QL901M QuickMIPS[™] Data Sheet

••••• QuickMIPS ESP Family

1.0 Overview

The QuickMIPS[™] Embedded Standard Products (ESPs) family provides an out-of-the box solution consisting of the QL901M QuickMIPS chip and the QuickMIPS development environment. The development environment includes a Reference Design Kit (RDK) with drivers, real-time operating systems, and QuickMIPS system model. With the RDK, software and hardware engineers can evaluate, debug, and emulate their system in parallel.

CPU

- High-performance MIPS 4Kc processor runs up to 133 MHz in .25µ (173 Dhrystone MIPS)
- 1.3 Dhrystone MIPS per MHz
- MDU supports MAC instructions for DSP functions
- 16 Kbytes of Instruction Cache (4-way set associative)
- 16 Kbytes of Data Cache (4-way set associative) with lockout capability per line

High-Performance Bus (AMBA AHB)

- High-performance 32-bit AMBA AHB bus standard for high-speed system bus running at half the CPU clock
- High-bandwidth memory controller for SDRAM, SRAM, and EPROM
- SDRAM support for standard SDRAMs up to 256 MBytes with auto refresh, up to 4 banks non-interleaved
- Support for PC100 type memories with up to two chip enables
- EPROM controller for boot code
- 8-bit, 16-bit, and 32-bit device width support

- 16 Kbytes of on-chip, high-speed SRAM for use by multiple AHB Bus Masters
- 32-bit 66/33 MHz PCI Host and Satellite (Master/Target) operation with DMA channels and FIFO for full bandwidth
- Two MAC10/100s with MII ports connect easily to external transceivers/PHY devices
- One AHB 32-bit master port/one AHB 32-bit slave port to Programmable Fabric
- Global System Configuration and Interrupt
 Controller

Peripheral Bus (AMBA APB)

- 32-bit APB runs at half the CPU clock frequency (the same as the AHB clock)
- Three APB slave ports in the programmable fabric
- Two serial ports (one with Modem control signals and one with IRDA-compliant signals)
- Four general-purpose 32-bit timer/counters on one APB port

Figure 1: Embedded QuickMIPS Block Diagram

Programmable Via-Link Fabric

- Embedded memory configurable as RAM or FIFO
- 252 programmable I/Os
- High-speed dynamically configurable ECUs enable hardware implementation of DSP functions with 3-bit instructions
- Fabric I/O standard options: LVTLL, LVCMOS, PCI, GTL+, SSTL, and SSTL3

ires

Maximum System Gates*	Logic Arrays Columns x Rows	Logic Cells	Maximum Flip-Flops	RAM Blocks**	RAM Bits	ECU Blocks***
536,472	72x28	2,016	4,788	36	82,944	18
* 75K ASIC gates		** Possible Configurations: 128x18, 256x9, 512x4, or 1024x2			*** 8x8 Multiply, 16-bit carry-add	

On-Chip Debug Blocks

- On-chip instrumentation blocks for debug and trace capabilities
- Configurable Logic Analysis Module (CLAM) blocks with IP in programmable fabric allow user to look at selected signals from IP function in fabric

Development and Programming

- Complete QuickLogic software suite of development tools enables rapid implementation of IP functions for complete SOC solution
 - Complete chip simulation of user-defined programmable-logic IP functions with the processor, caches, memory, and all hardwired functions on-chip
 - Synthesis of IP functions into the programmable fabric
 - Place-and-Route tool for efficient implementation of IP functions in the programmable fabric
 - Extensive timing analysis of IP functions with the rest of the chip to ensure full chip functionality
 - Programming and debug support of the entire chip through JTAG port
 - Integrated debug support for the MIPS 4Kc processor
- MIPS Language and Debug tool support for the MIPS 4Kc processor from approved third party MIPS vendors
- ECU support for a variety of DSP algorithms and functions
- QuickLogic library of standard IP functions for plug-and-play implementation of standard IP functions in the programmable fabric for a complete SOC solution
- QuickMIPS Reference Design Kit (RDK) provides a complete Board Support Package for chip evaluation
- Programming and debug support
- Device-driver support for standard IP functions
- Boot-up code and diagnostics

Design Tools Platform Support

- QuickWorks, the complete product suite, supports Windows 95/98/NT/2000. It includes SpDE (layout including place & route, timing analysis, and back-annotation), Synplify-Lite (synthesis), Turbo Writer (HDL-enhanced text editor), etc.
- QuickTool supports Solaris. It has only the layout software (SpDE).
- QuickMIPS simulation is enabled through either:
 - a SmartModel (VMC-generated model, encrypted RTL, relatively slow). This option supports both Verilog and VHDL.
 - SaiLAhead co-verification platform from Saivision (very fast C model). This option only supports Verilog (no VHDL) at this time.

			Solaris	Windows NT	Windows 2000	Linux
Synthesis	Synplify-Lite			X (in QuickWorks)	X (in QuickWorks)	
Layout	SpDE		X (in QuickTool)	X (in QuickWorks)	X (in QuickWorks)	
Simulation	SmartModel	ModelSim/VCS	X	X		
		Verilog XL/NC	X			
	Soil Abood	ModelSim	X		X	х
	GaiLAlleau	Verilog XL/NC	X			Х

	Table 2:	Design	Tools	Platform	Support
--	----------	--------	-------	----------	---------

SaiLAhead Platform

The "SaiLAhead for QuickMIPS" co-verification platform is tailored for QuickMIPS devices. It enables simulation of user-defined logic functions that are to be implemented in the QuickMIPS programmable fabric with the rest of the QuickMIPS fixed system logic functions, which verifies overall QuickMIPS functionality. Simultaneously, the SaiLAhead platform has a powerful, feature-rich debugger, which enables QuickMIPS users to develop and debug their application code (C and MIPS assembly). The SaiLAhead platform accelerates the speed of simulation of the QuickMIPS device in a simulator such as NC-Verilog by using C models for various fixed system logic functions in the QuickMIPS device. This platform also provides a standalone C environment offering additional speed-up of simulation of the entire QuickMIPS design. Please refer to http://www.saivision.com for more information on the SaiLAhead platform.

2.0 Embedded Computational Units (ECUs)

Traditional programmable logic architectures do not implement arithmetic functions efficiently or effectively. These functions require high logic cell usage while garnering only moderate performance results. By embedding a dynamically reconfigurable computational unit, the QuickMIPS chip can address various arithmetic functions efficiently and effectively providing for a robust DSP platform. This approach offers greater performance than traditional programmable logic implementations. The ECU block is ideal for complex DSP, filtering, and algorithmic functions. The QuickMIPS architecture allows functionality above and beyond that achievable using DSP processors or programmable logic devices. The embedded block is implemented at the transistor level with the following block diagram in Figure 2.

Figure 2: Embedded Computational Unit (ECU) Block Diagram

Function	Description	Slowest Speed Grade	Fastest Speed Grade
	16 bit	8 ns	2.5 ns
Adder	32 bit	10 ns	5.6 ns
	64 bit	12 ns	6.7 ns
Multiplier	8 x 8	10 ns	4.3 ns
Manpier	16 x 16	12ns	6.7 ns
System Clock		200 MHz	400 MHz

Table 3: ECU Comparisons

Implementation of the equivalent ECU block as HDL in a programmable logic architecture requires 205 logic cells with a 10 ns delay in a -4 speed grade. There are a maximum of 18 ECU blocks and a minimum of 10 ECU blocks in the QuickMIPS chip. The ECU blocks are placed next to the RAM circuitry for efficient memory/instruction fetch and addressing for DSP algorithmic implementations. Eighteen 8-bit Multiply Accumulate functions can be implemented per cycle for a total of 2.6 billion MACs/s when clocked at 144 MHz. Further Multiply Accumulate functions also can be implemented in the programmable logic.

The ECU block can be configured for eight arithmetic functions via an instruction as shown in **Table 4**. The modes for the ECU block are dynamically reprogrammable through the Instruction Set Sequencer.

Ins	truction	Set	Operation
0	0	0	Multiply
0	0	1	Multiply - Add
0	1	0	Accumulate
0	1	1	Add
1	0	0	Multiply (registered)
1	0	1	Multiply - Add (registered)
1	1	0	Multiple - Accumulate
1	1	1	Add (registered)

The Sequencer can be a variety of logic operators, such as a FIFO loaded with various algorithms, an external software driven algorithm, or an internal state machine. This flexibility allows the designer to reconfigure the ECU for algorithmic intensive applications in which functions change on the next clock cycle, such as adaptive filtering.

3.0 Design Flow

The QuickMIPS design flow, similar to ASIC design flow, is shown in Figure 3.

Figure 3: QuickMIPS Hardware/Software Co-Development Flow

A typical design process goes through the flow shown above. After passing postlayout simulation, QuickMIPS devices can be programmed for testing on the hardware testbench. Because QuickLogic devices are One-Time-Programmable (OTP), it is recommended that these devices are programmed only after they pass postlayout simulation to minimize development cost and reduce bench debugging time.

