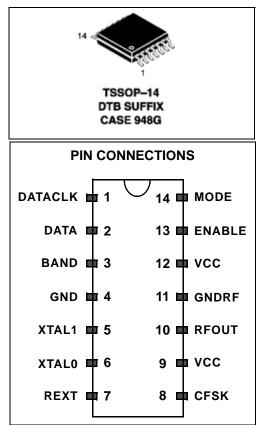
Freescale Semiconductor


Data Sheet: Product Preview

Document Number: MC33493 Rev. 1.7, 03/2007

MC33493

PLL Tuned UHF Transmitter for Data Transfer Applications

- Selectable frequency bands: 315—434 MHz and 868—928 MHz
- OOK and FSK modulation
- Adjustable output power range
- Fully integrated voltage control oscillator (VCO)
- Supply voltage range: 1.9—3.6 V
- Very low standby current: 0.1 nA @ $T_A = 25 \text{ °C}$
- Low-supply voltage shutdown
- Data clock output for microcontroller
- Extended temperature range: -40 to 125 °C
- Low external component count
- Typical application compliant with European Telecommunications Standards Institute (ETSI) standard

Ordering Information

Device	Ambient Temperature Range	Package
MC33493DTB	–40°C to 125°C	TSSOP14
MC3493DTBE	–40°C to 125°C	TSSOP14 (ROHS)

This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice.

© Freescale Semiconductor, Inc., 2007. All rights reserved.

1 2	Transmitter Functional Description
3	Radio Frequency (RF) Output Stage
4	Modulation
5	Microcontroller Interface
6	State Machine
7	Power Management
8	Data Clock
9	Electrical Characteristics
10	RF Output Spectrum11
11	Output Power Measurement
12	Complete Application Schematic and
	PCB for OOK Modulation15
13	Complete Application Schematic and
	PCB for FSK Modulation17
14	Recommendations for FSK Modulation
15	Case Outline Dimensions

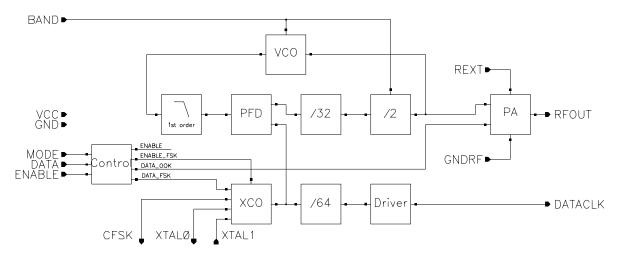

List of Figures

Figure 1. Simplified Block Diagram 3
Figure 2. Crystal Pulling Configurations
Figure 3. State machine 6
Figure 4. Signals Waveform and Timing Definition7
Figure 5. RF Spectrum at 434 MHz Frequency Band
Displayed with a 5 MHz Span
Figure 6. RF Spectrum at 434 MHz Frequency Band
Displayed with a 50 MHz Span
Figure 7. RF Spectrum at 434 MHz Frequency Band
Displayed with a 1.5 GHz Span 12
Figure 8.RF Spectrum at 434 MHz Band
for a 70 kHz FSK Deviation at 4.8 kbit/s 12

Figure 9. Output Power Measurement Configurations 13
Figure 10.Output Model and Matching Network
for 434 MHz Band 13
Figure 11.Output Power at 434 MHz Band vs Rext Value 14
Figure 12.Application Schematic for OOK Modulation,
434 MHz Frequency Band
Figure 13.Two-Button Keyfob Board Layout 16
Figure 14.Application Schematic for FSK Modulation,
Serial Configuration, 434 MHz Frequency Band 17
Figure 15.Application PCB Layout for FSK Modulation,
Serial Configuration, 434 MHz Frequency Band 18
Figure 16.Crystal Load Capacitance Contributors Schematic 19
Figure 17.Case Outline Dimensions 20
List of Tables

List of Tables

Table 1.	Pin Function Description 3
Table 2.	Absolute Maximum Ratings 3
Table 3.	Band Selection and Associated Divider Ratios 4
Table 4.	DATACLK Frequency vs Crystal Oscillator Frequency 5
Table 5.	Electrical Characteristics 8
Table 6.	External Components Description for OOK 15
Table 7.	Typical Crystal Characteristics (SMD Package) 16
Table 8.	External Components Description for FSK 17
Table 9.	Crystal Pulling Capacitor Values vs
	Carrier Frequency Total Deviation -1 18
Table 10	Crystal Pulling Capacitor Values vs
	Carrier Frequency Total Deviation -2 18
Table 11	Pads and Tracks Parasitic Values

