)

This pin inputs a host interface select signal.

This signal is active (low) while the host CPU accesses a register of the host interface.

(b) HA1 and HA0 (Host Addresses 1 and 0 - input)

These pins input an address of the host interface.

They specify a register of the host interface to be accessed.

Do not change the statuses of these pins while the host CPU is accessing a register of

the host interface.

(c) HRD (Host Read strobe - input)

This pin inputs the read strobe signal of the host interface.

It becomes active (low) when the host CPU reads the data of a register of the host interface.

This signal must not be active concurrently with the HWR signal.

(d) HWR (Host Write strobe - input)

This pin inputs the write strobe signal of the host interface.

It becomes active (low level) when the host CPU writes data to a register of the host

interface. This signal must not be active concurrently with the HRD signal.

(e) HD0-HD7 (Host Data 0-7 - input/output)

These pins input or output data to or from the host interface.

Data is input or output when the host CPU accesses a register of the host interface.

These pins go into a high-impedance state when HCS is inactive (high).

(f) HRE (Host Read Enable - output)

This pin outputs a signal indicating that HDT is enabled to be read.

It is asserted active (low level) if HDT is enabled to be read and is deasserted inactive

(high level) at the falling edge of the HRD pin when the higher byte of the data of HDT is

read. This pin remains unchanged even if the lower byte of HDT is accessed.

This pin is deasserted inactive at hardware reset.

(g) HWE (Host Write Enable - output)

This pin outputs a signal indicating that HDT is enabled to be written.

It is asserted active (low level) if HDT is enabled to be written and is deasserted inactive

(high level) at the falling edge of the HWR pin when data is written to the higher byte of

HDT. This pin remains unchanged even if the data of the lower byte of HDT is accessed.

This pin is deasserted inactive at hardware reset.

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual 175

Table 3-33. Pins Status during and after Hardware Reset

Pin I/O During reset Initial after reset

HCS I — —

HA0, HA1 I — —

HRD I — —

HWR I — —

HD0-HD7 I/O Hi-Z (when HCS pin is inactive)

HRE O H H

HWE O H H

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual176

(2) Registers of host interface

(a) Host data register (HDT-0x3806:X/:Y)

This 16-bit register is used to input or output data to or from the host interface. Data can

be stored to and loaded from HDT by use of load/store instructions.

<1> Host data output register

This 16-bit register sets data to be output from the host interface.

When a store to HDT is executed, data is input to this register through the peripheral bus.

When data is read by an external device, the higher or lower 8 bits are specified by HA0.

<2> Host data input register

This 16-bit register sets the data to be input from the host interface.

When a load from HDT is executed, the data of this register is output to the peripheral

bus.

When data is written by an external device, the higher or lower 8 bits are specified by

HA0.

(b) Host interface status register (HST-0x3807:X/:Y)

Host interface status register HST is a 16-bit register that indicates the mode setting and

status of the host interface.

It indicates the specification, and write or read error between the host CPU and host

interface and between the host interface and µPD7701x.

Data can be input to or output from HST by using a load/store instruction.

When the value of this register is read by the external device, the higher 8 bits or lower 8

bits are specified by HA0.

The value of HST is set to 0x0301 at reset.

Table 3-34 shows the function of each bit of HST, and Table 3-35 shows the set condition

of the host I/O error flags.

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual 177

Table 3-34. Function of HST (0x3807:X/:Y)

Bit Name R/W Load/Store from Bit function

from host µPD7701×

15-11 Reserved — — Reserved bits
• No value can be set to these bits.
• These bits are undefined when read.

10 HAWE R Load/Store HDT access wait enable bit
• 0: Wait is not used
• 1: Wait is used
Wait cycles are inserted if the µPD7701x attempts to store data to
HDT (out) while HREF=1, or to load data from HDT (in) while
HWE=1.

9 HREM R Load/Store HRE mask bit
• 0: Does not mask.
HRE changes according to the HREF status (refer to below).
• 1: Masks
HRE becomes inactive (high level).

8 HWEM R Load/Store HWE mask bit
• 0: Does not mask.
HWE changes according to the HWEF status (refer to below).
• 1: Masks
HWE becomes inactive (high level).

7 UF1 R Load/Store User’s flag

6 UF0 R Load/Store User’s flag

5 HRER R Load/Store Host read error flag
• 0: No error
• 1: Error
Set to 1 when host CPU reads HDT when HREF is 0.
• Once set to 1, it does not change until 0 is written by program.

4 HWER R Load/Store Host write error flag
• 0: No error
• 1: Error
Set to 1 when host CPU writes HDT when HWER is 0.
• Once set to 1, it does not change until 0 is written by program.

3 HSER R Load/Store HDT store error flag
• 0: No error
• 1: Error
Set to 1 when µPD7701x store to HDT when HREF is 1.
• Once set to 1, it does not change until 0 is written by program.

2 HLER R Load/Store HDT load error flag
• 0: No error
• 1: Error
Set to 1 when µPD7701x loads from HDT when HWEF is 1.
• Once set to 1, it does not change until 0 is written by program.

1 HREF R Load Host read enable flag
• 0: Read disabled
• 1: Read enabled
Set to 1 when the µPD7701x stores data to HDT. Cleared to 0
when host CPU reads higher byte of HDT.
• Ignored when written.

0 HWEF R Load Host write enable flag
• 0: Write disabled
• 1: Write enabled
Set to 1 when the µPD7701x loads data to HDT. Cleared to 0
when host CPU writes higher byte of host CPU.
• Ignored when written.

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual178

Remark The HST setting after hardware reset:
initial HST after reset: 0x0301: • no wait function

• HRE/HWE mask: Masked

• host write enabled

• host read disabled

Table 3-35. Conditions of Host Input/Output Error Flags Settings

Error flag Set condition Reset condition

HRER Host read while HREF=0 by hardware reset or by program

HWER Host write while HWEF=0

HSER Store to HDT while HREF=1

HLER Load from HDT while HWEF=1

(3) Registers of host interface when viewed from host

The host CPU specifies the higher or lower bytes of either the host status register HST or

host data register HDT by use of the HA0 and HA1 inputs. Table 3-36 shows the registers of

the host interface when they are accessed by an external device.

Table 3-36. Selecting Host Interface Registers

HCS HRD HWR HA1 HA0 Register subject to transfer Byte

0 0 0 x x Disabled —

0 0 1 0 0 HDT (output) Lower 8 bits

0 0 1 0 1 HDT (output) Higher 8 bits

0 0 1 1 0 HST Lower 8 bits

0 0 1 1 1 HST Higher 8 bits

0 1 0 0 0 HDT (input) Lower 8 bits

0 1 0 0 1 HDT (input) Higher 8 bits

0 1 0 1 x Disabled —

0 1 1 x x No register —

1 x x x x No register —

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual 179

(4) Timing of host interface

(a) Host read operation (µPD7701x —> host)

Data is transferred from the µPD7701x to the host in the following steps. Figure 3-59

shows reading operations of 16-bit data to HDT without wait cycles.

<1> The application program of the µPD7701x stores data to the host data register

(HDT) (a), (b).

<2> Consequently, the host read enable flag (HREF) of the host interface status register

(HST) is set to 1 (a). If the HRE mask bit (HREM) of HST is 0, the HRE pin

becomes active (low), and is output to external devices as a hardware signal (b).

<3> The host can recognize that data is present in HDT by any of the following

methods:

(1) Reads HST and detects HREF = 1 by software (a), or

(2) Detects the low level of the HRE pin (b).

<4> The host reads HDT. If 16-bit data is transferred at this time, the lower 8 bits (a)

and then the higher 8 bits (b) must be read in this order. If 8-bit data is transferred,

the higher 8 bits are always read (refer to the logic of HREF and HRE).

<5> HREF of HST is cleared to 0 after step <4> (b), and the HRE pin becomes inactive

(high) in step <4> (b). At this time, an interrupt request is generated by HO (c).

This interrupt is processed as a valid interrupt or is recorded depending on the

status of the corresponding interrupt enable flag and EI status (refer to 3.4.4

“Interrupt”).

Figure 3-59. Host Read Sequence (µPD7701x —> host): HDT read
without wait

Chapter 3 Architecture 3.7 Peripheral Units

Instruction
execution

<5> (c)

HDT

HRD

HO INT

HREF

HRE

HDT data

Host operation Read HDT

Lower
8 bits

Higher
8 bits

Empty Data

<2> (a)

<2> (b) <5> (b)

<5> (a)

<4> (a) <4> (b)

<4>

<1> (a)

<3> (a)

<3> (b)

<1> (b)

µPD7701x Family User's Manual180

Chapter 3 Architecture 3.7 Peripheral Units

(b) Host write operation (µPD7701x <— host)

Data is transferred from the host to the µPD7701x in the following steps. Figure 3-60

shows examples of writing HDT without wait cycles when 16-bit data is transferred.

<1> The host writes data to the HDT of the µPD7701x. If 16-bit data is transferred at

this time, the lower 8 bits (a) and the higher 8 bits (b) are written in this order; if 8-

bit data is transferred, data is always written to the higher 8 bits of HDT (refer to

the logic of HWEF and HWE).

<2> Consequently, HWEF of HST is cleared to 0, informing the application program of

the µPD7701x that data has been written to HDT (a). The HWE pin becomes

inactive (high level in step (b)), informing an external device that HDT is busy (b).

An interrupt request is also generated by HI (c). Whether this interrupt is processed

as a valid interrupt or is recorded depends on the status of the corresponding

interrupt request flag or EI status (refer to 3.4.4 “Interrupt”).

<3> The application program of the µPD7701x can recognize that HDT is ready with

the data from the host by either of the following methods:

(1) by detecting 0 of HWEF of HST (a), or

(2) by waiting for interrupt caused by HI (b).

<4> Consequently, the application program loads from HDT (a). As a result of the

load, HWEF is set to 1 (b). At the same time, the HWE pin becomes active (low)

(c), and the external circuit recognizes that HDT is enabled to write.

Figure 3-60. Host Write Sequence (µPD7701x <— host): HDT write
without wait

Instruction
execution

<2> (c)

HDT

HWR

HI INT

HWE

HWEF

Load HDT

Host operation Write data

Lower
8 bits

Higher
8 bits

Empty Lower Completed data

<3> (a)

<3> (b)
<2> (b)

<2> (a) <4> (b)

<4> (c)

<1> (a) <1> (b)

<1>

<4> (a)

Empty

µPD7701x Family User's Manual 181

(5) Handshake

Handshaking between the µPD7701x and host can be established by:

• Polling

• Wait

• Interrupt

Each mode is described next.

(a) Polling

Synchronization of handshaking is established by always monitoring and evaluating the

host read enable flag (HREF) and host write enable flag (HWEF) of the host interface

status register (HST). Here is an example of host read (µPD7701x —> host) by means

of polling:

/* Explicitly define HST and HDO because they are not reserved

words. */

 #define HST 0x3807

 #define HDO 0x3806

/*Disable internal interrupts HO and HI.*/

 R0L = SR ;

 R0 = R0 | 0x0300 ;

 SR = R0L ;

 R0L = 0x0 ; Set host status as follows:

 *HST:X = R0L ; • Does not use HDT access wait

; function.

; • Does not mask HRE function.

; • Does not mask HWE function.

; • Clears all user flags.

; • Clears all error flags.

