Low Charge Injection 8-Channel High Voltage Analog Switch

Features

- HVCMOS ${ }^{\circledR}$ technology for high performance
- Very low quiescent power dissipation $-10 \mu \mathrm{~A}$
- Output ON-resistance typically 11Ω
- Low parasitic capacitance
- DC to 10 MHz analog signal frequency
- -60 dB typical off-isolation at 5 MHz
- CMOS logic circuitry for low power
- Excellent noise immunity
- Serial shift register logic control with latches
- Flexible operating supply voltages
- Surface mount packages

Applications

- Medical ultrasound imaging
- Non-destructive evaluation

General Description

The Supertex HV219 is a low switch resistance, low charge injection 8 -channel 200 V analog switch integrated circuit (IC) intended primarily for medical ultrasound imaging. The device can also be used for NDE, non-destructive evaluation applications. The HV219 is a lower switch resistance, 11Ω versus 22Ω, version of the Supertex HV20220 device. The lower switch resistance will help reduce insertion loss. It has the same pin configuration as that of the Supertex HV20220PJ and the HV20220FG.

The device is manufactured using Supertex's HVCMOS (high voltage CMOS) technology with high voltage bilateral DMOS structures for the outputs and low voltage CMOS logic for the input control. The outputs are configured as eight independent single pole single throw 11Ω analog switches. The input logic is an 8 -bit serial to parallel shift register followed by an 8 -bit parallel latch. The switch states are determined by the data in the latch. Logic high will correspond to a closed switch and logic low as an opened switch.

The HV219 is designed to operate on various combinations of high voltage supplies. For example the V_{PP} and V_{NN} supplies can be: $+40 \mathrm{~V} /-160 \mathrm{~V},+100 \mathrm{~V} /-100 \mathrm{~V}$, or $+160 \mathrm{~V} /-40 \mathrm{~V}$. This allows the user to maximize the signal voltage for uni-polar negative, bi-polar, or unipolar positive.

Block Diagram

Ordering Information

Package Options		
Device	28-Lead PLCC	48-Lead LQFP $(7 \times 7 \times 1.4 m m)$
	HV219PJ	HV219FG
	HV219PJ-G	HV219FG-G

-G indicates the part is RoHS compliant (Green)

Absolute Maximum Ratings

Parameter	Value
V_{DD} logic power supply voltage	-0.5 V to +15 V
$\mathrm{~V}_{\mathrm{PP}}-\mathrm{V}_{\mathrm{NN}}$ supply voltage	220 V
$\mathrm{~V}_{\mathrm{PP}}$ positive high voltage supply	-0.5 V to $\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{NN}}$ negative high voltage supply	+0.5 V to -200 V
Logic input voltages	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Analog signal range	V_{NN} to V_{PP}
Peak analog signal current/channel	3.0 A
Storage temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power dissipation:	
$28-L e a d ~ P L C C$	
$48-L e a d ~ L Q F P ~$	

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Operating Conditions

Symbol	Parameter	Value
V_{DD}	Logic power supply voltage	4.5 V to 13.2 V
$\mathrm{~V}_{\mathrm{PP}}$	Positive high voltage supply	40 V to $\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{NN}}$	Negative high voltage supply	-40 V to -160V
V_{IH}	High level input logic voltage	$\mathrm{V}_{\mathrm{DD}}-1.5 \mathrm{~V}$ to V_{DD}
V_{IL}	Low-level input logic voltage	0 V to 1.5 V
$\mathrm{~V}_{\mathrm{SIG}}$	Analog signal voltage peak-to-peak	$\mathrm{V}_{\mathrm{NN}}+10 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}$
$\mathrm{~T}_{\mathrm{A}}$	Operating free air temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Pin Configurations

28-Lead (J) PLCC (PJ) (top view)

Product Marking

$Y Y=$ Year Sealed
WW = Week Sealed
L = Lot Number
C = Country of Origin
A = Assembler ID*
___ = "Green" Packaging
*May be part of top marking.