Figure 1. Simplified Block Diagram

Pin	Name	Description	
1	DATACLK	Clock output to the microcontroller	
2	DATA	Data input	
3	BAND	Frequency band selection	
4	GND	Ground	
5	XTAL1	Reference oscillator input	
6	XTAL0	Reference oscillator output	
7	REXT	Power amplifier output current setting input	
8	CFSK	FSK switch output	
9	VCC	Power supply	
10	RFOUT	Power amplifier output	
11	GNDRF	Power amplifier ground	
12	VCC	Power supply	
13	ENABLE	Enable input	
14	MODE	Modulation type selection input	

Table 1. Pin Function Description

Table 2. Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply voltage	V _{CC}	V_{GND} – 0.3 to 3.7	V
Voltage allowed on each pin		V _{GND} – 0.3 to V _{CC} + 0.3	V
ESD HBM voltage capability on each pin ¹ (note 1)		±2000	V
ESD MM voltage capability on each pin ² (note 2)		±150	V
Storage temperature	Ts	-65 to +150	°C
Junction temperature	Tj	+150	°C

¹ Human Body model, AEC-Q100-002 Rev. C.

² Machine Model, AEC-Q100-003 Rev. E.

Transmitter Functional Description

1 Transmitter Functional Description

MC33493 is a PLL-tuned low-power UHF transmitter. The different modes of operation are controlled by the microcontroller through several digital input pins. The power supply voltage ranges from 1.9 V to 3.6 V, allowing operation with a single lithium cell.

2 Phase Locked Loop and Local Oscillator

The VCO is a completely integrated relaxation oscillator. The phase frequency detector (PFD) and the loop filter are fully integrated. The exact output frequency is equal to: $f_{RFOUT} = f_{XTAL} \times [PLL \text{ divider ratio}]$. The frequency band of operation is selected through the BAND pin.

Table 3 shows details for each frequency band selection.

 Table 3. Band Selection and Associated Divider Ratios

BAND Input Level	Frequency Band (MHz)	PLL Divider Ratio	Crystal Oscillator Frequency (MHz)
High	315	32	9.84
	434	52	13.56
Low	868	64	13.50

An out-of-lock function is performed by monitoring the PFD output voltage. When it exceeds defined limits, the RF output stage is disabled.

3 Radio Frequency (RF) Output Stage

The radio frequentcy (RF) output stage source is a single-ended square-wave switched current. Harmonics are present in the output current drive. Their radiated absolute level depends on the antenna characteristics and output power. Typical application demonstrates compliance to ETSI standard.

A resistor, R_{ext} , connected to the REXT pin controls the output power allowing a trade-off between radiated power and current consumption.

The output voltage is internally clamped to $V_{cc} \pm 2 V_{be}$ (typ. $V_{cc} \pm 1.5 V @ T_A=25 °C$).

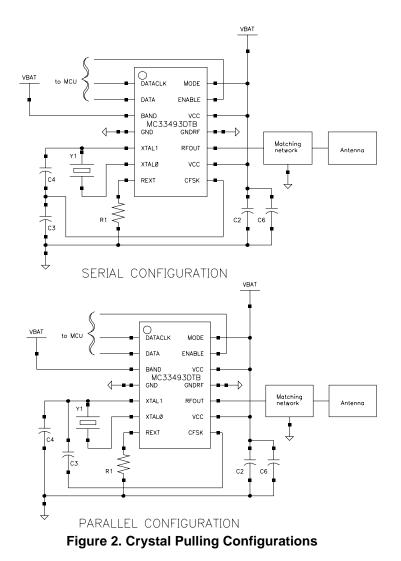
4 Modulation

To select the On Off Keying (OOK) modulation, a low-logic level must be applied on the MODE pin. This modulation is performed by switching the RF output stage on or off. The logic level applied on the DATA pin controls the output stage state:

 $DATA = 0 \rightarrow output stage off,$

DATA = $1 \rightarrow$ output stage on.

Applying a high-logic level on the MODE pin selects Frequency Shift Keying (FSK) modulation. This modulation is achieved by crystal pulling. An internal switch connected to the CFSK pin enables switching the external crystal load capacitors. Figure 2 shows the possible configurations: serial and parallel.


The logic level applied on pin DATA controls the state of this internal switch:

DATA=0 \rightarrow switch off, DATA=1 \rightarrow switch on.

DATA input is internally re-synchronized by the crystal reference signal. The corresponding jitter on the data duty cycle cannot exceed ± 1 reference period (± 75 ns for a 13.56 MHz crystal).

This crystal pulling solution implies that the RF output frequency deviation equals the crystal frequency deviation multiplied by the PLL Divider ratio (see Table 3).