POLL: R0L = *HST:X ; Judges HREF and loops to wait

; until host reads HDT.

 R0=R0 & 0x2 ;

 if (R0! = 0)jmp POLL ;

 *HDO:X = R1H ; Data of R1H is output because HDT

; has become empty.

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual182

(b) Wait

Under the following conditions, execution of data exchanges with the HDT(in) and/or

HDT(out) registers cause instruction wait cycles:

• when the load/store wait function is enabled (HAWE=1) and a store to HDT(out) is to

be executed, while HREF=1 (valid data exists in HDT(out))

• when the load/store wait function is enabled (HAWE=1) and a load from HDT(in) is to

be executed, while HWEF=1 (valid data does not exists in HDT(in))

Therefore, the advantage of this format is that writing handshake procedures is not required

in application program, because the handshake procedure is automatically executed by

hardware. Here is an example of host read by using the wait function:

/*Explicitly define HST and HDO because they are not reserved

words.*/

 #define HST 0x3807

 #define HDO 0x3806

/Disable internal interrupts HO and HI.*/

 R0L = SR ;

 R0 = R0 | 0x0300 ;

 SR = R0L ;

 R0L = 0x0400 ; Set host status as follows:

 *HST:X = R0L ; • Uses HDT access wait function.

; • Does not mask HRE function.

; • Does not mask HWE function.

; • Clears all user flags.

; • Clears all error flags.

 *HDO:X = R1H ; Outputs data of R1H. If HDT is

; busy, wait cycle is inserted.

Caution When data is written from the application program to HDT,
the wait is not released unless HDT is read by the external
device. If internal writing of DSP and external reading do
not correspond on a one-to-one basis vis-a-vis HDT, a
hang-up may occur.

During wait, interrupts are delayed (refer to section 3.4.4
“Interrupt”).

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual 183

(c) Interrupts

Handshaking can be established by generating an interrupt, if data can be stored to HDT

(out) or loaded from HDT (in) by the µPD7701x. Therefore, the advantage of this format

is that host input/output can be executed independently (asynchronously) of the other

processing even while other processing is under execution. Here is an example of host

input/output using an interrupt:

/ * Define host I/O */

#define HST * 0x3807: X

#define HDO * 0x3806: X

#define HDI * 0x3806: X

/* Entry of interrupt vector table */

SegHi IMSEG AT 0x230 ; hio input interrupt routine

R0H = HDI ; Read from HDT (in)

*DP0++ = R0H ; Saves to buffer

RETI ; Returns from interrupt

NOP ;

SegHo IMSEG AT 0x234 ; hio output interrupt routine

R0H = *dp4++ ; Reads from buffer

HDO = R0H ; Writes to HDT (out)

RETI ; Returns from interrupt

NOP ;

/* Disables interrupts to initialize host I/O */

R1L = EIR ; Disables all interrupts

R1 = R1 | 0x8000 ; EI = 1

EIR = R1L ;

NOP ; Two wait cycles are necessary until EI = 1

NOP ; becomes valid

R0L = SR ; Enables HI and HO interrupts

R0 = R0&0xFCFF ;

SR = R0L ;

R1 = R1&0x7FFF ; Enables all interrupts

EIR = R1L ;

FINT ; Discards previous interrupt

; Initializes HDT

R0L = 0x0 ; Without HDT access wait function

HST = R0L ; No HRE, HWE mask. Clears user flag

HD0 = R0L ; Dummy store (Refer to “Caution” below)

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual184

Caution Because the host output interrupt occurs at the rising edge
of the HRD pin when the higher byte of the HDT register is
accessed, the following points must be noted.

(1) Transfer the first data by forcibly generating an
interrupt by transferring dummy data or by transferring
data without using an interrupt.

(2) If data is transferred in the burst mode, the chances
are that the first data for the next burst transfer is not
generated if an interrupt occurs at the last word of the
burst data. Therefore, disable the interrupt by the
instruction immediately before the one that transfers
the last word to HDT, execute the same instruction as
(1) after generation of the next burst data has been
completed, and transfer the next burst data.

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual 185

3.7.5 General-purpose input/output port

The µPD7701x is provided with a 4-pin input/output port. The following are the features of

this port.

• Set in the input mode at hardware reset, and the values input to P0 and P1 after reset

determine the boot mode.

• Each pin can be set in the input or output mode by the application program.

• The output value of the pin set in the output mode can be controlled independently.

Figure 3-61. General-purpose Input/Output Port

Chapter 3 Architecture 3.7 Peripheral Units

PDT (in)

Load

Bit manipulation
4

Store

Peripheral bus (16 bits)

4

× 4

4

P0-P3

4

PDT (out)

4 16

PCD

Set mode

µPD7701x Family User's Manual186

(1) Usage of the general-purpose port

There are three methods for using general-purpose port.

(a) Mode change (input —> output, output —> input)

The port command register PCD is used to set the port pins P0-P3 in the input or output

mode.

store to PCD ······ • set the mode of each bit (input or output)

(b) Input data (P0-P3 —> µPD7701x)

Input data is loaded from the port data register PDT(in).

load from PDT ······ • input the 4-bit data

(c) Output data (P0-P3 <— µPD7701x)

There are two methods for setting an output port pin to a defined status.

(i) using PDT

Output data is stored to the port data register PDT(out).

store to PDT ······· • output the 4-bit data

(ii) using PCD

The status of a single output port pin can be manipulated by the port command register

PCD. Mode setting and bit manipulation can be set concurrently.

store to PCD ······ • set the mode of each bit (input or output)

• manipulate the 1-bit output data (low or high)

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual 187

(2) Pins of port interface

(a) P0-P3 (general-purpose input/output port)

These are general-purpose input/output pins and have the following functions:

• The output pin status is changed in synchronization with the rising edge of CLKOUT.

• The input pin is sampled in synchronization with the rising edge of CLKOUT.

(3) Port-related registers

(a) Port data register (PDT-0x3804:X/:Y)

This 16-bit register transfers data by using the general-purpose input/output port. To

input data from the general-purpose input/output port, a load from PDT is performed. To

output data, the data is stored to PDT whose value is then set to P0-P3. These pins

correspond to the bit 0 to bit 3 of PDT. Data can be exchanged with the PDT register by

use of load/store instructions.

When a load from PDT is executed, the data of this register is output to the peripheral

bus. In input mode, the bit n of the PDT is set to 1 when high is input to the Pn pin,

cleared to 0 for a low level input; if the Pn’ is an output pin, the value of bit n’ is undefined

when load from PDT is performed, where n and n' are suffixes for correspondence

indication and different numbers each other.

When a store to PDT is executed, the data is input to this register from the peripheral

bus. In output mode, the Pn’ pin outputs high when the bit n’ of the PDT is set to 1, and

outputs a low for 0; if the Pn pin is an input pin, the bit n value does not affect the port pin.

(b) Port command register (PCD-0x3805:X/:Y)

This 16-bit register specifies the input or output direction of the general-purpose input/

output port, and bit manipulation of the output pins.

Data can be exchanged with the PCD register by use of load/store instructions. Note

that not all of the PCD register bits can be loaded to a general-purpose registers (refer to

the following table).

The value of PCD is cleared to 0 at reset.

Table 3-37 shows the function of each bit of PCD.

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual188

Table 3-37. Port Command Register (PCD - 0x3805:X/:Y)

Bit Name Category Load/Store Bit function

(L/S)

15 BE Bit manipulation S Bit manipulation enable bit
• 0: Does not manipulate bit.
• 1: Manipulates bit
Manipulation method is specified by B1, B0, and PSR.
• Undefined when read.

14 PSR Bit manipulation S Port set/reset specification bit
• 0: Reset (low level)
• 1: Set (high level)
• Manipulation port is specified by B1 and B0.
• Valid when BE = 1.
• Undefined when read.

13 ME Mode setting S Mode setting enable bit
• 0: Does not set mode.
• 1: Sets mode.
Contents to be set are specified by IO and M3-M0.
• Undefined when read.

12 IO Mode setting S Input/output specification bit
• 0: Specifies input mode.
• 1: Specifies output mode.
• Port to be set is specified by M3-M0.
• Valid when ME = 1.
• Undefined when read.

11,10 Reserved — — Reserved bits
• No value can be set to these bits.
• Undefined when read.

9, 8 B1, B0 Bit manipulation S Bit manipulation port specification bits
• B1, B0 = 00:P0

01:P1
10:P2
11:P3

• Set/reset is specified by PSR.
• Valid when BE = 1.
• Undefined when read.

7-4 Reserved — — Reserved bits
• No value can be set to these bits.
• Undefined when read.

3-0 M3-M0 Mode setting S Mode setting port specification bits
M3 = 0: P3 unselected, 1: P3 selected
M2 = 0: P2 unselected, 1: P2 selected
M1 = 0: P1 unselected, 1: P1 selected
M0 = 0: P0 unselected, 1: P0 selected
• Selection can be specified independently.

Mode status L Input/output mode status bits
M3 = 0: P3 input mode, 1: P3 output mode
M2 = 0: P2 input mode, 1: P2 output mode
M1 = 0: P1 input mode, 1: P1 output mode
M0 = 0: P0 input mode, 1: P0 output mode

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual 189

(4) Timing of port interface

The general-purpose I/O port is not assumed to be used synchronously, but is synchronized

with the rising edge of CLKOUT during data input/output.

(a) Mode change from input to output

The mode of each pin is changed from input to output two system clocks after the execution

cycle of the instruction that stores data to the PCD register.

Example program:

 #define PCD=0x3805

 #define PDT=0x3804

 R1L=0x0000 ;

 *PDT:x=R1L ; initialize PDT

 R0L=0x3001 ;

 *PCD:x=R0L : P0 —> output port

Caution Because the PDT register is undefined after hardware reset,
write data to the PDT register before storing data to the
PCD register.

Chapter 3 Architecture 3.7 Peripheral Units

if id ie

Store to PCD: input output

Input Output

Old data

Input data

New manipulated data

New manipulated data

Delay

System clock

Instruction

Input/output mode

Bit manipulation

P0-P3

µPD7701x Family User's Manual190

Chapter 3 Architecture 3.7 Peripheral Units

(b) Mode change from output to input

The mode of each pin changes from output to input after two system clocks since execution

cycle of store to PCD register, but the µPD7701x inhibit the pin’s data from being input

during two system clocks after then. Therefore it is required that minimum 4 system

clocks between store to PCD register and load from PDT register.

Example program:

 #define PCD=0x3805

 #define PDT=0x3804

 R0L=0x200f ;

 *PCD:x=R0L ; P0-P3 output —> input

 <required minimum 4 system clocks between instructions>

 R1L=*PDT:x ; load from PDT

if id ie

Store to PCD: output input

Output

Output data

Input

Delay

System clock

Instruction

Input/output mode

P0-P3

if id ie

Load from PDT (for input data 1)
Required 4 instruction cycles

Input
data 1

Input
data 2

Input
data 3

Input impossibility

····································

µPD7701x Family User's Manual 191

Chapter 3 Architecture 3.7 Peripheral Units

(c) Timing of input ports

The pin’s input data is loaded after synchronized with the rising edge of two system

clocks.

(d) Timing of output ports

(In case of store to PDT register)

The output data is output after one system clock since execution cycle of store to PDT

register.

