

USERS MANUAL
µOLED 160 GMD1

µSD

 (Serial Command Platform)

Revision 1.3

4D Systems

www.DataSheet4U.com

www.4dsystems.com.au 2

PROPRIETORY INFORMATION

The information contained in this document is the property of 4D Systems Pty. Ltd., and may
be the subject of patents pending or granted, and must not be copied or disclosed with out
prior written permission. It should not be used for commercial purposes without prior
agreement in writing.

4D Systems Pty. Ltd. Endeavours to ensure that the information in this document is correct
and fairly stated but does not accept liability for any error or omission. The development of
4D Systems products and services is continuous and published information may not be up
to date. It is important to check the current position with 4D Systems.

Contact details are available from the company web site at www.4dsystems.com.au

All trademarks recognised and acknowledged.

Copyright 4D Systems Pty. Ltd. 2000-2007

 DISCLAIMER OF WARRANTIES & LIMITATION OF LIABILITY

4D Systems Pty. Ltd. makes no warranty, either express or implied with respect to any
product, and specifically disclaims all other warranties, including, without limitation,
warranties for merchantability, non-infringement and fitness for any particular purpose. 4d
systems' sole obligation and liability for product defects shall be, at 4d systems' option, to
replace such defective product or refund to buyer the amount paid by buyer therefore. In no
event shall 4D Systems' liability exceed the buyer's purchase price.

The foregoing remedy shall be subject to buyer's written notification of defect and return of
the defective product within ninety (90) days of purchase. The foregoing remedy does not
apply to products that have been subjected to misuse (including without limitation static
discharge), neglect, accident or modification, or to products that have been soldered or
altered during assembly, or are otherwise not capable of being tested, or if damage occurs
as a result of the failure of buyer to follow specific instructions.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect,
incidental, special, consequential, punitive or exemplary damages (including without
limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to
any product or service provided or to be provided by 4D Systems, or the use or inability to
use the same, even if 4D Systems has been advised of the possibility of such damages.

www.DataSheet4U.com

www.4dsystems.com.au 3

Table of contents

1. µOLED Description

1.1 Introduction
1.2 µOLED-160-GMD1 features

2. µOLED-160-GMD1 Serial Command set

2.1 Command Protocol
2.2 General Command Set

2.2.1 Add User Bitmapped Character
2.2.2 Set Background Colour
2.2.3 Place Text button
2.2.4 Draw Circle
2.2.5 Block copy & Paste (Screen Bitmap Copy)
2.2.6 Display User Bitmapped Character
2.2.7 Erase Screen
2.2.8 Set Font Size
2.2.9 Draw TrianGle
2.2.10 Draw Polygon
2.2.11 Display Image
2.2.12 Draw Line
2.2.13 Opaque or Transparent Text
2.2.14 Put Pixel
2.2.15 Set pen Size
2.2.16 Read Pixel
2.2.17 Draw rectangle
2.2.18 Place String of ASCII Text (unformatted)
2.2.19 Place string of ASCII Text (formatted)
2.2.20 Place Text Character (formatted)
2.2.21 Place text Character (unformatted)
2.2.22 OLED DisplaY Control Functions
2.2.23 Version/Device Info Request

2.3 Display Specific Command set
2.3.1 Write to OLED Register
2.3.2 Display Scroll Control

2.4 Extended Command set
2.4.1 initialise µSD Memory Card
2.4.2 Read Sector
2.4.3 Write Sector
2.4.4 read Byte
2.4.5 write Byte
2.4.6 Set Address
2.4.7 Copy Screen to Memory Card
2.4.8 Display Image/Icon from Memory Card

www.DataSheet4U.com

www.4dsystems.com.au 4

2.4.9 Display Object from Memory Card
2.4.10 Run Program from Memory Card
2.4.11 Delay
2.4.12 Set Counter
2.4.13 Decrement Counter
2.4.14 Jump to Address If Counter Not Zero
2.4.15 Jump to Address
2.4.16 Exit Program from Memory Card

2.5 Serial Interface
2.6 USB Interface
2.7 Personality Module Micro Code (PmmC)

3. Specifications

3.1 Power Consumption (@ 5.0V Supply)
3.2 Host Interface pin-outs
3.3 Mechanical Details
3.4 Circuit Diagram
3.5 65,536 Colour Bitmap Organisation
3.6 256 Colour Bitmap Organisation
3.7 Power-Up Reset

4. Appendix

4.1 Available models
4.2 Related Products
4.3 Auto Demo/Slide Show
4.4 Precautions
4.5 Help and Other Information

www.DataSheet4U.com

www.4dsystems.com.au 5

1 µOLED Description

1.1 Introduction

The µOLED is a compact & cost effective all in one ‘SMART” OLED Display with an
embedded graphics controller that will deliver ‘stand-alone’ functionality to your
project. The ‘simple to use’ embedded commands not only control background
colour but can produce text in a variety of sizes as well as draw shapes (which can
include user definable bitmapped characters such as logos) in 256 or 65,536 colours
whilst freeing up the host processor from the ‘processor hungry ‘ screen control
functions. This means a simple micro-controller with a standard serial or USB
interface can drive the µOLED module with total ease.
Figures below show some of the graphics capability of the µOLED.

www.DataSheet4U.com

www.4dsystems.com.au 6

1.2 µOLED-160-GMD1 Features
The µOLED-160-GMD1 is aimed at being integrated into a variety of different
applications via a wealth of features designed to facilitate any given functionality
quickly and cost effectively and thus reduce ‘time to market’. These features are as
follows:

 160 x 128 pixel resolution, 256 or 65K true to life colours, Enhanced OLED screen
 1.69” diagonal. Panel Size: 52 x 32 x 8.8mm. Active Area: 33.6 x 27mm.
 No backlighting with near 180° viewing angle.
 Easy 5 pin interface to any host device: VCC, TX, RX, GND, RESET
 Voltage supply from 3.3V to 6.0V, current @ 40mA nominal when using a 5.0V

supply source.
 Serial RS-232 (0V to 3.3V) with auto-baud feature (300 to 256K baud). If

interfacing to a system greater than 3.6V supply, a series resistor (1K) is required
on the RX line.

 Powered by the fully integrated GOLDELOX-MD1 module (also available as
separate OEM modules for volume users).

 Optional USB to Serial interface via the 4D micro-USB (uUSB-MB5) module.
 Onboard micro-SD (µSD) memory card adaptor for storing of icons, images,

animations, etc. 64Mb to 1Gig µSD memory cards can be purchased separately.
 Three selectable font sizes (5x7, 8x8 and 8x12) for ASCII characters as well as

user-defined bitmapped characters (32 @ 8x8)
 Built in graphics commands such as: LINE, CIRCLE, RECTANGLE, TEXT,

USER BITMAP, BACKGROUND COLOUR, PUT PIXEL, IMAGE, etc. just to
name a few

www.DataSheet4U.com

www.4dsystems.com.au 7

2 µOLED-160-GMD1 Serial Command Set

The heart of the µOLED-160-GMD1 is the easy to understand command set. This
comprises of a handful of easy to learn instructions that can draw lines, circles,
squares, etc, to provide a full text and graphical user interface. The commands are
sent to the µOLED-160-GMD1 via its serial connection (5 pin header). The
command set is grouped into 3 sections:

• General Command Set
• Display Specific Command Set
• Extended Command Set

Each Command set is described in detail in the following sections.

NOTE!:
The RX and the TX signals are at 3.3V levels. If interfacing to a host system running at
voltages greater than 3.6V levels, then a 1K series resistor must be inserted between
the Host TX and the µOLED-160-GMD1 RX signals as shown in the diagram below.

Serial Data Format: 8 Bits, No Parity, 1 Stop Bit.

www.DataSheet4U.com

www.4dsystems.com.au 8

2.1 Command Protocol
The following are each of the commands with the correct syntax. Please note
that all command examples listed below are in hex (00hex). Due to the high
colour depth of the µOLED, a pixel colour value will not fit into a single byte, a
byte can only hold a maximum value of 255. Therefore the colour is
represented as a 2 byte value, colour(msb:lsb). The most significant byte (msb)
is transmitted first followed by the least significant byte (lsb). This format is
called the big endian. So for a 2 byte colour value of 013Fhex the byte order
can be shown as (01hex),(3Fhex).