Microcontroller Interface

5 Microcontroller Interface

Four digital input pins (ENABLE, DATA, BAND, and MODE) enable the circuit to be controlled by a microcontroller. The band frequency and the modulation type should be configured before enabling the circuit.

One digital output pin, DATACLK, provides the microcontroller with a reference frequency for data clocking. This frequency is equal to the crystal oscillator frequency divided by 64 (see Table 4).

Table 4. DATACLK Frequency vs Crystal Oscillator Frequency

Crystal Oscillator Frequency (MHz)	DATACLK Frequency (kHz)
9.84	154
13.56	212

State Machine

6 State Machine

Figure 3 details the state machine.

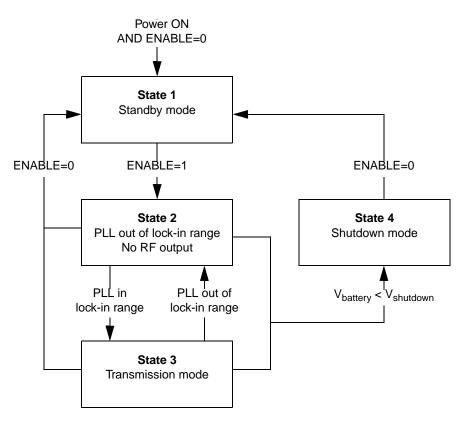


Figure 3. State machine

State 1: The circuit is in standby mode and draws only a leakage current from the power supply.

State 2: In this state, the PLL is out of the lock-in range; therefore, the RF output stage is switched off, preventing RF transmission. Data clock is available on the DATACLK pin. Each time the device is enabled, the state machine passes through this state.

State 3: In this state, the PLL is within the lock-in range. If $t < t_{PLL_lock_in}$, the PLL may be in acquisition mode. If $t \ge t_{PLL_lock_in}$, then the PLL is locked. Data entered on the DATA pin are output on the RFOUT pin according to the modulation selected by the level applied on the MODE pin.

State 4: When the supply voltage falls below the shutdown voltage threshold (V_{SDWN} ,) the entire circuit switches off. After this shutdown, applying a low level on the ENABLE pin unlatches the circuit.

Figure 4 shows the waveforms of the main signals for a typical application cycle.

Power Management

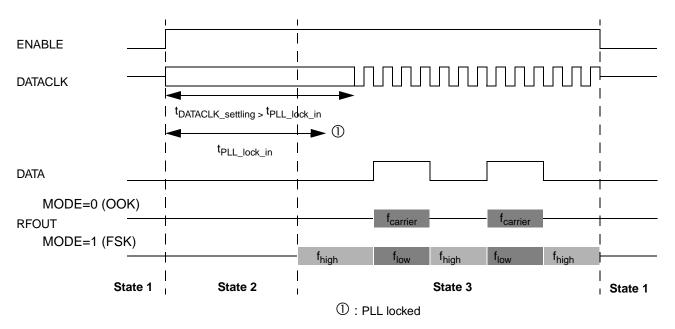


Figure 4. Signals Waveform and Timing Definition

7 Power Management

When the battery voltage falls below the shutdown voltage threshold (V_{SDWN}) the entire circuit switches off. After this shutdown, the circuit is latched until a low level is applied on pin ENABLE (see State 4 of the state machine).

8 Data Clock

At start-up, data clock timing is valid after the data clock settling time. Because the clock is switched off asynchronously, the last period duration cannot be guaranteed.

9 Electrical Characteristics

Unless otherwise specified, voltage range $V_{cc}=[V_{shutdown}; 3.6 \text{ V}]$, temperature range TA=[-40 °C;+ 125 °C], $R_{ext}=12 \text{ k}\Omega \pm 5\%$, RF output frequency $f_{carrier} = 433.92$ MHz, reference frequency $f_{reference} = 13.560$ MHz, output load RL = 50 $\Omega \pm 1\%$ (Figure 9). Values refer to the circuit shown in the recommended application schematics: Figure 12 shows OOK modulation and Figure 14 shows FSK modulation. Typical values reflect average measurement at VCC = 3 V, TA = 25 °C.