(In case of store to PCD register)

The 1-bit manipulated data is output after two system clocks since execution cycle of

store to PCD register.

Caution If bit manipulation by the PCD register and data output by
storing to the PDT register are executed at the same time,
the data of the PDT register takes precedence over bit
manipulation by the PCD register.

if id ie

Synchronize with system clock

System clock

Instruction

PDT(in)

P0-P3

Input
data 1

Input
data 2

Input
data 3

··

··

Input
data 1

Input
data 2

Input
data 3

Load from PDT (for input data 1)

if id ie

Store to PDT

Data stored to PDT

Delay

System clock

Instruction

PDT(out)

P0-P3

if id ie

Delay

Data stored to PDT

Bit manipulated data

Bit manipulated data

Store to PCD (bit manipulation)

µPD7701x Family User's Manual192

(e) Output port setting (by use of PCD and PDT registers)

The manipulated data is output after two system clocks since execution cycle of store to

PCD register. Next, when the output data is output after one system clock since execution

cycle of store to PDT register, spike noise may occur at point A. Therefore it is required

that minimum 1 system clock between store to PCD register and store to PDT register.

Example program:

 #define PCD=0x3805

 #define PDT=0x3804

 R0L=0xf00f ;

 *PCD:x=R0L ;P0-P3 input —> output, P0 —> high

 R1L=0x0000 ;<required minimum 1 system clock

;between instructions>

 *PDT:x=R1L ;P0-P3 —> low

Cautions 1. If at least one system clock is not inserted between the
instruction that stores data to the PCD register and the
instruction that stores data to the PDT register, a spike
may be generated at point A.

2. Because the value of the PDT register is undefined after
hardware reset, set the PDT register before storing data to
the PCD register.

Chapter 3 Architecture 3.7 Peripheral Units

if id ie

Store to PCD: bit manipulation

Delay

System clock

Instruction

Input/output mode

Bit manipulation

if id ie

Output

Store to PDT: output data

PDT(out)

P0-P3

New manipulated data

New data

New data by PDT(out)

New manipulated data
A

Old data

Old data

Input data

Input

µPD7701x Family User's Manual 193

(4) Example of port programming

Here is an example of a program using the general-purpose input/output port. In this example,

the following is executed:

• P0 and P1 are set in the output mode.

• P2 and P3 are set in the input mode.

• P0 outputs a low level, and P1 outputs a high level.

Example of programming general-purpose input/output port

#define PDT 0x3804

#define PCD 0x3805

#define All_In_mode 0x200F

#define P0_Out_mode 0x3001

#define P1_Out_mode 0x3002

#define Out_P0_Low 0x8000

#define Out_P1_High 0xC100

R0L = All_In_mode ; P3-P0 input pins

*PCD:x = R0L;

R0L = P0_Out_mode+Out_P0_Low ; P0 output pin (low level)

*PCD:x = R0L;

R0L = P1_Out_mode+Out_P1_High ; P1 output pin (high level)

*PCD:x = R0L;

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual194

3.7.6 Wait controller

When the external memory area is accessed, the number of wait cycles to be inserted can

be specified in advance by using a register.

The main features of the wait controller are as follows:

• Independently controls the data memory space and instruction memory space.

• Four types of wait cycles (0, 1, 3, and 7 wait cycles).

• Can be used with the WAIT pin (data memory space).

Figure 3-62 shows the block diagram of the wait controller.

Figure 3-62. Wait Controller

(1) Data memory wait cycle register (DWTR-0x3808:X/:Y)

Refer to paragraph (d) “Wait controller” in section 3.5.2 (3).

(2) Instruction memory wait cycle register (IWTR-0x3809:X/:Y)

Refer to paragraphs (d) “External instruction memory interface” and (f) “Wait function for

instruction memory access” in section 3.4.2 (1).

Chapter 3 Architecture 3.7 Peripheral Units

Peripheral bus (16 bits)

16

DWTR

16

IWTR

WCTL

WAIT

µPD7701x Family User's Manual 195

3.7.7 Debug interface (JTAG)

The µPD7701x family is provided with the following functions conforming to JTAG interface:

• JTAG port

• Boundary scan test function

• Debug function (In-Circuit Emulation function)

(1) JTAG port

Joint Test Action Group (JTAG) is an organization founded to promote standardization of

boundary scan, a technique to facilitate testing of printed wiring boards that are mounted in

electronic systems, and a standardization plan by this organization is recommended as

“IEEE1149.1.”

A device conforming to JTAG has an access port for testing, and the device can be tested

independently of the internal logic.

The µPD7701x family is provided with a register and a control circuit for In-Circuit Emulation,

in addition to the instruction register, bypass register, and boundary scan register, which are

specified to be essential by the above recommendation. For the details of JTAG, refer to

“IEEE1149.1.”

[Debug pins (TAP: test access port)]

Four pins and In-Circuit Emulation pin (TICE) conforming to the recommendation are

provided.

• TCK (input)Test clock input pin.

 Input 0 when not used (conforms to recommendation).

• TMS (input)Test mode select input.

Sampled at the rising edge of TCK. Internally pulled up.

• TDI (input)Test data input.

Sampled at the rising edge of TCK. Internally pulled up.

• TDO (output)Test data output.

Changes output in synchronization with the falling edge of TCK.

• TICE (output)Output to organize the break mode of In-Circuit Emulation.

Caution Do not stop TCK while it is high.

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual196

(2) Boundary scan test function

The boundary scan test method allows testing of the board level and chip level of the target

system in a consistent test phase. This is why this method has been widely employed for

automatic systems at many production sites.

The µPD7701x family has boundary scan functions as described below.

(a) Test instruction register

This 8-bit register is used to select test parameters and a test data register. Table 3-38

lists the supported instructions.

Table 3-38. Test Instructions

Bit Instruction

76543210

00000000 EXTEST instruction

00000001 SAMPLE/PRELOAD instruction

11111111 BYPASS instruction

Caution The operation is undefined if data other than above is input.

(b) Test bypass register

This register outputs the data input from TDI to TDO. Refer to BYPASS instruction in

Table 3-38.

(3) Debug function (in-circuit emulator function)

The µPD7701x family is provided with debug monitoring functions using JTAG with a run-

time program. These functions have the following features:

• Break function

• Break by fetch of specified instruction address

• Break by reading/writing specified data memory address

• Non-break monitor function

• References or changes the contents of a register or memory during program execution

Chapter 3 Architecture 3.7 Peripheral Units

µPD7701x Family User's Manual 197

Cautions 1. Detailed operations of the debug function are not made
public to users.

2. The debug function is used by the hardware debugger for
the µPD7701x family (IE-77016). Figure 3-64 shows the
JTAG pin connections when the IE-77016 is used. When
the IE-77016 is not required, connect these pins according
to 2.4 "Handling of Unused Pins."

Figure 3-63. Appearance of JTAG Pins

Figure 3-64. The JTAG Pin Processing

(a) µPD77016

Chapter 3 Architecture 3.7 Peripheral Units

100
TMS

99
TDI

98
TCK

97
TICE

96
TDO

10 kΩ

10-pin header

(a) µ µPD77016 (b) PD77015, 77017, 77018,
77018A, 77019

µPD7701x Family User's Manual198

92
TMS

91
TDI

90
TCK

89
TICE

88
TDO

10 kΩ

10-pin header

Chapter 3 Architecture 3.7 Peripheral Units

(b) µPD77015, 77017, 77018, 77018A, 77019

µPD7701x Family User's Manual 199

 1

 2

 3

 4

 5

 6

 A

 B

 C

Chapter 4

Boot Function

This chapter explains the boot function of the µPD7701x family. First, the functional outline

is explained, and then the types of the boot function (modes), booting at reset, a boot

subroutine, and the time required for booting are described in that order.

µPD7701x Family User's Manual200

4.1 General
The µPD7701x family is provided with a program to be booted up to the internal instruction

RAM. This program is stored in its internal ROM at addresses 0-0xFF of the instruction

space.

This program provides users with several subroutine services, including a reset boot function

and a reboot function. The reset boot function enables execution of booting immediately

after the hardware is reset and the program counter is cleared to “0”. The reboot function

allows users to rewrite program data in the RAM area of the instruction space from the

application program. The subroutine entry points for using these functions are made public

to users.

This chapter describes boot modes (by classifying and comparing modes by aspect), the

boot functions in each mode, boot parameters, and how to call boot subroutines.

The following registers are used to execute booting:

[Registers whose contents are affected by boot execution]

• R7

• DP3

• DP7

• HDT (host data register)

[Registers that are set before booting]

• IWTR (instruction memory wait cycle register)

• DWTR (data memory wait cycle register)

• HST (host interface status register)

Caution All the above registers are not always used depending on
the selected boot mode. For details, refer to the description
of each boot mode.

Chapter 4 Boot Function 4.1 General

µPD7701x Family User's Manual 201

4.2 Boot Modes

4.2.1 Classification of boot modes

The boot modes can be classified according to the following three attributes:

• Boot starting format (reset boot vs. reboot)

• Boot source (self-boot vs. host boot)

• Transfer word size (word boot vs. byte boot)

(1) Classification by boot starting format

Booting can be classified into the following two types according to the starting format:

(a) Reset boot and (b) Reboot.

(a) Reset boot

Booting by resetting the µPD7701x hardware is called reset boot. When the hardware is

reset, the PC (program counter) is cleared to “0” indicating address 0 of the instruction

memory. Because this address is allocated as the reset boot entry point provided in the

internal boot ROM area, the µPD7701x automatically executes booting. With the reset

boot, the instruction memory area to be booted is limited to the internal instruction RAM

(starting from address 0x200).

(b) Reboot

Booting by calling a boot servicing subroutine from an application program is called reboot.

Some subroutine entry points for booting are provided in the boot ROM area and made

public to users. By accessing these entry points from an application program, any part of

the instruction RAM can be rewritten at any time.

The reboot function is mainly used to load program data to the external instruction memory

or to rewrite the contents of the external instruction memory with the µPD77016.

(2) Classification by boot source

Booting consists in rewriting instructions in a certain format. The boot function can be classified

into the following two types depending on from where the op code data to be rewritten and

the parameters for rewriting are obtained: (a) Self-boot and (b) Host boot

(a) Self-boot

Self-booting transfers program code data from the data memory to the instruction memory.

Boot parameters are set in the data memory (Y memory: from address 0x4000) in the

case of reset boot, and in the registers in the case of reboot.

To configure a stand-alone system with the µPD77016 , store boot parameters and

program data in an external ROM, and execute reset boot in the self-boot mode.

To configure a stand-alone system with a ROM version product (µPD77015, 77017, 77018,

77018A, or 77019), store boot parameters and program data in the ROM area, and execute

Chapter 4 Boot Function 4.2 Boot Modes

µPD7701x Family User's Manual202

reset boot in the self-boot mode. The boot parameters are always stored in the internal Y

ROM, whereas the program data can be stored either in the internal or external X or Y

ROM.

The µPD77019-013 cannot execute self-boot from the internal data ROM because its

internal data ROM is masked. However, because the boot parameters for self-boot are

set in advance, self-boot can be executed only from the external Y data memory.

Figure 4-1 shows a configuration example of a system in the self-boot mode.

Figure 4-1. Example of Self-boot System Configuration

(a) µPD77016

(b) µPD77015, 77017, 77018, 77018A, 77019

Chapter 4 Boot Function 4.2 Boot Modes

Data memory
(ROM, etc.)