NOTE: When transmitting the command and data bytes to the µOLED, do not
include any separators such as commas ‘,’ or spaces ‘ ‘ or brackets ‘(‘ ‘)’
between the bytes. The examples show these separators purely for legibility;
these must not be included when transmitting data to the µOLED.

When a command is sent, the µOLED will reply back with a single acknowledge byte
called the ACK (06hex). This tells the host that the command was understood and
the operation is completed. It will take the µOLED anywhere between 1 to several
milliseconds to reply back with an ACK, depending on the command and the
operation the µOLED has to perform. If the µOLED receives a command that it does
not understand it will reply back with a negative acknowledge called the NAK
(15hex).
If a command that has 5 bytes but only 4 bytes are sent, the command will not be
executed and the µOLED will wait until another byte is sent before trying to execute
the command. There is no timeout on the µOLED when incomplete commands are
sent. The µOLED will reply back with a NAK for each invalid command it receives.
For correct operation make sure the command bytes are sent in the correct
sequence.

www.DataSheet4U.com

www.4dsystems.com.au 9

2.2 General Command Set

NOTES:
Live : Those commands that can be sent via the serial link and executed by the uOLED

module.
Object : Those commands that can be recalled from the memory card at any time by the host

and displayed on the screen using the “Display Object from Memory Card”
command.

Memory:Those commands that can reside and be executed from inside the memory card.

 General Command Set Live Object Memory
(A) Add User Bitmapped Character √
(B) Set Background Colour √ √ √
(b) Place Text button √ √ √
(C) Draw Circle √ √ √
(c) Block copy and Paste (bitmap copy) √
(D) Display User Bitmapped Character √
(E) Erase Screen √ √ √
(F) Font Size √ √ √
(G) Draw TrianGle √ √ √
(g) Draw Polygon √ √ √
(I) Display Image √
(L) Draw Line √ √ √
(O) Opaque or Transparent Text √ √ √
(P) Put Pixel √
(p) Set pen Size √ √ √
(R) Read Pixel √
(r) Draw rectangle √ √ √
(S) Place String of ASCII Text (unformatted) √ √ √
(s) Place string of ASCII Text (formatted) √ √ √
(T) Place Text Character (formatted) √ √ √
(t) Place text Character (unformatted) √ √ √
(V) Version/Device Info Request √
(Y) OLED DisplaY Control functions √ √ √

www.DataSheet4U.com

www.4dsystems.com.au 10

2.2.1 Add User Bitmapped Character (A)

Syntax : cmd, char#, data1, data2, …….., dataN

cmd : 41hex, Aascii

char# : bitmap character number to add to memory:

0 to 31 (00h to 1Fh), 32 characters of 8x8 format.

data1 to dataN : number of data bytes that make up the composition and

format of the bitmapped character. The 8x8 bitmap composition is 1
byte wide (8bits) by 8 bytes deep which makes N = 1x8 = 8.

Description : This command will add a user defined bitmapped character into
the internal memory.

Example1: 41hex, 01hex, 18hex, 24hex, 42hex, 81hex, 81hex, 42hex, 24hex,

18hex

This adds and saves user defined 8x8 bitmap as character number 1 into
memory as seen below.

 b7 b6 b5 b4 b3 b2 b1 b0
 data1 (hex = 18h)
 data2 (hex = 24h)
 data3 (hex = 42h)
 data4 (hex = 81h)
 data5 (hex = 81h)
 data6 (hex = 42h)
 data7 (hex = 24h)
 data8 (hex = 18h)

 Example of a 8x8 user defined bitmap

www.DataSheet4U.com

www.4dsystems.com.au 11

2.2.2 Set Background Colour (B)

Syntax : cmd, colour(msb:lsb)

cmd : 42hex, Bascii

colour(msb:lsb) : pixel colour value: 2 bytes (16 bits) msb:lsb

 65,536 colours to choose from
Black = 0000hex, 0dec
White = FFFFhex, 65,535dec, 1111111111111111bin

Description : This command sets the current background colour. Once this
command is sent, only the background colour will change. Any other object on
the screen with a different colour value will not be affected.

Example : 42hex, FFFFhex
Set the background colour to value 65,535 (white).

www.DataSheet4U.com

www.4dsystems.com.au 12

2.2.3 Text button (b)

Syntax : cmd, state, x, y, buttonColour(msb:lsb), font, textColour(msb:lsb),
textWidth, textHeight, char1, .., charN, terminator

cmd : 62hex, bascii

state : Specifies whether the displayed button is drawn as UP (not pressed) or

DOWN (pressed). 0 = Button Down (pressed)
1 = Button Up (not pressed)

x : top left horizontal start position of the button

y : top left vertical start position of the button

buttonColour(msb:lsb) : 2 byte button colour value

font : 0 = 5x7 font, 1 = 8x8 font, 2 = 8x12 font. This has precedence and does
not affect the Font command.

textColour(msb:lsb) : 2 byte text colour value

textWidth : horizontal size of the character, effects the width of the button.

textHeight : vertical size of the character, effects the height of the button.

char1..charN : string of ASCII characters (limit the string to line width)

terminator : the string must be terminated with 00hex

Description : This command will place a Text button similar to the ones used
in a PC Windows environment. (x, y) refers to the top left corner of the button
and the size of the button is automatically calculated and drawn on the screen
with the text relatively justified inside the button box. The button can be
displayed in an UP (button not pressed) or DOWN (button pressed) position by
specifying the appropriate value in the state byte. Separate button and text
colours provide many variations in appearance and format.

www.DataSheet4U.com

www.4dsystems.com.au 13

2.2.4 Draw Circle (C)

Syntax : cmd, x, y, rad, colour(msb:lsb)

cmd : 43hex, Cascii

x : circle centre horizontal position. 0dec to 159dec (00hex to 9Fhex).

y : circle centre vertical position. 0dec to 127dec (00hex to 7Fhex).

rad : radius size of the circle. 0dec to 127dec (00hex to 7Fhex).

colour(msb:lsb) : 2 byte circle colour value

Description : This command will draw a coloured circle centred at (x, y) with a
radius determined by the value of rad. The circle can be either solid or wire
frame (empty) depending on the value of the Pen Size (see Set Pen Size
command). When Pen Size = 0 circle is solid, Pen Size = 1 circle is wire frame.

Example : 43hex, 3Fhex, 3Fhex, 22hex, 00hex, 1Fhex

Draws a RED circle (001Fhex) centred at x = 63dec (3Fhex) and y = 63dec
(3Fhex) with a radius of 34dec (22hex).

When Pen Size = 1 When Pen Size = 0

www.DataSheet4U.com

www.4dsystems.com.au 14

2.2.5 Block copy & Paste (Screen Bitmap Copy) (c)

Syntax : cmd, xs, ys, xd, yd, width, height

cmd : 63hex, cascii

xs: top left horizontal start position of block to be copied (source)

ys: top left vertical start position of block to be copied (source)

xd: top left horizontal start position of where copied block is to be pasted
(destination)

yd: top left vertical start position of where the copied block is to be pasted
(destination)

width: width of block to be copied (source)

height: height of block to be copied (source)

Description : This command copies an area of a bitmap block of specified
size. The start location of the block to be copied is represented by xs, ys (top
left corner) and the size of the area to be copied is represented by width and
height parameters. The start location of where the block is to be pasted
(destination) is represented by xd, yd (top left corner).
This is a very powerful feature for animating objects, smooth scrolling,
implementing a windowing system or copying patterns across the screen to
make borders or tiles.

www.DataSheet4U.com

www.4dsystems.com.au 15

2.2.6 Display User Bitmapped Character (D)

Syntax : cmd, char#, x, y, colour(msb), colour(lsb)

cmd : 44hex, Dascii

char# : which user defined character number to display from the selected

group. 0dec to 31dec (00hex to 1Fhex), of 8x8 format.

x : horizontal display position of the character. 0dec to 159dec (00hex to

9Fhex).

y : vertical display position of the character. 0dec to 127dec (00hex to

7Fhex).

colour(msb:lsb) : 2 byte bitmap colour value

Description : This command displays the previously defined user bitmapped
character at location (x, y) on the screen. User defined bitmaps allow drawing &
displaying unlimited graphic patterns quickly & effectively.

