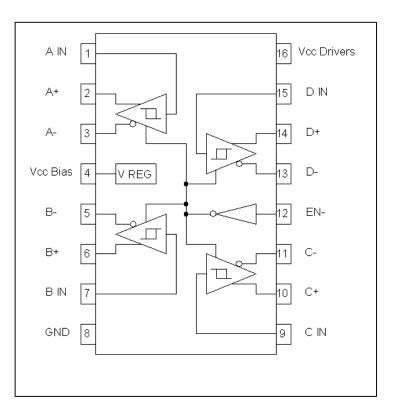


QUAD DIFFERENTIAL LINE DRIVER


WITH SEPARATE LOGIC BIAS AND DRIVER BIAS SUPPLIES, AND ENABLE FUNCTION ET7272

FEATURES

- Supply Voltage Range 3.5V to 30V
- Operation to 800KHz
- CMOS and TTL Compatible Inputs
- Separate logic bias and driver supply pins
- Optional single supply operation for moderate power applications
- High Impedance Buffered Inputs with Hysteresis
 may be driven directly by phototransistors
- Tri-State outputs
- 80mA peak SINK/SOURCE current
- Outputs Protected by Thermal Shut-Down

APPLICATIONS

- Optical Encoders
- Industrial Controls

DESCRIPTION

These line drivers are pin compatible with 26LS31 in applications where pin 4 = 5V and pin 12 = GND. Internal clamp diodes allow trouble-free operation when driving cable lengths exceeding 100m. Split supplies are provided to minimize standby power dissipation in high voltage applications. The logic should be powered from a regulated 5V supply at the VccBias pin. The output stages may then be powered by a separate supply at VccDrivers, up to 30V. Output voltage swings of 0.3V to VCC-1.9V are typical. The outputs are protected against shorts to ground, shorts to Vcc and to other outputs, by a two-fold scheme of current limiting and thermal shutdown. This assures highly reliable operation in harsh environments. Heat-sinking may be accomplished at pin 8 which is directly connected to the ASIC substrate.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min.	Max.	Units	Ref.
Operating Temperature	T _A	-55	115	°C	
Range					
Supply Voltage Range(both)	V _{CC}	4.5	30	V	

ETIC RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME TO IMPROVE THE DESIGN AND TO SUPPLY THE BEST PRODUCT.

©2000, Rev A1 iC-Haus GmbH Integrated Circuits Am Kuemmerling 18, D-55294 Bodenheim

Tel +49-6135-9292-0 Fax +49-6135-9292-192 http://www.ichaus.com

ELECTRICAL CHARACTERISTICS

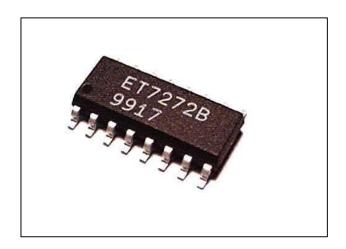
Unless otherwise specified, $T_A = 25^{\circ}C$ and EN- <0.8V.

Parameters	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Overtemp Operate Point (junction) ¹	T _{JOP}		172		°C	
Overtemp Release Point (junction) ¹	T _{JRP}		136		°C	
Vcc Bias Voltage Range	Vccb	3.5	5	30	V	
Vcc Drivers Voltage Range	Vccd	4.5	5	30	V	
Supply Current VccB1 (BIAS)	IccB1		11.9	16.0	mA	VccB and VccD = 5V
Supply Current VccD1 (DRIVERS)	ICCD1		2.4	3.3	mA	VccB and VccD = 5V
Supply Current VccB2	Іссв2		2.5	3.4	mA	VccB and VccD = 5V, EN- > 2V
Supply Current VccD2	ICCD2		0.0	0.1	mA	VccB and VccD = 5V, EN- > 2V
Supply Current VccB3	Іссв3		12.1	18.5	mA	VccB and VccD = 30V
Supply Current VccD3	ICCD3		2.4	3.3	mA	VccB and VccD = 30V
Supply Current VccB4	ICCB4		2.6	3.5	mA	VccB and VccD = 5V, EN- > 2V
Supply Current VccD4	ICCD4		0.0	0.1	mA	VccB and VccD = 5V, EN- > 2V
Enable Input Threshold	V _{THE}	0.8	1.5	2	V	
Enable Low Level Input Current	IILE	-10	0	10	μA	$V_{IN} = 0V, VCCB = 5V$
Enable High Level Input Current	I _{IHE}	-	108	150	μA	$V_{IN} = 5V, VCCB = 5V$
High Impedance Output Leakage	I _{OZ}	-4.0	0.0	4.0	μA	VccD =30V, EN- > 2V, Output at 15V
Input Positive-Going Threshold	Vt+	1.05	1.25	1.45	V	Vccb = 5V
Input Negative-Going Threshold	VT-	0.75	0.95	1.15	V	Vccb = 5V
Input Hysteresis	V _H	-	0.3	-	V	Vccb = 5V
Low Level Input Current	IIL		-0.1	-4.0	μA	$V_{IN} = 0V, VCCB = 5V$
High Level Input Current	I _{IH}		0	4.0	μA	$V_{IN} = 5V, VCCB = 5V$
Low Level Output1	V _{OL} 1		375	500	mV	$I_{OL} = 20$ mA, VccD = 5V
Low Level Output2	V _{OL} 2		370	500	mV	$I_{OL} = 20 \text{mA}, \text{VccD} = 30 \text{V}$
High Level Output1	V _{OH} 1	2.4	2.8		V	I _{OH} = -20mA, VccD = 5V
High Level Output2	V _{OH} 2	27.7	28.1		V	I _{OH} = -20mA, VccD=30V

ETIC RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME TO IMPROVE THE DESIGN AND TO SUPPLY THE BEST PRODUCT.

AC SWITCHING CHARACTERISTICS

Values given at $V_{CCB} = 5V$, $V_{CCD} = 24V$, $T_A = 25^{\circ}C$, $C_L = 1000pF$ on all outputs, and EN- <0.8V.


Parameters	Symbol	Min.	Тур.	Max	Units	Test Conditions
				•		
Propagation delay, rising input 50% point to zero crossing of differential outputs	T _{PLH}		450	630	ns	
Propagation delay, falling input 50% point to zero crossing of differential outputs	T _{PHL}		450	630	ns	
Output Rise Time	T _R		700	980	ns	
Output Fall Time	T _F		700	980	ns	

NOTES:

- 1. This is not a test parameter, but for information only.
- It may be necessary to clamp the outputs with Schottky diodes when driving extemely long cables with high capacitance between outputs. These diodes should have a forward voltage of less than 0.4V, and be connected with cathode to the output and anode to ground.

PACKAGE Chip Only 16 Lead SOIC

ETIC RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME TO IMPROVE THE DESIGN AND TO SUPPLY THE BEST PRODUCT.

Tel +49-6135-9292-0 Fax +49-6135-9292-192 http://www.ichaus.com