

Low Distortion Ultrahigh Speed Differential ADC Driver

Preliminary Technical Data

FEATURES

Adjustable output common-mode voltage Externally adjustable gain -3 dB bandwidth of 3GHz, (all gains) Low harmonic distortion (H2/H3 SE->DIFF) -77/-67 dBc @ 250 MHz -69/-63 dBc @ 500 MHz -52/-63 dBc @ 1GHz IMD3 @ 1GHz = 67dBc Slew rate 8000 V/µs Fast overdrive recovery of 1 ns Low input voltage noise of 3.6 nV/√Hz Low power dissipation: 60 mA quiescent current 0.1 dB gain flatness to TBD MHz Available in 16-Lead and 24-Lead LFSCP packages

APPLICATIONS

ADC drivers for giga-sample ADCs Single-ended-to-differential converters RF/IF gain block Line drivers Oscilloscopes Satellite Communications Data Acquisition Electronic Surveillance and Countermeasures

GENERAL DESCRIPTION

The ADA4960-1 is a high performance differential amplifier optimized for RF and IF applications. It achieves better than 63dB SFDR performance at frequencies up to 500 MHz, and 52dB up to 1GHz, making it an ideal driver for high speed 8-bit to 10-bit giga-sample analog-to-digital converters (ADCs).

Unlike other wideband differential amplifiers, the ADA4960-1 has buffered inputs that isolate the gain-setting resistor (RG) from the signal inputs. As a result, the ADA4960-1 maintains a constant 10 k Ω differential input resistance for gains of 6 dB to 15 dB, easing matching and input drive requirements. The ADA4960-1 has a nominal 150 Ω differential output resistance.

The device is optimized for wideband, low distortion performance at frequencies up to and beyond 1 GHz. These attributes, together with its wide gain adjust capability make this device the amplifier of choice for general-purpose IF and broadband applications where low distortion, noise, and power are critical.

Rev. PrB

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADA4960-1

PIN CONFIGURATION

The device also includes a unity gain buffer, for the buffering of DC signals such as the common-mode-input to the amplifier. This buffer is found between pins 6 (input) and pin5 (output). If this buffer is not used, the output can be left disconnected and the input can be grounded.

It is ideally suited for driving not only ADCs, but also mixers, pin diode attenuators, SAW filters, and multi-element discrete devices, as well as buffering high frequency DACs. The device will be available in a single channel version in 3 mm \times 3 mm, 16-lead LFCSP package or a dual channel version in 4 mm x 4 mm, 24-lead LFSCP. The device operates over a temperature range of -40° C to $+105^{\circ}$ C.

TABLE OF CONTENTS

Features 1	1
Applications	1
Pin Configuration	1
General Description	1

Revision History2	
Specifications	
Pin Configuration and Function Description5	
Outline Dimensions	j

REVISION HISTORY

12/09—Revision PrA: Preliminary Version

SPECIFICATIONS

 $V_{S}=+5V, \ V_{\rm OCM}=+2.5V, \ R_{L,\,dm}=100\Omega, \ @\ 25^{\circ}C, \ unless \ otherwise \ noted. \ T_{\rm MIN} \ to \ T_{\rm MAX}=-40^{\circ}C \ to \ +105^{\circ}C.$