Example 1: 44hex, 01hex , 00hex, 00hex, F8hex, 00hex
Display 8x8 bitmap character number 1 at x = 0, y = 0, colour = red

Example 2: 44hex, 01hex, 08hex, 00hex, 07hex, E0hex
Display 8x8 bitmap character number 1 at x = 8, y = 0, colour = green

Example 3: 44hex , 01hex, 10hex, 00hex, 00hex, 1Fhex
Display 8x8 bitmap character number 1 at x = 16, y = 0, colour = blue

www.DataSheet4U.com

www.4dsystems.com.au 16

2.2.7 Erase Screen (E)

Syntax : cmd

cmd : 45hex, Eascii

Description : This command clears the entire screen using the current
background colour.

Example : 45hex
Clear the screen.

www.DataSheet4U.com

www.4dsystems.com.au 17

2.2.8 Set Font Size (F)

Syntax : cmd, size

cmd : 46hex, Fascii

size : = 00hex : 5x7 small size font
= 01hex : 8x8 medium size font
= 02hex : 8x12 large size font

Description : This command will change the size of the font according to the
value set by size. Changes take place after the command is sent. Any
character on the screen with the old font size will remain as it was.

Example1: 46hex, 00hex Select small 5x7 fonts
Example1: 46hex, 01hex Select medium 8x8 fonts
Example1: 46hex, 02hex Select large 8x12 fonts

www.DataSheet4U.com

www.4dsystems.com.au 18

2.2.9 Draw TrianGle (G)

Syntax : cmd, x1, y1, x2, y2, x3, y3, colour(msb:lsb)

cmd : 47hex, Gascii

x1, y1, x2, y2, x3, y3 : 3 vertices of the triangle. These must be specified in an

anti-clockwise fashion.

colour(msb:lsb) : 2 byte triangle colour value

Description : This command draws a Solid/Empty triangle. The vertices must
be specified in an anti-clock wise manner, i.e.
x2 < x1, x3 > x2, y2 > y1, y3 > y1.
A solid or a wire frame triangle is determined by the value of the Pen Size
setting, i.e. 0 = solid, 1 = wire frame.

www.DataSheet4U.com

www.4dsystems.com.au 19

2.2.10 Draw Polygon (g)

Syntax : cmd, vertices, x1, y1, xn, yn, colour(msb:lsb)

cmd : 67hex, g ascii

vertices : number of vertices from 3 to 7. Specifies the number of vertices of
the polygon.

 (x1, y1) (xn, yn) : vertices of the polygon. These can be specified in any

fashion.

colour(msb:lsb) : 2 byte polygon colour value

Description : This command draws an Empty/Wire Frame polygon. Up to 7
vertices can be specified in any manner. Currently only a wire frame polygon is
supported.

www.DataSheet4U.com

www.4dsystems.com.au 20

2.2.11 Display Image (I)

Syntax : cmd, x, y, width, height, colourMode, pixel1, .. pixelN

cmd : 49hex, Iascii

x : Image horizontal start position (top left corner)

y : Image vertical start position (top left corner)

width : horizontal size of the image

height : vertical size of the image

colourMode : 8dec = 256 colour mode, 8bits/1byte per pixel

 16dec = 65K colour mode, 16bits/2bytes per pixel (msb:lsb)

pixel1..pixelN : image pixel data and N is the total number of pixels
 N = height x width when colourMode = 8

 N = height x width x 2 when colourMode = 16

Description : This command displays a bitmap image on to the screen with the
top left corner specified by (x, y) and size of the image specified by width and
height parameters. This command is more effective than using the “Put Pixel”
command, where there are no overheads in specifying the x, y location of each
pixel.

www.DataSheet4U.com

www.4dsystems.com.au 21

2.2.12 Draw Line (L)

Syntax : cmd, x1, y1, x2, y2, colour(msb:lsb)

cmd : 4Chex, Lascii

x1 : horizontal position of line start. 0dec to 159dec (00hex to 9Fhex).

y1 : vertical position of line start. 0dec to 127dec (00hex to 7Fhex).

x2 : horizontal position of line end. 0dec to 159dec (00hex to 9Fhex).

y2 : vertical position of line end. 0dec to 127dec (00hex to 7Fhex).

colour(msb:lsb) : 2 byte line colour value

Description : This command will draw a coloured line from point (x1, y1) to
point (x2, y2) on the screen.

Example : 4Chex, 00hex, 00hex, 7Fhex, 7Fhex, FFhex, FFhex

Draws a white line from (x1=0, y1=0) to (x2=127, y2=127).

www.DataSheet4U.com

www.4dsystems.com.au 22

2.2.13 Opaque / Transparent Text (O)

Syntax : cmd, mode

cmd : 4Fhex, Oascii

mode : = 00hex : Transparent Text, objects behind the text can be seen.
= 01hex: Opaque Text, objects behind text is blocked by background

Description : This command will change the attribute of the text so that an
object behind the text can either be blocked or transparent. Changes take place
after the command is sent.

This command will change the attribute so that when a character is written, it
will either write just the character alone (Transparent Mode) so any original
character will be seen as well as the new, or overwrite any existing data with
the new character.

Example1: 4Fhex, 00hex Transparent Text Mode
Example2: 4Fhex, 01hex Opaque Text Mode

www.DataSheet4U.com

www.4dsystems.com.au 23

2.2.14 Put Pixel (P)

Syntax : cmd, x, y, colour(msb:lsb)

cmd : 50hex, Pascii

x : horizontal pixel position. 0dec to 159dec (00hex to 9Fhex).

y : vertical pixel position. 0dec to 127dec (00hex to 7Fhex).

colour : pixel colour value: 2 bytes (16 bits) msb, lsb

 65,536 colours to choose from
Black = 0000hex, 0dec
White = FFFFhex, 65,535dec, 1111111111111111bin

Description : This command will put a coloured pixel at location (x, y) on the
screen.

Example : 50hex, 01hex, 0Ahex, FFhex, FFhex

Puts a white (FFFFhex) pixel at location x = 01dec (01hex) and y = 10dec
(0Ahex).

www.DataSheet4U.com

www.4dsystems.com.au 24

2.2.15 Set pen Size (p)

Syntax : cmd, size

cmd : 70hex, p ascii

size : = 00hex : All objects such as circles, rectangles, triangles, etc are solid
= 01hex : All objects are wire frame (empty)

Description : This command determines if certain graphics objects are drawn
in solid or wire frame fashion.

Example1: 70hex, 00hex All objects will be drawn solid
Example1: 70hex, 01hex All objects will be drawn wire frame.

www.DataSheet4U.com

www.4dsystems.com.au 25

2.2.16 Read Pixel (R)

Syntax : cmd, x, y

cmd : 52hex, Rascii

x : horizontal pixel position. 0dec to 159dec (00hex to 9Fhex).

y : vertical pixel position. 0dec to 127dec (00hex to 7Fhex).

Description : This command will read the colour value of pixel at location (x, y)
on the screen and return it to the host. This is a useful command when for
example a white pointer is moved across the screen and the host can read the
colour on the screen and switch the colour of the pointer when it’s on top of a
light coloured area.