The QuickMIPS design flow is supported by QuickLogic's QuickWorks[™] (for Microsoft Windows) and QuickTool[™] (for UNIX) design software suites version 9.2 and up. Many third-party synthesis and simulation tools are also supported. The QuickWorks software suite can be downloaded from QuickLogic's Web site (<u>www.quicklogic.com</u>). Please contact a QuickLogic sales representative to obtain a license or get QuickTool software.

Both Verilog and VHDL design methodologies are fully supported. The flow described below assumes that the QuickWorks or QuickTool 9.2 software has been installed.

3.1 Simulation

QuickLogic provides the system simulation environment. This environment includes the QuickMIPS VMC model, ROM and RAM models, reset and clock generation, boot code, and sample programs (read and write to memory). This environment allows customers to focus on their RTL code and not have to worry about bringing up the system simulation environment.

The simulation behavior of the QuickMIPS ESP core is provided by the VMC model. VMC (Verilog Model Compiler) is a tool from Synopsys that compiles Verilog RTL (Register-Transfer-Level) code into binary code. A VMC model (the binary code) implements the same logic functions as the RTL code while providing IP protection. In simulation, it communicates to the simulator via PLI (Programmable Language Interface) for Verilog or FLI (Foreign Language Interface) for VHDL.

Because of the VMC model, the Silos III Verilog simulator and Active-HDL VHDL simulator bundled in QuickWorks are not supported in QuickMIPS simulation flow. A third-party simulator must be used. The currently supported simulators include:

- Verilog simulators: Verilog-XL, NC Verilog, VCS, ModelSim
- VHDL simulators: VSS, ModelSim

3.2 Synthesis

Synthesis is the process of turning the HDL code describing the fabric behavior into gates. Three thirdparty synthesis tools are supported:

- Synplify-Lite from Synplicity (bundled in QuickWorks)
- Exemplar Leonardo Spectrum
- Synopsys Design Compiler

Refer to the corresponding QuickNotes on the QuickLogic support Web site for further information.

3.3 Layout

Layout is performed in SpDE, which is the QuickLogic layout environment in both QuickWorks and QuickTool. The input to the layout is a netlist from synthesis. SpDE can accept netlists in both the QuickLogic format (.qdf) and industry standard EDIF.

3.4 Programming

Once it has been determined that the design is functionally correct and meets the desired timing constraints, run the sequencer and save the <design>.chp file. You can either import the design into QuickPro if you want to program it yourself, or submit the file to QuickLogic's WebASIC service to obtain programmed devices overnight at the following URL: www.quicklogic.com/webasic.

QuickPro is the software to program a .chp file into QuickLogic devices. It is freeware and does not require a license. You can download it from the QuickLogic Web site. It runs only on Microsoft Windowsbased PCs. To program your device, you also need a programmer called DeskFab and a programming adapter for the package you are using. Please contact a QuickLogic sales representative when you are handling the programming.

4.0 AC Characteristics at Vcc = 2.5V, TA=25° C (K=0.74)

The AC Specifications, Logic Cell diagrams, and waveforms are provided below.

Figure 4: QuickMIPS Logic Cell

Symbol	Parameter	Propagation
Logic Cel	İs	delay (ns)
tPD	Combinatorial delay: time taken by the combinatorial circuit to output	0.257
tSU	Setup time: the amount of time the synchronous input of the flip flop must be stable before the active clock edge	0.22
thl	Hold time: the amount of time the synchronous input of the flip flop must be stable after the active clock edge	0
tCLK	Clock to out delay: the amount of time the synchronous input of the flip flop must be stable after the active clock edge	0.255
tCWHI	Clock High Time: the length of time that the clock stays high	0.46
tCWLO	Clock Low Time: the length of time that the clock stays low	0.46
tSET	Set Delay: amount of time between when the flip flop is "set" (high) and when Q is consequent "set" (high)	0.18
tRESET	Reset Delay: amount of time between when the flip flop is "reset" (low) and when Q is consequent "reset" (low)	0.09
tSW	Set Width: length of time that the SET signal remains high (low if active low)	0.3
tRW	Reset Width: length of time that the RESET signal remains high (low if active low)	0.3

Table 5: Logic Cells

Figure 5: Logic Cell Flip Flop

Figure 6: Logic Cell Flip Flop Timings - First Waveform

Figure 7: Logic Cell Flip Flop Timings - Second Waveform

Figure 8: QuickMIPS Global Clock Structure

Table 6: QuickMIPS Clock Perfor

	Clo	ck Performance
	Global	Dedicated
Macro	1.51 ns	1.59 ns
I/O	2.06 ns	1.73 ns
Skew	0.55 ns	0.14 ns

Table 7: QuickMIPS Input Register Cell

Symbol Input Register Cell Only	Parameter	Propagation delay (ns)
tGCKP	Global clock pin delay to quad net	1.34
GCKB	Global clock buffer delay (quad net to flip flop)	0.56

Figure 9: Global Clock Structure Schematic

Figure 10: RAM Module

Table 8:	RAM	Cell	Synchronous	Write	Timing
----------	-----	------	-------------	-------	--------

Symbol	Parameter	Propagation
RAM Cell	Synchronous Write Timing	delay (ns)
tSWA	WA setup time to WCLK: the amount of time the WRITE ADDRESS must be stable before the active edge of the WRITE CLOCK	0.675
tHWA	WA hold time to WCLK: the amount of time the WRITE ADDRESS must be stable after the active edge of the WRITE CLOCK	0
tSWD	WD setup time to WCLK: the amount of time the WRITE DATA must be stable before the active edge of the WRITE CLOCK	0.654
tHWD	WD hold time to WCLK: the amount of time the WRITE DATA must be stable after the active edge of the WRITE CLOCK	0
tSWE	WE setup time to WCLK: the amount of time the WRITE ENABLE must be stable before the active edge of the WRITE CLOCK	0.623
tHWE	WE hold time to WCLK: the amount of time the WRITE ENABLE must be stable after the active edge of the WRITE CLOCK	0
tWCRD	WCLK to RD (WA=RA): the amount of time between the active WRITE CLOCK edge and the time when the data is available at RD	4.38

Figure 11: RAM Cell Synchronous Write Timing

	, , , , , , , , , , , , , , , , , , ,	0
Symbol	Parameter	Propagation
RAM Cell	Synchronous Read Timing	delay (ns)
tSRA	RA setup time to RCLK: the amount of time the READ ADDRESS must be stable before the active edge of the READ CLOCK	0.686
tHRA	RA hold time to RCLK: the amount of time the READ ADDRESS must be stable after the active edge of the READ CLOCK	0
tSRE	RE setup time to WCLK: the amount of time the READ ENABLE must be stable before the active edge of the READ CLOCK	0.243
tHRE	RE hold time to WCLK: the amount of time the READ ENABLE must be stable after the active edge of the READ CLOCK	0
tRCRD	RCLK to RD: the amount of time between the active READ CLOCK edge and the time when the data is available at RD	4.38
RAM Cell	Asynchronous Read Timing	
rPDRD	RA to RD: amount of time between when the READ ADDRESS is input and when the DATA is output	2.06

Table 9	· RAM	Cell	Synchronous	&	Asynchronous	Read	Timina
	·	OCII	Cyncinolious	C.	Asynchionous	Reau	rinnig

Figure 12: RAM Cell Synchronous & Asynchronous Read Timing

Figure 13: QuickMIPS Cell I/O

:

Symbol	Parameter	Propagation
Input Reg	ister Cell Only	delay (ns)
tISU	Input register setup time: the amount of time the synchronous input of the flip flop must be stable before the active clock edge	3.12
tlH	Input register hold time: the amount of time the synchronous input of the flip flop must be stable after the active clock edge	0
tICLK	Input register clock to Q: the amount of time taken by the flip flop to output after the active clock edge	1.08
tIRST	Input register reset delay: amount of time between when the flip flop is "reset"(low) and when Q is consequently "reset" (low)	0.99
tIESU	Input register clock enable setup time: the amount of time "enable" must be stable before the active clock edge	0.37
tIEH	Input register clock enable time: the amount of time "enable" must be stable after the active clock edge	0

Tabl	е	10:	Input	Register	Cel
iubi		10.	mput	register	001

Symbol	Parameter	Propagation delay (ns)	
Standard Input Delays	To get the total input delay and this delay to tISU		
tSID (LVTTL)	LVTTL input delay: Low Voltage TTL for 3.3V applications	0.34	
tSID (LVCMOS2)	LVCMOS2 input delay: Low Voltage CMOS for 2.5V and lower applications	0.42	
tSID (GTL+)	GTL+ input delay: Gunning Transceiver Logic	0.68	
tSID (SSTL3)	SSTL3 input delay: Stub Series Terminated Logic for 3.3V	0.55	
tSID (SSTL2)	SSTL2 input delay: Stub Series Terminated Logic for 2.5V	0.607	