				Limits				
	Parameter	Test Conditions, Comments	Min.	Тур.	Max.	Unit		
1		General Parameters						
1.1	Supply current in	$T_A \le 25 \ ^\circ C$	_	0.1	5	nA		
1.2	standby mode	T _A = 60 °C	—	7	30	nA		
1.3		T _A = 85 °C	—	40	100	nA		
1.4		T _A = 125 °C	_	800	1700	nA		
1.5	Supply current in transmission mode	315 and 434 bands, OOK and FSK modulation, continuous wave, T _A = 25 °C	-	11.6	13.5	mA		
1.6		315 and 434 bands, DATA=0, –40 °C \leq T_A \leq 125 °C	_	4.4	6.0	mA		
1.7		868 MHz band, DATA=0, –40 °C \leq T_A \leq 125 °C	—	4.6	6.2	mA		
1.8		315 and 434 bands, OOK and FSK modulation, continuous wave, –40 $^\circ C \le T_A \le 125 \ ^\circ C$	-	11.6	14.9	mA		
1.9		868 MHz band, OOK and FSK modulation, continuous wave, –40 °C \leq T $_{A}$ \leq 125 °C	-	11.8	15.1	mA		
1.10	Supply voltage		—	3	3.6	V		
1.11	Shutdown voltage threshold	$T_A = -40 \ ^\circ C$	—	2.04	2.11	V		
1.12		$T_A = -20 \ ^\circ C$	—	1.99	2.06	V		
1.13		T _A = 25 °C	—	1.86	1.95	V		
1.14		$T_A = 60 \ ^\circ C$	—	1.76	1.84	V		
1.15		T _A = 85 °C	—	1.68	1.78	V		
1.16		T _A = 125 °C	—	1.56	1.67	V		
2		RF Parameters						
2.1	R _{ext} value		12	—	21	kΩ		
2.2	Output power	315 and 434 MHz bands, with 50 Ω matching network	-	5	—	dBm		
2.3		868 MHz band, with 50 Ω matching network	—	1	—	dBm		
2.4		315 and 434 MHz bands, $-40~^\circ\text{C} \leq \text{T}_A \leq 125~^\circ\text{C}$	-3	0	3	dBm		
2.8		868 MHz band, 40 °C ≤T _A ≤ 125 °C	-7	-3	0	dBm		
2.12	Current and output power variation vs. R _{ext} value	315 and 434 MHz bands, with 50 Ω matching network	—	-0.35 -0.25	—	dB/kΩ mA/kΩ		

Table 5. Electrical Characteristics

	Duranta	T (D) D)		Limits		
	Parameter	Test Conditions, Comments	Min.	Тур.	Max.	Unit
2.13	Harmonic 2 level	315 and 434 MHz bands, with 50 Ω matching network	-	-34	—	dBc
2.14		868 MHz band, with 50 Ω matching network	-	-49	—	dBc
2.15		315 and 434 MHz bands	—	-23	-17	dBc
2.16		868 MHz band	—	-38	-27	dBc
2.17	Harmonic 3 level	315 and 434 MHz bands, with 50 Ω matching network	-	-32	—	dBc
2.18		868 MHz band, with 50 Ω matching network	-	-57	—	dBc
2.19		315 and 434 MHz bands	_	-21	-15	dBc
2.20		868 MHz band	_	-48	-39	dBc
2.21	Spurious level	315 and 434 MHz bands	—	-36	-24	dBc
2.22	@ $f_{carrier} \pm f_{DATACLK}$	868 MHz band	_	-29	-17	dBc
2.23	Spurious level	315 MHz band	—	-37	-30	dBc
2.24	@ $f_{carrier} \pm f_{reference}$	434 MHz band	—	-44	-34	dBc
2.25		868 MHz band	—	-37	-27	dBc
2.41	Spurious level	315 MHz band	—	-62	-53	dBc
2.26	@ f _{carrier} /2	434 MHz band	_	-80	-60	dBc
2.27		868 MHz band	—	-45	-39	dBc
2.30	Phase noise	315 and 434 MHz bands, ±175 kHz from f _{carrier}	-	-75	-68	dBc/Hz
2.31		868 MHz band, ±175 kHz from f _{carrier}	-	-73	-66	dBc/Hz
2.32	PLL lock-in time, t _{PLL_lock_in}	$f_{carrier}$ within 30 kHz from the final value, crystal series resistor = 150 Ω	-	400	1600	μs
2.33	XTAL1 input capacitance			1	_	pF
2.34	Crystal resistance	OOK modulation		20	200	W
2.44		FSK modulation		20	50	
2.35	OOK modulation depth		75	90	_	dBc
2.36	FSK modulation	315 and 434 MHz bands, see note Note:	—	—	100	kHz
2.37	carrier frequency total deviation	868 MHz band, see note Note:	—	—	200	kHz
2.38	CFSK output resistance	MODE = 0, DATA = x MODE = 1, DATA = 0	50	70	-	kΩ
2.39		MODE = 1, DATA = 1	_	90	300	W
2.43	CFSK output capacitance		—	1	—	pF
2.40	Data rate	Manchester coding	—	—	10	kbit/s