(for boot, data)

Instruction memory
(SRAM, etc.)

(Option as necessary)

A0-A15 D0-D15 (7) OE

DA0-DA15 D0-D15 (7) MRD

IA0-IA15 ID0-ID31 PWR

WE

RESET
P1
P0

SO

SI

RESET

VDD

A/D

D/A µPD77016

16

16 32

16 (8)

Data memoryNote

(ROM, etc.)

A0-A13 D0-D15 (7) OE

DA0-DA13 D0-D15 (7) MRD

RESET
P1
P0

SO

SI

µPD77015/
17/18/18A/19

16 (8)

ROMA/D

D/A

14

RESET

VDD

Note Use this as an option as necessary. This memory is essential for the PD77019-013.µ

µPD7701x Family User's Manual 203

(b) Host boot

When host boot is executed, the µPD7701x reads program code data through the host

interface and transfers this data to the instruction memory. In the case of reset boot, the

boot parameters are read through the host interface prior to the program code data read.

In the case of reboot the boot parameters have to be set to some registers by the application

program.

Host boot can be used in a system where a CPU is connected to the host interface and a

program is downloaded from that CPU to the µPD7701x.

Figure 4-2 shows an example of host boot system configuration.

Figure 4-2. Configuration Example of Host Boot System

(a) µPD77016

(b) µPD77015, 77017, 77018, 77018A, 77019

Chapter 4 Boot Function 4.2 Boot Modes

VDDIA0-IA15 ID0-ID31 PWR

P0

P1

RESET

INT

HRDHWRHA0,HA1HD0-HD7

8 2

PD77016µ

16 32

WE

Instruction memory
(SRAM, etc.)

(Option as necessary)

CPU Data memory

WR RD Address Data

Boot RQ

WR RD Address Data

Data bus

Address bus

Control bus

HCS

VDD

P0

P1

RESET

INT

HRDHWRHA0,HA1HD0-HD7

8 2

 PD77015/
77017/77018/
77018A/77019

µ
CPU Data memory

WR RD Address Data

Boot RQ

WR RD Address Data

Data bus

Address bus

Control bus

HCS

µPD7701x Family User's Manual204

(3) Classification by transfer word size

This classification is meaningful for self-boot only. The parameter for self-boot can specify

the size for data memory reading as follows:

• 16-bit word/1 address (word boot): Refer to Figure 4-3.

• 8-bit byte/1 address (byte boot): Refer to Figure 4-4.

In the case of word boot, therefore, two data memory addresses correspond to one instruction

step; in the case of byte boot, four data memory addresses correspond to one instruction

step.

Normally, for self-boot at reset, the boot parameters and program code data are fixed in

ROM. With the µPD77016, if the ROM in which the parameters and program code data are

stored is configured of 8 bits (1 byte)/1 address, a cost reduction can be achieved when a

small-scale system is organized.

Figure 4-3. Illustration of Word Boot

Figure 4-4. Illustration of Byte Boot

Chapter 4 Boot Function 4.2 Boot Modes

High
address

Data memory Instruction memory

Low
address

7 0 31

31 0

0

Data memory Instruction memory

15 0 31

31 0

0

High
address

Low
address

µPD7701x Family User's Manual 205

4.3 Boot at Reset
The µPD7701x family executes the boot program located at address 0 after hardware reset

is input. The boot program first reads general-purpose port pins P0 and P1 and determines

the boot mode (self-boot or host boot) depending on the bit pattern. Table 4-1 shows the

relation between the bit pattern of P0 and P1 at reset and the boot mode.

Table 4-1. P0 and P1 Reset Values and Boot Modes

P1 P0 Reaction (boot mode)

0 0 Does not execute boot. Branches to address 0x200.Note

0 1 Executes host boot, and then branches to address 0x200.

1 1 Executes self-boot, and then branches to address 0x200.

1 0 Setting prohibited

Note This setting is used by the DSP when it must be reset, to execute reset boot once on power ON and
subsequently to return from a power-down mode.

When reset boot is executed, no parameter to specify the load starting address of the

instruction memory is provided. The instruction memory will always be loaded from the fixed

address 0x200 (starting address of internal RAM area)

Caution With the µPD77016, only the internal instruction memory
is subject to reset boot. Use reboot for booting up the
external instruction memory.

4.3.1 Self-boot operation

(1) Parameters for self-booting

The following parameters are first read from address 0x4000 of the Y memory:

• Memory space command

• Word boot or byte boot command

Table 4-2 shows the contents of the parameters.

Chapter 4 Boot Function 4.3 Boot at Reset

µPD7701x Family User's Manual206

Table 4-2. Parameters for Self-booting (0x4000: Y)

Bit no. Value Meaning

0 0 Y memory boot.
Reads program codes from Y memory space.

1 X memory boot.
Reads program codes from X memory space. Note

1 0 Word boot.
Reads data memory in 16-bit units.
Therefore, one instruction memory address corresponds to two addresses
of data memory. Refer to Figure 4-3.

1 Byte boot.
Reads data memory in 8-bit units.
Therefore, one instruction memory address corresponds to four data
memory addresses. Refer to Figure 4-4.

2-7 Any In byte boot mode

2-15 Any In word boot mode

 Note All boot parameters are read from the Y memory space even when X memory boot is specified. At this
time, seven wait cycles are set as the data memory wait cycles. The parameter addresses are as
follows:

• 0x4000: Y-0x4004: Y (in word boot mode)

• 0x4000: Y-0x4009: Y (in byte boot mode)

Caution The registers DWTR, IWTR, R7, DP3 and DP7 are changed
by the boot routine.

(a) Parameters for word boot

Table 4-3 shows the memory map of the parameters for word boot.

Table 4-3. Memory Map of Parameters for Word Boot

Address Memory value

0x4000: Y 16/8 bits, X/Y

0x4001: Y Value set to DWTR

0x4002: Y Value set to IWTR

0x4003: Y Starting address of data memory that stores program to be read

0x4004: Y Number of steps of programNote

Note This value is calculated with 32 bits = 1 word, and does not indicate the number of words when the program
is located in the external data memory.

Chapter 4 Boot Function 4.3 Boot at Reset

µPD7701x Family User's Manual 207

(b) Parameters for byte boot

Table 4-4 shows the memory map of the parameters for byte boot.

Table 4-4. Memory Map of Parameters for Byte Boot

Address Memory value

0x4000: Y 16/8 bits, X/Y

0x4001: Y —

0x4002: Y Value set to DWTR (lower byte)

0x4003: Y Value set to DWTR (higher byte)

0x4004: Y Value set to IWTR (lower byte)

0x4005: Y Value set to IWTR (reserved)

0x4006: Y Starting address of data memory storing program to be read (lower byte)

0x4007: Y Starting address of data memory storing program to be read (higher byte)

0x4008: Y Number of steps of programNote (lower byte)

0x4009: Y Number of steps of programNote (higher byte)

Note This value is calculated with 32 bits = 1 word, and does not indicate the number of words when the program
is located in the external data memory.

(2) Parameters for self-boot of µPD77019-013

With the µPD77019-013, the following information is defined in advance as boot parameters.

0x4000: Y 0 (Y memory boot/word boot)

0x4001: Y 0xC0C0 (set value of DWTR: 7 wait)

0x4002: Y 0 (set value of IWTR: 0 wait)

0x4003: Y 0xC000 (first address of boot code storage destination)

0x4004: Y 0x1000 (number of steps of program: 4K words)

To execute self-boot, connect 8K words or more of 16-bit PROM (that can be accessed with

7 wait cycles) from address 0xC000 of the external Y data area, and store the codes for boot

in that PROM.

Chapter 4 Boot Function 4.3 Boot at Reset

µPD7701x Family User's Manual208

4.3.2 Host boot operation

When the host boot mode is executed, boot parameters and op codes are obtained through

the host interface. Figure 4-5 shows a conceptual drawing of the host boot procedure.

Figure 4-5. Host Boot Procedure

(1) Setting of host interface

Prior to host boot operations, initial settings for the host interface are performed as follows.

However, these settings, except the settings of HAWE bit and transfer size, are overwritten

by the HST setting parameters to be sent later.

HST=0x0401

• HAWE = 1 : Uses wait function.

• HREM = 0 : Does not mask HRE.

• HWEM = 0 : Does not mask HWE.

• Transfer size = 16-bit mode : Host writes the specified parameters to HDT

starting with the lower 8 bits and then the

higher 8 bits (this is not the set value of HST

but a host boot rule).

Caution The value of the HST register is changed when the HST
setting parameters are set in the boot process.

Chapter 4 Boot Function 4.3 Boot at Reset

Executes boot.

Host CPU

[Polling]
Value to be set to IWTR is output.

(lower byte, higher byte)

[Polling]
Number of booted instructions is output.

(lower byte, higher byte)

[Polling]
Specifies handshaking between

host CPU and host interface.

[Polling]
Outputs op code

(little endian)

Wait function is used for handshaking
between host interface and µPD7701x.

Reads and sets value to IWTR.

Reads number of program steps.

Sets handshake mode to HST.

µPD7701x

µPD7701x Family User's Manual 209

(2) Parameters for host boot

If reset boot is executed, the following parameters are used for host boot:

• IWTR set value : Determines the number of wait cycles of the instruction

memory. For the meaning of the set value, refer to the
paragraph (f) “Wait function of external instruction memory”

in section 3.4.2 (1).

• Number of booted instructions : Indicates the number of instruction steps of the program

to be booted (number of instructions to be booted). The

number of data actually transferred is two times the
number of instruction steps.

• HST setting value : Data to be set to HST. All the bits of HST, except HAWE

(bit 10), are set. HAWE is set to “1”, regardless of the

value set to HST.

• Instruction code : The lower 16 bits (bits 15-0) and the higher 16 bits (bits

31-16) of a 32-bit op code are transferred in this order. If

the host interface is set to 8-bit width, therefore, bits 7-0,

15-8, 23-16, and 31-24 are transferred in that order.

Caution When the µPD77015, 77017, 77018, 77018A, or 77019 is
used, dummy data for IWTR set values must be transferred
though IWTR set values are not specified.

The above parameters are transferred from the host in the following sequence:

1st transfer : Lower 8 bits of IWTR set valueNote 1

2nd transfer : Higher 8 bits of IWTR set valueNote 1

polling : Wait for µPD7701x loaded data from HDT (in)

3rd transfer : Lower 8 bits of number of booted instructions

4th transfer : Higher 8 bits of number of booted instructions

polling : Wait for µPD7701x loaded data from HDT (in)

5th transfer : Lower 8 bits of HST set value

6th transfer : Higher 8 bits of HST set value

polling : Wait for µPD7701x loaded data from HDT (in)

7th transfer : 1st op code (bits 7-0)

8th transfer : 1st op code (bits 15-8)

polling : Wait for µPD7701x loaded data from HDT (in)

9th transfer : 1st op code (bits 23-16)

10th transfer : 1st op code (bits 31-24)

polling : Wait for µPD7701x loaded data from HDT (in)

11th transfer : 2nd op code (bits 7-0)
• •
• •

 (4n+6)th transfer : nth op code (bits 31-24)Note 2

polling : Wait for µPD7701x loaded data from HDT (in)

Notes 1. Dummy data are transferred when the µPD77015, 77017, 77018, 77018A, or 77019 is used.