Example : 52hex, 01hex, 01hex
µOLED reply : 00hex, 1Fhex

Reads a blue (001Fhex) pixel at location x = 1dec (01hex) and y = 1dec (01hex).

www.DataSheet4U.com

www.4dsystems.com.au 26

2.2.17 Draw rectangle (r)

Syntax : cmd, x1, y1, x2, y2, colour(msb:lsb)

cmd : 72hex, r ascii

x1 : top left horizontal start position of rectangle. 0 to 159 (00hex to 9Fhex).

y1 : top left vertical start position of rectangle . 0dec to 127 (00hex to 7Fhex).

x2 : bottom right horizontal end position. 0 to 159 (00hex to 9Fhex).

y2 : bottom right vertical end position. 0 to 127 (00hex to 7Fhex).

colour(msb:lsb) : 2 byte rectangle colour value

Description : This command will draw a rectangle of specified area on the
screen. x1, y1 refers to the top left corner of the area and x2, y2 refers to the
bottom right hand corner of the rectangle on the screen. If colour is chosen to
be that of the background then the effect will be erasure. If Pen Size value was
previously set to 0 rectangle will be solid, otherwise wire frame if value was 1.

Example : 70hex, 00hex, 00hex, 10hex, 10hex, 00hex, 1Fhex

Draws a RED (001Fhex) rectangle that has its top left corner at x1=0, y1=0 and
its bottom right corner at x2=16, y2=16.

www.DataSheet4U.com

www.4dsystems.com.au 27

2.2.18 Place String of Ascii Text (unformatted) (S)

Syntax : cmd, x, y, font, colour(msb:lsb), width, height, char1, .. , charN,
terminator

cmd : 53hex, Sascii

x : the horizontal start position of string (in pixels).

y : the vertical start position of string (in pixels).

font : 0 = 5x7 font, 1 = 8x8 font, 2 = 8x12 font. This has precedence over the
Font command but does not effect the previous font selection.

colour(msb:lsb) : 2 byte colour value of the string.

width : horizontal size of the string characters, n x normal size

height : vertical size of the string characters, m x normal size

char1..charN : string of ASCII characters (max 256 characters)

terminator : the string must be terminated with 00hex

Description : This command allows the display of a string of bitmapped
(unformatted) ASCII characters. The horizontal start position of the string is
specified by x and the vertical position is specified by y. The string must be
terminated with 00hex. The sizes of the characters are determined by the
width and height parameters. If the length of the string is longer than the
maximum number of characters per line, then a wrap around will occur on to
the next line. Maximum string length is 256 bytes.

www.DataSheet4U.com

www.4dsystems.com.au 28

2.2.19 Place string of Ascii Text (formatted) (s)

Syntax : cmd, column, row, font, colour(msb:lsb), char1,.., charN, terminator

cmd : 73hex, sascii

column : horizontal start position of string:
 0 - 25 for 5x7 font, 0 - 19 for 8x8 and 8x12 font.

row : vertical start position of string:
 0 - 15 for 5x7 and 8x8 font, 0 – 9 for 8x12 font.

font : 0 = 5x7 font, 1 = 8x8 font, 2 = 8x12 font. This has precedence over the
Font command.

colour(msb:lsb) : 2 byte colour value of the string.

char1..charN : string of ASCII characters (max 256 characters)

terminator : the string must be terminated with 00hex

Description : This command allows the display of a string of ASCII characters.
The horizontal start position of the string is specified by column and the vertical
position is specified by row. The string must be terminated with 00hex. If the
length of the string is longer than the maximum number of characters per line,
then a wrap around will occur on to the next line. Maximum string length is 256
bytes.

www.DataSheet4U.com

www.4dsystems.com.au 29

2.2.20 Place Text Character (formatted) (T)

Syntax : cmd, char, column, row, colour(msb:lsb)

cmd : 54hex, Tascii

char : inbuilt standard ASCII character, 32dec to 127dec (20hex to 7Fhex)

column : horizontal position of character, see range below:
 0 - 25 for 5x7 font, 0 - 19 for 8x8 and 8x12 font.

row : vertical position of character:
 0 - 15 for 5x7 and 8x8 font, 0 – 9 for 8x12 font.

colour(msb:lsb) : 2 byte colour value of the character.

Description : This command will place a coloured ASCII character (from the
ASCII chart) on the screen at a location specified by (column, row). The
position of the character on the screen is determined by the predefined
horizontal and vertical positions available, namely 0 to 25 columns by 0 to 15
rows.

Example : 54hex, 41hex, 00hex, 00hex, FFhex, FFhex
Place character ‘A’ (41hex) at column = 0, row = 0, colour = white (65,535).

www.DataSheet4U.com

www.4dsystems.com.au 30

2.2.21 Place text Character (unformatted) (t)

Syntax : cmd, char, x, y, colour(msb:lsb), width, height

cmd : 74hex, tascii

char : inbuilt standard ASCII character, 32dec to 127dec (20hex to 7Fhex)

x : the horizontal position of character (in pixel units).

y : the vertical position of character (in pixel units).

colour(msb:lsb) : 2 byte colour value of the character.

width : horizontal size of the character, n x normal size

height : vertical size of the character, m x normal size

Description : This command will place a coloured built in ASCII character
anywhere on the screen at a location specified by (x, y). Unlike the ‘T’
command, this option allows text of any size (determined by width and height)
to be placed at any position. The font of the character is determined by the
‘Font Size’ command.

www.DataSheet4U.com

www.4dsystems.com.au 31

2.2.22 OLED DisplaY Control Functions (Y)

Syntax : cmd, mode, value

cmd : 59hex, Yascii

mode : = 00hex : BACKLIGHT CONTROL.

 value = XXhex: has no effect as there is no backlighting on the
 OLED display. This is only retained for legacy.

mode : = 01hex : DISPLAY ON/OFF.
 value = 00hex: Display OFF

= 01hex: Display ON

mode : = 02hex : OLED CONTRAST.
 value = 0dec to 15dec : Contrast range (default = 15dec)

mode : = 03hex : OLED POWER-UP/POWER-DOWN.
 value = 00hex: OLED Power-Down

= 01hex: OLED Power-Up

Note: It is important that the µOLED be issued with the Power-Down command
before switching off the power. This command switches off the internal voltage
boosters and current amplifiers and they need to be turned off before main
power is removed. If the power is removed without issuing this command, the
OLED display maybe damaged (over a period of time). This command also
turns off the display. This command need not only be issued to shutdown but
can be issued to conserve power by turning off the display and the backlight.
The Power-Up command does not need to be executed when applying power.
If a Power-Down command has been issued and Power is not switched off, the
Power-Up command can be sent to Power the display back up again.

www.DataSheet4U.com

www.4dsystems.com.au 32

2.2.23 Version/Device Info Request (V)

Syntax : cmd, output
Response : device_type, hardware_rev, firmware_rev, horizontal_res,

vertical_res

cmd : 56hex, Vascii

output : 00hex : outputs the version and device info to the serial port only.
 01hex : outputs the version and device info to the serial port as well

as to the screen.

device_type : this response indicates the device type.
 00hex = micro-OLED.
 01hex = micro-LCD.
 02hex = micro-VGA.

hardware_rev : this response indicates the device hardware version.

firmware_rev : this response indicates the device firmware version.

horizontal_res : this response indicates the horizontal resolution of the display.
 22hex : 220 pixels
 28hex : 128 pixels
 32hex : 320 pixels
 60hex : 160 pixels
 64hex : 64 pixels
 76hex : 176 pixels
 96hex : 96 pixels

vertical_res : this response indicates the vertical resolution of the display. See

horizontal_res above for resolution options.

Description : This command requests all the necessary information from the
module about its characteristics and capability.

www.DataSheet4U.com

www.4dsystems.com.au 33

2.3 Display Specific Command Set

Different OLED display panels that are used in the µOLED range of intelligent
display modules have certain built in features that are controlled directly by the
embedded driver controller. These features otherwise would be too cumbersome to
implement in firmware and would require resources that are not available. The
Display Specific Command set utilises these built in hardware features directly.
These are detailed in this section.

