

October 1987 Revised September 2003

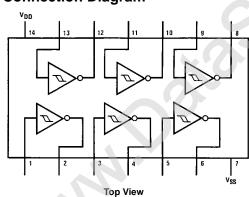
CD40106BC Hex Schmitt Trigger

General Description

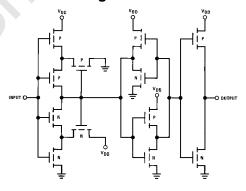
The CD40106BC Hex Schmitt Trigger is a monolithic complementary MOS (CMOS) integrated circuit constructed with N and P-channel enhancement transistors. The positive and negative-going threshold voltages, V_{T+} and V_{T-} , show low variation with respect to temperature (typ 0.0005V/°C at V_{DD} = 10V), and hysteresis, $V_{T+}-V_{T-} \geq 0.2$ V_{DD} is guaranteed.

All inputs are protected from damage due to static discharge by diode clamps to $V_{\mbox{\scriptsize DD}}$ and $V_{\mbox{\scriptsize SS}}.$

Features


- Wide supply voltage range: 3V to 15V
- High noise immunity: 0.7 V_{DD} (typ.)
- Low power TTL compatibility:
 - Fan out of 2 driving 74L or 1 driving 74LS
- Hysteresis: 0.4 V_{DD} (typ.),
 - 0.2 V_{DD} guaranteed
- Equivalent to MM74C14

Ordering Code:


Order Number	Package Number	Package Description
CD40106BCM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD40106BCN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Schematic Diagram

© 2003 Fairchild Semiconductor Corporation

DS005985

www.fairchildsemi.com

Sheetal).com

Absolute Maximum Ratings(Note 1)

(Note 2)

Recommended Operating Conditions (Note 2)

DC Supply Voltage (V_{DD})

DC Supply Voltage (V_{DD}) -0.5 to +18 V_{DC} Input Voltage (V_{IN}) -0.5 to V_{DD} +0.5 V_{DC} -65°C to +150°C

Input Voltage (V_{IN}) Operating Temperature Range (T_A)

3 to 15 V_{DC} 0 to $V_{DD} V_{DC}$

 $-55^{\circ}C$ to $+125^{\circ}C$

Storage Temperature Range (T_S) Power Dissipation (P_D)

700 mW

Note 1: "Absolute Maximum Ratings" are those values beyond which the

Small Outline

Dual-In-Line

500 mW

safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.

Lead Temperature (T_L)

Note 2: $V_{SS} = 0V$ unless otherwise specified.

(Soldering, 10 seconds)

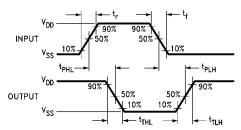
260°C

DC Electrical Characteristics (Note 3)