2. The total number of transferred bytes is 4n + 6, where the number of transferred op codes is n.

Chapter 4 Boot Function 4.3 Boot at Reset

µPD7701x Family User's Manual210

4.4 Boot Subroutine (reboot)
Booting by using the boot subroutine to rewrite program data in the instruction memory is

called reboot. Usually, the instruction memory cannot be rewritten from an application program.

However, by using the reboot function (or by calling a boot subroutine), new instructions can

be written to the instruction memory. Some boot subroutines are provided in the boot ROM

and their entry points are made public to users as shown in Table 4-5. To execute reboot,

set specified parameters to registers, then execute the CALL instruction jumping to a reboot

entry address.

The registers and pins not related to reboot retain the status when the boot subroutine is

called during and after reboot, and are not initialized by reboot.

Table 4-5. Boot Subroutine Entry Points

Reboot mode Entry point address

Self-boot X memory Word reboot 0x2

Byte reboot 0x4

Y memory Word reboot 0x1

Byte reboot 0x3

Host boot Host reboot 0x5

Cautions 1. Bear in mind the following points when executing reboot:

• The register values are not preserved.

• One level of the program stack is used (at entry).

• One level of the loop stack is used.

• Disable all interrupts throughout the reboot period. (If an interrupt
is acknowledged during reboot, normal operation cannot be
guaranteed).

• After reboot completion, execution returns to the instruction next to
the CALL instruction which called the reboot subroutine.

2. The registers DWTR, IWTR, R7, DP3, DP7, HST and HDT
are changed by the boot routine.

4.4.1 Parameters of X memory word or byte reboot

The reboot type that locates op codes in the X memory is called X reboot. X reboot can be

classified into two modes:

X memory word reboot that locates a 16-bit word per one data memory address, and

X memory byte reboot that locates an 8-bit byte per one data memory address.

In both modes, the following parameters are set to specified registers, and the entry points

shown in Table 4-5 are called.

Chapter 4 Boot Function 4.4 Boot Subroutine (reboot)

µPD7701x Family User's Manual 211

• R7L : Number of instruction steps to be rebooted

• DP3: Starting address of X memory storing op code

• DP7: Starting address of instruction memory to be loaded

Cautions 1. The values in the parameter registers are not preserved.
2. Set IWTR and DWTR as necessary.

4.4.2 Parameters of Y memory word or byte reboot

The reboot type that locates op codes in the Y memory is called Y reboot. Y reboot can be

classified into two modes:

Y memory word reboot that locates a 16-bit word per one data memory address, and

Y memory byte reboot that locates an 8-bit byte per one data memory address.

In both modes, the following parameters are set to specified registers, and the entry points

shown in Table 4-5 are called.

• R7L : Number of instruction steps to be rebooted

• DP3: Starting address of instruction memory to be loaded

• DP7: Starting address of Y memory storing op code

Cautions 1. The values in the parameter registers are not preserved.
2. Set IWTR and DWTR as necessary.

4.4.3 Parameters for host reboot

To reboot from the host interface, the following parameters are set to specified registers,

and the entry points shown in Table 4-5 are called.

• R7L : Number of instruction steps to be rebooted

• DP3: Starting address of instruction memory to be loaded

Cautions 1. The values in the parameter registers are not preserved.
2. Set HST and IWTR as necessary. However, be sure to set

HAWE of HST to “1” (to use wait) before reading the reboot
routine.

3. HDT must be empty (no data should remain before read)
when reboot is started.

Chapter 4 Boot Function 4.4 Boot Subroutine (reboot)

µPD7701x Family User's Manual212

4.5 Boot Time
Table 4-6 shows the time required for booting.

Table 4-6. Boot Time

Boot mode Boot time (unit : number of cycles)

Boot Self-boot & Word boot Min. 49 + 3D + (4 + 2D + I) × W
Max. 51 + 3D + (4 + 2D + I) × W

Self-boot & Byte boot Min. 70 + 6D + (10 + 4D + I) × W
Max. 72 + 6D + (10 + 4D + I) × W

Host boot 29 + 4D + (4 + I) × W or longer
(depending on access speed of host CPU)

Reboot Self-reboot & Word boot 6 + (4 + 2D + I) × W

Self-reboot & Byte boot 6 + (10 + 4D + I) × W

Reboot 6 + (4 + I) × W or longer
(depending on access speed of host CPU)

Remarks W : number of instruction words booted

D : data memory wait cycles

I : instruction memory wait cycles

Chapter 4 Boot Function 4.5 Boot Time

µPD7701x Family User's Manual 213

 1

 2

 3

 4

 5

 6

 A

 B

 C

Chapter 5

Development Tools

This chapter introduces the development tools for the µPD7701x family.

Caution This chapter only introduces currently available
development tools. For details, refer to the manual of each
tool.

5.1 Software Tools
The following type of software tool is available:

• WindowsTM-based development environments

µPD7701x Family User's Manual214

5.1.1 Integrated development environment work bench (WB77016)

WB77016 is a development environment that unifies Relocatable Assembler, Linker, Editor,

and Make Utility. It allows an efficient flow of operations, from program editing to the creation

of object programs and software simulation startup.

5.1.2 Software simulator (SM77016, SM77016-H)

SM77016 and SM77016-H simulate the operation of the µPD7701x Family. The focus of

the simulation are the program control unit, external memory, instruction memory, host

interface, serial interface, and the I/O ports.

The SM77016-H can execute simulation at high speeds by coding the program as a 32 bit

Windows95 compatible program.

5.1.3 C compiler (InterTools TM 77016)

This product was developed by TASKING, Inc., a US company. µPD7701x Family software

applications can be created through a high-performance C cross-compiler that compiles

with the ANSI standards. When debugging, use the software simulator.

5.1.4 System software for in-circuit emulator (ID77016)

The objective of this software package is the control of the IE-77016-PC. The IE-77016 can

be manipulated through a user interface that is the same as the software simulator interface.

Chapter 5 Development Tools 5.1 Software Tools

µPD7701x Family User's Manual 215

5.2 Hardware Tools

5.2.1 In-circuit emulator

(1) In-circuit emulator : IE-77016-PC

Host machine Code

IBM PC/ATTM IE-77016-PC

Remark When using the IE-77016-PC, system software is necessary in addition to the above basic system.
Refer to 5.1.4 “system software for in-circuit emulator (ID77016)”.

5.2.2 Options for in-circuit emulators

The following options are available for the IE-77016-PC. Use them as necessary.

Code Corresponding host machine

Emulation board for in-circuit emulator IE-77016-CM-EM6 IBM PC/AT

µPD77017 evaluation board EB-77017

Adapter for EB-77017 board TGC-100SDW
(Tokyo Eletech Corp.)Note

Note Consult NEC when you purchase this product.

(1) Emulation board for in-circuit emulator

This emulation board which is mounted in the IE-77016-PC, emulates µPD7701x operations.

This board is provided with external instruction memory (32K words × 32 bits) and external X

and Y data memories (16K words × 16 bits each) in addition to one µPD77016.

Chapter 5 Development Tools 5.2 Hardware Tools

µPD7701x Family User's Manual216

(2) µPD77017 evaluation board

This evaluation board is used to emulate the µPD77015/77017 by using the µPD77016.

One side of this board is connected to the IE-77016-PC interface cable, and the other side is

equipped with the adapter to be connected to the target system board (EB-77017).

This board also serves as a level converter between the IE-77016-PC interface cable (5-V

interface) and the µPD77015/77017 debugging pins (3-V interface) on the target system

where the µPD77015/77017 has been mounted.

This board is provided with an external instruction memory (32K words x 32 bits), external X

and Y data memories (32K words × 16 bits each), and a level conversion circuit (from 5 V to

3 V), in addition to one µPD77016.

To emulate the µPD77018, 77018A, and 77019, consult NEC.

(3) Adapter for EB-77017 board

This adapter is mounted on the EB-77017 of the evaluation board to connect the target

system of the µPD77015/77017.

It is provided with 0.5-mm pitch, 100-pin TQFP package pins equivalent to the µPD77015/

77017 pins (for target system connection) and a connector (for EB-77017 connection).

Chapter 5 Development Tools 5.2 Hardware Tools

µPD7701x Family User's Manual 217

 1

 2

 3

 4

 5

 6

 A

 B

 C

Appendix A

Device Summary

This appendix summarizes the functions of the µPD7701x family described in this manual.

Use this appendix when developing your system after having gained a general understanding

of the features of this device.

A.1 Register List

A.1.1 CPU registers

(1) Stack (STK)

Refer to section 3.4.2 “Program execution control block”.

(2) Stack pointer (SP)

Refer to section 3.4.2 “Program execution control block”.

(3) Status register (SR)

interrupt enable flag = 1: interrupt disabled

interrupt enable flag = 0: interrupt enabled

Refer to section 3.4.4 “Interrupt”.

Bit 15

Program counter push/pop

Bit 0

× 15 levels

Bit 15

Stack address

Bit 0

0 0 0 0 0 0 0 0 0 0 0 0

Interrupt enable flag Reserved

EI EP EB LF

Interrupt enable flag for each cause

On-chip I/O device External interrupt master

int4 int3 int2 int1si1so1si2so2hiho

15 14 13 12 11 10 8 79 6 5 4 3 2 1 0

µPD7701x Family User's Manual218

(4) Interrupt enable flag stack register (EIR)

Refer to section 3.4.4 “Interrupt”.

(5) Loop start address register (LSA)

Refer to section 3.4.3 “Flow control block”.

(6) Loop end address register (LEA)

Refer to section 3.4.3 “Flow control block”.

(7) Loop counter (LC)

LF=0: loop in progress

LF=1: end of loop (not in progress)

Refer to section 3.4.3 “Flow control block”.

Appendix A Device Summary A.1 Register List

Bit 15 Bit 0

EI EP EB E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15

Bit 15

Loop start address

Bit 0

Bit 15 Bit 0

Loop end address

Bit 15 Bit 0

Count value setting field (setting range: 1 to 0 × 7FFF)

LF

µPD7701x Family User's Manual 219

(8) Loop stack (LSTK)

Refer to section 3.4.3 “Flow control block”.

(9) Loop stack pointer (LSP)

Refer to section 3.4.3 “Flow control block”.

(10) Repeat counter (RC)

RF=0: Repeat in progress

RF=1: End of repeat (not in progress)

Refer to section 3.4.3 “Flow control block”.

(11) General-purpose registers (R0 to R7)

Refer to section 3.6 “Operation Unit” .

Appendix A Device Summary A.1 Register List

Bit 15

Loop start address push/pop

Bit 0

LSR1

Bit 15

Loop end address push/pop

Bit 0

LSR2

Bit 15

Loop counter push/pop

Bit 0

LSR3 LF

× 4 levels

Bit 15

Loop STK address

Bit 0

0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 Bit 0

RF

Count value setting field (setting range: 1 to 0 × 7FFF)

Bit 39 Bit 032 31 16 15

R0E-R7E R0H-R7H

R0EH-R7EH

R0L-R7L

R0-R7

µPD7701x Family User's Manual220

(12) Data pointers (DP0-DP7)

DP0-DP3: Address of X-memory space

DP4-DP7: Address of Y-memory space

Refer to section 3.6 “Operation Unit”.