28-Lead PLCC (PJ)

48-Lead LQFP (FG)

DC Electrical Characteristics (over recommended operating conditions unless otherwise noted)

Sym	Parameter	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+70^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Typ	Max	Min	Max			
$\mathrm{R}_{\text {ons }}$	Small signal switch On-resistance	-	15	-	13	19	-	24	Ω	$\mathrm{I}_{\text {SIG }}=5 \mathrm{~mA}$	$\begin{aligned} & V_{\mathrm{PP}}=+40 \mathrm{~V} \\ & V_{\text {NN }}=- \\ & 160 \mathrm{~V} \end{aligned}$
		-	13	-	11	14	-	16		$\mathrm{I}_{\text {SIG }}=200 \mathrm{~mA}$	
		-	13	-	11	14	-	15		$\mathrm{I}_{\text {SIG }}=5 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}= \\ & +100 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NN}}=- \\ & 100 \mathrm{~V} \end{aligned}$
		-	9	-	9	12	-	14		$\mathrm{I}_{\text {SIG }}=200 \mathrm{~mA}$	
		-	12	-	10	13	-	15		$\mathrm{I}_{\text {SIG }}=5 \mathrm{~mA}$	$\begin{aligned} & V_{\mathrm{PP}}= \\ & +160 \mathrm{~V} \\ & V_{\mathrm{NN}}=-40 \mathrm{~V} \end{aligned}$
		-	11	-	8	13	-	14		$\mathrm{I}_{\text {SIG }}=200 \mathrm{~mA}$	
$\Delta \mathrm{R}_{\text {ons }}$	Small signal switch On-resistance matching	-	20	-	5.0	20	-	20	\%	$\begin{aligned} & I_{\text {SIG }}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{PP}}=+100 \mathrm{~V}, \\ & V_{\mathrm{W}}=-100 \mathrm{~V} \end{aligned}$	
$\mathrm{R}_{\text {ONL }}$	Large signal switch On-resistance	-	-	-	8	-	-	-	Ω	$V_{S I G}=V_{P P}-10 \mathrm{~V}, \mathrm{I}_{\text {SIG }}=1 \mathrm{~A}$	
$\mathrm{I}_{\text {sol }}$	Switch off leakage per switch	-	5.0	-	1.0	10	-	15	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SIG}}=\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V} \& \mathrm{~V}_{\mathrm{NN}} \\ & +10 \mathrm{~V} \end{aligned}$	
	DC offset switch off	-	300	-	100	300	-	300	mV	$\mathrm{R}_{\text {LOAD }}=100 \mathrm{~K} \Omega$	
	DC offset switch on	-	500	-	100	500	-	500	mV	$\mathrm{R}_{\text {LOAD }}=100 \mathrm{~K} \Omega$	
$\mathrm{I}_{\text {PPQ }}$	Quiescent $\mathrm{V}_{\text {PP }}$ supply current	-	-	-	10	50	-	-	$\mu \mathrm{A}$	All switches off	
$\mathrm{I}_{\text {NNQ }}$	Quiescent $\mathrm{V}_{\text {NN }}$ supply current	-	-	-	-10	-50	-	-	$\mu \mathrm{A}$	All switches off	
$\mathrm{I}_{\text {PPQ }}$	Quiescent V_{PP} supply current	-	-	-	10	50	-	-	$\mu \mathrm{A}$	$\begin{aligned} & \text { All switches on, } \mathrm{I}_{\mathrm{sw}}= \\ & 5 \mathrm{~mA} \end{aligned}$	
$\mathrm{I}_{\text {nNQ }}$	Quiescent $\mathrm{V}_{\text {NN }}$ supply current	-	-	-	-10	-50	-	-	$\mu \mathrm{A}$	$\begin{aligned} & \text { All switches on, } \mathrm{I}_{\mathrm{sw}}= \\ & 5 \mathrm{~mA} \end{aligned}$	
	Switch output peak current	-	3.0	-	3.0	2.0	-	2.0	A	$\mathrm{V}_{\text {SIG }}$ duty cycle $<0.1 \%$	
$\mathrm{f}_{\text {sw }}$	Output switch frequency	-	-	-	-	50	-	-	kHz	Duty cycle $=50 \%$	
		-	6.5	-	-	7.0	-	8.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+40 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NN}}=-160 \mathrm{~V} \end{aligned}$	All output switches are turning ON and OFF at 50 kHz with no load
$\mathrm{I}_{\text {PP }}$	Average $\mathrm{V}_{\text {PP }}$ supply current	-	4.0	-	-	5.0	-	5.5		$\begin{aligned} & V_{P D}=+100 \mathrm{~V} \\ & V_{N N}=-100 \mathrm{~V} \end{aligned}$	
		-	4.0	-	-	5.0	-	5.5		$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+160 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V} \end{aligned}$	
$I_{\text {NN }}$	Average V_{NN} supply current	-	6.5	-	-	7.0	-	8.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+40 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NN}}=-160 \mathrm{~V} \end{aligned}$	
		-	4.0	-	-	5.0	-	5.5		$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+100 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V} \end{aligned}$	
		-	4.0	-	-	5.0	-	5.5		$\begin{aligned} & V_{P P}=+160 \mathrm{~V} \\ & V_{\mathrm{NN}}=-40 \mathrm{~V} \end{aligned}$	
$I_{\text {D }}$	Average V_{DD} supply current	-	4.0	-	-	4.0	-	4.0	mA	$\mathrm{f}_{\mathrm{CLK}}=5 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	
$\mathrm{I}_{\text {DDQ }}$	Quiescent $\mathrm{V}_{\text {DD }}$ supply current	-	10	-	-	10	-	10	$\mu \mathrm{A}$	All logic inputs are static	
$\mathrm{I}_{\text {SOR }}$	Data out source current	0.45	-	0.45	0.70	-	0.40	-	mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}-0.7 \mathrm{~V}$	
$\mathrm{I}_{\text {SIIK }}$	Data out sink current	0.45	-	0.45	0.70	-	0.40	-	mA	$\mathrm{V}_{\text {OUT }}=0.7 \mathrm{~V}$	
$\mathrm{C}_{\text {IN }}$	Large input capacitance	-	10	-	-	10	-	10	pF	---	