Table 5. Electrical Characteristics (continued)

RF Output Spectrum

	Table \$	5. Electrical Characteristics (continued)				
	_			Limits		
	Parameter	Test Conditions, Comments	Min.	Тур.	Max.	Unit
2.41	Data to RF delay difference between	MODE = 0, see note	3.5	5.25	7.5	μs
2.42	falling and rising edges, t _{delay_difference}	MODE = 1, see note	-200		200	ns
		I characteristics, load capacitor values (see Tab	l <mark>e 4</mark>) and	I PCB tra	ack capa	citance.
Note:	Delay difference definition					
	ut data modulated datat _{delay_rise}	From 50% of data demodulated sign t _{delay_difference} = t _d t _{delay_fall}	nal envel	ope edg	e:	
3		Microcontroller Interfaces				
3.1	Input low voltage	Pins: BAND, MODE, ENABLE, and DATA	0		0.3 x V _{CC}	V
3.2	Input high voltage		0.7 x V _{CC}	_	V _{CC}	V
3.3	Input hysteresis voltage		_		120	mV
3.4	Input current	Pins: BAND, MODE,DATA = 1	_	_	100	nA
3.5	ENABLE pulldown resistor		_	180	—	kΩ
3.6	DATACLK output low voltage	C _{load} = 2 pF	0	—	0.25 x V _{CC}	V
3.7	DATACLK output high voltage		0.75 x V _{CC}		V _{CC}	V
3.8	DATACLK rising time	$C_{load} = 2 \text{ pF}$, measured from 20% to 80% of the	_	250	500	ns
3.9	DATACLK falling time	voltage swing	—	150	400	ns
3.10	DATACLK settling time,	45% < duty cycle f _{DATACLK} < 55%	_	800	2000	μs

10 RF Output Spectrum

t_{DATACLK_settling}

The following figures represent spectrums of the transmitter carrier, measured in conduction mode. Three different spans have been used. The 5 MHz span spectrum (Figure 5) shows phase noise response close to the RF carrier and the noise suppression within the PLL-loop bandwidth. The 50 MHz span spectrum (Figure 6) shows phase noise and reference spurious. Finally, the 1.5 GHz span spectrum (Figure 7) shows the second and third harmonics of carrier. All spectrums are measured in OOK modulation at DATA=1.

Figure 8 shows the spectrum in case of FSK modulation with 45 kHz deviation at 4 kbit/s data rate.