Display Specific Command Set Live Object Memory
($W) Write to OLED Register √
($S) Display Scroll Control √ √

www.DataSheet4U.com

www.4dsystems.com.au 34

2.3.1 Write to OLED Register ($W)

Syntax : spCmd, cmd, reg, data

spCmd : 24hex, $ascii

cmd : 57hex, Wascii

reg : OLED internal register address. Refer to SEPS525 OLED driver data
sheet for all register information.

data : OLED internal register data.

Description : This command allows direct access to all of the SEP525 driver
registers. For more detail, refer to the SEP525 driver data sheet available from:
www.4dsystems.com.au/micro-OLED/OLED-160/data/SEPS525.pdf

www.DataSheet4U.com

www.4dsystems.com.au 35

2.3.2 Display Scroll Control ($S)

Syntax : spCmd, cmd, register, data

spCmd : 24hex, $ascii

cmd : 53hex, Sascii

reg : Scroll Control Register.
 register data
 0x00 (Scroll Enable/Disable) 0 = Disable, 1 = Enable
 0x01 (Scroll Direction) 0 = Left Scroll, 1 = Right Scroll
 0x02 (Scroll Speed) 0 to 7, 0 = slow, 7 = fast

data : Scroll register data. Refer to above for detail.

Description : This command allows control of screen scrolling.

www.DataSheet4U.com

www.4dsystems.com.au 36

2.4 Extended Command Set

The following commands are related to the µOLED-160-GMD1 extended command
set and they are described in this section. The µOLED-160-GMD1 is designed
around the GOLDELOX-MD1 module (can be seen in the images below) which has
an integrated micro-SD (µSD) memory card adaptor. The GOLDELOX-MD1 module
can accept memory cards of any size from 64Mb up to 1Gig for storing of text,
images, icons, animations, movie clips and all other graphics objects. To utilise the
Extended Command set, a µSD memory card must be inserted into the module
since all of these commands are based around the memory card.
You will find references being made to “Objects” throughout this section. An object
can be simply defined as those commands that reside inside the memory card
(programmed/downloaded previously) and can be displayed on the screen by the
“Display Object from Memory Card” command. The idea of programming objects
into the memory card is so that they can be automatically replayed back like a slide
show without any host processor intervention.
There are also some commands that can only reside inside the card and must be
executed from there. These commands will return a NAK if executed live from the
serial link.

www.DataSheet4U.com

www.4dsystems.com.au 37

NOTES:
Live : Those commands that can be sent via the serial link and executed by the uOLED

module.
Object : Those commands that can be recalled from the memory card at any time by the host

and displayed on the screen using the “Display Object from Memory Card”
command.

Memory:Those commands that can reside and be executed from inside the memory card.

 Extended Command Set Live Object Memory
(@i) initialise uSD Memory Card √
(@R) Read Sector √
(@W) Write Sector √
(@r) read Byte √
(@w) write Byte √
(@A) Set Address √
(@C) Copy Screen to Memory Card √
(@I) Display Image/Icon from Memory Card √ √ √
(@O) Display Object from Memory Card √
(@P) Run Program from Memory Card √

(07hex) Delay (in milliseconds) √
(08hex) Set Counter √
(09hex) Decrement Counter √
(0Ahex) Jump to Address if Counter not Zero √
(0Bhex) Jump to Address √
(0Chex) Exit Program from Memory Card √ √

www.DataSheet4U.com

www.4dsystems.com.au 38

2.4.1 initialise Memory Card (@i)

Syntax : extCmd, cmd

extCmd : 40hex, @ascii

cmd : 69hex, i ascii

Description : This command initialises the µSD memory card. The memory
card is always initialised upon Power-Up or Reset cycle, if the card is present.
If the card is inserted after the power up or a reset then this command must
be used to initialise the card.

www.DataSheet4U.com

www.4dsystems.com.au 39

2.4.2 Read Sector Data from Memory Card (@R)

Syntax : extCmd, cmd, SectorAddress(hi:mid:lo)

extCmd : 40hex, @ascii

cmd : 52hex, Rascii

SectorAddress(hi:mid:lo): A 3 byte sector address. Sector Address range from
0 to 16,777,215 depending on the capacity of the card. Each sector is 512
bytes in size. There are 2048 sectors per every 1Mb of card memory.

Description : This command provides a means of reading data back from the
memory card in lengths of 512 bytes. It maybe useful in validating the data that
was stored previously using the Write Sector command. Once this command is
sent, the µOLED will return 512 bytes of data relating to that particular sector.

www.DataSheet4U.com

www.4dsystems.com.au 40

2.4.3 Write Sector Data to Memory Card (@W)

Syntax : extCmd, cmd, SectorAddress(hi:mid:lo), data(1), .. , data(512)

extCmd : 40hex, @ascii

cmd : 57hex, Wascii

SectorAddress(hi:mid:lo): A 3 byte sector address. Sector Address range from
0 to 16,777,215 depending on the capacity of the card. Each sector is 512
bytes in size. There are 2048 sectors per every 1Mb of card memory.

data(1), .. , data(512): 512 bytes of sector data. The data length must be 512
bytes long. Unused bytes must be padded even if not all are used.

Description : This command allows downloading of objects such as images
and other commands for storage that can be retrieved and used later on. It can
also be used as general purpose storage for user specific data. Downloads
must always be limited to 512 bytes in length. For large objects such as
images, the data must be broken up into multiple sectors (chunks of 512 bytes)
and this command then maybe used many times until all of the data is written
into the card. If the data block to be written is less than 512 bytes in length,
then make sure the rest of the remaining data are padded with 00hex or FFhex
(it can be anything).
If only few bytes of data are to be written then the Write Byte command can be
used.
Once this command message is sent, the µOLED will take a few milliseconds to
write the data into its memory card and at the end of which it will reply back with
an ACK(06hex) if the write cycle was successful. If there was a problem in
writing the data to the card a NAK(15hex) will be sent back without any write
attempts.
Only data(1) to data(512) are stored in the card. Other bytes in the command
message such as Sector Address are not stored.

www.DataSheet4U.com

www.4dsystems.com.au 41

2.4.4 read Byte Data from Memory Card (@r)

Syntax : extCmd, cmd

extCmd : 40hex, @ascii

cmd : 72hex, r ascii

Description : This command provides a means of reading a single byte of data
back from the memory card. Before this command can be used the card
memory address location must be set using the Set Memory Address
command. Once this command is sent, the µOLED will return 1 byte of data
relating to that memory location set by the memory Address pointer. The
memory Address location pointer is automatically incremented to the next
address location.

www.DataSheet4U.com

www.4dsystems.com.au 42

2.4.5 write Byte Data to Memory Card (@w)

Syntax : extCmd, cmd, data

extCmd : 40hex, @ascii

cmd : 77hex, w ascii

data : 1 byte of memory card data.

Description : This command allows writing single bytes of data to the memory
card. This is useful for writing small chunks of data relating to graphics objects
or user application specific data for general purpose storage. For large data
blocks it is more efficient to use the Write Sector Data command described in
the previous section.
Before this command can be used the card memory address location must be
set using the Set Memory Address command. Once this command is sent, the
µOLED will write 1 byte of data relating to that memory location set by the
memory Address pointer. The memory Address location pointer is automatically
incremented to the next address location.
Only the data byte is stored in the card. Other bytes in the command message
are not stored.

www.DataSheet4U.com

www.4dsystems.com.au 43

2.4.6 Set Memory Address (@A)

Syntax : extCmd, cmd, Address(Umsb:Ulsb:Lmsb:Llsb)

extCmd : 40hex, @ascii

cmd : 41hex, Aascii

Address(Umsb:Ulsb:Lmsb:Llsb): A 4 byte memory card address for byte wise
access.