Supertex inc. • 1235 Bordeaux Drive, Sunnyvale, CA 94089 •Tel: (408) 222-8888• FAX: (408) 222-4895• www.supertex.com

AC Electrical Characteristics (over recommended operating conditions, $V_{00}=5.0 \mathrm{~V}$, unless otherwise noted)

Sym	Parameter	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+70^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Typ	Max	Min	Max		
$\mathrm{t}_{\text {sD }}$	Set-up time before LEE rises	150	-	150	-	-	150	-	ns	---
$\mathrm{t}_{\text {wLe }}$	Time width of LE	150	-	150	-	-	150	-	ns	---
t_{D}	Clock delay time to data out	-	150	-	-	150	-	150	ns	---
$\mathrm{tw}_{\mathrm{CL}}$	Time width of CL	150	-	150	-	-	150	-	ns	---
$\mathrm{t}_{\text {su }}$	Set-up time data to clock	15	-	15	8.0	-	20	-	ns	---
t_{H}	Hold time data from clock	35	-	35	-	-	35	-	ns	---
$\mathrm{f}_{\text {CLK }}$	Clock frequency	-	5.0	-	-	5.0	-	5.0	MHz	50% duty cycle, $\mathrm{f}_{\text {DATA }}=\mathrm{f}_{\mathrm{CLK}} / 2$
tr, tf	Clock rise and fall times	-	50	-	-	50	-	50	ns	---
$\mathrm{T}_{\text {ON }}$	Turn-on time	-	5.0	-	-	5.0	-	5.0	$\mu \mathrm{s}$	$\begin{aligned} & V_{\text {SIG }}=V_{\text {PP }}-10 \mathrm{~V}, \\ & R_{\text {LOAD }}=10 \mathrm{~K} \Omega \end{aligned}$
$\mathrm{T}_{\text {OFF }}$	Turn-off time	-	5.0	-	-	5.0	-	5.0	$\mu \mathrm{s}$	$\begin{aligned} & V_{\text {SIG }}=V_{\text {PP }}-10 \mathrm{~V}, \\ & R_{\text {LOAD }}=10 \mathrm{~K} \Omega \end{aligned}$
dv/dt	Maximum $\mathrm{V}_{\text {SIG }}$ slew rate	-	20	-	-	20	-	20	V/ns	$\mathrm{V}_{\mathrm{PP}}=+40 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-160 \mathrm{~V}$
		-	20	-	-	20	-	20		$\mathrm{V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}$
		-	20	-	-	20	-	20		$\mathrm{V}_{\mathrm{PP}}=+160 \mathrm{~V}, \mathrm{~V}_{\text {NN }}=-40 \mathrm{~V}$
KO	Off isolation	-30	-	-30	-33	-	-	-	dB	$\begin{aligned} & \mathrm{F}=5 \mathrm{MHz}, \\ & 1 \mathrm{~K} \Omega / / 15 \mathrm{pF} \text { load } \end{aligned}$
		-58	-	-58	-	-	-	-		$\mathrm{F}=5 \mathrm{MHz}, 50 \Omega$ load
K_{CR}	Switch crosstalk	-	-	-60	-	-	-	-	dB	$\mathrm{F}=5 \mathrm{MHz}, 50 \Omega$ load
$1{ }_{10}$	Output switch isolation diode current	-	300	-	-	300	-	300	mA	300ns pulse width, 2% duty cycle
