

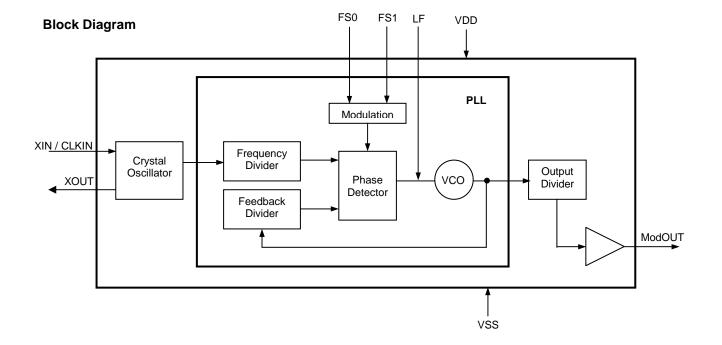
Low Cost Frequency Multiplier

Features

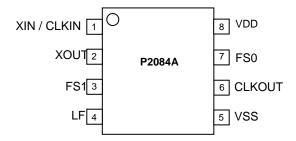
- Generates 2x and 4x clocks of the input clock frequency
- Input clock frequency range from 3MHz to 78MHz
- P2084A: 312MHz output clock frequency
- · External loop filter
- Low Cycle-to-Cycle Jitter
- 3.3V operating voltage range
- 10mA output drives
- TTL or CMOS compatible outputs
- Ultra-low power CMOS design
- Available in 8-pin SOIC

frequency which allows system cost savings by using an inexpensive crystal or resonator to achieve high frequency multiplication.

The P2084A can generate a 4x output clock of the input


The P2084A provides up to 312MHz output clock frequencies respectively through the use of the Phase-Lock-Loop (PLL) technique which delivers low jitter and high precision synthesized clocks.

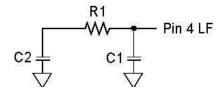
Applications


The P2084A is targeted towards the high frequency CAN OSC replacement market. Applications include xDSL, routers, networking, PC peripherals, and embedded systems.

Product Description

P2084A is a versatile frequency multiplier that is designed specifically as cost effective alternatives to the high precision frequency oscillator.

Pin Configuration

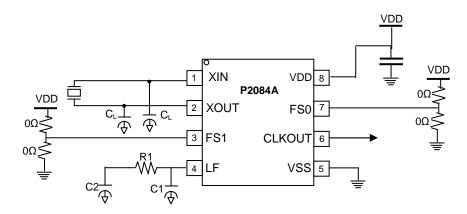

Pin Description

•	in Becompact					
Pin#	Pin Name	Туре	Description			
1	XIN / CLKIN	I	Connect to crystal or clock input.			
2	XOUT	I	Crystal connection. If using an external reference, this pin must be left unconnected.			
3	FS1	I	Digital logic input used to select input frequency range. (See Input Frequency Selection.) This pin has an internal pull-up resistor.			
4	LF	ı	External loop filter for the PLL. (See Loop Filter Selection Table for value.)			
5	VSS	Р	Ground connection. Connect to system ground.			
6	CLKOUT	0	Clock output.			
7	FS0	I	Digital logic input used to select input frequency range. (See <i>Input Frequency Selection</i> .) This pin has an internal pull-up resistor.			
8	VDD	Р	Connect to +3.3V.			

Input Frequency Selection

FS1	FS0	Input (MHz)	Output Frequency Scaling		
131	130	input (mi iz)	P2084A		
0	0	3 to 9	12 to 36		
0	1	10 to 19	40 to 76		
1	0	20 to 38	80 to 152		
1	1	39 to 78	156 to 312		

Loop Filter Selection Table VDD 3.3V



Input (MHz)	FS1	FS0	C1(pF)	C2(pF)	R1 (ohms)
3	0	0	270	330,000	220
4	0	0	270	100,000	270
5	0	0	270	100,000	390
6	0	0	270	100,000	510
7	0	0	270	100,000	620
8	0	0	270	100,000	820
9	0	0	270	100,000	1,000
10	0	1	270	100,000	330
11	0	1	270	100,000	390
12	0	1	270	100,000	510
13	0	1	270	100,000	560
14	0	1	270	100,000	620
15	0	1	270	100,000	750
16	0	1	270	100,000	820
17	0	1	270	100,000	910
18	0	1	270	100,000	1,000
19	0	1	270	100,000	1,200
20	1	0	270	100,000	330
21 - 22	1	0	270	100,000	390
23 - 24	1	0	270	100,000	510
25 - 26	1	0	270	100,000	560
27 - 28	1	0	270	100,000	620
29 - 30	1	0	270	100,000	750
31 - 32	1	0	270	100,000	820
33 - 34	1	0	270	100,000	910
35 - 36	1	0	270	100,000	1,000
37 - 38	1	0	270	100,000	1,200
39 - 42	1	1	270	100,000	330
43 - 46	1	1	270	100,000	390
47 - 50	1	1	270	100,000	510
51 - 54	1	1	270	100,000	560
55 - 58	1	1	270	100,000	620
59 - 62	1	1	270	100,000	750
63 - 66	1	1	270	100,000	820
67 - 70	1	1	270	100,000	910
71 - 74	1	1	270	100,000	1,000
75 - 78	1	1	270	100,000	1,200

Output Clock Selection Example

The P2084A can generate 4x from the input reference frequency. P2084A's internal crystal oscillator circuits allow the use of an inexpensive crystal of resonator to replace expensive can oscillators that are used in networking, PC peripherals, xDSL, and consumer

applications for high frequency generation. Its input frequency range is optimized for operation from 3MHz to 78MHz, and its output frequency can deliver up to 312MHz.