Table 11: Standard Input Delays

Figure 15: QuickMIPS Input Register Cell Timing

Symbol	Parameter	Propagation
Output Re	delay (ns)	
tOUTLH	Output Delay low to high (10% of H)	0.40
tOUTHL	Output Delay high to low (90% of H)	0.55
tPZH	Output Delay 3-state to high (10% of Z)	2.94
tPZL	Output Delay 3-state to low (90% of Z)	2.34
tPHZ	Output Delay high to 3-state	3.07
tPLZ	Output Delay low to 3-state	2.53
tCO	Clock to out delay	3.15 (fast slew) 10.2(slow slew)

Figure 17: QuickMIPS Output Register Cell Timing

Table 13: VCCIO = 3.3 V

	Fast Slew	Slow Slew
Rising Edge	2.8 V/ns	1.0 V/ns
Falling Edge	2.86 V/ns	1.0 V/ns

Table 14: VCCIO = 2.5 V

	Fast Slew	Slow Slew		
Rising Edge	1.7 V/ns	0.6 V/ns		
Falling Edge	1.9 V/ns	0.6 V/ns		

Table 15: ESP PLL Timing Parameters

Jitter	Standby Current (μa)	Frequency Range	Minimum Lock Frequency	Duty Cycle	Crystal Accuracy	Lock Time
<200ps	157 μa	40-66.6 MHz	25 MHz	60/40	200 PPM	10 μs

PCI_CLK		ſ	
			Tvat►
PCI_AD(output)[31:0]			X
PCI_C_BE_n(output)[3:0]			Χ
PCI_PAR(output)			
PCI_FRAME_n(output)			
PCI_IRDY_n(output)			
PCI_TRDY_n(output)			
PCI_STOP_n(output)			
PCI_DEVSEL_n(output)			
PCI_SERR_n_			
PCI_PERR_n(output)			
			Tval(ptp) [►]
PCI_REQ_n			
	⊢ T	su 🔷	Th
PCI_AD(input)[31:0]	X		
PCI_C_BE_n(input)[3:0]	X		
PCI_PAR(input)_			\
PCI_FRAME_n(input)_			\
PCI_IRDY_n(input)			\
PCI_TRDY_n(input)			
PCI_STOP_n(input)			\
PCI_DEVSEL_n(input)_			\
PCI_IDSEL_			\
PCI_PERR_n(input)			
PCI_LOCK_n_			
PCI_GNT_n	I Tsu(p	itp)	<u></u>

Figure 18: PCI Waveforms

Doromotor ^a		66 MHz		33 MHz		Unite	
	i arameter		Max	Min	Max	Units	
Тсус	PCI_CLK Cycle Time	15		30		ns	
Thigh	PCI_CLK High Time	6		11		ns	
Tlow	PCI_CLK Low Time	6		11		ns	
-	PCI_CLK Slew Rate	1.5	4	1	4	V/ns	
Tval	PCI_CLK to Signal Valid Delay	2	6	2	11	ns	
Tval (ptp)	PCI_CLK to Signal Valid Delay point-to-point signals ^b	2	6	2	12	ns	
Ton	Float to Active Delay	2		2		ns	
Toff	Active to Float Delay		14		28	ns	
Tsu	Input Setup Time to PCI_CLK bused signals	3		7		ns	
Tsu (ptp)	Input Setup Time to PCI_CLK point-to-point	5		10, 12		ns	
Th	Input Hold Time from PCI_CLK	0		0		ns	
Trst	Reset Active Time after power stable	1		1		ms	
Trst-clk	Reset Active Time after PCI_CLK stable	100		100		μs	
Trst-off ^c	Reset Active to output float delay		40		40	ns	
Trhfa	PCI_RST_n high to first configuration access	2		2		clocks	
Trhff	PCI_RST_n high to first PCI_FRAME_n assertion	5		5		clocks	

Table 16: PCI AC Timing

a. All PCI pins are synchronous to the PCI clock except for PCI_RST_n and PCI_INTA_n.

b. Point-to-point signals include PCI_REQ_n and PCI_GNT_n.

c. All output drivers must be 3-stated when PCI_RST_n is active.

Figure 19: Ethernet MAC Transmit Interface Waveforms

	Parameter	Min	Max	Units
t _{en_c2q}	Time from the rising clock edge of TXCLK to the change in TXEN		8.0	ns
t _{data_v}	Time from the rising clock edge of TXCLK to all data signals having valid stable values		9.0	ns
t _{data_h}	Time in which the output data is still valid after the rising clock edge of TXCLK	0.0		ns

Table 17: Ethernet MAC Transmit Interface AC Timing

Figure 20: Ethernet MAC Receive Interface Waveforms

Table 18:	Ethernet	MAC Recei	ve Interface	AC TI	ming	

	Parameter	Min	Мах	Units
t _{dv_s}	RXDV (receive data valid) to RXCLK setup time	2.0		ns
t _{dv_h}	RXDV (receive data valid) from RXCLK hold time	2.0		ns
t _{er_s}	RXER (receive data error) to RXCLK setup time	2.0		ns
t _{er_h}	RXER (receive data error) from RXCLK hold time	2.0		ns
t _{data_s}	RXD (receive data) to RXCLK setup time	2.0		ns
t _{data_h}	RXD (receive data) from RXCLK hold time	2.0		ns

The timing of the MII Management Interface listed below depends on the system clock frequency. The numbers displayed are correct for a processor clock frequency of 100 MHz and an AMBA bus system clock frequency of 50 MHz. Note that for a system clock of 133 MHz, the mandatory MDC minimum clock cycle of 400ns for some PHY devices will not be met.

igure 21.	1.m management	merjace	watejonno	(10)2

	Parameter	Min	Мах	Units
t _{mdc_cyc}	MDC cycle time	520		ns
t _{mdc_h}	MDC high time	260		ns
t _{mdc_l}	MDC low time	260		ns
t _{mdozv}	MDIO output high impedance to valid time from rising edge of MDC	40		ns
t _{mdovz}	MDIO output valid to high impedance time from rising edge of MDC	40		ns
t _{mdos}	MDIO output valid before MDC rising edge	440		ns
t _{mdovh}	MDIO output valid from MDC rising edge	40		ns

Table 19: MII Management Interface AC Timing (1 of 2)

Table 20: MII Mana	gement Interface	AC Timing	(2 of 2)	ĺ
--------------------	------------------	-----------	----------	---

Parameter		Min	Max	Units
t _{mdis}	MDIO setup time to MDC	25		ns
t _{mdih}	MDIO hold time to MDC	0		ns

Table 21: SDRAM AC Timing

	Parameter ^a	Min	Мах	Units
Тсо	DATA, ADDR, SD_RAS_n, SD_CAS_n, SD_CS_n[3:0], SD_DQM[3:0], SD_WE_n, SD_CKE[3:0]	2	8	ns
Tsu	DATA	12		ns
Th	DATA	2		ns

a. All timing is measured with respect to the rising edge of SD_CLKIN. All measurements are based on I/Os with 35 pF load except for SD_CLKOUT, which has a load of 15 pF.

Figure 24: SRAM Read Waveforms

22

Figure 25: SRAM Write Waveforms

Table 22 and **Table 23** below list the synchronous and asynchronous timing for the QuickMIPS Fabric interface port. Note the following with regards to the fabric timing:

- 1 fb_int is asynchronous and is synchronized inside the core.
- 2 fb_bigendian is a static signal and reflects the value on the CPU_BIGENDIAN pin.
- 3 pm_* and si_* signals are synchronous to the internal MIPS clock which is twice the hclk frequency. Because this internal clock is not brought to the outside, these signals are considered asynchronous.
- 4 All AF_PCI_* signals are static.

Table 22:	QuickMIPS	Interface	Port	Synchronous	Timing	(to hclk)
-----------	-----------	-----------	------	-------------	--------	-----------

	Setup Time (Tsu)	Hold Time (Thold)	Clock-to-out Time (Tco)				
hresetn	x ^a	х	5.11				
Fabric AHB Slave Ports							
ahbs_hsel	Х	Х	10.73				
ahbs_haddr	Х	Х	10.56				
ahbs_htrans	Х	Х	11.35				
ahbs_hwrite	Х	Х	8.32				
ahbs_hsize	Х	Х	9.50				
ahbs_hburst	Х	Х	9.12				
ahbs_hprot	Х	Х	9.66				
ahbs_hwdata	Х	Х	13.07				
ahbs_hrdata	5.94	0	Х				
ahbs_hready_out	9.55	0	Х				
ahbs_hresp	10.39	0	Х				
Fabric AHB Master	Ports						
ahbm_haddr	11.94	0	Х				
ahbm_htrans	11.33	0	Х				
ahbm_hwrite	10.39	0	Х				
ahbm_hsize	10.58	0	Х				
(Sheet 1 of 2)							

	Setup Time (Tsu)	Hold Time (Thold)	Clock-to-out Time (Tco)			
ahbm_hburst	10.79	0	Х			
ahbm_hprot ^b	-	-	Х			
ahbm_hwdata	10.39	0	Х			
ahbm_hrdata	Х	Х	16.28			
ahb_hready_in	X	Х	11.82			
ahbm_hresp	X	Х	9.02			
ahbm_hbusreq	7.40	0	Х			
ahbm_hgrant	X	Х	16.64			
Fabric APB Slave P	Ports					
apbs_paddr	X	Х	4.52			
apbs_pwdata	X	Х	4.66			
apbs_penable	X	Х	2.87			
apbs_pwrite	X	Х	4.13			
apbs_psel0	X	Х	3.80			
apbs_psel1	X	Х	3.43			
apbs_psel2	X	Х	3.25			
apbs_prdata0	7.44	0	Х			
apbs_prdata1	6.79	0	Х			
apbs_prdata2	6.97	0	Х			
Timer Ports						
tm_fbenable	0.23	0	X			
tm_overflow2	Х	Х	4.35			
tm_overflow3	X	Х	4.48			
tm_overflow4	Х	Х	5.00			
(Sheet 2 of 2)						

Table 22: QuickMIPS Interface Port Synchronous Timing (to hclk) (Continued)

a. "x" indicates that this timing delay does not apply to the signal.

b. The ahbm_hprot signal is NOT used by any slave within the standard cell part of the chip. None of the masters besides the processor-AHB-bridge generates this signal. Therefore there is no setup or hold timing for ahbm_hprot.