(13) Index registers (DN0-DN7)

DN0-DN7: Modify DP0-DP7

Refer to section 3.5 “Data Addressing Unit”.

(14) Modulo registers (DMX, DMY)

DMX: The ring count range for DP0-DP3 is specified

DMY: The ring count range for DP4-DP7 is specified

Refer to section 3.5 “Data Addressing Unit”.

(15) Error status register (ESR)

ovf: Overflow error flag

ste: Stack error flag

lse: Loop stack error flag

bac: Bus access error flag

0: No error

1: Error

Refer to section 3.4.5 “Error status register”.

Appendix A Device Summary A.1 Register List

Bit 15 Bit 0

DP0-DP7

Bit 15

DN0-DN7

Bit 0

Bit 15

DMX, DMY

Bit 0

Bit 15 Bit 0

- - - - - - - - - - - - ovf ste lse bac

µPD7701x Family User's Manual 221

A.1.2 Peripheral registers

(1) Peripheral register map

X/Y memory Register Function Peripheral Load/Store

address name name (L/S)

0x3800 SDT1 Serial data register 1 Serial IO L/S

0x3801 SST1 Serial status register 1 Serial IO L/S

0x3802 SDT2 Serial data register 2 Serial IO L/S

0x3803 SST2 Serial status register 2 Serial IO L/S

0x3804 PDT Port data register IO Port L/S

0x3805 PCD Port command register IO Port L/S

0x3806 HDT Host data register Host IO L/S

0x3807 HST Host status register Host IO L/S

0x3808 DWTR Data memory wait cycle register Wait Reg L/S

0x3809 IWTR Instruction memory wait cycle register Wait Reg L/S

0x380A-0x383F Reserved Do not access this area . — —

(2) Serial data registers (SDT1: 0x3800:X/:Y, SDT2: 0x3802:X/:Y)

Refer to section 3.7.3 “Serial interface”.

(3) Serial status registers (SST1: 0x3801:X/:Y, SST2: 0x3803:X/:Y)

Appendix A Device Summary A.1 Register List

Bit 15

16-bit I/O

Bit 08 7

LSB

8-bit I/O

MSB

Bit 15 014 13 12 11 10 9 8 7 6 5 4 3 2 1

SO
TF

SI
TF

SO
BL

SI
BL

SS
WE

SL
WE

SI
CM

SI
EF Reserved SS

ER
SL
ER

SS
EF

SL
EF

µPD7701x Family User's Manual222

Bit Name Load/store Bit function

L/S

15 SOTF L/S Serial output transfer format setting bit
• 0: Serial output with MSB first
• 1: Serial output with LSB first

14 SITF L/S Serial input transfer format setting bit
• 0: Serial input with MSB first
• 1: Serial input with LSB first

13 SOBL L/S Serial output word length setting bit
• 0: 16-bit serial output
• 1: 8-bit serial output

12 SIBL L/S Serial input word length setting bit
• 0: 16-bit serial input
• 1: 8-bit serial input

11 SSWE L/S SDT store wait enable bit
• 0: Does not use store wait function.
• 1: Uses store wait function.
 Inserts wait cycles when µPD7701x stores to SDT (out) with SSEF=0.

10 SLWE L/S SDT load wait enable bit
• 0: Does not use load wait function.
• 1: Uses load wait function.
 Inserts wait cycles when µPD7701x loads from SDT(in) with SLEF=0.

9 SICMNote L/S Serial input continuous mode setting flag
• 0: Enters single serial input mode after completion of current serial input.
• 1: Enters continuous serial input mode to start serial input.

8 SIEFNote L/S Single serial input enable flag
• 1: Starts serial input processing in single serial input mode (only once).
The SIEF flag that is set to 1 is automatically reset in the next instruction cycle.

7-4 Reserved — Reserved bits
• Value cannot be set to these bits.
• Undefined when read.

3 SSER L/S SDT store error flag
• 0: No error
• 1: Error (Set to 1 when µPD7701x stores data to SDT(out) with SSEF=0.)
• Once set, this flag does not change its status until 0 is written by µPD7701x.

2 SLER L/S SDT load error flag
• 0: No error
• 1: Error (Set to 1 when µPD7701x loads data from SDT(in) with SLEF=0.)
• Once set, this flag does not change its status until 0 is written by µPD7701x.

1 SSEF L SDT store enable flag
• Set to 1 when contents of SDT(out) is transferred to serial output shift register.
• Cleared to 0 when µPD7701x stores data to SDT(out).

0 SLEF L SDT load enable flag
• Set to 1 when contents the shift register for serial input is transferred to STD (in).
• Cleared to 0 when µPD7701x loads data from SDT(in).

Note Following table shows an example of combination of SICM and SIEF.
When continuous data such as speech data is input, use status 2 (SICM=1, SIEF=0).

Appendix A Device Summary A.1 Register List

µPD7701x Family User's Manual 223

Remarks 1. Combination of SICM and SIEF Bits

Example of Bit 9 Bit 8 Function

combination SICM SIEF

1 0 0 • Status transition mode.

2 1 0 • Continuous serial input mode.

3 0 1 • Single serial input mode.

4 1 1 • The setting of this combination is prohibited.

2. Setting of SST after hardware reset: 0x0002.

Refer to section 3.7.3 “Serial interface”.

(4) Host data register (HDT: 0x3806:X/:Y)

Refer to section 3.7.4 “Host interface”.

(5) Host status register (HST: 0x3807:X/:Y)

Appendix A Device Summary A.1 Register List

Bit 15

16-bit I/O

Bit 08 7

LSB

8-bit I/O

MSB

Bit 15 014 13 12 11 10 9 8 7 6 5 4 3 2 1

HA
WEReserved HR

EM
HW
EM UF1 UF0 HW

ER
HR
ER

HL
ER

HS
ER

HR
EF

HW
EF

µPD7701x Family User's Manual224

Bit Name R/W Load/store (L/S) Bit function

from host from µPD7701x

15-11 Reserved — — Reserved bits
• No value can be set to these bits.
• These bits are undefined when read.

10 HAWE R L/S HDT access wait enable bit
• 0: Wait is not used
• 1: Wait is used
Wait cycles are inserted if the µPD7701x attempts to store data to
HDT(out) while HREF=1, or to load data from HDT(in) while
HWEF=1.

9 HREM R L/S HRE mask bit
• 0: Does not mask.
HRE changes according to the HREF status (refer to below).
• 1: Masks.
HRE becomes inactive (high level).

8 HWEM R L/S HWE mask bit
• 0: Does not mask.
HWE changes according to the HWEF status (refer to below).
• 1: Masks
HWE becomes inactive (high level).

7 UF1 R L/S User’s flag

6 UF0 R L/S User’s flag

5 HRER R L/S Host read error flag
• 0: No error
• 1: Error
Set to 1 when host CPU reads HDT when HREF is 0.
• Once set to 1, it does not change until 0 is written by program.

4 HWER R L/S Host write error flag
• 0: No error
• 1: Error
Set to 1 when host CPU writes HDT when HWEF is 0.
• Once set to 1, it does not change until 0 is written by program.

3 HSER R L/S HDT store error flag
• 0: No error
• 1: Error
Set to 1 when µPD7701x stores to HDT when HREF is 1.
• Once set to 1, it does not change until 0 is written by program.

2 HLER R L/S HDT load error flag
• 0: No error
• 1: Error
Set to 1 when µPD7701x loads from HDT when HWEF is 1.
• Once set to 1, it does not change until 0 is written by program.

1 HREF R L Host read enable flag
• 0: Read disabled
• 1: Read enabled
Set to 1 when the µPD7701x stores data to HDT. Cleared to 0
when host CPU reads higher byte of HDT.
• Ignored when written.

0 HWEF R L Host write enable flag
• 0: Write disabled
• 1: Write enabled
Set to 1 when the µPD7701x loads data from HDT. Cleared to 0
when host CPU writes higher byte of HDT.
• Ignored when written.

Remark The HST setting after hardware reset: 0x0301
• No wait function
• HRE/HWE mask: masked
• Host write enabled
• Host read disabled

Appendix A Device Summary A.1 Register List

µPD7701x Family User's Manual 225

Host I/O error flag setting condition

Error flag name Cause Releasing condition

HRER Host read when HREF = 0 Reset by hardware reset or program

HWER Host write when HWEF = 0

HSER Store to HDT when HREF = 1

HLER Load from HDT when HWEF = 1

(6) Port data register (PDT: 0x3804:X/:Y)

0: Low level

1: High level

Refer to section 3.7.5 “General-purpose input/output port”.

Appendix A Device Summary A.1 Register List

Bit 15 Bit 0

- - - - - - - - - - - - P3 P2 P1 P0

µPD7701x Family User's Manual226

(7) Port command register (PCD:0x3805:X/:Y)

Bit Name Category Load/store Bit function

(L/S)

15 BE Bit manipulation S Bit manipulation enable bit
• 0: Does not manipulate bit.
• 1: Manipulates bit
Manipulation method is specified by B1, B0, and
PSR.
• Undefined when read.

14 PSR Bit manipulation S Port set/reset specification bit
• 0: Reset (low level)
• 1: Set (high level)
• Manipulation port is specified by B1 and B0.
• Valid when BE = 1.
• Undefined when read.

13 ME Mode setting S Mode setting enable bit
• 0: Does not set mode.
• 1: Sets mode.
Contents to be set are specified by IO and M3-M0.
• Undefined when read.

12 IO Mode setting S Input/output specification bit
• 0: Specifies input mode.
• 1: Specifies output mode.
• Port to be set is specified by M3-M0.
• Valid when ME = 1.
• Undefined when read.

11, 10 Reserved — — Reserved bits
• No value can be set to these bits.
• Undefined when read.

9, 8 B1, B0 Bit manipulation S Bit manipulation port specification bits
• B1, B0 = 00: P0

01: P1
10: P2
11: P3

• Set/reset is specified by PSR.
• Valid when BE = 1.
• Undefined when read.

7-4 Reserved — — Reserved bits
• No value can be set to these bits.
• Undefined when read.

3-0 M3-M0 Mode setting S Mode setting port specification bits
M3 = 0: P3 unselected, 1: P3 selected
M2 = 0: P2 unselected, 1: P2 selected
M1 = 0: P1 unselected, 1: P1 selected
M0 = 0: P0 unselected, 1: P0 selected
• Selection can be specified independently.

Mode status L Input/output mode status bits
M3 = 0: P3 input mode, 1: P3 output mode
M2 = 0: P2 input mode, 1: P2 output mode
M1 = 0: P1 input mode, 1: P1 output mode
M0 = 0: P0 input mode, 1: P0 output mode

Appendix A Device Summary A.1 Register List

µPD7701x Family User's Manual 227

(8) Data Wait Cycle Register (DWTR)

(a) µPD77016

(b) µPD77015, 77017, 77018, 77018A, 77019

Caution • With the µPD77016, writing data to bits 9, 8, 1, and 0 is
ignored. These bits are undefined when read.

• With the µPD77015, 77017, 77018, 77018A, and 77019
writing data to bits 13-8 and 5-0 is ignored. These bits
are undefined when read.