Description : This command sets the card memory Address pointer for byte
wise reads and writes. After a byte read or write the Address pointer is
automatically incremented internally to the next Address location.

www.DataSheet4U.com

www.4dsystems.com.au 44

2.4.7 Copy Screen to Memory Card (@C)

Syntax : extCmd, cmd, x, y, width, height, SectorAddress(hi:mid:lo)

extCmd : 40hex, @ascii

cmd : 43hex, Cascii

x : Screen horizontal start position (top left corner)

y : Screen vertical start position (top left corner)

width : horizontal size of the screen area to be copied

height : vertical size of the screen area to be copied

SectorAddress(hi:mid:lo): A 3 byte sector address where the copied screen
area is to be stored.

Description :
This command copies an area of the screen of specified size. The start location
of the block to be copied is represented by x, y (top left corner) and the size of
the area to be copied is represented by width and height parameters. This is
similar the Block Copy and Paste command but instead of the copied screen
area being pasted to another location on the screen it is stored into the memory
card. The stored screen image can then be later recalled from the memory card
and redisplayed onto the screen at the same or different location by using the
Display Image/Icon from Memory Card command.
This is a very powerful feature for animating objects, smooth scrolling, or
implementing a windowing system.

www.DataSheet4U.com

www.4dsystems.com.au 45

2.4.8 Display Image/Icon from Memory Card (@I)

Syntax : extCmd, cmd, x, y, width, height, colourMode,
SectorAddress(hi:mid:lo)

extCmd : 40hex, @ascii

cmd : 49hex, Iascii

x : Screen horizontal start position (top left corner)

y : Screen vertical start position (top left corner)

width : horizontal size of the Image/Icon

height : vertical size of the Image/Icon

colourMode : 8dec = 256 colour mode, 8bits/1byte per pixel

 16dec = 65K colour mode, 16bits/2bytes per pixel

SectorAddress(hi:mid:lo): A 3 byte memory card sector address of a previously
stored Image or an Icon that is about to be displayed.

Description : This command displays a bitmap image or an icon on to the
screen that has been previously stored at a particular sector address in the
memory card. The screen position of the image to be displayed is specified by
(x, y) and the size of the image by width and height parameters.
If the previously stored image was in 8 bit colour format (1 byte per pixel) or 16
bits (2 bytes per pixel) then this must be specified in the colourMode byte
parameter. Do not store an image/icon in one colour format then display it in
another colour format, this will result in a corrupted image display.
Notes:
 The Copy Screen to Memory Card command always stores that part of the

screen as a 16 bit image, i.e. 2 bytes per pixel.
 The images or icons when stored into the memory card must be sector

boundary aligned, i.e. the object start location must be at the start of a
sector boundary.

www.DataSheet4U.com

www.4dsystems.com.au 46

2.4.9 Display Object from Memory Card(@O)

Syntax : extCmd, cmd, Address(Umsb:Ulsb:Lmsb:Llsb)

extCmd : 40hex, @ascii

cmd : 4Fhex, Oascii

Address(Umsb:Ulsb:Lmsb:Llsb): A 4 byte (32 bit) memory address of a
previously stored Object that is about to be displayed.

Description: Some of the commands can be stored as objects in the memory
card which can be later recalled by the host on demand and displayed or
executed. The user must make sure the 32 bit address of each stored
command/object is known before using this feature.
For example, a series of images can be stored as icons and later displayed as
the application requires them. The table at the end of this section lists all of the
commands that can be stored as objects within the memory card.

www.DataSheet4U.com

www.4dsystems.com.au 47

2.4.10 Run Program from Memory Card (@P)

Syntax : extCmd, cmd, Address(Umsb:Ulsb:Lmsb:Llsb)

extCmd : 40hex, @ascii

cmd : 50hex, Pascii

Address(Umsb:Ulsb:Lmsb:Llsb): A 4 byte memory card address for the internal
command execution.

Description : The Run command forces the 32bit internal memory pointer to
jump to the specified address and automatically start executing commands,
from the memory card without any further interaction by the host processor. It
will sequentially execute any valid memory related commands and display
objects until it gets to the end of the memory. It is advisable to have the Exit
Program or the Jump to Address commands at the end of the user composed
program so that the pointer does not run off so to speak.

www.DataSheet4U.com

www.4dsystems.com.au 48

2.4.11 Delay (07hex) (memory card command only)

Syntax : cmd, value(msb:lsb)

cmd : 07hex

value(msb:lsb) : A 2 byte delay value in milliseconds. Maximum value of
65,535 milliseconds or 65.5 seconds.

Description : When objects from the memory card such as images are
displayed sequentially, a delay can be inserted between subsequent objects. A
delay basically has the same effect as a NOP (No Operation) which can be
used to determine how long the object stays on the screen before the next
object is displayed.

www.DataSheet4U.com

www.4dsystems.com.au 49

2.4.12 Set Counter (08hex) (memory card command only)

Syntax : cmd, value

cmd : 08hex

value : A 1 byte counter value that can be used with Decrement Counter and
Jump to Address If Counter Not Zero commands to form loops. Practical
values should be between 2 and 255.

Description : A series of images that might be part of an animation may need to be
redisplayed over and over to achieve a lengthy viewing. This command when used in
conjunction with Decrement Counter and Jump to Address If Counter Not Zero
commands allow the user to determine exactly how many times the series of images are
looped.

For example, we may want to animate the Globe rotating. Let’s say we have 10 image
slides of the Globe at different rotated positions residing in the memory card. When the
images are displayed sequentially, the effective duration will only be the length of time it
takes to display the 10 image frames. We can increase that length by looping through
the animation a number of times depending on the value set in the counter. When the
display reaches the end of the last frame and encounters the Decrement Counter
followed by Jump to Address If Counter Not Zero commands, the counter will be
decremented and then the internal pointer will jump to the memory Address specified in
the “Jump to Address If Counter Not Zero” command. This sequence will repeat until the
value in the counter reaches zero. The following demonstrates how this maybe used:

Address (dec) Command

00000000 Set Counter (value = 25),
00000002 Display Image from Memory Card (image1),
00000012 Delay(10ms),
00000015 Display Image from Memory Card (image2),
00000025 Delay(10ms),
 …,
00000119 Display Image from Memory Card (image10),
00000129 Delay(10ms),
00000132 Decrement Counter
00000134 Jump to Address if Counter Not Zero (Address = 00000002)

Note : The above example is typical of how a series of commands might be loaded into
the memory card and then executed by using the Run Program from Memory Card
command. The commands would offcourse be the series of hex codes.

www.DataSheet4U.com

www.4dsystems.com.au 50

2.4.13 Decrement Counter (09hex) (memory card command only)

Syntax : cmd, value

cmd : 08hex

Description : Decrements the counter. See detailed description on how this
command can be used effectively in the Set Counter command section.

www.DataSheet4U.com

www.4dsystems.com.au 51

2.4.14 Jump to Address If Counter Not Zero (0Ahex) (memory
card command only)

Syntax : cmd, Address(Umsb:Ulsb:Lmsb:Llsb)

cmd : 0Ahex

Address(Umsb:Ulsb:Lmsb:Llsb): A 4 byte (32 bit) memory jump address if the
counter is not zero.

Description : If the internal counter is not zero the program pointer will jump to
the specified address. If the counter is zero then it will continue executing the
next command. Please see detailed description on how this command can be
used effectively in the Set Counter command section.

www.DataSheet4U.com

www.4dsystems.com.au 52

2.4.15 Jump to Address (0Bhex) (memory card command only)

Syntax : cmd, Address(Umsb:Ulsb:Lmsb:Llsb)

cmd : 0Bhex

Address(Umsb:Ulsb:Lmsb:Llsb): A 4 byte (32 bit) memory jump address.

Description : This command will force the internal 32 bit program memory
pointer to jump unconditionally to the specified address and start executing
commands from there.

www.DataSheet4U.com

www.4dsystems.com.au 53

2.4.16 Exit Program from Memory Card (0Chex)

Syntax : cmd

cmd : 0Chex

Description : This command forces the program to stop executing from the
memory card and ready to accept and execute commands from the host via the
serial interface. When the internal program memory pointer encounters this
command it will force the command execution from memory card to stop. It can
also be sent via the serial port while the program is running and commands are
being executed from the memory card.

www.DataSheet4U.com

www.4dsystems.com.au 54

NOTES:
Object : Those commands that can be recalled from the memory card at any time by the host

and displayed on the screen using the “Display Object from Memory Card”
command.

