SPECIFICATION FOR LCD MODULE

Model No.	TM122AACW7
1110uci 110.	

Prepared by:	Date:
Checked by:	Date:
Verified by :	Date:
Approved by:	Date:

TIANMA MICROELECTRONICS CO., LTD

REVISION RECORD

Date	Ref. Page	Revision No.	Revision Items	Check & Approval

1 General Specifications:

1.1 Display type: TN

1.2 Display color:

Display color*1: Blue-Black

Background*²: Gray

1.3 Polarizer mode: Transflective/Positive

1.4 Viewing Angle: 6:00

1.5 Driving Method: 1/16 Duty 1/5 Bias

1.6 Backlight: LED

1.7 Controller: S6A0069X01-C0CX(KS0066UP-00CC)

1.8 Display Fonts: 5 x 7 dots+Cursor(1 Character)

1.9 Data Transfer: 8 Bit Parallel

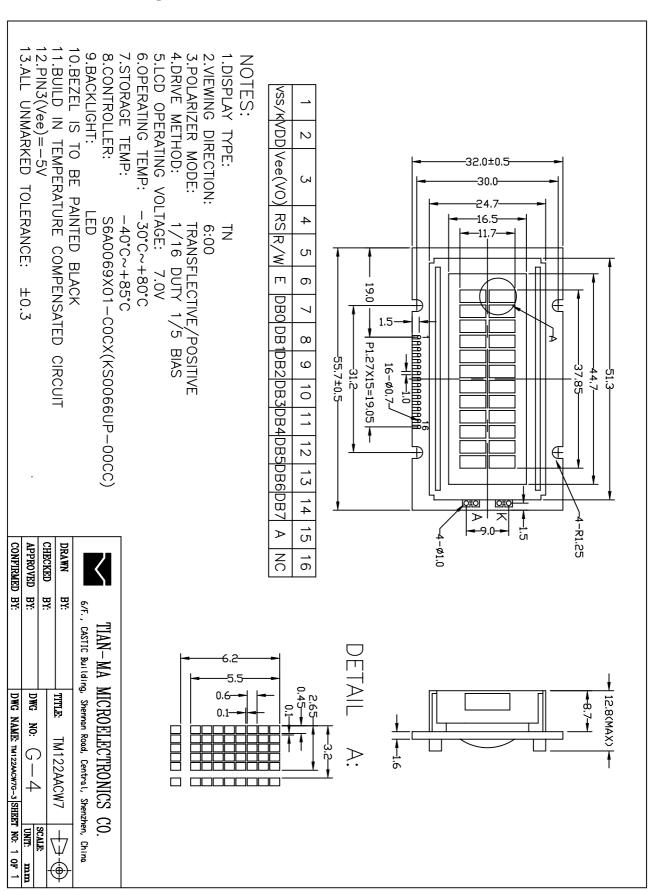
1.10 Operating Temperature: -30----+80°C

Storage Temperature: -40----+85 °C

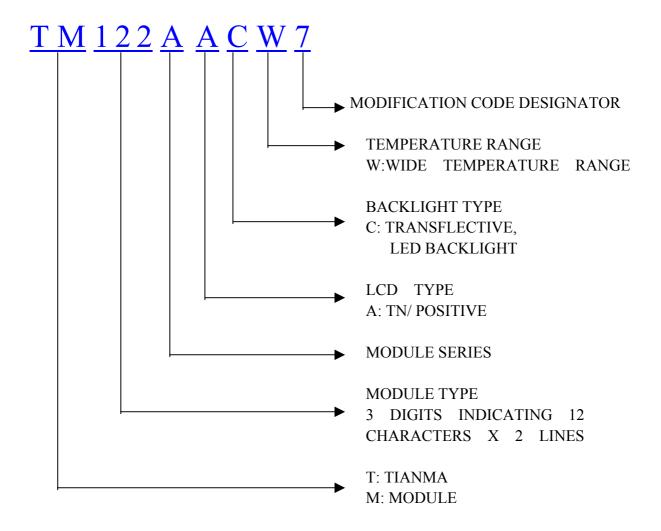
1.11 Outline Dimensions: Refer to outline drawing on next page