Start Port	End Port	Propagation Delay (Tprop)		
ahbm_haddr	ahbs_haddr	8.39		
ahbm_haddr	ahbs_hsel	7.71		
ahbm_htrans	ahbs_htrans	6.48		
ahbm_hwrite	ahbs_hwrite	6.21		
ahbm_hsize	ahbs_hsize	6.04		
ahbm_hburst	ahbs_hburst	5.70		
ahbm_hprot	ahbs_hprot	7.07		
ahbm_hwdata	ahbs_hwdata	8.15		
ahbs_hrdata	ahbm_hrdata	5.78		
ahbs_hready_out	ahb_hready_in	5.03		
ahbs_hresp	ahbm_hresp	4.98		
ahbm_hbusreq	ahbm_hgrant	10.14		
ahbs_hresp	ahbm_hgrant	10.50		
apbs_prdata0	ahbm_hrdata	8.28		
apbs_prdata1	ahbm_hrdata	7.51		
apbs_prdata2	ahbm_hrdata	7.57		

Table 23: QuickMIPS Interface Port Asynchronous Timing

•

5.0 DC Characteristics

The DC specifications are provided in Table 24 through Table 26.

Table 24. Absolute Maximum Ratings										
V _{CC} Voltage	-0.5 to 3.6V	DC Input Current	±20 mA							
V _{CCIO} Voltage	-0.5 to 4.6V	ESD Pad Protection	±2000V							
V _{REF} Voltage	2.7V	Storage Temperature	-65°C to +150°C							
Input Voltage	-0.5V to V _{CCIO} +0.5V	Maximum Lead	300°C							
Latch-up Immunity	±100 mA	Temperature	500 C							

Table 24: Absolute Maximum Ratings

Table 25: Operating Range

Symbol	Par	ameter	Indu	strial	Comr	Unit	
			Min	Max	Min	Мах	
VCC	Supply Voltage		2.3	2.7	2.3	2.7	V
VCCIO	I/O Input Toleran	ce Voltage	2.3	3.6	2.3	3.6	V
TA	Ambient Tempera	-40	85	0	70	°C	
TC	Case Temperatur	re					°C
		-4 Speed Grade	0.43	2.16	0.47	2.11	n/a
ĸ	Delay Factor	-5 Speed Grade	0.43	1.80	0.46	1.76	n/a
K		-6 Speed Grade	0.43	1.26	0.46	1.23	n/a
		-7 Speed Grade	0.43	1.14	0.46	1.11	n/a

Table 26: DC Input and Output Levels

	V	V _{REF} V _{IL}		V	н	V _{oL}	V _{он}	I _{OL}	I _{он}	
	V _{MIN}	V _{MAX}	V _{MIN}	V _{MAX}	V _{MIN}	V _{MAX}	V _{MAX}	V _{MIN}	mA	mA
LVTTL	n/a	n/a	-0.3	0.8	2.0	V _{CCIO} -0.3	0.4	24.	2.0	-2.0
LVCMOS2	n/a	n/a	-0.3	0.7	1.7	V _{CCIO} -0.3	0.7	1.7	2.0	-2.0
GTL+	0.88	1.12	-0.3	V _{REF} -0.2	V _{REF} +0.2 V _{CCIO} -0.3		0.6	n/a	40	n/a
PCI	n/a	n/a	-0.3	0.3xV _{CC}	0.5xV _{CC}	V _{CCIO} -0.5	0.1xV _{CC}	0.9xV _C	1.5	-0.5
SSTL2	1.15	1.35	-0.3	V _{REF} -0.18	V _{REF} +0.18	V _{CCIO} +0.3	0.74	1.76	7.6	-7.6
SSTL3	1.3	1.7	-0.3	V _{REF} -0.2	V _{REF} +0.2	V _{CCIO} +0.3	1.10	1.90	9	-8

6.0 Pin Descriptions

 Table 27 defines the QuickMIPS chip pins.

Pin	I/O		Function				
		P	CI Signals				
PCI_AD[31:0]	I/O	PCI Address and Data. PCI consists of a single address more data phases. The Qui The address phase occurs i phase, PCI_AD[31:0] contai and memory, it is a DWORE significant byte, and PCI_AI Write data is stable and vali PCI_TRDY_n is asserted. D	AD[31:0] contain the multiplexed address and data. A bus transaction s phase (or two address phases for 64-bit addresses) followed by one or ckMIPS chip supports both read and write bursts. n the first clock cycle when PCI_FRAME_n is asserted. During the address in a 32-bit physical address. For I/O, this is a byte address; for configuration O (32-bit) address. During data phases, PCI_AD[7:0] contain the least- D[31:24] contain the most-significant byte. id when PCI_IRDY_n is asserted; read data is stable and valid when Data is transferred when both PCI_IRDY_n and PCI_TRDY_n are asserted.				
		Bus Command and Byte Er PCI_C_BE_n[3:0]. During the PCI_C_BE_n[3:0] define the shown).	hables. Bus commands and byte enables are multiplexed on he address phase of a transaction (PCI_FRAME_n is asserted), e bus command as shown in the following table (only valid combinations are				
	10						
		0001					
		0010	I/O Read				
		0011	I/O Write				
		0110	Memory Read				
	1/0	0111	Memory Write				
		1010	Configuration Read				
		1011	Configuration Write				
		1100	Memory Read Multiple				
		1101	Dual Address Cycle				
		1110	Memory Read Line				
		1111	Memory Write and Invalidate				
		^I During each data phase, PCI_C_BE_n[3:0] are byte enables. The byte enables are valid data phase and determine which byte lanes contain meaningful data. PCI_C_BE_n[0] ar 0 (PCI_AD[7:0]) and PCI_C_BE_n[3] applies to byte 3 (PCI_AD[31:24]).					
PCI_DEVSEL_n	I/O	PCI Device Select. When a address as the target of the on the bus has responded.	sserted low, PCI_DEVSEL_n indicates the driving device has decoded its current access. As an input, PCI_DEVSEL_n indicates whether any device				
PCI_FRAME_n	I/O	PCI Cycle Frame. The curre a bus transaction. While PC deasserted, the transaction	In the master asserts PCI_FRAME_n to indicate the beginning and duration of I_FRAME_n is asserted, data transfers continue. When PCI_FRAME_n is is in the final data phase or has completed.				
		(Sh	neet 1 of 6)				