Memory:Those commands that can reside and be executed from inside the memory card.

Summary of Commands Executable from Memory Card

 Command Object Memory
(B) Set Background Colour √ √
(b) Place Text button √ √
(C) Draw Circle √ √
(E) Erase Screen √ √
(F) Font Size √ √
(G) Draw TrianGle √ √
(L) Draw Line √ √
(O) Opaque or Transparent Text √ √
(p) Set pen Size √ √
(r) Draw rectangle √ √
(S) Place String of ASCII Text (unformatted) √ √
(s) Place string of ASCII Text (formatted) √ √
(T) Place Text Character (formatted) √ √
(t) Place text Character (unformatted) √ √
(Y) OLED DisplaY Control functions √
($S) Scroll Control √
(@I) Display Image/Icon from Memory Card √ √
(07hex) Delay (in milliseconds) √
(08hex) Set Counter √
(09hex) Decrement Counter √
(0Ahex) Jump to Address if Counter not Zero √
(0Bhex) Jump to Address √
(0Chex) Exit Program from Memory Card √

www.DataSheet4U.com

www.4dsystems.com.au 55

2.5 Serial Interface (TTL)
The µOLED needs to be connected via a serial link to a host system. The host uses
this serial link to send commands to the µOLED so that characters and graphics can
be displayed on the screen. Use the signal pin-outs as well as the application
example shown in the following section for correct connection to the host.

Please note that the serial connection (RX/TX) is at TTL levels (0 – 3.3V) and
the logic levels are “high” = 1 = 3.3V, “low” = 0 = 0V. If interfacing to a host
system running at voltage levels greater than 3.6V, then a 1K series resistor
must be inserted between the Host TX and the µOLED RX signal.
Serial Data Format: 8 Bits, No Parity, 1 Stop Bit.

Auto Baud Detect:
As previously mentioned, the µOLED core has an auto-baud detect function which
can operate from 300 baud to 256K baud. Prior to any graphical formatting and
commands being sent to the core, it must first be initialized by sending the ASCII
character ‘U’ (55h) after power-up. This will allow the core to determine and lock on
to the baud rate of the host automatically without needing any further setup.
This must be done every time the core is powered up.

If the host needs to change the baud rate, the µOLED must be powered down and
powered back up again. The “U” command cannot be used to change the baud rate
during the middle of normal usage.

Serial Timing:
Each µOLED command is made up of a sequence of data bytes. Some commands
are a single byte and others are multiple bytes. When a command is sent to the
µOLED and the operation is completed, the µOLED will reply back with a single
acknowledge byte called the ACK (06h). This tells the host that the command was
understood and the operation is completed. It will take the µOLED anywhere
between 1 to several milliseconds to reply back with an ACK, depending on the
command and the operation the µOLED has to perform. If the µOLED receives a
command that it does not understand it will reply back with a negative acknowledge
called the NAK (15h).
For example, if a command has 5 bytes but only 4 bytes are sent, the command will
not be executed and when the next following command bytes are sent the µOLED
will reply back with a NAK for each and every byte it receives. For correct operation
make sure the command bytes are sent in the correct sequence.

Note: No termination character is to be sent at the end of the command sequence.
i.e. don’t send any CR, or Null, or any other end of command bytes.

www.DataSheet4U.com

www.4dsystems.com.au 56

2.6 USB Interface
The µOLED can be interfaced to a PC using a standard USB cable and the 4D
Systems microUSB module (uUSB-MB5) as shown below. The microUSB module
(optional extra), simply connects to the µOLED 5 pin header and captures the USB
data and converts it into serial TTL data. The microUSB modules and drivers are
available from your local 4D distributor. This is an optional extra product and is not
included with the µOLED module.

www.DataSheet4U.com

www.4dsystems.com.au 57

2.7 Personality Module Micro Code (PmmC)

One of the important features of the GOLDELOX-MD1 module that drives the
uOLED-160-GMD1 is the ability to upload its onboard GOLDELOX processor with a
micro-Code firmware which allows the module to take on a new personality. This is
referred to as Personality Module Micro Code (PmmC). The benefits of this are as
follows:

• Allows the module to be easily upgraded by the user at any time with PmmC
files as further enhancements are made in the future. This allows the user to
benefit from those latest features.

• Allows the user to upload a new Operating System to change the device from
a serial command driven platform into a high level language platform such as
4DGL. A built-in higher level language such as 4DGL allows user programs to
be run directly within the GOLDELOX processor where the graphics
operations can be performed much faster than sending the commands
serially. This avoids serial bottle necks for those graphics intensive
applications as well as allows the user to take complete control of all of the
internal resources of the module.

The latest PmmC system file for the uOLED-160-GMD1 can be downloaded from:
www.4dsystems.com.au/downloads/micro-OLED/uOLED-160-GMD1/PmmC/

The latest version of PmmCLoader.exe PC software tool can be downloaded from:
www.4dsystems.com.au/downloads/PmmC-Loader/Software/Windows/
and the User Guide can be found here:
 www.4dsystems.com.au/downloads/PmmC-Loader/Docs/Pdf/

www.DataSheet4U.com

www.4dsystems.com.au 58

3. Specifications

The µOLED has the following electrical specifications which must be adhered to at
all times to prevent damage to the device.

Symbol Characteristic Min Typ Max Units
Vdd Supply voltage 3.6V 5V 6.0V V

I Current 10mA 40mA 115mA mA
Deg C Operating temp 0 30 70 C
Tpu Power-up delay 500 1000 mS

i
Display Life Time
(to half intensity)

10,000 15,000 >20,000 hours

3.1 Power Consumption (@ 5.0V Supply)

Current Contrast (section 2.2.22) Notes

13.5mA High, value = 15dec All Pixels OFF (black screen)

115.0mA High, value = 15dec All Pixels ON (white screen)

40.0mA High, value = 15dec Average Usage (screen has text and graphics)

13.5mA Medium, value = 08dec All Pixels OFF (black screen)

110.0mA Medium, value = 08dec All Pixels ON (white screen)

32.0mA Medium, value = 08dec Average Usage (screen has text and graphics)

13.5mA Low, value = 00dec All Pixels OFF (black screen)

41.0mA Low, value = 00dec All Pixels ON (white screen)

18.0mA Low, value = 00dec Average Usage (screen has text and graphics)

10.3mA Low, Medium, High Screen Power Down Command

www.DataSheet4U.com

www.4dsystems.com.au 59

3.2 Host Interface pin-outs

Pin Function

+ +ve Power Supply input: 3.3 to 6.0 Volts D.C

Tx Serial Transmit Data Pin: 0 to 3.3Volt signal levels.

Rx Serial Receive Data Pin: 0 to 3.3Volt signal levels.

- -ve Power Supply input: connect to GND

R Reset Pin: Active Low > 10 micro seconds

www.DataSheet4U.com

www.4dsystems.com.au 60

3.3 Mechanical Details

The µOLED module footprint is 52mm x 32mm x 8.8mm.

www.DataSheet4U.com

www.4dsystems.com.au 61

3.4 Circuit Diagram

www.DataSheet4U.com

www.4dsystems.com.au 62

3.5 65,536 Colour Bitmap Organisation
The µOLED 65K colour byte is organised as 5 bits for Red(D11, D12, D13, D14,
D15), 6 bits for Green(D5, D6, D7, D8, D9, D10) and 5 bits for Blue(D0, D1, D2,
D3, D4). This will give a combination of 32x64x32 = 65,536 colours. Each colour is
not limited to 32/64 shades. For example a lighter shade of Red can be obtained by
adding a little bit of the Green and a little bit of the Blue. Full Red and full Green will
result in Yellow. Some experimentation will be needed to obtain the desired colour.