1.12 Dot Matrix: 12 Characters X 2 Lines

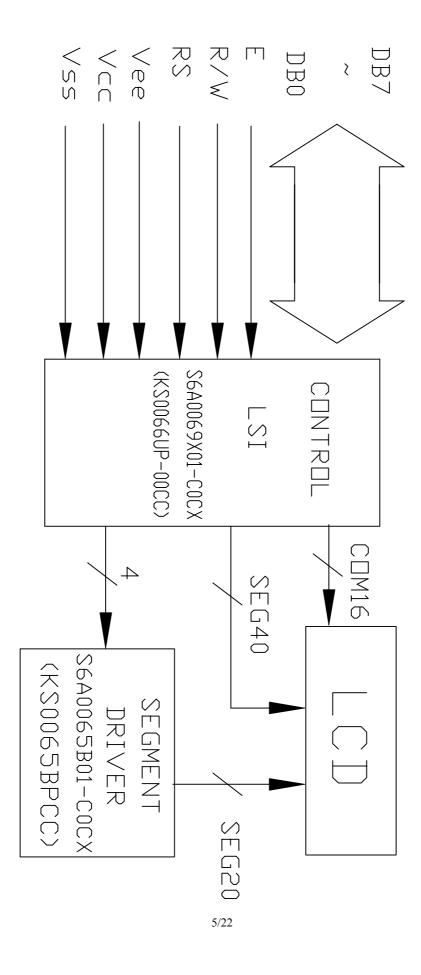
 1.13 Dot Size:
 0.45X0.60(mm)


 1.14 Dot Pitch:
 0.55X0.70 (mm)

 1.15 Weight:
 Approx. 30g


^{*1} Color tone is slightly changed by temperature and driving voltage.

^{*&}lt;sup>2</sup> Color tone will be changed by backlight.


2 Outline Drawing

3 LCD Module Part Numbering System

4 Circuit Block Diagram

Ver 1.0

5 Absolute Maximum Ratings

Item	Symbol	Min.	Max.	Unit	Remark
Power Supply Voltage	V _{DD} -V _{SS}	-0.3	7.0	V	
LCD Driving Voltage	VLCD	-0.3	13.0	v	
Operating Temperature Range	Тор	-30	+80	°C	No
Storage Temperature Range	Тѕт	-40	+85		Condensation

6 Electrical Specifications and Instruction Code

6.1 Electrical characteristics

Iter	n	Symbol	Min.	Тур.	Max.	Unit
Supply V (Log	•	V _{DD} -V _{SS}	4.5	5.0	5.5	V
Supply V (LCD D	•	VLCD	1	7.0	1	V
Input	High	V_{IH} $(V_{\text{DD}}=5.0\text{V})$	$0.7 \mathrm{V}_\mathrm{DD}$	ı	V _{DD} +0.3	V
Signal Voltage	Low	V_{IL} $(V_{\text{DD}}=5.0\text{V})$	-0.3	1	0.2 V _{DD}	V
Supply current (Logic)		$I_{\scriptscriptstyle m DD}$ $(V_{\scriptscriptstyle m DD} ext{-}V_{\scriptscriptstyle m SS} ext{=}5.0{ m V})$	-	1	1.2	mA
Supply o		${f I}_{ ext{LED}}$	-	-	110	mA

6.2 Interface Signals

Pin No.	Symbol	Level	Description			
1	Vss/K	0V	Ground and Power supply voltage for LED(-)			
2	Vdd	5.0V	Power supply voltage for logic and LCD(+)			
3	V0	-5.0V	Power supply voltage for LCD(-)			
4	RS	H/L	H:Select data register; L: Select instruction register			
5	R/W	H/L	Selects read or write			
			H: Read operation L: Write operation			
6	E	H/L	Starts data read/write			
7	DB0	H/L	Data bit 0			
8	DB1	H/L	Data bit 1			
9	DB2	H/L	Data bit 2			
10	DB3	H/L	Data bit 3			
11	DB4	H/L	Data bit 4			
12	DB5	H/L	Data bit 5			
13	DB6	H/L	Data bit 6			
14	DB7	H/L	Data bit 7			
15	Α	4.2V	Power supply voltage for LED(+)			

6.3 Interface Timing Chart

AC Characteristics(V_{DD}=4.5V~5.5V,Ta=-30~+85°C)

