

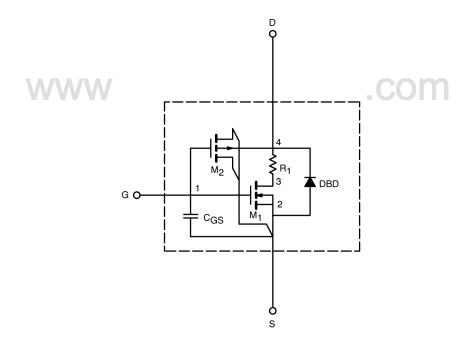
SPICE Device Model SUP/SUB70N03-09P

Vishay Siliconix

N-Channel 30-V (D-S), 175°C MOSFET PWM Optimized

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Model Subcircuit Schematic)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model schematic is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Document Number: 71566 www.vishay.com 05-Nov-98

SPICE Device Model SUP/ SUB70N03-09P

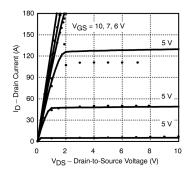
Vishay Siliconix

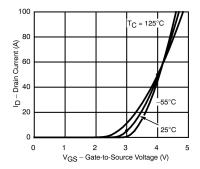
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)				
Parameter	Symbol	Test Conditions	Typical	Unit
Static				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	1.67	V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 10 \text{ V}$	621	Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	V_{GS} = 10 V, I_{D} = 30 A	0.007	Ω
		$V_{GS} = 4.5 \text{ V}, I_D = 20 \text{ A}$	0.011	
		V _{GS} = 10 V, I _D = 30 A, 125°C	0.0108	
		V _{GS} = 10 V, I _D = 30 A, 175°C	0.0127	
Forward Transconductance ^a	G fs	V _{DS} = 15 V, I _D = 30 A	51	S
Diode Forward Voltage ^a	V _{SD}	I _F = 70 A, V _{GS} = 0 V	0.92	V
Dynamic ^b				
Input Capacitance	C _{iss}	V _{GS} = 0 V, V _{DS} = 25 V, f = 1 MHz	2681	pf
Output Capacitance	C _{oss}		664	
Reverse Transfer Capacitance	C_{rss}		310	
Total Gate Charge ^c	Q_g	V _{DS} = 15 V, V _{GS} = 10 V, I _D = 70 A	46	nC
Gate-Source Charge ^c	Q_{gs}		8.5	
Gate-Drain Charge ^c	Q_{gd}		11	
Turn-On Delay Time ^c	$t_{d(on)}$		13	
Rise Time ^c	t _r	$V_{DD} = 15 \text{ V, } R_L = 0.21 \Omega$ $I_D \cong 70 \text{ A, } V_{GEN} = 10 \text{ V, } R_G = 2.5 \Omega$	11	ns
Turn-Off Delay Time ^c	$t_{d(off)}$		35	
Fall Time ^c	t _f	15neet4U.co	12	
Source-Drain Reverse Recovery Time	t _{rr}	$I_F = A$, di/dt = 100 A/ μ s	35	

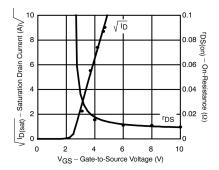
Notes

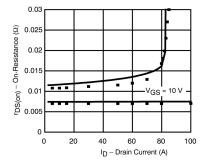
- a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing. c. Independent of operating temperature

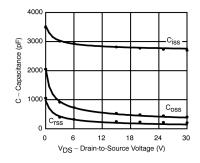
www.vishay.com Document Number: 71566 05-Nov-98

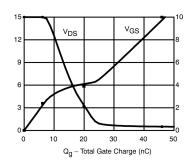

 ${\rm www.} Data Sheet {\color{red}4U.com}$




SPICE Device Model SUP/SUB70N03-09P


Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.

Document Number: 71566 www.vishay.com 05-Nov-98 3