Table 27: Pin Descriptions

••••••

Pin	I/O	Function
PCI_GNT_n	I	PCI Grant. A low assertion of PCI_GNT_n indicates to the agent that access to the bus has been granted. PCI_GNT_n is ignored while PCI_RST_n is asserted.
PCI_IDSEL	I	PCI Initialization Device Select. PCI_IDSEL is used as a chip select during configuration read and write transactions (PCI_C_BE_n[3:0] = 1010 or 1011).
PCI_INTA_n	0	PCI Interrupt Acknowledge. PCI_INTA_n is a level-sensitive interrupt driven by the QuickMIPS chip. PCI_INTA_n is asserted and deasserted asynchronously to the PCI_CLK. This interrupt remains asserted until the interrupt is cleared. Because the PCI interrupt controller is not built into the QuickMIPS ESP core, this pin is output only.
PCI_IRDY_n	I/O	PCI Initiator Ready. PCI_IRDY_n is used in conjunction with PCI_TRDY_n. The bus master (initiator) asserts PCI_IRDY_n to indicate when there is valid data on PCI_AD[31:0] during a write, or that it is ready to accept data on PCI_AD[31:0] during a read. A data phase is completed when both PCI_IRDY_n and PCI_TRDY_n are asserted. During a write, a low assertion of PCI_IRDY_n indicates that valid data is present on PCI_AD[31:0]. During a read, a low assertion of PCI_IRDY_n indicates the master is prepared to accept data. Wait cycles are inserted until both PCI_IRDY_n are asserted together.
PCI_LOCK_n	1	PCI Lock. A low assertion on PCI_LOCK_n indicates an atomic operation to a bridge that might take multiple transactions to complete. When PCI_LOCK_n is asserted, non-exclusive transactions can proceed to a bridge that is not currently locked. Control of PCI_LOCK_n is obtained under its own protocol in conjunction with PCI_GNT_n. It is possible for different agents to use PCI while a single master retains ownership of PCI_LOCK_n. Locked transactions can be initiated only by host bridges, PCI-to-PCI bridges, and expansion bus bridges.
PCI_PAR	I/O	PCI Parity. Parity is driven high or low to create even parity across PCI_AD[31:0] and PCI_C_BE_n[3:0]. The master drives PCI_PAR for address and write data phases; the target drives PCI_PAR for read data phases.
PCI_PERR_n	I/O	PCI Parity Error. PCI_PERR_n indicates the occurrence of a data parity error during all PCI transactions except a Special Cycle. The QuickMIPS chip drives PCI_PERR_n low two clocks following the data when a data parity error is detected. The minimum duration of the deassertion of PCI_PERR_n is one clock for each data phase that a data parity error is detected. (If sequential data phases each have a data parity error, the PCI_PERR_n signal is asserted for more than a single clock.) PCI_PERR_n is driven high for one clock before being 3-stated as with all sustained 3-state signals.
PCI_REQ_n	0	PCI Request. Assertion of PCI_REQ_n indicates to the arbiter that this agent desires use of the bus. PCI_REQ_n is 3-stated while PCI_RST_n is asserted.
PCI_RST_n	I	PCI Reset. Asserting PCI_RST_n low resets the internal state of the QuickMIPS PCI block. When PCI_RST_n is asserted, all PCI output signals are asynchronously 3-stated. PCI_REQ_n and PCI_GNT_n must both be 3-stated (they cannot be driven low or high during reset). The assertion/deassertion of PCI_RST_n can be asynchronous to PCI_CLK.
PCI_SERR_n	0	PCI System Error. The QuickMIPS chip asserts PCI_SERR_n to indicate an address parity error, a data parity error on the Special Cycle command, or any other system error where the result is catastrophic. PCI_SERR_n is open drain and is actively driven for a single PCI clock. The assertion of PCI_SERR_n is synchronous to the clock and meets the setup and hold times of all bused signals. However, the restoring of PCI_SERR_n to the deasserted state is accomplished by a weak pull-up (same value as used for s/t/s), which is provided by the central resource not by the signaling agent. This pull-up can take two to three clock periods to fully restore PCI_SERR_n.
PCI_STOP_n	I/O	PCI Stop. PCI_STOP_n is asserted low to indicate the current target is requesting the master to stop the current transaction.
		(Sheet 2 of 6)

Table 27: Pin Descriptions (Continued)

Table 27: Pin Descriptions (Continued)							
Pin	I/O	Function					
		PCI Target Ready. PCI_TRDY_n is used in conjunction with PCI_IRDY_n. The current bus slave (target) asserts PCI_TRDY_n to indicate when there is valid data on PCI_AD[31:0] during a read, or that it is ready to accept data on PCI_AD[31:0] during a write.					
PCI_TRDY_n	I/O	A data phase is completed when both PCI_TRDY_n and PCI_IRDY_n are asserted. During a read, a ow assertion of PCI_TRDY_n indicates that valid data is present on PCI_AD[31:0]. During a write, a ow assertion indicates the target is prepared to accept data. Wait cycles are inserted until both PCI_IRDY_n and PCI_TRDY_n are asserted together.					
PCI_CLK	I	PCI Clock. All PCI signals (except PCI_RST_n and PCI_INTA_n) are sampled on the rising edge of PCI_CLK. PCI_CLK operates at speeds up to either 33 MHz or 66 MHz.					
Ethernet MAC Signal	s						
	_	Ethernet Collision Detected. The external Ethernet PHY Controller chip asserts COL high upon detection of a collision on the medium. COL remains asserted while the collision condition persists.					
M1_COL/M2_COL		The transitions on the COL signal are not synchronous to either the TXCLK or the RXCLK.					
		The QuickMIPS MAC core ignores the COL signal when operating in the full-duplex mode.					
M1_CRS/M2_CRS	I	Ethernet Carrier Sense. The external Ethernet PHY Controller chip asserts CRS high when either transmit or receive medium is non-idle. The PHY deasserts CRS low when both the transmit and receive medium are idle. The PHY must ensure that CRS remains asserted throughout the duration of a collision condition.					
		The transitions on the CRS signal are not synchronous to either the TXCLK or the RXCLK.					
M1_MDC/M2_MDC	0	Ethernet Management Data Clock. MDC is sourced by the MAC110 core to the Ethernet PHY Controller as the timing reference for transfer of information on the MDIO signals. MDC is an aperiodic signal that has no maximum high or low times. The minimum high and low times for MDC are 160 ns each, and the minimum period for MDC is 400 ns, regardless of the nominal period of TXCLK and RXCLK.					
	1/0	Ethernet Management Data In/Out. When used as an input, MDIO is the data input signal from the Ethernet PHY Controller. The PHY drives the Read Data synchronously with respect to the MDC clock during the read cycles.					
	1/0	When used as an output, MDIO is the data output signal from the MAC110 core that drives the control information during the Read/Write cycles to the External PHY Controller. The MAC110 core drives the MDIO signal synchronously with respect to the MDC.					
M1_RXCLK/M2_RXCLK	I	Ethernet Receive Clock. RXCLK is a continuous clock that provides the timing reference for the transfer of the RXDV and RXD[3:0] signals from the Ethernet PHY Controller to the MAC110 core. The Ethernet PHY Controller chip sources RXCLK. RXCLK has a frequency equal to 25% of the data rate of the received signal on the Ethernet cable.					
M1_RXD[3:0]/M2_RXD[3:0]	I	Ethernet Receive Data. RXD[3:0] transition synchronously with respect to RXCLK. The Ethernet PHY Controller chip drives RXD[3:0]. For each RXCLK period in which RXDV is asserted, RXD[3:0] transfer four bits of recovered data from the PHY to the MAC110 core. RXD0 is the least-significant bit. While RXDV is deasserted low, RXD[3:0] has no effect on the MAC110 core.					
M1_RXDV/M2_RXDV	I	Ethernet Receive Data Valid. The Ethernet PHY Controller asserts RXDV high to indicate to the MAC110 core that it is presenting the recovered and decoded data bits on RXD[3:0] and that the data on RXD[3:0] is synchronous to RXCLK. RXDV transitions synchronously with respect to RXCLK. RXDV remains asserted continuously from the first recovered nibble of the frame through the final recovered nibble, and is deasserted low prior to the first RXCLK that follows the final nibble.					
M1_RXER/M2_RXER	I	Ethernet Receive Error. The Ethernet PHY Controller chip asserts RXER high for one or more RXCLK periods to indicate to the MAC110 core that an error (a coding error or any error that the PHY is capable of detecting that is otherwise undetectable by the MAC) was detected somewhere in the frame presently being transferred from the PHY to the MAC110 core. RXER transitions synchronously with respect to RXCLK. While RXDV is deasserted low, RXER has no effect on the MAC110 core.					
		(Sheet 3 of 6)					