Mode	Characteristic	Symbol	Min.	Тур.	Max.	Unit
	E Cycle Time	tc	500	-	-	
	E Rise / Fall Time	t_R, t_F	-	-	20	
	E Pulse Width (High, Low)	tw	230	-	-	
Write Mode (Refer to Fig-6)	R/W and RS Setup Time	tsu1	40	-	-	ns
(Note: to Fig-o)	R/W and RS Hold Time	t _{H1}	10	-	-	
	Data Setup Time	tsu2	80	-	-	
	Data Hold Time	t _{H2}	10	-	-	
	E Cycle Time	tc	500	-	-	
	E Rise / Fall Time	t_R, t_F	-	-	20	
	E Pulse Width (High, Low)	tw	230	-	-	
Read Mode	R/W and RS Setup Time	tsu	40	-	-	ns
(Refer to Fig-7)	R/W and RS Hold Time	t _H	10	-	-	
	Data Output Delay Time	t _D	-	-	120	
	Data Hold Time	t _{DH}	5	-	-	

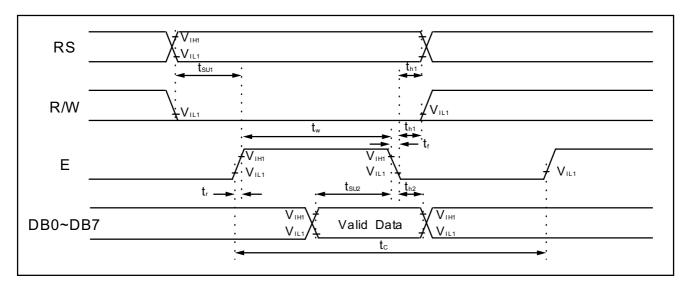


Figure . Write Mode Timing Diagram

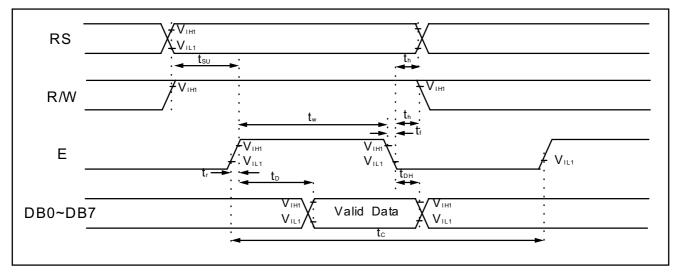


Figure . Read Mode Timing Diagram

6.4 Instruction Code

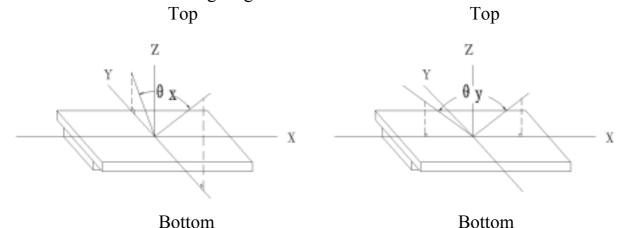
				Inst	ructi	on C	ode				D	Execution
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	time (fosc= 270 kHz)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM and set DDRAM address to "00H" from AC	1.53 ms
Return Home	0	0	0	0	0	0	0	0	1	-	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.53 ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor moving direction and enable the shift of entire display.	39 μs
Display ON/ OFF Control	0	0	0	0	0	0	1	D	С	В	Set display(D), cursor(C), and blinking of cursor(B) on/off control bit.	39 μs
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	-	-	Set cursor moving and display shift control bit, and the direction, without changing of DDRAM data.	39 μs
Function Set	0	0	0	0	1	DL	N	F	-	-	Set interface data length (DL: 8-bit/4-bit), numbers of display line (N: 2-line/1-line) and, display font type (F:5×11dots/5×8 dots)	39 μs
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	39 μs
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	39 μs
Read Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0 μs
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	43 μs
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	43 μs

* "-": don't care

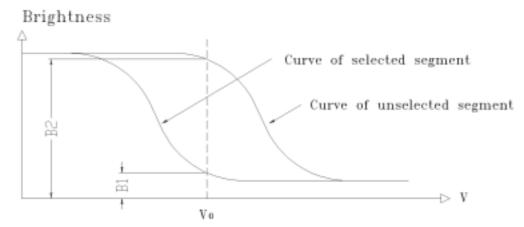
6.5 Character generator ROM(KS0066U-00)

Upper 4bit Lower 4bit	LLLL	LLLH	LLHL	LLHH	LHLL	LHLH	LHHL	LHHH	HLLL	HLLH	HLHL	HLHH	HHLL	HHLH	HHHL	НННН
LLLL	CG RAM (1)															
LLLH	(2)															
LLHL	(3)															
LLHH	(4)															
LHLL	(5)															
LHLH	(6)															
LHHL	(7)															
LHHH	(8)															
HLLL	(1)															
HLLH	(2)															
HLHL	(3)															
HLHH	(4)															
HHLL	(5)															
HHLH	(6)															
HHHL	(7)															
НННН	(8)															

7 Optical Characteristics

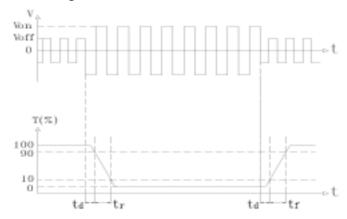

7.1 Optical Characteristics

Ta=25°C


Item		Symbol	Cone	dition	Min.	Тур.	Max.	Unit	
Vioving	A nala	$\theta_{\mathbf{x}}$	C > 2	θ _y =0°	-35		10	Deg	
Viewing A	Angie	θу	Cr≥2	θ _x =0°	-30)	30		
Contrast 1	Ratio	Cr	$\theta_{x} = \theta_{y} = 0$	=0°	3.0	-	-		
Response	Turn on	Ton		=0°	-	-	150		
Time Turn off		Toff	θ _y =	=0°	-	-	150	ms	

7.2 Definition of Optical Characteristics

7.2.1 Definition of Viewing Angle


7.2.2 Definition of Contrast Ratio

Contrast Ratio =
$$B2/B1 = \frac{\text{unselected state brightness}}{\text{selected state brightness}}$$

Measuring Conditions:

1) Ambient Temperature: 25°C; 2) Frame frequency: 84.3Hz 7.2.3 Definition of Response time

Turn on time: $t_{on} = t_d + t_r$ Turn off time: $t_{off} = t_d + t_f$ Measuring Condition:

1) Operating Voltage: 7.0V; 2) Frame frequency: 84.3Hz

8 Reliability

8.1 Content of Reliability Test

Ta=25°C

	<u>, </u>	T				
No.	Test Item	Content of Test	Test condition			
1	High Temperature	Endurance test applying the high	80°C 240H			
	Storage	storage temperature for a long time	Restore 4H at 25°C			
2	Low Temperature	Endurance test applying the low	-30°C 240H			
2	Storage	storage temperature for a long time	Restore 4H at 25°C			
		Endurance test applying the				
3	High Temperature	electric stress (voltage & current)	70 ℃			
	Operation	and the thermal stress to the	240H			
		element for a long time	21011			
4	Low Temperature	Endurance test applying the	-20°C			
4	Operation	electric stress under low	240H			
		temperature for a long time	60°C 90%RH			
5	High Temperature	Endurance test applying the high temperature and high humidity	240H			
	/Humidity Storage	storage for a long time	Restore 4H at 25°C			
		Endurance test applying the low	Restore 411 at 25 C			
		and high temperature cycle	-30°C/80°C			
6	Temperature	-30°C ← 25°C ← 80°C ← 25°C				
0	Cycle	30min 5min 30min 5min	10 cycles			
		1 cycle	Restore 4H at 25°C			
			10Hz~500Hz,			
7	Vibration Test	Endurance test applying the	100m/s^2 ,			
,	(package state)	vibration during transportation	120min			
	Shock Test	Endurance test analysis at he ab1-	Half- sine wave,			
8	(package state)	Endurance test applying the shock during transportation	300m/s^2 ,			
	(package state)	<u> </u>	18ms			
	Atmospheric	Endurance test applying the	25kPa 16H			
9	Pressure Test	atmospheric pressure during	Restore 2H			
		transportation by air				

8.2 Failure Judgment Criterion

Criterion			To	est l	Iter	n N	0.			Failura Judgament Critarian
Item	1	2	3	4	5	6	7	8	9	Failure Judgement Criterion
Basic Specification	√	V	1	1	1	1	√	7	√	Out of the basic Specification
Electrical specification	√	1	1	1	1					Out of the electrical specification
Mechanical Specification							1	V		Out of the mechanical specification
Optical Characteristic	V	1	1	1	1	1			√	Out of the optical specification
Note	For test item refer to 8.1									
Remark		Basic specification = Optical specification + Mechanical specification								