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
R
E
D

x

R
E
D

x

R
E
D

x

R
E
D

x

R
E
D

x

G
R
E
E
N
x

G
R
E
E
N
x

G
R
E
E
N
x

G
R
E
E
N
x

G
R
E
E
N
x

G
R
E
E
N
X

B
L
U
E

x

B
L
U
E

x

B
L
U
E

x

B
L
U
E

x

B
L
U
E

x

Example: To Obtain the Colour Yellow

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
R
E
D

1

R
E
D

1

R
E
D

1

R
E
D

1

R
E
D

1

G
R
E
E
N
1

G
R
E
E
N
1

G
R
E
E
N
1

G
R
E
E
N
1

G
R
E
E
N
1

G
R
E
E
N
1

B
L
U
E

0

B
L
U
E

0

B
L
U
E

0

B
L
U
E

0

B
L
U
E

0

www.DataSheet4U.com

www.4dsystems.com.au 63

Example: To Obtain the Colour Magenta

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
R
E
D

1

R
E
D

1

R
E
D

1

R
E
D

1

R
E
D

1

G
R
E
E
N
0

G
R
E
E
N
0

G
R
E
E
N
0

G
R
E
E
N
0

G
R
E
E
N
0

G
R
E
E
N
0

B
L
U
E

1

B
L
U
E

1

B
L
U
E

1

B
L
U
E

1

B
L
U
E

1

Example: To Obtain the Colour White

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
R
E
D

1

R
E
D

1

R
E
D

1

R
E
D

1

R
E
D

1

G
R
E
E
N
1

G
R
E
E
N
1

G
R
E
E
N
1

G
R
E
E
N
1

G
R
E
E
N
1

G
R
E
E
N
1

B
L
U
E

1

B
L
U
E

1

B
L
U
E

1

B
L
U
E

1

B
L
U
E

1

www.DataSheet4U.com

www.4dsystems.com.au 64

3.6 256 Colour Bitmap Organisation
The µOLED 256 colour byte is organised as 3 bits for Red (D5, D6, D7), 3 bits for
Green (D2, D3, D4) and 2 bits for Blue (D0, D1). This will give a combination of
8x8x4 = 256 colours. Each colour is not limited to 4/8 shades. For example a lighter
shade of Red can be obtained by adding a little bit of the Green and a little bit of the
Blue. Full Red and full Green will result in Yellow. Some experimentation will be
needed to obtain the desired colour.

D7 D6 D5 D4 D3 D2 D1 D0

RED2 RED1 RED0 GREEN2 GREEN1 GREEN0 BLUE2 BLUE1

Example: To Obtain the Colour Yellow

Example: To Obtain the Colour Magenta

Example: To Obtain the Colour White

D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 1 1 1 1 1

D7 D6 D5 D4 D3 D2 D1 D0

1 1 1 0 0 0 1 1

D7 D6 D5 D4 D3 D2 D1 D0

1 1 1 1 1 1 1 1

www.DataSheet4U.com

www.4dsystems.com.au 65

3.7 Power-Up Reset

When the µOLED comes out of a power up reset it initialises the Graphics RAM and
the internal Display registers. Allow up to 500ms before attempting to communicate
with the µOLED. The power up sequence of events should be as follows:

 Allow 500ms after power-up for µOLED to settle. Do not attempt to
communicate with the µOLED during this period. The µOLED may send
garbage on its Tx Data line during this period, the host should disable its Rx
Data reception.

 Within 100ms of powering up, the host should make sure it has its Tx line
pulled HIGH. If the host Tx (µOLED Rx) is LOW or floating after the 100ms
period, the µOLED may misinterpret this as the START bit and lock onto
some unknown Baud Rate. If the host has a slow wake up time, i.e. less than
100ms, its Tx line maybe floating. This can be easily resolved by adding a pull
up resistor on the host Tx line which will ensure the µOLED does not
encounter a false START bit. The pull up resistor can be any value within 10K
to 100K.

 The host transmits the ASCII ‘U’ (capital U, 55hex) as the first command so
the µOLED can lock onto the host’s serial baud rate. This is called “Auto
Baud”. The µOLED will respond with an ‘ACK’ (06h). See section 2.5

 The µOLED is now ready to accept screen function commands from the host.
 Note: The µOLED will wait up to 5 seconds with its screen blank for the host

to transmit the Auto-Baud character. If the host has not transmitted the Auto
Baud character by the end of this period the µOLED will then display its
splash screen. If the host has transmitted the Auto Baud character the screen
will remain blank. This wait period is for those customer specific applications
where the splash screen is undesired.

www.DataSheet4U.com

www.4dsystems.com.au 66

4. Appendix

4.1 Available Models:

 uOLED-160-GMD1 (with uSD memory card adaptor)

Please check stock availability with your local supplier.

www.DataSheet4U.com

www.4dsystems.com.au 67

4.2 Related Products:

 uUSB-MB5
o microUSB module, USB to Serial Bridge
o Standard USB miniB connector
o 10 pin header provides the following signals:

 5V, 3.3V, GND, Tx, Rx, Suspend,
 DTR, CTS, RTS, GND

o 5 Volts supply @ 500mA, 3.3 Volts supply @ 100mA
o Additional flow control signals, DTR, CTS, RTS
o Available with an additional 5 pin header for the µOLED interface

 uSD-64Mb
o 64Mb micro-SD Memory Card
o Extremely small footprint.
o Measuring only 15mm x 11mm x 0.8mm
o The uSD-64Mb memory card can be used to store images, animations,

text or any graphics objects.

 PmmC System File for the uOLED-160-GMD1
o The latest PmmC system file for the uOLED-160-GMD1 can be

downloaded from:
www.4dsystems.com.au/downloads/micro-OLED/uOLED-160-GMD1/PmmC/

 PmmC Loader PC Software Tool
o Latest version of PmmC-Loader software tool can be downloaded from:

www.4dsystems.com.au/downloads/PmmC-Loader/Software/Windows/
and the User Guide can be found here:
 www.4dsystems.com.au/downloads/PmmC-Loader/Docs/Pdf/

 Software Utility Tools (free download)
o Range of PC based software utility tools for Windows
o Download images/text/animations into the uOLED-128-GMD1 micro-SD

memory card.
o For available software tools user guides please visit the µOLED web-

page of your local distributor or visit the 4D Systems website
www.4dsystems.com.au

www.DataSheet4U.com

www.4dsystems.com.au 68

4.3 Auto Demo/Slide Show:

The uOLED-160-GMD1 modules are equipped to accept memory cards.
There is a 2 pin jumper at the back of the unit (on the component side).
Upon power-up, if the shunt is inserted and there are preloaded objects in the
uSD memory card such as images/text/animations, the uOLED-160-GMD1
module will automatically play/display these from the memory card. The
memory cards are supplied as blank separate products and as such the user
will have to upload a slide show composition to the card to benefit from this
auto play feature.

For normal usage this jumper must be removed.

4.4 Precautions:

 Avoid having a White Background. The more pixels that are lit up, the more
the µOLED module will consume current. A full white screen will have the
highest power consumption.

 Avoid displaying objects or text on White Backgrounds. This will cause a
smearing effect which is inherent to all OLED displays. Instead try a shaded
mixed colour as the background or better still a black background. Ideally
have mixed coloured objects/text/icons on a black background.

 Avoid having to display the same image/object on the screen for lengthy
periods of time. This will cause a burn-in which is a common problem with all
types display technologies. Blank the screen after a while or dim it very low by
adjusting the contrast. This can be achieved via the “OLED Display Control
Functions” command (section 2.1.22). Better still, implement a screen saver
feature by using the scroll screen command.

 Observe the Power-Down procedure (section 2.2.22). The µOLED module
automatically takes care of the proper Power-Up sequence.

4.5 Help and Other Information:

 Assistance with latest information and downloads visit the µOLED product
web-page of your distributor.

 Questions and technical support please email support@4dsystems.com.au
 All related product information can be downloaded from

www.4dsystems.com.au/downloads/micro-OLED/uOLED-160-GMD1

www.DataSheet4U.com