$\mathrm{C}_{\text {SG(OFF) }}$	Off capacitance SW to GND	14	25	14	20	25	14	25	pF	$0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\text {SG(ON) }}$	On capacitance SW to GND	40	60	40	50	60	40	60	pF	$0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$+\mathrm{V}_{\text {SPK }}$	Output voltage spike	-	-	-	-	150	-	-	mV	$\begin{aligned} & V_{\mathrm{PP}}=+40 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-160 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=50 \Omega \end{aligned}$
- $\mathrm{V}_{\text {SPK }}$		-	-	-	-	200	-	-		
$+\mathrm{V}_{\text {SPK }}$		-	-	-	-	150	-	-		$V_{P P}=+100 \mathrm{~V},$
$-V_{\text {SPK }}$		-	-	-	-	200	-	-		$\mathrm{V}_{\text {NN }}=-100 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=50 \Omega$
$+\mathrm{V}_{\text {SPK }}$		-	-	-	-	150	-	-		$\mathrm{V}_{\mathrm{PP}}=+160 \mathrm{~V}$,
- $\mathrm{V}_{\text {SPK }}$		-	-	-	-	200	-	-		$V_{N N}=-40 \mathrm{~V}, R_{\text {LOAD }}=50 \Omega$
Q	Charge injection	-	-	-	1450	-	-	-	pC	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+40 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-160 \mathrm{~V}, \mathrm{~V}_{\mathrm{SIG}}=0 \mathrm{~V} \end{aligned}$
		-	-	-	1050	-	-	-		$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+100 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \mathrm{~V}_{\mathrm{SIG}}=0 \mathrm{~V} \end{aligned}$
		-	-	-	550	-	-	-		$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+160 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V}, \mathrm{~V}_{\mathrm{SIG}}=0 \mathrm{~V} \end{aligned}$

Truth Table

Data in 8-Bit Shift Register								$\overline{\text { LE }}$	CL	Output Switch State							
D0	D1	D2	D3	D4	D5	D6	D7			SW0	SW1	SW2	SW3	SW4	SW5	SW6	SW7
L								L	L	OFF							
H								L	L	ON							
	L							L	L		OFF						
	H							L	L		ON						
		L						L	L			OFF					
		H						L	L			ON					
			L					L	L				OFF				
			H					L	L				ON				
				L				L	L					OFF			
				H				L	L					ON			
					L			L	L						OFF		
					H			L	L						ON		
						L		L	L							OFF	
						H		L	L							ON	
							L	L	L								OFF
							H	L	L								ON
X	X	X	X	X	X	X	X	H	L				d Prev	ous St			
X	X	X	X	X	X	X	X	X	H	OFF							

Notes:

1. The eight switches operate independently.
2. Serial data is clocked in on the L to H transition clock.
3. The switches go to a state retaining their present condition at the rising edge of the $\overline{L E}$.
4. When $L E$ is low, the shift register data flows through the latch.
5. Shift register clocking has no effect on the switch states if $\overline{L E}$ is high.
6. The clear input overrides all other inputs.