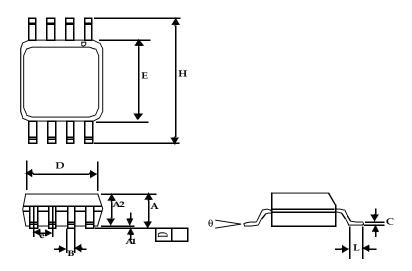
Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit				
V_{DD}	Voltage on any pin with respect to Ground	-0.5 to +4.6	V				
T _{STG}	Storage temperature	-65 to +125	S				
Ts	Max. Soldering Temperature (10 sec)	260	S				
T _J	Junction Temperature	150	Ĉ				
T_DV	Static Discharge Voltage (As per JEDEC STD22- A114-B)	2	KV				
	Note: These are stress ratings only and are not implied for functional use. Exposure to absolute maximum ratings for prolonged periods of time may affect device reliability.						

Operating Conditions

Parameter	Description	Min	Max	Unit
VDD	Supply Voltage	3.0	3.6	V
T _A	Operating Temperature (Ambient Temperature)	-40	+85	${\mathfrak C}$
C_L	Load Capacitance		15	pF
C _{IN}	Input Capacitance		7	pF

DC Electrical Characteristics


Symbol	Parameter	Min	Тур	Max	Unit
V _{IL}	Input low voltage	GND-0.3		0.8	V
V_{IH}	Input high voltage	2.0		VDD+0.3	V
I _{IL}	Input low current (internal input pull-up resistor on FS0 and FS1)		60		μA
I _{IH}	Input high current (internal input pull-up resistor on FS0 and FS1)		0		μA
I _{XOL}	XOUT output low current		10		mA
I _{XOH}	XOUT output high current		10		mA
V_{OL}	Output low voltage ($V_{DD} = 3.3V$, $I_{OL} = 20mA$)			0.4	V
V _{OH}	Output high voltage ($V_{DD} = 3.3V$, $I_{OH} = 20mA$)	2.5			V
I _{DD}	Static supply current		3		mA
I _{CC}	Typical dynamic supply current (25pF scope probe loading)	5.2 at 3MHz		21.2 at 82MHz	mA
V_{DD}	Operating voltage	3.0	3.3	3.6	V
ton	Power-up time ($C_{LOOP} = 0.1 \mu F$ at 16MHz, first locked cycle after power up)		7		mS
Z _{OUT}	Clock output impedance (at 16MHz)		28		Ω

AC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
f _{IN}	Input frequency	3		78	MHz
	P2084A	12		312	MHz
t _{LH} ¹	Output rise time (measured at 0.8V to 2.0V)		1		ns
t _{HL} 1	Output fall time (measured at 2.0V to 0.8V)		1		ns
t _{JC}	Jitter (cycle-to-cycle)		±200		ps
t_D	Output duty cycle	45	50	55	%

Note: 1. $t_{\text{\tiny LH}}$ and $t_{\text{\tiny HL}}$ are measured into a capacitive load of 15 pF.

8-Pin SOIC

	Dimensions				
Symbol	Inc	hes	Millimeters		
	Min	Max	Min	Max	
A1	0.004	0.010	0.10	0.25	
А	0.053	0.069	1.35	1.75	
A2	0.049	0.059	1.25	1.50	
В	0.012	0.020	0.31	0.51	
С	0.007	0.010	0.18	0.25	
D	0.193	BSC	4.90 BSC		
E	0.154	BSC	3.91 BSC		
е	0.050	BSC	1.27 BSC		
Н	0.236	BSC	6.00 BSC		
L	0.016	0.050	0.41	1.27	
θ	0°	8°	0°	8°	

Ordering Codes

Part Number	Marking	Package Type	Qty per reel	Temperature
P2084AF-08ST	ABM	8-pin SOIC, tube, Pb Free		0℃ to +70℃
P2084AF-08SR	ABM	8-pin SOIC, tape & reel, Pb Free	2500	0℃ to +70℃

A "microdot" placed at the end of last row of marking or just below the last row toward the center of package indicates Pb-free

Licensed under US patent #5,488,627 and #5,631,920. Advance datasheet. Specification subject to change without notice.

Note: This product utilizes US Patent #6,646,463 Impedance Emulator Patent issued to PulseCore Semiconductor, dated 11-11-2003.

ON Semiconductor and unare registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. U.S Patent Pending; Timing-Safe and Active Bead are trademarks of PulseCore Semiconductor, a wholly owned subsidiary of ON Semiconductor. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free

USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free

USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative