Preliminary Technical Data

FEATURES

Adjustable output common-mode voltage Externally adjustable gain
-3 dB bandwidth of 3 GHz , (all gains)
Low harmonic distortion (H2/H3 SE->DIFF)
-77/-67 dBc @ 250 MHz
-69/-63 dBc @ 500 MHz
$-52 /-63 \mathrm{dBc} @ 1 \mathrm{GHz}$
IMD3 @ $1 \mathrm{GHz}=67 \mathrm{dBc}$
Slew rate 8000 V/ $\mu \mathrm{s}$
Fast overdrive recovery of 1 ns
Low input voltage noise of $3.6 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Low power dissipation: $\mathbf{6 0} \mathrm{mA}$ quiescent current
0.1 dB gain flatness to TBD MHz

Available in 16-Lead and 24-Lead LFSCP packages

APPLICATIONS

ADC drivers for giga-sample ADCs
Single-ended-to-differential converters
RF/IF gain block
\section*{Line drivers}
Oscilloscopes
Satellite Communications
Data Acquisition
Electronic Surveillance and Countermeasures

GENERAL DESCRIPTION

The ADA4960-1 is a high performance differential amplifier optimized for RF and IF applications. It achieves better than 63 dB SFDR performance at frequencies up to 500 MHz , and 52 dB up to 1 GHz , making it an ideal driver for high speed 8 -bit to 10-bit giga-sample analog-to-digital converters (ADCs).

Unlike other wideband differential amplifiers, the ADA4960-1 has buffered inputs that isolate the gain-setting resistor (RG) from the signal inputs. As a result, the ADA4960-1 maintains a constant $10 \mathrm{k} \Omega$ differential input resistance for gains of 6 dB to 15 dB , easing matching and input drive requirements. The ADA4960-1 has a nominal 150Ω differential output resistance.

The device is optimized for wideband, low distortion performance at frequencies up to and beyond 1 GHz . These attributes, together with its wide gain adjust capability make this device the amplifier of choice for general-purpose IF and broadband applications where low distortion, noise, and power are critical.

[^0]The device also includes a unity gain buffer, for the buffering of DC signals such as the common-mode-input to the amplifier. This buffer is found between pins 6 (input) and pin5 (output). If this buffer is not used, the output can be left disconnected and the input can be grounded.

It is ideally suited for driving not only ADCs, but also mixers, pin diode attenuators, SAW filters, and multi-element discrete devices, as well as buffering high frequency DACs. The device will be available in a single channel version in $3 \mathrm{~mm} \times 3 \mathrm{~mm}$, 16-lead LFCSP package or a dual channel version in 4 mm x 4 $\mathrm{mm}, 24$-lead LFSCP. The device operates over a temperature range of $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.

TABLE OF CONTENTS

Revision History ... 2
Specifications .. 3
Pin Configuration and Function Description 5
Outline Dimensions .. 6

12/09—Revision PrA: Preliminary Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {OCM }}=+2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=100 \Omega$, @ $25^{\circ} \mathrm{C}$, unless otherwise noted. $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.
Table 1.

Parameter	Conditions	Min	Typ	Max	Unit
DIFFERENTIAL INPUT PERFORMANCE					
DYNAMIC PERFORMANCE -3 dB Small Signal Bandwidth Bandwidth for 0.1 dB Flatness Slew Rate Settling Time to 0.1\% Overdrive Recovery Time	$\begin{aligned} & \mathrm{V}_{\mathrm{o}, \mathrm{dm}}=0.1 \mathrm{~V} \mathrm{p}-\mathrm{p} \\ & \mathrm{~V}_{\mathrm{o}, \mathrm{dm}}=0.1 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{~V}_{\mathrm{o}, \mathrm{dm}}=2 \mathrm{~V} \text { Step } \\ & \mathrm{V}_{\mathrm{o}, \mathrm{dm}}=2 \mathrm{~V} \text { Step } \\ & \mathrm{G}=2, \mathrm{~V}_{\mathrm{IN}, \mathrm{dm}}=7 \mathrm{~V} \text { p-p Triangle Wave } \end{aligned}$		$\begin{aligned} & 3000 \\ & 8000 \end{aligned}$		MHz MHz V/ $\mu \mathrm{s}$ ns ns
NOISE/HARMONIC PERFORMANCE H2/H3 (Av = 12dB) SE->DIFF H2/H3 (Av=12dB) DIFF->DIFF Third-Order IMD Input Voltage Noise Input Current Noise	$\begin{aligned} & \mathrm{V}_{\mathrm{o}, \mathrm{dm}}=1 \mathrm{Vp-p,f}_{\mathrm{c}}=250 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{o}, \mathrm{dm}}=1 \mathrm{Vp}-\mathrm{p}, \mathrm{f}_{\mathrm{c}}=500 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{o}, \mathrm{dm}}=1 \mathrm{Vp}-\mathrm{p}, \mathrm{f}_{\mathrm{c}}=1000 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{o}, \mathrm{dm}}=1 \mathrm{Vp}-\mathrm{p}, \mathrm{f}_{\mathrm{c}}=250 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{o}, \mathrm{dm}}=1 \mathrm{Vp}-\mathrm{p}, \mathrm{f}_{\mathrm{c}}=500 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{o}, \mathrm{dm}}=1 \mathrm{Vp}-\mathrm{p}, \mathrm{f}_{\mathrm{c}}=1000 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{o}, \mathrm{dm}}=1 \mathrm{Vp}-\mathrm{p}, \mathrm{f}_{\mathrm{c}}=1005 \mathrm{MHz} \pm 0.05 \mathrm{MHz} \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & -77 /-67 \\ & -69 / 63 \\ & -52 /-63 \\ & -80 /-67 \\ & -70 /-63 \\ & -58 /-69 \\ & 67 \\ & 3.6 \\ & 3 \end{aligned}$		dBc $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
DC PERFORMANCE Input Offset Voltage Input Offset Voltage Drift Input Bias Current Input Offset Current Open-Loop Gain	$\mathrm{V}_{\mathrm{IP}}=\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{OCM}}=0 \mathrm{~V}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$				$\mu \mathrm{V}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ dB
INPUT CHARACTERISTICS Input Common-Mode Voltage Range Input Resistance Input Capacitance CMRR	Differential ($\mathrm{DC} \leq$ Fin $\leq 1 \mathrm{GHz}$) Common-Mode Common-Mode $\Delta V_{\text {ICM }}= \pm 1 \mathrm{~V} \mathrm{dc}$	$\begin{aligned} & \text { Vs/2- } \\ & 0.25 \end{aligned}$	$\begin{aligned} & \text { Vs/2 } \\ & 10 \end{aligned}$	Vs/2+0.25	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~K} \Omega \\ & \mathrm{M} \Omega \\ & \mathrm{pF} \\ & \mathrm{~dB} \end{aligned}$
OUTPUT CHARACTERISTICS Output Voltage Swing Output Impedance	Each Single-Ended Output, $\mathrm{R}_{\mathrm{L}, \mathrm{dm}}=$ Open Circuit Each Single-Ended Output		3.5 150		V pk-pk Differential V Ω
$V_{\text {ocm }}$ to $\mathrm{V}_{\text {ocm }}$ PERFORMANCE					
Vocm DYNAMIC PERFORMANCE -3 dB Bandwidth Slew Rate Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{o}, \mathrm{~cm}}=0.1 \mathrm{~V} \mathrm{p}-\mathrm{p} \\ & \mathrm{~V}_{\mathrm{o}, \mathrm{~cm}}=2 \mathrm{Vp}-\mathrm{p} \end{aligned}$				$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{~V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mathrm{V} \end{aligned}$
Vocm INPUT CHARACTERISTICS Input Voltage Range Input Resistance Input Offset Voltage Input Voltage Noise Input Bias Current CMRR	$\begin{aligned} & V_{\mathrm{OS}, \mathrm{~cm}}=\mathrm{V}_{\mathrm{O}, \mathrm{~cm}}-\mathrm{V}_{\mathrm{OCM} ;} \mathrm{V}_{\mathrm{IP}}=\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OCM }}=2.5 \\ & \mathrm{f}=100 \mathrm{KHz} \\ & \Delta \mathrm{~V}_{\mathrm{OCM}} / \Delta \mathrm{V}_{\mathrm{O}}(\mathrm{dm}), \Delta \mathrm{V}_{\mathrm{OCM}}= \pm 1 \mathrm{~V} \end{aligned}$				V $\mathrm{M} \Omega$ mV $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mu \mathrm{A}$ dB

Parameter	Conditions	Min	Typ \quad Max	Unit
POWER SUPPLY				
Operating Range				
Quiescent Current +PSRR	Change in $+V_{S}= \pm 1 \mathrm{~V}$	60	V	
-PSRR	Change in $-V_{S}= \pm 1 \mathrm{~V}$			mA
OPERATING TEMPERATURE RANGE		-40	dB	

PIN CONFIGURATION AND FUNCTION DESCRIPTION

Figure 2. Pin Configuration

Table 2. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VIP	Balanced Differential Input. Biased to VCOM.
2	IIP	Gain setting input, positive side. A resistor from this pin to pin 3 sets the gain for the device.
3	IIN	Gain setting input, negative side. A resistor from this pin to pin 3 sets the gain for the device..
4	VIN	Balanced Differential Input. Biased to VCOM.
5	VCIO	Common Mode buffer output.
6	VCI	Common Mode buffer input
7, 8, 9, 12	+Vs	Positive Supply.
10	VON	Balanced Differential Output. Biased to VCOM, typically ac-coupled.
11	VOP	Balanced Differential Output. Biased to VCOM, typically ac-coupled.
13	VCOM	Common-Mode Voltage. A voltage applied to this pin sets the common-mode voltage of the input and output. Typically decoupled to ground with a $0.1 \mu \mathrm{~F}$ capacitor. With no reference applied, input and output common mode floats to midsupply (VCC/2).
16	PD	Enable. Apply positive voltage (1.3 V < ENB $<\mathrm{VCC}$) to activate device.
13, 14, 15, 16	GND	Ground. Connect to low impedance GND.

OUTLINE DIMENSIONS

Figure 3. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body, Very Thin Quad (CP-16-2)
Dimensions shown in millimeters

[^0]: Rev. PrB
 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