Logic Timing Waveforms

Supprtex Inc. • 1235 Bordeaux Drive, Sunnyvale, CA 94089 • Tel: (408) 222-8888•FAX: (408) 222-4895 • www.supertex.com

Test Circuits

Switch OFF Leakage

DC Offset ON/OFF

$\mathrm{T}_{\text {ON }} / \mathrm{T}_{\text {OFF }}$ Test Circuit

OFF Isolation

Isolation Diode Current

$Q=1000 \mathrm{pF} \times \mathrm{V}_{\text {OUT }}$
Charge Injection

Output Voltage Spike

Pin Description

28-Lead (J-Lead) PLCC (PJ)

Pin	Function
1	SW3
2	SW3
3	SW2
4	SW2
5	SW1
6	SW1
7	SW0

Pin	Function
8	SW0
9	NC
10	$\mathrm{~V}_{\mathrm{PP}}$
11	NC
12	$\mathrm{~V}_{\mathrm{NN}}$
13	GND
14	$\mathrm{~V}_{\mathrm{DD}}$

Pin	Function
15	NC
16	$\mathrm{D}_{\text {IN }}$
17	CLK
18	$\overline{\mathrm{LE}}$
19	CL
20	$\mathrm{D}_{\text {ouT }}$
21	SW 7

Pin	Function
22	SW7
23	SW6
24	SW6
25	SW5
26	SW5
27	SW4
28	SW4

Pin Description

48-Lead LQFP ($7 \times 7 \times 1.4 \mathrm{~mm}$) (FG)

Pin	Function
1	SW5
2	NC
3	SW4
4	NC
5	SW4
6	NC
7	NC
8	SW3
9	NC
10	SW3
11	NC
12	SW2

Pin	Function
13	NC
14	SW2
15	NC
16	SW1
17	NC
18	SW1
19	NC
20	SW0
21	NC
22	SW0
23	NC
24	$\mathrm{~V}_{\mathrm{PP}}$

Pin	Function
25	$\mathrm{~V}_{\text {NN }}$
26	NC
27	NC
28	GND
29	$\mathrm{~V}_{\mathrm{DD}}$
30	NC
31	NC
32	NC
33	$\mathrm{D}_{\text {IN }}$
34	CLK
35	$\overline{\mathrm{LE}}$
36	CLR

Pin	Function
37	$\mathrm{D}_{\text {out }}$
38	NC
39	SW 7
40	NC
41	SW 7
42	NC
43	SW 6
44	NC
45	SW 6
46	NC
47	SW 5
48	NC

Power Up/Down Sequence

1) Power up/down sequence is arbitrary except GND must be powered up first and powered down last. This applies for applications powering GND of the IC with different voltages.
2) $V_{S I G}$ must always be at or in between $V_{P P}$ and $V_{N N}$ or floating during power up/down transition.
3) Rise and fall times of the power supplies $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{PP}}$, and V_{NN} should not be less than 1.0 ms .

28-Lead PLCC Package Outline (PJ)

Top View

Side View

Note 1:
A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier may be either a mold, or an embedded metal or marked feature.

Symbol		A	A1	A2	b	D	D1	E	E1	e
Dimension (inches)	MIN	. 165	. 090	. 062	. 013	. 485	. 450	. 485	. 450	$\begin{aligned} & .050 \\ & \text { BSC } \end{aligned}$
	NOM	. 172	. 105	-	-	. 490	. 453	. 490	. 453	
	MAX	. 180	. 120	. 083	. 021	. 495	. 456	. 495	. 456	

JEDEC Registration MS-018, Variation AB, Issue A, June, 1993.
Drawings not to scale.

Supprtex Inc. • 1235 Bordeaux Drive, Sunnyvale, CA 94089 • Tel: (408) 222-8888•FAX: (408) 222-4895 • www.supertex.com

48-Lead LQFP (7x7x1.4mm) Package Outline (FG)

View B

Note 1:
A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier may be either a mold, or an embedded metal or marked feature.

Symbol		A	A1	A2	b	D	D1	E	E1	e	L	L1	L2	θ
Dimension (mm)	MIN	1.40	0.05	1.35	0.17	8.80	6.80	8.80	6.80	$\begin{aligned} & 0.50 \\ & \text { BSC } \end{aligned}$	0.45	$\begin{aligned} & 1.00 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$	0°
	NOM	-	-	1.40	0.22	9.00	7.00	9.00	7.00		0.60			$3.5{ }^{\circ}$
	MAX	1.60	0.15	1.45	0.27	9.20	7.20	9.20	7.20		0.75			7°

JEDEC Registration MS-026, Variation BBC, Issue D, Jan. 2001.
Drawings not to scale.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^0]
[^0]:

 product specifications, refer to the Supertex website: http//www.supertex.com.