RF Output Spectrum

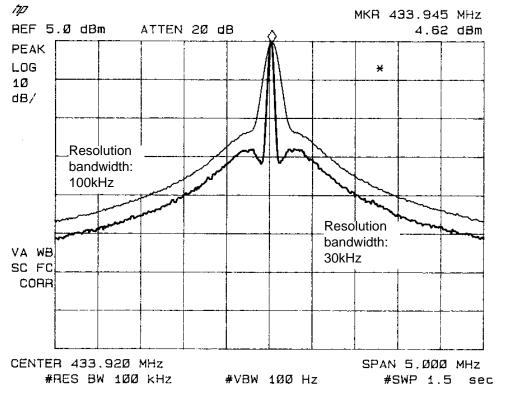


Figure 5. RF Spectrum at 434 MHz Frequency Band Displayed with a 5 MHz Span

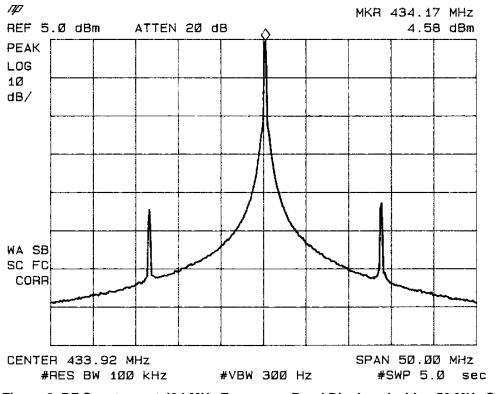


Figure 6. RF Spectrum at 434 MHz Frequency Band Displayed with a 50 MHz Span

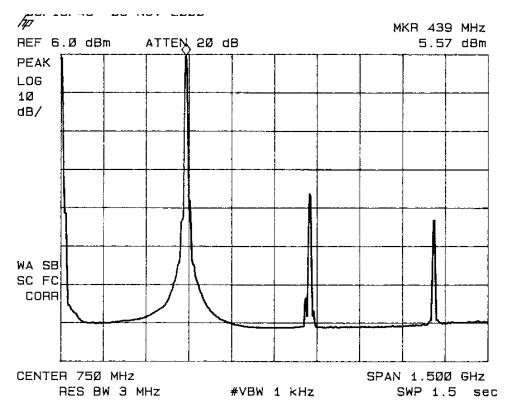


Figure 7. RF Spectrum at 434 MHz Frequency Band Displayed with a 1.5 GHz Span

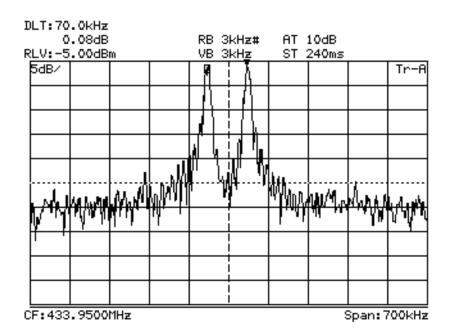
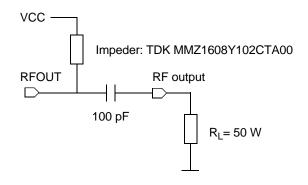



Figure 8. RF Spectrum at 434 MHz Band for a 70 kHz FSK Deviation at 4.8 kbit/s

Output Power Measurement

11 Output Power Measurement

The RF output levels given in Section 9, "Electrical Characteristics," are measured with a 50 Ω load directly connected to the RFOUT pin, as shown below in Figure 9. This wideband coupling method gives results independent of the application.

Figure 9. Output Power Measurement Configurations

The configuration shown in Figure 10(a) provides better efficiency in terms of output power and harmonics rejection. The schematic on Figure 10(b) gives the equivalent circuit of the RFOUT pin and the DC bias impeder as well as matching network components for 434 MHz frequency band.

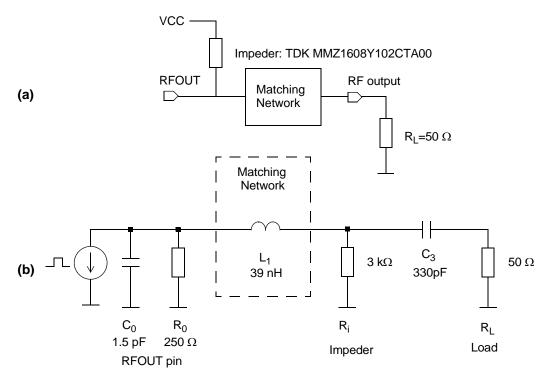
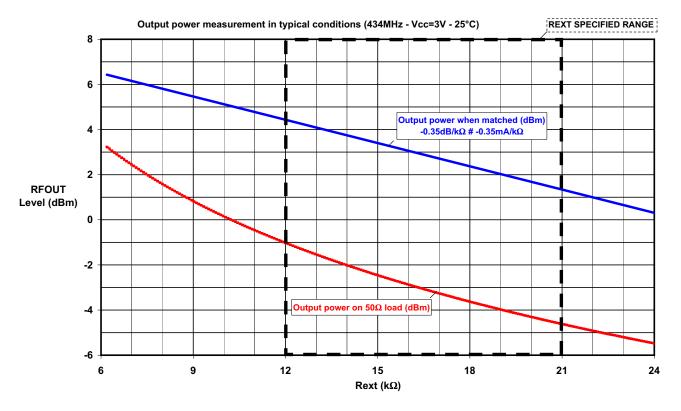
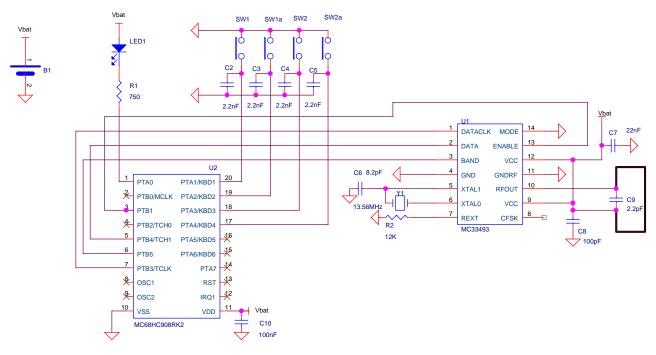


Figure 10. Output Model and Matching Network for 434 MHz Band

Complete Application Schematic and PCB for OOK Modulation

Figure 11 shows the output power versus the R_{ext} resistor value with 50 Ω load and with matching network.




Figure 11. Output Power at 434 MHz Band vs Rext Value

The 50 Ω matching network used for the 868 MHz band is similar to the 434 MHz, excepting components values: L1 is changed to 8.2 nH and C3 to 470 pF in Figure 11. The typical gain of this 868 MHz matching network is 4 dB compared to unmatched configuration.