•

Table 27: Pin Descriptions (Continued)								
Pin	I/O	Function						
M1_TXCLK/M2_TXCLK	I	Ethernet Transmit Clock. TXCLK is a continuous clock that provides a timing reference for the transfer of the TXEN and TXD signals from the MAC110 core to the Ethernet PHY Controller. The Ethernet PHY Controller chip sources TXCLK. The operating frequency of TXCLK is 25 MHz when operating at 100 Mbps and 2.5 MHz when operating at 10 Mbps.						
M1_TXD[3:0]/M2_TXD[3:0]	0	Ethernet Transmit Data. The QuickMIPS MAC110 core drives TXD[3:0]. TXD[3:0] transition synchronously with respect to TXCLK. For each TXCLK period in which TXEN is asserted, TXD[3:0] have the data to be accepted by the Ethernet PHY Controller chip. TXD0 is the least-significant bit. While TXEN is deasserted, ignore the data presented on TXD[3:0].						
M1_TXEN/M2_TXEN	Ο	Ethernet Transmit Enable. A high assertion on TXEN indicates that the MAC110 core is presenting nibbles on the MII for transmission. The QuickMIPS MAC110 core asserts TXEN with the first nibble of the preamble and holds TXEN asserted while all nibbles to be transmitted are presented to the MII. TXEN is deasserted low prior to the first TXCLK following the final nibble of the frame. TXEN is transitions synchronously with respect to TXCLK.						
Memory Controller In	nterface	e Signals						
BLS_n[3:0]	0	Byte Enables. These signals determine the validity of the bytes on the DATA bus.						
CS_n[7:0]	0	Chip Selects. These signals are the active-low chip selects for the SRAM.						
ADDR[23:0]	0	Memory Address. This 24-bit address contains the memory address.						
DATA[31:0]	I/O	Memory Data. This 32-bit bus contains the memory data.						
OEN_n	0	SRAM Output Enable. OEN_n is the active-low output enable to the external SRAM.						
SD_CAS_n	0	SDRAM Column Address Strobe. SD_CAS_n is the active-low column address strobe for the external SDRAM.						
SD_CKE[3:0]	0	SDRAM Output Clock Enables. SD_CKE[3:0] determine whether the next clock is valid or not.						
SD_CLKIN	I	SDRAM Input Clock. SD_CLKIN is the external SDRAM clock.						
SD_CLKOUT	0	SDRAM Output Clock. SD_CLKOUT is the clock from the QuickMIPS chip to the external SDRAMs.						
SD_CS_n[3:0]	0	SDRAM Output Chip Select. SD_CS_n[3:0] are the active-low chip selects for the external SDRAMs.						
SD_DQM[3:0]	0	SDRAM Data Mask. SD_DQM[3:0] are the data masks for DATA[31:0]						
SD_RAS_n	ο	SDRAM Row Address Strobe. SD_RAS_n is the active-low row address strobe for the external SDRAM.						
SD_WE_n	0	SDRAM Write Enable. SD_WE_n is the active-low write enable to the SDRAMs.						
WEN_n	ο	SRAM Transfer Direction. WEN_n indicates whether transactions between the QuickMIPS chip and the external SRAM are reads (WEN_n is high) or writes (WEN_n is low).						
UART Interface Signa	als							
U1_CTS_n	I	UART1 Clear To Send. A low on this signal indicates the external device is ready to transfer data.						
U1_DCD_n	I	UART1 Data Carrier Detect. A low on this signal indicates the data carrier has been detected.						
U1_DSR_n	I	UART1 Data Set Ready. A low on this signal indicates the modem or data set is ready to establish the link to the QuickMIPS UART.						
U1_DTR_n	ο	UART1 Data Terminal Ready. The QuickMIPS chip asserts this output low to indicate it is ready to establish the external communication link.						
U1_RI_n	I	UART1 Ring Indicator. This input is an active-low ring indicator.						
U1_RTS_n	0	UART1 Request To Send. The QuickMIPS chip asserts this signal low to inform the external device that the UART is ready to send data.						
U1_RXD_SIRIN	I	UART1 Received Serial Data/SIR Received Serial Data. This input receives serial data for either the UART or the IrDA block.						
		(Sheet 4 of 6)						

Table 27: Pin Descriptions (Continued)

Pin	I/O	Function
		UART1 Transmitted Serial Data/SIR Transmitted Serial Data. This output transmits serial data from
U1_TXD_SIROUT_n	0	either the UART or the IrDA block.
U2_RXD_SIRIN	I	UART2 Received Serial Data/SIR Received Serial Data. This input receives serial data for either the UART or the IrDA block.
U2_TXD_SIROUT_n	0	UART2 Transmitted Serial Data/SIR Transmitted Serial Data. This output transmits serial data from either the UART or the IrDA block.
Test Interface Signal	S	
EJTAG_TCK	I	EJTAG Test Clock. This clock controls the updates to the TAP controller and the shifts through the Instruction register or selected data registers. Both the rising and falling edges of EJTAG_TCK are used.
EJTAG_TDI	I	EJTAG Test Data In. Serial test data is input on this pin and is shifted into the Instruction or data register. This input is sampled on the rising edge of EJTAG_TCK.
EJTAG_TDO	0	EJTAG Test Data Out. The QuickMIPS chip outputs serial test data on this pin from the Instruction or data register. This signal changes on the falling edge of EJTAG_TCK.
EJTAG_TMS	I	EJTAG Test Mode Select. This input is the control signal for the TAP controller. It is sampled on the rising edge of EJTAG_TCK.
EJTAG_TRST	I	EJTAG Test Reset. This signal is asserted high asynchronously to reset the TAP controller, Instruction register, and EJTAGBOOT indication.
EJTAG_DEBUGM	0	Debug Mode. This bit is asserted high when the MIPS 4Kc core is in Debug Mode. This output can be used to bring the chip out of low power mode.
EJTAG_DINT	I	Debug Exception Request. Assertion high of this input indicates a debug exception request is pending. The request is cleared when debug mode is entered. Requests that occur while the chip is in debug mode are ignored.
Fabric Interface Sign	als	
I/O <a>53:0	I/O	Programmable Input/Output/3-State/Bidirectional pin in Bank A.
I/O 71:0	I/O	Programmable Input/Output/3-State/Bidirectional pin in Bank B.
I/O <c>71:0</c>	I/O	Programmable Input/Output/3-State/Bidirectional pin in Bank C.
I/O <d>53:0</d>	I/O	Programmable Input/Output/3-State/Bidirectional pin in Bank D.
CLK<8:0>	I/O	Programmable Global Clock Pin. Tie to VCC or GND if unused.
INREF <a:d></a:d>	I/O	Differential I/O Reference Voltage. Connect to GND when using TTL, PCI or LVCMOS.
IOCTRL <a:d></a:d>	I/O	Low Skew I/O Control Pins. Tie to GND if unused.
TCLK	I	JTAG Clock. Tie to GND if unused.
TDI	I	JTAG Data In. Tie to VCC if unused.
TDO	0	JTAG Data Out. Leave unconnected if unused.
TMS	0	JTAG Test Mode Select. Tie to VCC if unused.
TRSTB	I	JTAG Reset. Tie to GND if unused.
Timer Interface Signa	als	
TM_OVERFLOW	0	Timer Overflow. This output is asserted high when an internal timer overflows.
TM_ENABLE	I	Timer Enable. This signal is asserted high to enable the internal timer.
Miscellaneous Signa	ls	
BOOT<1:0>	I	Boot chip size. 00 = 8 bit, 01 = 16 bit, 10 = 32 bit, and 11 = reserved.
		(Sheet 5 of 6)

•

Pin	I/O	Function
CPU_BIGENDIAN	I	Endian Setting. A High on this input indicates big-endian byte ordering; a Low on this input indicates little-endian byte ordering.
CPU_EXTINT_n<6:0>	I	CPU Interrupts. Asserting Low any of these inputs causes an interrupt to the QuickMIPS chip.
PL_BYPASS	I	PLL Bypass. When High, the 2X multiplication of the input clock is not performed and the output clocks are half their normal frequencies.
PL_CLKOUT	0	Output Clock from PLL.
PL_CLOCKIN	I	Input Clock to PLL.
PL_ENABLE	I	PLL Enable. A High assertion of this signal powers down the PLL when it is not being used to reduce overall device power and puts the QuickMIPS chip into a quiescent current testing mode. When PL_ENABLE is Low, the PLL is not functional, but the clock outputs can be used if the PL_BYPASS input is High.
PL_LOCK	ο	PLL Lock. The lock output indicates when the PLL is locked to the input clock and is producing valid output clocks.
PL_RESET_n	I	PLL Reset.
PL_WARMRESET_n	I	PLL Warm Reset.
STM	I	QuickLogic Reserved pin. Tie to GND on the PCB.
Power and Ground S	ignals	
GND	I	Ground pin. Tie to GND on the PCB.
GNDPLL	I	Ground for the PLL.
VCCIO	I	Supply pin for I/O. Set to 2.5V for 2.5V I/O, 3.3V for 3.3V compliant I/O, or refer to the I/O Standards table.
VCCIO <a:d></a:d>	I	VCCIO port for each of the four I/O banks.
VCCPLL	I	Supply for the PLL.
VCC	I	Supply pin. Tie to 2.5V supply.
		(Shoot C of C)

Table 27: Pin Descriptions (Continued)

(Sheet 6 of 6)

Figure 26: Ordering Information

7.0 680 PBGA Pinout Diagram

Figure 27: 680-Pin PBGA Package Marking (Top View)

Figure 28: 680-Pin PBGA Package Marking (Bottom View)