Appendix A Device Summary A.1 Register List

X data memory

D field
16K words

C field
16K words

B field
16K words

0xFFFF

0xC000
0xBFFF

0x8000
0x7FFF

0x4000
0x3FFF

0x0000

DWTR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Y data memory

H field
16K words

G field
16K words

F field
16K words

0xFFFF

0xC000
0xBFFF

0x8000
0x7FFF

0x4000
0x3FFF

0x0000

D field C field B fieldH field G field F field

X data memory

D field
16K words

0xFFFF

0xC000
0xBFFF

0x8000
0x7FFF

0x4000
0x3FFF

0x0000

DWTR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Y data memory

H field
16K words

0xFFFF

0xC000
0xBFFF

0x8000
0x7FFF

0x4000
0x3FFF

0x0000

D fieldH field

µPD7701x Family User's Manual228

(c) Set Value of Field (Number of Wait Cycles)

Bit Wait cycles Remark

0 0 0 1-cycle access:

SRAM etc. with an access time of about 8 ns is connected (at 33 MHz).

0 1 1 2-cycle access:

SRAM etc. with an access time of about 35 ns is connected (at 33 MHz).

1 0 3 4-cycle access:

SRAM etc. with an access time of about 85 ns is connected (at 33 MHz).

1 1 7 8-cycle access:

Mask ROM etc. with an access time of about 150 ns is connected
(at 33 MHz)

Caution When DWTR is set, the specified number of wait cycles
becomes valid when an instruction immediately after the
instruction that has set the data to DWTR.

Refer to section 3.5.2 “Data memory space”.

Appendix A Device Summary A.1 Register List

µPD7701x Family User's Manual 229

(9) Instruction Wait Cycle Register (IWTR)

 Bits No. of wait cycles Remarks

0 0 0 1 cycle access:
Connects SRAM with access time of 8 ns (at 33 MHz)

0 1 1 2 cycle access:

Connects SRAM with access time of 35 ns (at 33 MHz)

1 0 3 4 cycle access:

Connects SRAM with access time of 85 ns (at 33 MHz)

1 1 7 8 cycle access:

Connects mask ROM with access time of 150 ns (at 33 MHz)

Cautions 1. Data written to bits 15 through 8, 1, and 0 are ignored. The
contents of bits 15 through 8, 1, and 0 are undefined when
they are read.

2. With the µPD77015, 77017, 77018, 77018A, and 77019, data
written to IWTR is ignored, and undefined data is read from
IWTR.

Refer to section 3.4.2 “Program execution control block”.

Instruction memory

ID field
16K words

IC field
16K words

IB field
16K words

Internal instruction
memory area

16K words

0xFFFF

0xC000
0xBFFF

0x8000
0x7FFF

0x4000
0x3FFF

0x0000

ID field IC field IB field ——IWTR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Appendix A Device Summary A.1 Register List

µPD7701x Family User's Manual230

A.2 Interrupt Vector Table

Vector Internal/external Interrupt cause

0x200 Internal Reset

0x204 — Reserved

0x208 — Reserved

0x20C — Reserved

0x210 External INT1

0x214 External INT2

0x218 External INT3

0x21C External INT4

0x220 Internal SI1 input

0x224 Internal SO1 output

0x228 Internal SI2 input

0x22C internal SO2 output

0x230 Internal HI input

0x234 Internal HO output

0x238 — Reserved

0x23C — Reserved

A.3 CPU Registers to Be Initialized and Initial Values

Register name Initial value Remark

SR 0xF000 All the interrupts of the respective causes are enabled, and the
interrupts are disabled at both the current and past levels. Also
indicates that a loop instruction is not under execution.

PC 0 Address 0 is a boot area and execution branches to address
0x200 after boot processing. Therefore, the reset entry as the
user area is at address 0x200.

SP 0 –

LC 0b1xxx xxxx Indicates that a loop instruction is not under execution. The
xxxx xxxx count value itself is undefined.

LSP 0 –

RC 0b1xxx xxxx Indicates that a repeat instruction is not under execution. The count
xxxx xxxx value itself is undefined.

EIR 0xFFFF Indicates the interrupts are disabled at both the current and past
levels.

ESR 0 –

Appendix A Device Summary A.2 Interrupt Vector Table

µPD7701x Family User's Manual 231

A . 4 Memory-Mapped Registers to Be Initialized and
Initial Values

Register name Initial value Remark

SST1, SST2 0x0002 Serial interface is initialized as follows:
• MSB first for both input and output
• 16 bits long for both input and output
• Does not use wait function for loading/storing SDT
• Status transition mode
• Clears error flag of SDT loading/storing
• Enables data storing to SDT
• No data is loaded from SDT

PCD 0x0000 I/O port is initialized as follows:
• Bits are not manipulated
• Mode is not set

HST 0x0301 Host interface is initialized as follows:
• Does not use wait function for HDT access
• Disables both HRE and HWE functions
• Clears both UF0 and UF1 to zero
• Clears error flag for host read/write
• Clears error flag for HDT load/store
• Disables reading from host
• Enables writing from host

A.5 Pins to Be Initialized and Initial Status

Pin name Initial value

X/Y High-level outputNote 1

DA0-DA15 Low-level outputNote 1

D0-D15 High impedance

IA0-IA15Note 2 Low-level output (high impedance during reset)

ID0-ID31Note 2 High impedance

PWRNote 2 High-level output (high impedance during reset)

MRD, MWR, BSTB High-level outputNote 1

SORQ1, SORQ2, SIAK1, SIAK2 Low-level output

SO1, SO2 High impedance

HRE, HWE High-level output

P0-P3 Input status

TICE Low-level output

Notes 1. These pins go into a high-impedance state when the bus is released (HOLDAK = 0). The bus is
released even during reset by clearing HOLDRQ to 0.

2. µPD77016 only

Appendix A Device Summary A.4 Memory-Mapped Registers to Be Initialized and Initial Values

µPD7701x Family User's Manual232

A.6 Status of Output Pins during Reset to Release
STOP Mode

Pin name Initialized status Status during reset to release STOP mode

CLKOUT System clock Note UndefinedNote

X/Y Low level Undefined

DA0-DA13 0x0000

D0-D15 High impedance

MRD High level

MWR

BSTB

HOLDAK

HD0-HD7 High impedance

HRE High level

HWE

SO1, SO2 High impedance

SIAK1 Low level

SORQ1

P0-P3 Input status

Note If CLKOUT is fixed to low level by mask option, CLKOUT is low in the initialized status and the status
during reset to release the STOP mode.

Appendix A Device Summary A.6 Status of Output Pins during Reset to Release STOP Mode

µPD7701x Family User's Manual 233

A.7 Memory Map

A.7.1 Instruction memory map

A.7.2 Data memory map (X/Y)

Appendix A Device Summary A.7 Memory Map

µPD77016

0xFFFF

0x4000
0x3FFF

0x0800
0x07FF

0x0240
0x023F
0x0200
0x01FF
0x0100
0x00FF
0x0000

External instruction
memory

(48K words)

System (14K words)

Internal instruction
RAM (1.5K words)

Vector area (64 words)

System (256 words)

Boot-up ROM (256 words)

System
(44K words)

System
(15.25K words)

Vector area (64 words)

System (256 words)

Boot-up ROM (256 words)

Internal instruction
ROM (4K words)

Internal instruction
RAM (256 words)

Internal instruction
RAM (256 words)

Internal instruction
RAM (256 words)

System
(36K words)

System
(15.25K words)

Vector area (64 words)

System (256 words)

Boot-up ROM (256 words)

Internal instruction
ROM (12K words)

System
(24K words)

System
(15.25K words)

Vector area (64 words)

System (256 words)

Boot-up ROM (256 words)

Internal instruction
ROM (24K words)

0xA000
0x9FFF

System
(24K words)

Internal instruction
RAM (4K words)

Vector area (64 words)

System (256 words)

System (11.5K words)

Boot-up ROM (256 words)

Internal instruction
ROM (24K words)

0x1200
0x11FF

No program or data must be stored to the addresses reserved for the system, nor must these
addresses be accessed. If any of these addresses is accessed, normal operation of the PD7701x
family is not guaranteed.

µ
Caution

0x5000
0x4FFF

0x0300
0x02FF

0x7000
0x6FFF

µPD77015 µPD77017 µPD77018, 77018A µPD77019Note

Note The PD77019-013 does not have the internal ROM of the PD77019. µµ

0xFFFF

0x4000
0x3FFF

µ µ µPD77016

0x3840
0x383F
0x3800
0x37FF

0x0800
0x07FF

0x0000

External data
memory

(48K words)

System (1984 words)

Peripheral (64 words)

System
(12K words)

PD77015

0x0400
0x03FF

External data
memory

(16K words)

System (1984 words)

Peripheral (64 words)

System
(13K words)

Data RAM (1K words)

0xC000
0xBFFF

0x4800
0x47FF

System
(30K words)

Data ROM
(2K words)

PD77017

0x0800
0x07FF

External data
memory

(16K words)

System (1984 words)

Peripheral (64 words)

System
(12K words)

0x5000
0x4FFF

System
(28K words)

Data ROM
(4K words)

µ PD77018, 77018A,
77019Note

0x0C00
0x0BFF

External data
memory

(16K words)

System (1984 words)

Peripheral (64 words)

System
(11K words)

0x7000
0x6FFF

System
(20K words)

Data ROM
(12K words)

Caution

µ µ

Data RAM
(2K words)

Data RAM
(2K words)

Data RAM
(3K words)

Note The PD77019-013 does not have the internal ROM of the PD77019.

No program or data must be stored to the addresses reserved for the system, nor must these
addresses be accessed. If any of these addresses is accessed, normal operation of the
 PD7701x family is not guaranteed.µ

µPD7701x Family User's Manual234

[MEMO]

Appendix A Device Summary A.7 Memory Map

µPD7701x Family User's Manual 235

 1

 2

 3

 4

 5

 6

 A

 B

 C

Appendix B

Ordering Information

B.1 Ordering Information

Part Number Package

µPD77016GM-KMD 160-pin plastic QFP (fine pitch) (24 × 24 mm)

µPD77015GC-xxx-9EU 100-pin plastic QFP (fine pitch) (14 × 14 mm)

µPD77017GC-xxx-9EU 100-pin plastic QFP (fine pitch) (14 × 14 mm)

µPD77018GC-xxx-9EU 100-pin plastic QFP (fine pitch) (14 × 14 mm)

µPD77018AGC-xxx-9EU 100-pin plastic QFP (fine pitch) (14 × 14 mm)

µPD77018AS9-xxx-YJC 116-pin plastic BGA (fine pitch) (12 × 12 mm)

µPD77019GC-xxx-9EU 100-pin plastic QFP (fine pitch) (14 × 14 mm)

µPD77019GC-013-9EU 100-pin plastic QFP (fine pitch) (14 × 14 mm)

Remark xxx indicates code suffix.

µPD7701x Family User's Manual236

B.2 Mask Option
The µPD77015, 77017, 77018, 77018A, and 77019 are provided with a PLL and have the

following mask option functions.

B.2.1 Disabling CLKOUT output

An internal system clock is generated from an external clock input to the X1 pin to serve as

the internal basic timing of the device. This internal system clock is also output from the

CLKOUT pin, but this output can be disabled by mask option.

B.2.2 Clock multiple

The external clock is multiplied by the PLL. The multiple can be set by mask option. Available

frequency ratios of the external clock to the internal system clock are as follows. However,

the multiplication rate of the mask option of the µPD77019-013 is fixed to 4 times.