12 Complete Application Schematic and PCB for OOK Modulation

Figure 12 shows a complete application schematic using a MC68HC908RK2 microcontroller. OOK modulation is selected, $f_{carrier} = 433.92$ MHz. The C₂ to C₅ capacitors can be removed if switch debounce is done by software.

Complete Application Schematic and PCB for OOK Modulation

For 868 MHz band application, the input pin BAND must be wired to ground. See component description on Table 6 and Table 7.

Component	Function	Value	Unit
Y1	Crystal,	315 MHz band: 9.84	MHz
	see Table 7	434 MHz band: 13.56	MHz
		868 MHz band: 13.56	MHz
R2	RF output level setting resistor (R _{ext})	12	kΩ
C6	Crystal load capacitor	8.2 ¹	pF
C7	Power supply decoupling	22	nF
C8	capacitors	100	pF

Table 6. External Components Description for OOK

¹ C6 value equals recommended crystal load capacitance reduced by the PCB stray capacitances.

Examples of crystal reference are given below (see characteristics in Table 7) for different application bands:

- at 315 MHz band (f_{reference} = 9.84375 MHz, -40 °C < T_A < 85 °C): NDK LN-G102-950,
- at 434/868 MHz bands (f_{reference} = 13.56 MHz, -40 °C < T_A < 125 °C): NDK NX8045GB/CSJ S1-40125-8050-12 and NDK NX1255GA.

Parameter	NDK LN-G102-950 (for 315 MHz)	NDK NX8045GB/CSJ S1-40125-8050-12 (for 434 MHz and 868 MHz)	NDK NX1255GA (for 434 MHz and 868 MHz)	Unit
Load capacitance	12	12	12	pF
Motional capacitance	3.33	4.4	10.5	fF
Static capacitance	1.05	1.5	2.46	pF
Loss resistance	28	18.5	10	Ω

Figure 13 shows a two-button keyfob board. Size is 30×45 millimeters.

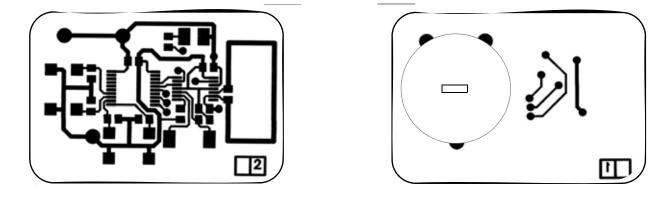
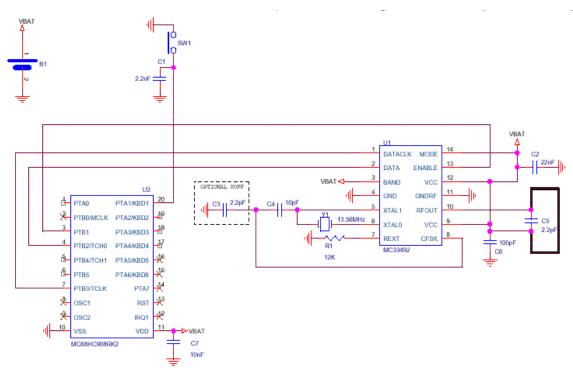
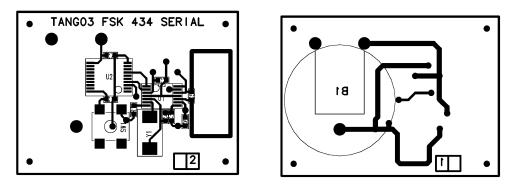



Figure 13. Two-Button Keyfob Board Layout

13 Complete Application Schematic and PCB for FSK Modulation

Figure 14 shows a complete application schematic using a MC68HC908RK2 microcontroller. FSK modulation is selected, $f_{carrier}$ = 433.92 MHz. C₁ capacitor can be removed if switch debounce is done by software.

Complete Application Schematic and PCB for FSK Modulation


Figure 14. Application Schematic for FSK Modulation, Serial Configuration, 434 MHz Frequency Band

For 868 MHz band application, the input pin BAND must be wired to ground. See component description in Table 8.

Table 8. External Components	Description for FSK
------------------------------	----------------------------

Component	Function	Value	Unit
¥1	Crystal	315 MHz band: 9.84, See Table 7	MHz
		434 MHz band: 13.56, see Table 7	MHz
		868 MHz band: 13.56, see Table 7	MHz
R1	RF output level setting resistor (R _{ext})	12	kΩ
C3	Crystal load capacitor	See Table 9	pF
C4			pF
C2	Power supply decoupling capacitor	22	nF
C6		100	pF

Figure 15 shows the corresponding PCB layout.