0	B	Conditions	-5	–55°C		+25°C			+125°C	
Symbol	Parameter		Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device Current	$V_{DD} = 5V$		1.0			1.0		30	
		$V_{DD} = 10V$		2.0			2.0		60	μΑ
		$V_{DD} = 15V$		4.0			4.0		120	
V _{OL}	LOW Level Output	I _O < 1 μA								
	Voltage	$V_{DD} = 5V$		0.05			0.05		0.05	V
		$V_{DD} = 10V$		0.05			0.05		0.05	V
		$V_{DD} = 15V$		0.05			0.05		0.05	
V _{OH}	HIGH Level Output	I _O < 1 μA								
	Voltage	$V_{DD} = 5V$	4.95		4.95	5		4.95		V
		$V_{DD} = 10V$	9.95		9.95	10		0.95		V
		$V_{DD} = 15V$	14.95		14.95	15		14.95		
V _{T-}	Negative-Going Threshold	$V_{DD} = 5V, V_{O} = 4.5V$	0.7	2.0	0.7	1.4	2.0	0.7	2.0	
	Voltage	$V_{DD} = 10V, V_{O} = 9V$	1.4	4.0	1.4	3.2	4.0	1.4	4.0	V
		$V_{DD} = 15V, V_{O} = 13.5V$	2.1	6.0	2.1	5.0	6.0	2.1	6.0	
V _{T+}	Positive-Going Threshold	$V_{DD} = 5V, V_{O} = 0.5V$	3.0	4.3	3.0	3.6	4.3	3.0	4.3	
	Voltage	$V_{DD} = 10V, V_{O} = 1V$	6.0	8.6	6.0	6.8	8.6	6.0	8.6	V
		$V_{DD} = 15V, V_{O} = 1.5V$	9.0	12.9	9.0	10.0	12.9	9.0	12.9	
V _H	Hysteresis (V _{T+} – V _{T-})	$V_{DD} = 5V$	1.0	3.6	1.0	2.2	3.6	1.0	3.6	
	Voltage	$V_{DD} = 10V$	2.0	7.2	2.0	3.6	7.2	2.0	7.2	V
		$V_{DD} = 15V$	3.0	10.8	3.0	5.0	10.8	3.0	10.8	
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.64		0.51	0.88		0.36		
	Current (Note 3)	$V_{DD} = 10V, V_{O} = 0.5V$	1.6		1.3	2.25		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	4.2		3.4	8.8		2.4		
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$	-0.64		-0.51	-0.88		-0.36		
	Current (Note 3)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.6		-1.3	-2.25		-0.9		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-4.2		-3.4	-8.8		-2.4		
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.1		-10 ⁻⁵	-0.1		-1.0	μА
		$V_{DD} = 15V, V_{IN} = 15V$		0.1		10 ⁻⁵	0.1		1.0	μΛ

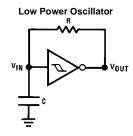
Note 3: $I_{\mbox{\scriptsize OH}}$ and $I_{\mbox{\scriptsize OL}}$ are tested one output at a time.

AC Electrical Characteristics (Note 4)

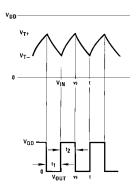

 $T_A=25^{\circ}C,\ C_L=50$ pF, $R_L=200k,\ t_f$ and t_f = 20 ns, unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL} or t _{PLH}	Propagation Delay Time from	$V_{DD} = 5V$		220	400	
	Input to Output	V _{DD} = 10V		80	200	ns
		$V_{DD} = 15V$		70	160	
t _{THL} or t _{TLH}	Transition Time	$V_{DD} = 5V$		100	200	
		V _{DD} = 10V		50	100	ns
		V _{DD} = 15V 40 80	80			
C _{IN}	Average Input Capacitance	Any Input		5	7.5	pF
C _{PD}	Power Dissipation Capacity	Any Gate (Note 5)		14		pF

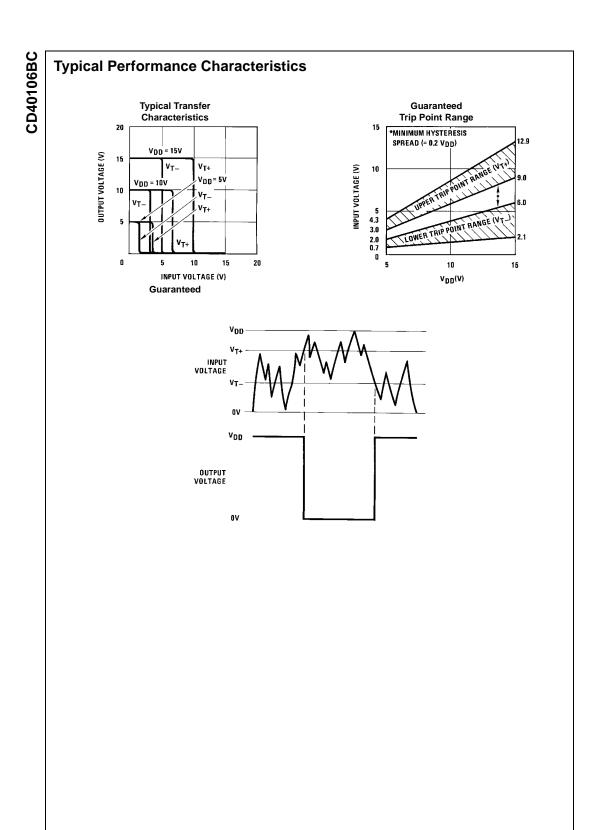
Note 4: AC Parameters are guaranteed by DC correlated testing.