• 1 (external): 1 (internal)

• 1 (external): 2 (internal)

• 1 (external): 3 (internal) (µPD77018A and 77019 only)

• 1 (external): 4 (internal)

• 1 (external): 8 (internal)

B.3 Mask ROM Ordering Format
For how to place your order for a mask ROM, refer to “WB77016 User’s Manual”.

Appendix B Ordering Information B.2 Mask Option

µPD7701x Family User's Manual 237

Appendix C

Index

C.1 Key Words
 1

 2

 3

 4

 5

 6

 A

 B

 C

8-bit parallel port .. 171

16-bit data format ... 139

32-bit data format ... 139

40-bit data format ... 139

[A]
Address ALU .. 124

Address output pin ... 114

Addressing mode ... 124

Architecture .. 49

Arithmetic logic unit .. 136

[B]
Barrel shifter ... 149

Bit manipulation enable bit 188

Bit manipulation port specification bit 188

Bit reverse access ... 128

Bit reverse operation 128

Boot function .. 199

Boot time .. 212

Boot up ROM ... 200

Break function .. 196

Bus access error flag 110

Bus arbitration .. 122

Bus arbitration timing 122

Bus hold acknowledge output pin 115

Bus hold request input pin 115

Bus strobe output pin 115

Bus strobe signal ... 115

Byte boot .. 204

[C]
Chip select ... 174

Clock .. 57

Clock generator ... 57

Crystal .. 59

[D]
Data addressing unit 111

Data ALU ... 147

Data format .. 139

Data I/O pin .. 115

Data memory ... 112

Data memory addressing 124

Data memory map112, 233

Data memory space 112

Data memory wait cycle control 119

Data memory wait cycle register 119

µPD7701x Family User's Manual238

Data pointer ... 124

Data RAM .. 113

Data ROM .. 113

Data wait cycle register119

Debug function ... 196

Debug interface ... 195

Debug pin ... 195

Development tools ...213

Direct addressing ... 125

[E]
Error status register 110

External clock... 58

External clock input .. 58

External data memory 114

External data memory address bus 114

External data memory interface 114

External data memory read timing................. 117

External data memory space 114

External data memory write timing 118

External instruction memory 73

External instruction memory address bus 74

External instruction memory interface 73

External interface ... 151

External interrupt ... 96

External memory73, 114

External memory wait cycle register 76

[F]
Fixed-point data format139

[G]
General-purpose I/O pin 187

General-purpose I/O port185, 187

General-purpose register 136

[H]
Halt mode ... 66

Handshake ...167, 181

Hardware reset .. 61

Hardware tool ... 215

High-speed simulator 214

Hold acknowledge ... 115

Hold request ... 115

Host address .. 174

Host boot .. 203

Host chip select ... 174

Host data .. 174

Host data bus ... 171

Host data input register 172

Host data output register 172

Host data register .. 176

Host I/O .. 171

Host interface ... 171

Host interface select signal 174

Host interface status register 176

Host read enable ... 174

Host read enable flag 177

Host read error flag .. 177

Host read strobe .. 174

Host read timing ... 179

Host write enable ... 174

Host write enable flag 177

Host write error flag 177

Host write strobe .. 174

Host write timing .. 180

[I]
I/O mode status bit ... 188

I/O specification bit .. 188

In-circuit emulator .. 215

Index register ... 124

Indirect addressing .. 126

Initialize .. 61

Appendix C Index C.1 Key Words

µPD7701x Family User's Manual 239

Instruction address output pin 74

Instruction code I/O pin 74

Instruction cycle ... 63

Instruction decode ... 63

Instruction fetch ... 63

Instruction memory .. 72

Instruction memory map72, 233

Instruction memory space........................72, 233

Instruction memory wait cycle control 77

Instruction memory wait cycle register 76

Instruction memory write strobe output pin 74

Instruction RAM ... 72

Instruction ROM ... 72

Integer data format .. 140

Integrated development environment 214

Internal instruction memory area 73

Internal instruction RAM 73

Internal interrupt ... 94

Internal memory ... 113

Internal peripheral .. 151

Internal peripheral area.................................. 151

Internal system clock 57

Interrupt .. 94

Interrupt cause ... 94

Interrupt control function 95

Interrupt enable flag ... 99

Interrupt enable flag stack register 101

Interrupt request pin ... 94

Interrupt servicing .. 98

Interrupt vector ... 97

[L]
Logical operation instruction 148

Loop counter .. 86

Loop end address .. 86

Loop end address register 86

Loop stack ... 86

Loop stack error flag 110

Loop stack overflow ... 87

Loop stack pointer ... 87

Loop stack underflow 87

Loop start address ... 86

Loop start address register 86

[M]
Main bus .. 51

Memory interface79, 114

Memory mapped I/O 151

Memory mapped register 152

Memory read output pin 115

Memory select signal 114

Memory space ...72, 112

Memory write output pin 115

Mode setting enable bit 188

Mode setting port specification bit 188

Modulo operation ... 130

Modulo register ..124

Multiplexer .. 124

Multiplication function 141

Multiply accumulator 141

[N]
No-break monitor function 196

Number of data memory wait cycles 121

Number of instruction memory wait cycles 77

[O]
On-chip emulation function 196

Op code ... 63

Operation unit .. 135

Overflow error flag ... 110

Appendix C Index C.1 Key Words

µPD7701x Family User's Manual240

[P]
Package ... 235

Peripheral ... 151

Peripheral bus .. 56

Peripheral unit ..151

Pin configurations .. 26

Pin functions .. 25

Pin organizations ... 32

Pipeline .. 63

Pipeline processing .. 63

Pointer register ..124

Port command register187

Port data register ... 187

Port set/reset specification bit 188

Program control unit .. 71

Program counter .. 72

Program memory ... 72

Program memory write strobe 74

[R]
Read strobe output pin115

Reboot ...201, 210

Register list ..217

Repeat counter .. 86

Reserved bit ... 188

Ring count .. 132

[S]
Self boot ... 201

Serial clock...156

Serial data input ... 157

Serial data input register154, 158

Serial data output ... 157

Serial data output register154, 158

Serial data register ...158

Serial I/O .. 153

Serial input acknowledge154, 157

Serial input continuous mode setting flag 160

Serial input enable ... 157

Serial input shift register154, 159

Serial input timing .. 164

Serial input transfer format setting bit 160

Serial input word length setting bit 160

Serial interface ... 153

Serial output enable 157

Serial output request154, 156

Serial output shift register154, 159

Serial output timing .. 162

Serial output transfer format setting bit 160

Serial output word length setting bit 160

Serial status register 158

Shift operation instruction 149

Shift register ... 159

Single serial input enable flag 160

Single serial input mode 161

Software loop stack ... 86

Software simulator ... 214

Software tool .. 213

Stack .. 80

Stack error flag .. 110

Stack overflow.. 80

Stack pointer .. 80

Stack underflow ... 80

Standby function .. 66

Status register .. 99

Status transition mode 161

Stop mode .. 69

System clock .. 57

System control unit .. 57

System software .. 214

System software for in-circuit emulator 214

[T]
Trinomial operation .. 143

Appendix C Index C.1 Key Words

µPD7701x Family User's Manual 241

[W]
Wait controller ..119, 194

Wait cycle ...77, 121

Wait cycle control168, 182

Wait cycle register76, 120

Wait input pin ... 115

Wait signal ... 36

Word boot .. 204

Write strobe output pin 115

Appendix C Index C.1 Key Words

µPD7701x Family User's Manual242

C.2 Acronyms, etc.

[A]
ALU ..147

[B]
B0, B1 ..188

bac ...110

BE .. 188

BSFT .. 149

BSTB .. 115

[C]
C compiler .. 214

CLKIN .. 57

CLKOUT .. 57

[D]
D0 - D15 ... 115

DA0 - DA15 ..114

DMX ... 124

DMY ... 124

DN0 - DN7 ...124

DP0 - DP7 .. 124

DWTR ..119

[E]
EB .. 99

EB-77017 ... 216

EI .. 99

EIR ...101

EP .. 99

ESR ..110

[G]
GND ...35, 41

[H]
HA0 ..174

HA1 ..174

HAWE .. 177

HCS..174

HCTL .. 171

HD0 - HD7 ... 174

HDT ..176

HLER ... 177

HOLDAK .. 115

HOLDRQ .. 115

HRD ... 174

HRE..174

HREF ... 177

HREM .. 177

HRER ... 177

HSER ... 177

HST ..176

HWE ... 174

HWEF .. 177

HWEM .. 177

HWER .. 177

HWR... 174

[I]
I.C. ... 25

IA0 - IA15 ... 74

ID0 - ID31 ... 74

ID77016 ... 214

IE-77016-CM-EM6 ... 215

IE-77016-PC .. 215

INT1 - INT4 .. 96

INTC ... 71

IO ... 188

IWTR .. 76

Appendix C Index C.2 Acronyms, etc.

µPD7701x Family User's Manual 243

[L]
LC... 86

LEA .. 86

LF ... 100

LRC .. 88

LSA .. 86

lse .. 110

LSP .. 87

LSTK .. 86

[M]
M0 - M3 .. 188

MAC ... 141

MAC input shifter ... 141

ME .. 188

MRD ... 115

MSFT ... 141

MUX ... 124

MWR .. 115

[N]
NC .. 25

[O]
ovf .. 110

[P]
P0 - P3 ... 187

PC .. 72

PC stack ... 80

PCD.. 187

PDT .. 187

Power Supply ... 25

PSR .. 188

PWR ... 74

[R]
R0 - R7 ... 136

RC .. 86

RESET ... 61

[S]
SCK1, SCK2 .. 156

SCTL .. 153

SDT1, SDT2 ... 158

SI1, SI2 ..157

SIAK1, SIAK2... 157

SIBL ... 160

SICM .. 160

SIEF ... 160

SIEN1, SIEN2 .. 157

SIS1, SIS2 ... 159

SITF ... 160

SLEF .. 160

SLER .. 160

SLWE ... 160

SM77016 .. 214

SM77016-H .. 214

SO1, SO2 ... 157

SOBL ... 160

SOEN1, SOEN2... 157

SORQ1, SORQ2154, 156

SOS1, SOS2 ..154, 159

SOTF ... 160

SP .. 80

SR .. 99

SSEF .. 160

SSER ... 160

SST ..158

SST1, SST2 ... 158

SSWE .. 160

ste .. 110

STK .. 80

Appendix C Index C.2 Acronyms, etc.

µPD7701x Family User's Manual244

Appendix C Index C.2 Acronyms, etc.

[T]
TCK ..195

TDI ... 195

TDO..195

TGC-100SDW .. 215

TICE ... 195

TMS..195

[U]
UF0, UF1 ... 177

[V]
VDD .. 35, 41

[W]
WAIT .. 115

WB77016 ... 214

WCTL ... 194

Windows-based development environment... 213

[X]
X data bus .. 54

X memory ... 112

X memory boot ... 206

X memory space .. 112

X/Y ... 114

X1 ... 59

X2 ... 59

XAA ..111, 124

XBRC ...111, 124

[Y]
Y data bus .. 55

Y memory ... 112

Y memory boot ... 206

Y memory space .. 112

YAA ..111, 124

YBRC ...111, 124

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: 1-800-729-9288

1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6465-6829

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Semiconductor Technical Hotline
Fax: 044-548-7900

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 98.2

Name

Company

From:

Tel. FAX

Facsimile Message