Figure 15. Application PCB Layout for FSK Modulation, Serial Configuration, 434 MHz Frequency Band

Table 9 gives the measured FSK deviations respective to C3 and C4 capacitor values for three deviations. Crystal reference is NDK NX8045GB/CSJ S1-40125-8050-12.

Carrier frequency (MHz)	Carrier frequency total deviation (kHz)	C3 capacitor (pF)	C4 capacitor (pF)	Recommended R_off value (k Ω)
434	45	4.7	6.8	10
	70	2.2	10	—
	100	1	15	22
868	90	4.7	6.8	10
	140	2.2	10	—
	200	1	15	22

Table 9. Crystal Pulling Capacitor Values vs Carrier Frequency Total Deviation -1-

Another crystal reference, NDK NX1255GA (see Table 7), is enabled to reach higher deviation as mentioned on Table 10. These results are due to the higher crystal motional capacitor.

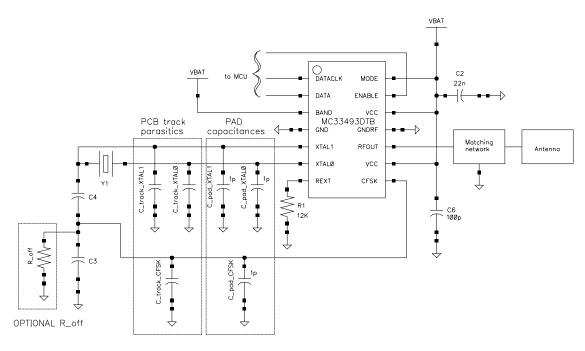
Table 10. Crystal Pulling Capacitor Values vs Carrier Frequency Total Deviation -2-

Carrier frequency (MHz)	Carrier frequency total deviation (kHz)	C3 capacitor value (pF)	C4 capacitor value (pF)	Recommended R_off value (k Ω)
434	150	1	27	—
868	300	1	27	—

14 **Recommendations for FSK Modulation**

FSK deviation is function of total load capacitance presented to the crystal. This load capacitance is constituted by various contributors:

- the crystal characteristic, especially its static capacitance
- the external load capacitors (C3, C4 as defined in Figure 14 and Table 9)
- the device internal capacitance of pins XTAL0, XTAL1, CFSK
- the PCB track capacitance

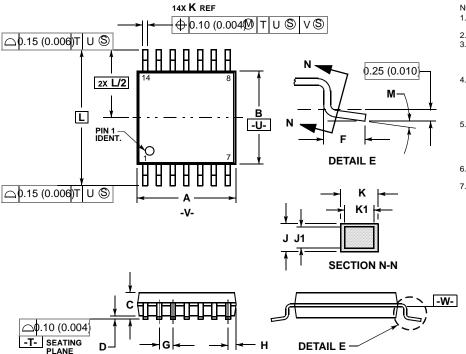

The schematic given in Figure 16 shows a typical FSK application using serial capacitor configuration, where device pads and PCB track capacitances are mentioned.

Device pad capacitance is defined by the package capacitance and by the internal circuitry. Typical capacitance values for these pads are given in Table 11.

Some realistic assumptions and measurements have been made concerning track parasitic capacitances for a 0.8 mm FR4 double side application PCB. They are given in Table 11 and the corresponding PCB layout is shown in figure Figure 17.

To achieve large deviations, this total load capacitance must be lowered. For a given crystal, the PCB must be carefully laid out to reduce the capacitance of the tracks wired to XTAL0, XTAL1, and CFSK pins.

Recommendation: a R_off resistor can be added in parallel with the FSK switch to optimize the transient response of demodulated signal. Table 11 gives the optimized R_off values for two deviations. There is no footprint for R_off resistor on the layout in Figure 16. When used, this component can be soldered on top of C3.



Capacitance	Value	Unit
C_pad_XTAL0	1	pF
C_pad_XTAL1	1	pF
C_pad_CFSK	1	pF
C_track_XTAL0	1.5	pF
C_track_XTAL1	1.5	pF
C_track_CFSK	1.5	pF

Table 11. Pads and Tracks Parasitic Values

15 Case Outline Dimensions

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT
- MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED
 - 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR
- 3. DIMENSION ALLOWABLE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- 7. DIMENSION A AND B ARE TO BE

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
Н	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
К	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
Μ	0°	8°	0°	8°

CASE 948G-01 ISSUE O

Figure 17. Case Outline Dimensions

THIS PAGE INTENTIONALLY BLANK

How to Reach Us:

Home Page: www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MC33493 Rev. 1.7 03/2007 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org © Freescale Semiconductor, Inc. 2007. All rights reserved.