8.0 680 PBGA Pinout Table

680 PBGA	Function	680 PBGA	Function	680 PBGA	Function	680 PBGA	Function	680 PBGA	Function	680 PBGA	Function
A1	GND	B26	INREF 	D17	I/0 <c></c>	F32	GND	M31	I/O <a>	R30	VCC
A2	GND	B27	I/O 	D18	I/O 	F33	I/O 	M32	IOCTRL <a>	R31	I/O <a>
A3	I/O <c></c>	B28	I/O 	D19	I/O 	F34	I/O 	M33	I/O <a>	R32	I/O <a>
A4	I/O <c></c>	B29	I/O 	D20	I/O 	G1	I/O <d></d>	M34	INREF <a>	R33	I/O <a>
A5	I/O <c></c>	B30	I/O 	D21	I/O 	G2	I/O <c></c>	N1	I/O <d></d>	R34	I/O <a>
A6	I/O <c></c>	B31	I/O 	D22	I/O 	G3	I/O <c></c>	N2	I/O <d></d>	T1	I/O <d></d>
A7	INREF <c></c>	B32	I/O 	D23	I/O 	G4	I/O <c></c>	N3	I/O <d></d>	T2	I/O <d></d>
A8	I/O <c></c>	B33	GND	D24	I/O 	G5	VCC	N4	I/O <d></d>	T3	I/O <d></d>
A9	I/O <c></c>	B34	GND	D25	I/O 	G30	VCC	N5	VCC	T4	I/O <d></d>
A10	I/O <c></c>	C1	GND	D26	I/O 	G31	GND	N13	GND	T5	I/O <d></d>
A11	I/O <c></c>	C2	I/O <c></c>	D27	I/O 	G32	I/O 	N14	VCCIO <c></c>	T13	VCCIO <d></d>
A12	I/O <c></c>	C3	GND	D28	I/O 	G33	I/O 	N15	VCCIO <c></c>	T14	GND
A13	I/O <c></c>	C4	I/O <c></c>	D29	I/O 	G34	I/O 	N16	VCCIO <c></c>	T15	GND
A14	I/O <c></c>	C5	I/O <c></c>	D30	I/O 	H1	I/O <d></d>	N17	VCCIO <c></c>	T16	GND
A15	I/O <c></c>	C6	I/O <c></c>	D31	GND	H2	I/O <d></d>	N18	VCCIO 	T17	GND
A16	I/O <c></c>	C7	I/O <c></c>	D32	I/O 	H3	I/O <c></c>	N19	VCCIO 	T18	GND
A17	GND	C8	I/O <c></c>	D33	I/O 	H4	I/O <c></c>	N20	VCCIO 	T19	GND
A18	GND	C9	I/O <c></c>	D34	I/O 	H5	VCCIO <d></d>	N21	VCCIO 	T20	GND
A19	CLK<5>	C10	IOCTRL <c></c>	E1	VCC	H30	VCCIO <a>	N22	GND	T21	GND
A20	I/O 	C11	I/O <c></c>	E2	I/O <c></c>	H31	I/O 	N30	VCC	T22	VCCIO <a>
A21	I/O 	C12	I/O <c></c>	E3	I/0 <c></c>	H32	I/O 	N31	IOCTRL <a>	T30	I/O <a>
A22	I/O 	C13	I/O <c></c>	E4	I/O <c></c>	H33	I/O <a>	N32	I/O <a>	T31	I/O <a>
A23	I/O 	C14	I/O <c></c>	E5	I/0 <c></c>	H34	I/O <a>	N33	I/O <a>	T32	I/O <a>
A24	I/O 	C15	I/O <c></c>	E6	VCC	J1	I/O <d></d>	N34	I/O <a>	T33	I/O <a>
A25	I/O 	C16	I/O <c></c>	E7	VCC	J2	I/O <d></d>	P1	I/O <d></d>	T34	I/O <a>
A26	I/O 	C17	TMS	E8	VCCIO <c></c>	J3	I/O <d></d>	P2	I/O <d></d>	U1	GND
A27	IOCTRL 	C18	CLK<6>	E9	I/O <c></c>	J4	I/O <d></d>	P3	I/O <d></d>	U2	I/O <d></d>
A28	I/O 	C19	I/O 	E10	l/O <c></c>	J5	I/O <d></d>	P4	I/O <d></d>	U3	I/O <d></d>
A29	I/O 	C20	I/O 	E11	I/O <c></c>	J30	I/O 	P5	VCCIO <d></d>	U4	I/O <d></d>
A30	I/O 	C21	I/O 	E12	I/O <c></c>	J31	I/O <a>	P13	VCCIO <d></d>	U5	I/O <d></d>
A31	I/O 	C22	I/O 	E13	VCC	J32	I/O <a>	P14	GND	U13	VCCIO <d></d>
A32	I/O 	C23	I/O 	E14	VCCIO <c></c>	J33	I/O <a>	P15	GND	U14	GND
A33	GND	C24	I/O 	E15	VCC	J34	I/O <a>	P16	GND	U15	GND
A34	GND	C25	IOCTRL 	E16	I/O <c></c>	K1	I/O <d></d>	P17	GND	U16	GND
B1	GND	C26	I/O 	E17	I/O <c></c>	K2	I/O <d></d>	P18	GND	U17	GND
B2	GND	C27	I/O 	E18	I/O 	K3	I/O <d></d>	P19	GND	U18	GND
B3	I/O <c></c>	C28	I/O 	E19	I/O 	K4	I/O <d></d>	P20	GND	U19	GND
B4	I/O <c></c>	C29	I/O 	E20	VCC	K5	I/O <d></d>	P21	GND	U20	GND
B5	I/O <c></c>	C30	I/O 	E21	VCCIO 	K30	I/O <a>	P22	VCCIO <a>	U21	GND
B6	I/O <c></c>	C31	I/O 	E22	VCC	K31	I/O <a>	P30	VCCIO <a>	U22	VCCIO <a>
B7	I/O <c></c>	C32	GND	E23	I/O 	K32	I/O <a>	P31	I/O <a>	U30	I/O <a>
B8	IOCTRL <c></c>	C33	I/O 	E24	I/O 	K33	1/0 <a>	P32	I/O <a>	U31	I/O <a>
B9	I/O <c></c>	C34	I/O 	E25	I/O 	K34	I/O <a>	P33	I/O <a>	U32	I/O <a>
B10	I/O <c></c>	D1	GND	E26	I/O 	L1	1/O <d></d>	P34	1/O <a>	033	1/O <a>
B11	I/O <c></c>	D2	GND	E27	VCCIO 	L2	I/O <d></d>	R1	I/O <d></d>	U34	GND
B12	1/0 <c></c>	D3	I/O <c></c>	E28	VCC	L3	I/O <d></d>	R2	I/O <d></d>	V1	GND
B13	1/0 <c></c>	D4	I/O <c></c>	E29	VCC	L4	I/O <d></d>	R3	I/O <d></d>	V2	1/0 <d></d>
B14	1/0 <c></c>	D5	1/0 <c></c>	E30	1/O 	L5	1/O <d></d>	R4	1/0 <d></d>	V3	1/0 <d></d>
B15	I/O <c></c>	D6	I/O <c></c>	E31	I/O 	L30	I/O <a>	R5	VCC	V4	1/0 <d></d>
B16	1/0 <c></c>	D7	1/0 <c></c>	E32	VCC	L31	1/0 <a>	R13	VCCIO <d></d>	V5	1/0 <d></d>
B17	CLK<8>	08	1/U <c></c>	E33	VCC	L32	1/0 <a>	K14	GND	V13	VUCIO
B18	CLK<7>	D9	1/0 <c></c>	E34	GND	L33	1/0 <a>	R15	GND	V14	GND
B19	I/O 	D10	1/U <c></c>	F1	1/U <c></c>	L34	I/U <a>	R16	GND	V15	GND
B20	1/O 	D11	1/0 <c></c>	F2	1/0 <c></c>	M1	IOCTRL <d></d>	R17	GND	V16	GND
B21	I/O 	D12	1/0<0>	F3	VCC	M2	INKEF <d></d>	K18	GND	V1/	GND
B22	1/O 	D13	1/0<0>	F4	1/0<0>	IVI3		R19	GND	V18	GND
B23	I/O 	D14	1/0<0>	F5	VCC	IV14	1/U <d></d>	R20	GND	V19	GND
B24	I/O 	D15	1/0<0>	F30	VCC	IVI5	1/0<0>	RZ1		V20	GND
B25	I/U 	סוט	1/U <c></c>	F31	I/U 		1/U <a>	R22	VUUIU <a>	v21	GND
					(Shee	at 1 of 2)				