9 QUALITY LEVEL

Examination or Test	At T _a =25°C	Inspection				
	(unless otherwise stated)	Min.	Max.	Unit	IL	AQL
External Visual Inspection	Under normal illumi-nation and eyesight condition, the dis-tance between eyes and LCD is 25cm.	See Appendix A		II	Major 1.0 Minor 2.5	
Display Defects	Under normal illumi-nation and eyesight condition, display on inspection.	See Appendix B		II	Major 1.0 Minor 2.5	

Note: Major defects: Open segment or common, Short, Serious damages, Leakage

Miner defects: Others

Sampling standard conforms to GB2828

10 Precautions for Use of LCD Modules

- 10.1 Handling Precautions
- 10.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 10.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 10.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 10.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 10.1.5 If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water
- Ketone
- Aromatic solvents
- 10.1.6 Do not attempt to disassemble the LCD Module.
- 10.1.7 If the logic circuit power is off, do not apply the input signals.
- 10.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - a. Be sure to ground the body when handling the LCD Modules.
 - b. Tools required for assembly, such as soldering irons, must be properly ground.
 - c. To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
 - d. The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

- 10.2 Storage precautions
- 10.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 10.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

Temperature: $0^{\circ}\text{C} \sim 40^{\circ}\text{C}$

Relatively humidity: ≤80%

- 10.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.
- 10.3 The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.

Appendix AInspection items and criteria for appearance defects

Items	Contents	Criteria				
Leakage		Not permitted				
Rainbow		According to the limit specimen				
Polarizer	Wrong polarizer attachment	Not permitted				
	Bubble between	Not counted		Max. 3 defects allowed		
	polarizer and glass	φ<0.3mm	0.3mm≤φ≤0.5i		mm	
	Scratches of polarizer	According to the limit specimen				
Black spot (in viewing area)	٥	Not counted	Max. 3 spots allowed		Max. 3	
		X<0.2mm	0.2mm≤X≤0.5mm			
		X=(a+b)/2			spots (lines)	
Black line (in viewing area)	, p	Not counted	Max. 3 lines allowed		allowed	
		a<0.02mm	0.02mm≤a≤0.05mm b≤2.0mm			
Progressive cracks		Not permitted	ted			

Appendix B
Inspection items and criteria for display defects

Items		Contents	Critera			
Open segment or open common		Not permitted				
Short		Not permitted				
Wrong viewing angle		Not permitted				
Contrast radio uneven		According to the limit specimen				
Crosstalk		According to the limit specimen				
	es es	Not counted	Max.3 dots allowed			
		X<0.1mm	0.1mm≤X≤0.2mm			
Pin holes and cracks in segment (DOT)		X=(a+b)/2	Max.3 dots			
		Not counted	Max.2 dots allowed	allowed		
		A<0.1mm	0.1mm≤A≤0.2mm D<0.25mm			
Black spot (in viewing area)	k snot		Not counted	Max.3 spots allowed		
		X<0.1mm	0.1mm≤X≤0.2mm			
		X=(a+b)/2	Max.3 spots			
Black line (in viewing area)		Not counted	Max.3 lines allowed	(lines) allowed		
		a<0.02mm	0.02mm≤a≤0.05mm b≤0.5mm			

Appendix B
Inspection items and criteria for display defects (continued)

Content	Critera				
	Not counted	Max. 2 defects allowed			
	x<0.1mm	0.1mm≤x≤0.2mm			
	x=(a+b)/2	M. 2			
	N 1	Max defe			
D T T C	Not counted	Max. I defects allowed	allowed		
	a<0.1mm	0.1mm≤a≤0.2mm			
		D>0			
	Max.2 defects allowed 0.8W≤a≤1.2W				
-W -Ta					
		Not counted $x < 0.1 \text{mm}$ $x = (a+b)/2$ Not counted $a < 0.1 \text{mm}$ $a < 0.1 \text{mm}$ Max.2 defects $0.8W \le a \le 1.2$ $a = \text{measured va}$	Not counted Max. 2 defects allowed $x < 0.1 \text{mm}$ $0.1 \text{mm} \le x \le 0.2 \text{mm}$ $x = (a+b)/2$ Not counted Max. 1 defects allowed $a < 0.1 \text{mm}$ $0.1 \text{mm} \le a \le 0.2 \text{mm}$ $a < 0.2 \text{mm}$ $a > 0.1 \text{mm}$ $a = 0.2 \text{mm}$ $a > 0.2 \text{mm}$		