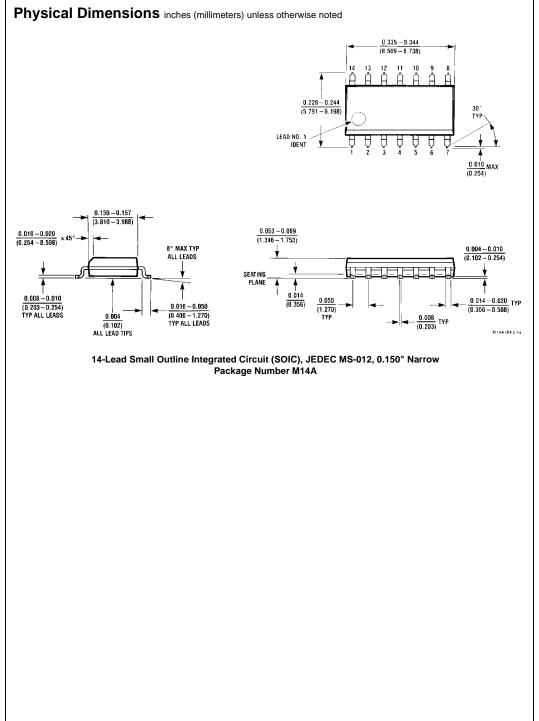

Note 5: C_{PD} determines the no load ac power consumption of any CMOS device. For complete explanation see 74C Family Characteristics Application Note,

Switching Time Waveforms


 $t_{\rm r}=t_{\rm f}=20~{\rm ns}$

Typical Applications




$$\begin{split} t_1 &\approx \text{RC } \ell \text{ n} \frac{V_{T+}}{V_{T-}} \\ t_2 &\approx \text{RC } \ell \text{ n} \frac{V_{DD} - V_{T-}}{V_{DD} - V_{T+}} \\ f &\approx \frac{1}{\text{RC } \ell \text{ n} \frac{V_{T-} (V_{DD} - V_{T-})}{V_{T-} (V_{DD} - V_{T-})}} \end{split}$$

Note: The equations assume $t_1 + t_2 >> t_{PHL} + t_{PLH} \label{eq:t1}$

www.fairchildsemi.com

www.fairchildsemi.com

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 0.740 - 0.770 (18.80 - 19.56)0.090 14 13 12 11 10 9 8 14 13 12 0.250 ± 0.010 (6.350 ± 0.254) PIN NO. 1 2 3 4 5 6 7 1 2 3 IDENT $\frac{0.092}{(2.337)}$ DIA $\frac{0.030}{(0.762)}$ MAX OPTION 1 OPTION 02 0.135 ± 0.005 (3.429 ± 0.127) (7.620 - 8.128)0.065 0.145 - 0.200 0.060 4° TYP Optional (1.651) (1.524)(3.683 - 5.080) $\frac{0.008 - 0.016}{(0.203 - 0.406)}$ TYP 0.020 (0.508) 0.125 - 0.150 0.075 ± 0.015 (3.175 - 3.810)0.280 (1.905 ± 0.381) (7.112) MIN 0.014 - 0.023 $\frac{0.100 \pm 0.010}{(2.540 \pm 0.254)}$ TYP

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

0.050 ± 0.010 TYP

(1.270 - 0.254)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

(0.356 - 0.584)

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

0.325 +0.040 -0.015

 $8.255 + 1.016 \\ -0.381$

N14A (REV F)

www.fairchildsemi.com