Table 28: 680 PBGA Pinout Table

680 PBGA	Function	680 PBGA	Function	680 PBGA	Function	680 PBGA	Function	680 PBGA	Function	680 PBGA	Function
V22	VCCIO	AA17	GND	AE5	M2 RXDV	AK10	PCI AD<17>	AL31	GND	AN18	CPU EXTINT n<6>
V30	I/O <a>	AA18	GND	AE30	ADDR<2>	AK11	PCI_FRAME_n	AL32	ADDR<23>	AN19	CPU_EXTINT_n<2>
V31	I/O <a>	AA19	GND	AE31	OEN_n	AK12	PCI_PAR	AL33	ADDR<20>	AN20	U1_RTS_n
V32	I/O <a>	AA20	GND	AE32	BLS_n<0>	AK13	VCC	AL34	ADDR<15>	AN21	U1_TXD _SIROUT_n
V33	I/O <a>	AA21	GND	AE33	CS_n<6>	AK14	VCCIO	AM1	M1_RXDV	AN22	SD_CKE<2>
V34	GND	AA22	VCCIO	AE34	CS_n<3>	AK15	EJTAG_TRST	AM2	NC	AN23	SD_CAS_n
W1	I/O <d></d>	AA30	VCCIO	AF1	M2_TXEN	AK16	EJTAG_TDO	AM3	GND	AN24	SD_CS_n<2>
W2	I/O <d></d>	AA31	EJTAG_DEBUGM	AF2	M2_TXD<1>	AK17	CPU_EXTINT _n<1>	AM4	M1_RXD<1>	AN25	SD_DQM<1>
W3	I/O <d></d>	AA32	CLK<3>	AF3	M2_RXER	AK18	CPU_ BIGENDIAN	AM5	TM_OVERFLOW	AN26	DATA<30>
W4	I/O <d></d>	AA33	I/O <a>	AF4	M2_RXD<2>	AK19	U1_RI_n	AM6	PCI_GNT_n	AN27	DATA<23>
W5	GNDPLL	AA34	I/O <a>	AF5	M2_RXD<0>	AK20	U1_DCD_n	AM7	PCI_AD<30>	AN28	DATA<21>
W13	VCCIO	AB1	TCK	AF30	ADDR<7>	AK21	VCCIO	AM8	PCI_AD<26>	AN29	DATA<17>
W14	GND	AB2	TDI	AF31	ADDR<4>	AK22	VCC	AM9	PCI_AD<21>	AN30	DATA<12>
W15	GND	AB3	GND	AF32	ADDR<0>	AK23	SD_CLKIN	AM10	PCI_C_BE _n<3>	AN31	DATA<8>
W16	GND	AB4	STM	AF33	BLS_n<1>	AK24	DATA<28>	AM11	PCI_DEVSEL_n	AN32	DATA<4>
W17	GND	AB5	VCC	AF34	WEN_n	AK25	DATA<24>	AM12	PCI_SERR_n	AN33	GND
W18	GND	AB13	GND	AG1	M2_MDC	AK26	DATA<16>	AM13	PCI_AD<15>	AN34	GND
W19	GND	AB14	VCCIO	AG2	M2_TXCLK	AK27	VCCIO	AM14	PCI_AD<11>	AP1	GND
W20	GND	AB15	VCCIO	AG3	M2_RXD<1>	AK28	VCC	AM15	PCI_AD<5>	AP2	GND
W21	GND	AB16	VCCIO	AG4	M2_CRS	AK29	DAIA<2>	AM16	PCI_AD<1>	AP3	PCI_INIA_n
W22	VCCIO	AB17	VCCIO	AG5	VCCIO	AK30	DAIA<1>	AM17	EJIAG_IDI	AP4	PCI_AD<29>
W30	I/O <a>	AB18	VCCIO	AG30	VCCIO	AK31	ADDR<22>	AM18	CPU_EXTINT _n<5>	AP5	PCI_AD<27>
W31	I/O <a>	AB19	VCCIO	AG31	ADDR<12>	AK32	ADDR<18>	AM19	CPU_EXTINT_n <0>	AP6	PCI_AD<24>
W32	I/O <a>	AB20	VCCIO	AG32	ADDR<5>	AK33	ADDR<14>	AM20	U1_DTR_n	AP7	PCI_AD<22>
W33	I/O <a>	AB21	VCCIO	AG33	ADDR<1>	AK34	ADDR<11>	AM21	SD_CKE<3>	AP8	PCI_AD<18>
W34	I/O <a>	AB22	GND	AG34	BLS_n<3>	AL1	M1_TXD<0>	AM22	SD_CKE<0>	AP9	PCI_IRDY_n
Y1	1/0 <d></d>	AB30	VCC	AH1	M2_RXD<3>	AL2	M1_RXCLK	AM23	SD_CS_n<3>	AP10	PCI_LOCK_n
Y2	1/0 <d></d>	AB31	CS_n <u></u>	AHZ	M2_RXCLK	AL3	M1_CRS	AIVI24	SD_DQM<2>	AP11	PCI_C_BE_N<1>
13	1/O <d></d>	AD32				AL4		AIVIZO	SD_CLKOUT	AP12	PCI_AD<13>
14 V5		AB33	CLK-25			ALS		AM27		AP 13	
V13		AC1	VCC	AH30	VCC			AM28		ΔP15	
V1/	GND		TDO	AH31				AM20		AP16	GND
Y15	GND	AC3	PL CLKOUT	AH32		ALO		AM20	DATA<9>	AP17	GND
Y16	GND	AC4	PL BYPASS	AH33		AL 10		AM31	DATA<5>	AP18	GND
Y17	GND	AC5	BOOT<0>	AH34	ADDR<3>	AL11	PCI_C_BE	AM32	GND	AP19	CPU_EXTINT_n<3>
Y18	GND	AC30	CS_n<5>	AJ1	M2_COL	AL12	PCI_STOP_n	AM33	DATA<0>	AP20	U2_TXD SIROUT_n
Y19	GND	AC31	CS n<2>	AJ2	M1 TXEN	AL13	PCI AD<14>	AM34	ADDR<19>	AP21	U1 DSR n
Y20	GND	AC32	NC	AJ3	 M1_TXD<1>	AL14	PCI AD<8>	AN1	GND	AP22	U1 RXD SIRIN
Y21	GND	AC33	EJTAG DINT	AJ4	M1 TXCLK	AL15	PCI AD<7>	AN2	GND	AP23	SD CKE<1>
Y22	VCCIO	AC34	VCC	AJ5	M1_COL	AL16	PCI_AD<3>	AN3	TM_ENABLE	AP24	SD_RAS_n
Y30	CLK<4>	AD1	PL_LOCK	AJ30	ADDR<21>	AL17	EJTAG_TMS	AN4	PCI_REQ_n	AP25	SD_CS_n<0>
Y31	I/O <a>	AD2	PL_ENABLE	AJ31	ADDR<17>	AL18	CPU_EXTINT _n<4>	AN5	PCI_AD<31>	AP26	SD_DQM<0>
Y32	I/O <a>	AD3	PL_WARMRESET_n	AJ32	ADDR<13>	AL19	U2_RXD_SIRIN	AN6	PCI_AD<28>	AP27	DATA<29>
Y33	I/O <a>	AD4	M2_MDIO	AJ33	ADDR<10>	AL20	U1_CTS_n	AN7	PCI_AD<25>	AP28	DATA<27>
Y34	I/O <a>	AD5	M2_TXD<2>	AJ34	ADDR<8>	AL21	SD_WE_n	AN8	PCI_AD<19>	AP29	DATA<22>
AA1	I/O <d></d>	AD30	BLS_n<2>	AK1	M1_TXD<3>	AL22	SD_CS_n<1>	AN9	PCI_AD<16>	AP30	DATA<18>
AA2	CLK<0>	AD31	CS_n<7>	AK2	M1_TXD<2>	AL23	SD_DQM<3>	AN10	PCI_TRDY_n	AP31	DATA<14>
AA3	CLK<1>	AD32	CS_n<4>	AK3	M1_RXER	AL24	DATA<31>	AN11	PCI_PERR_n	AP32	DATA<10>
AA4	VCCIO	AD33	CS_n<1>	AK4	M1_RXD<3>	AL25	DATA<25>	AN12	PCI_C_BE_n<0>	AP33	GND
AA5	VCCPLL	AD34	NC	AK5	NC	AL26	DATA<19>	AN13	PCI_AD<12>	AP34	GND
AA13	VCCIO	AE1	PL_RESET_n	AK6	GND	AL27	DATA<11>	AN14	PCI_AD<9>		
AA14	GND	AE2	BOOT<1>	AK7	VCC	AL28	DATA<6>	AN15	PCI_AD<4>		
AA15	GND	AE3	M2_TXD<3>	AK8	VCCIO	AL29	DATA<7>	AN16	PCI_AD<0>		
AA16	GND	AE4	M2_TXD<0>	AK9	PCI_AD<23>	AL30	DATA<3>	AN17	EJTAG_TCK		
					(Shee	t 2 of 2					

Table 28: 680 PBGA Pinout Table (Continued)

••••••

9.0 Mechanical Drawings

Figure 29 provides the mechanical dimensions of the 680-pin Plastic Ball Grid Array (PBGA) package.

Figure 29: 680-pin PBGA Package Mechanical Drawing

10.0 Revision History

Table 29: Revision History		
Revision	Date	Comments
А	Dec 2001	First release.
В	Dec 19 2001	PLL information re-evaluated

Copyright © 2001 QuickLogic Corporation.

All Rights Reserved.

The information contained in this product brief, and the accompanying software programs are protected by copyright. All rights are reserved by QuickLogic Corporation. QuickLogic Corporation reserves the right to make periodic modifications of this product without obligation to notify any person or entity of such revision. Copying, duplicating, selling, or otherwise distributing any part of this product without the prior written consent of an authorized representative of QuickLogic is prohibited.

QuickLogic, pASIC, and ViaLink are registered trademarks, and QuickMIPS, SpDE and QuickWorks are trademarks of QuickLogic Corporation.

Verilog is a registered trademark of Cadence Design Systems, Inc.

SaiLAhead $^{\mbox{\scriptsize TM}}$ is a registered trademark of Saivision.