Parameter	Conditions	Min Typ	Max	Unit
DIFFERENTIAL INPUT PERFORMANCE				
DYNAMIC PERFORMANCE				
–3 dB Small Signal Bandwidth	$V_{0, dm} = 0.1 V p - p$	3000		MHz
Bandwidth for 0.1 dB Flatness	$V_{0, dm} = 0.1 \text{ V p-p}$	5000		MHz
Slew Rate	$V_{0, dm} = 2 V \text{Step}$	8000		V/µs
Settling Time to 0.1%	$V_{0, dm} = 2V Step$ $V_{0, dm} = 2V Step$	0000		ns
Overdrive Recovery Time				
	$G = 2$, $V_{IN, dm} = 7 V p - p$ Triangle Wave			ns
NOISE/HARMONIC PERFORMANCE	N 1N 6 250 MIL	77/67		10
H2/H3 (Av = 12dB) SE->DIFF	$V_{0, dm} = 1 V p - p, f_c = 250 MHz$	-77/-67		dBc
	$V_{0, dm} = 1 V p - p, f_c = 500 MHz$	-69/63		dBc
	$V_{0, dm} = 1 V p - p, f_{C} = 1000 MHz$	-52/-63		dBc
H2/H3 (Av= 12dB) DIFF->DIFF	$V_{O, dm} = 1 V p-p, f_C = 250 MHz$	-80/-67		dBc
	$V_{0, dm} = 1 V p-p, f_{C} = 500 MHz$	-70/-63		dBc
	$V_{0, dm} = 1 V p-p, f_{C} = 1000 MHz$	-58/-69		dBc
Third-Order IMD	$V_{O, dm} = 1 V p$ -p, $f_C = 1005 MHz \pm 0.05 MHz$	67		dBc
Input Voltage Noise	f = 100 kHz	3.6		nV/√Hz
Input Current Noise	f = 100 kHz	3		pA/√Hz
DC PERFORMANCE				
Input Offset Voltage	$V_{IP} = V_{IN} = V_{OCM} = 0 V$			μV
Input Offset Voltage Drift	T _{MIN} to T _{MAX}			μV/∘C
Input Bias Current				μA
Input Offset Current				μA
Open-Loop Gain				dB
INPUT CHARACTERISTICS				
Input Common-Mode Voltage		Vs/2- Vs/2	Vs/2+ 0.25	v
Range		0.25	\$3/21 0.25	v
Input Resistance	Differential (DC≤ Fin ≤ 1GHz)	10		ΚΩ
P	Common-Mode			MΩ
Input Capacitance	Common-Mode			pF
CMRR	$\Delta V_{ICM} = \pm 1 V dc$			dB
OUTPUT CHARACTERISTICS				ab
Output Voltage Swing		3.5		V pk-pk
Output Voltage Swing		5.5		Differential
	Each Single-Ended Output,			V
	$R_{L,dm} = Open Circuit$			•
Output Impedance	Each Single-Ended Output	150		Ω
-3 dB Bandwidth	V _{0, cm} = 0.1 V p-p			MHz
Slew Rate	$V_{0, cm} = 0.1 V p p$ $V_{0, cm} = 2 V p p$			V/µs
	V0, cm – 2 V P-P			ν/μs V/V
				v/v
Input Voltage Range				V
Input Resistance				MΩ
Input Offset Voltage	$V_{OS, cm} = V_{O, cm} - V_{OCM}$; $V_{IP} = V_{IN} = V_{OCM} = 2.5$ V			mV
Input Voltage Noise	f = 100 KHz			nV/√Hz
Input Bias Current				μΑ
CMRR	$\Delta V_{OCM}/\Delta V_O(dm), \Delta V_{OCM} = \pm 1 V$			dB

ADA4960-1

Preliminary Technical Data

Parameter	Conditions	Min	Тур	Мах	Unit
POWER SUPPLY					
Operating Range			5		V
Quiescent Current			60		mA
+PSRR	Change in $+V_s = \pm 1 V$				dB
–PSRR	Change in $-V_s = \pm 1 V$				dB
OPERATING TEMPERATURE RANGE		-40		+105	°C

PIN CONFIGURATION AND FUNCTION DESCRIPTION

Figure 2. Pin Configuration

Pin No.	Mnemonic	Description
1	VIP	Balanced Differential Input. Biased to VCOM.
2	IIP	Gain setting input, positive side. A resistor from this pin to pin 3 sets the gain for the device.
3	IIN	Gain setting input, negative side. A resistor from this pin to pin 3 sets the gain for the device
4	VIN	Balanced Differential Input. Biased to VCOM.
5	VCIO	Common Mode buffer output.
6	VCI	Common Mode buffer input
7, 8, 9, 12	+Vs	Positive Supply.
10	VON	Balanced Differential Output. Biased to VCOM, typically ac-coupled.
11	VOP	Balanced Differential Output. Biased to VCOM, typically ac-coupled.
13	VC0M	Common-Mode Voltage. A voltage applied to this pin sets the common-mode voltage of the input and output. Typically decoupled to ground with a 0.1 μ F capacitor. With no reference applied, input and output common mode floats to midsupply (VCC/2).
16	PD	Enable. Apply positive voltage (1.3 V < ENB < VCC) to activate device.
13, 14, 15, 16	GND	Ground. Connect to low impedance GND.

Table 2. Pin Function Descriptions

OUTLINE DIMENSIONS

©2009 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. PR08458-0-12/09(PrB)

www.analog.com