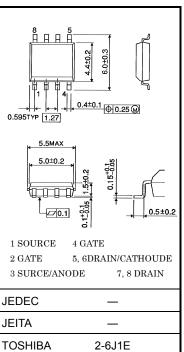
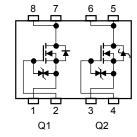
TOSHIBA

Q1:TOSHIBA FIELD EFFECT TRANSISTOR SILICON N CHANNEL MOS TYPE(U-MOSII) Q2:TOSHIBA INCLUDES SCHOTTKY BARRIER DIODE FIELD EFFECT TRANSISTOR SILICON N CHANNEL MOS TYPE(U-MOSIII)


TPC8A01

DC-DC CONVERTER Notebook PC Portable Machines and Tools

- Includes Schottky Barrier Diode Type. (Q2) Low Forward Voltage: V_{DSF}=0.6V(Max.)
- Small footprint due to small and thin package.
- High Speed Switching.(Q1)
- Small Gate Charge.(Q1): Qg=17nC(Typ.)
- Low drain-source ON resistance(Q2) $R_{DS}(ON) = 13 \text{ m}\Omega$ (typ.)
- High forward transfer admittance(Q2): $|Y_{fs}| = 11 \text{ S (typ.)}$
- Low leakage current. (Q1): $I_{DSS} = 10 \ \mu A(Max.) (V_{DS} = 30 \ V)$
- $(Q2): I_{DSS} = 100 \ \mu A(Max.) \ (V_{DS} = 30 \ V)$ • Enhancement-mode
- Enhancement-mode (O1) $V_{1} = 1.1 + 0.2 V_{1}$
 - : (Q1) $V_{th} = 1.1 \sim 2.3 \text{ V} (V_{DS} = 10 \text{ V}, \text{ ID} = 1 \text{ mA})$: (Q2) $V_{th} = 1.1 \sim 2.3 \text{ V} (V_{DS} = 10 \text{ V}, \text{ ID} = 1 \text{ mA})$
 - (Q2) v_{th} = 1.1°2.3 v (v_{DS} = 10 v, 1D = 1 mA)


Absolute Maximum Ratings (Ta = 25°C)

Characteristics		Symbol	Rat	Unit		
C	Symbol	Q1	Q2	Unit		
Drain-source voltage		V _{DSS}	30	30	V	
Drain-gate vol	tage (R _{GS} = 20 kΩ)	V _{DGR}	30	30	V	
Gate-source v	Gate-source voltage		±20	±20	V	
Drain current	DC (Note 1)	Ι _D	6	8.5	^	
Drain current	Pulse (Note 1)	I _{DP}	24	34	A	
Drain power dissipation	Single-device operation (Note 3a)	P _{D(1)}	1.5			
(t = 10s) (Note 2a)	Single-device value at dual operation (Note 3b)	P _{D(2)}	1.1		w	
Drain power dissipation	Single-device operation (Note 3a)	P _{D(1)}	0.75			
(t = 10s) (Note 2b)	Single-device value at dual operation (Note 3b)	P _{D(2)}	0.45			
Single pulse a	Single pulse avalanche energy		46.8 (Note 4a)	93.9 (Note 4b)	mJ	
Avalanche current		I _{AR}	6	8.5	А	
Repetitive avalanche energy Single-device value at operation (Note 2a, 3b, 5)		E _{AR}	0.11		mJ	
Channel temp	Channel temperature		150		°C	
Storage temperature range		T _{stg}	-55~150		°C	

Weight: 0.080 g (typ.)

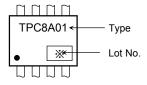
Circuit Configuration

(Includes Schottky Barrier Diode)

Note: (Note 1), (Note 2ab), (Note 3ab), (Note 4), (Note 5) Please see next page.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc.).

This transistor is an electrostatic sensitive device. Please handle with caution.


Schottky barrier diodes are having large-reverse-current-leakage characteristic compare to the other rectifier products. This current leakage and not proper operating temprature or voltage may cause thermalrun. Please take forward and reverse loss into consideration when you design.

Unit: mm

Thermal Characteristics

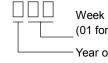
Characteristics	Symbol	Max	Unit	
Thermal resistance, channel to ambient (t = 10s) (Note 2a)	Single-device operation (Note 3a)	R _{th (ch-a) (1)}	83.3	
	Single-device value at dual operation (Note 3b)	R _{th (ch-a) (2)}	114	°C/W
Thermal resistance, channel to ambient	Single-device operation (Note 2a)	R _{th (ch-a) (1)}	167	Civi
Thermal resistance, channel to ambient (t = 10s) (Note 2b)	Single-device value at dual operation (Note 2b)	R _{th (ch-a) (2)}	278	ſ

Marking

Note 1: Please use devices on condition that the channel temperature is below 150°C.

Note 2:

- a) Device mounted on a glass-epoxy board (a)
- b) Device mounted on a glass-epoxy board (b)



Note 3:

- a) The power dissipation and thermal resistance values are shown for a single device (During single-device operation, power is only applied to one device.).
- b) The power dissipation and thermal resistance values are shown for a single device (During dual operation, power is evenly applied to both devices.).

Note 4:

- a) V_{DD} = 24 V, T_{ch} = 25°C (Initial), L = 1.0 mH, R_G = 25 $\Omega,~I_{AR}$ = 6.0 A
- b) $V_{DD} = 24 \text{ V}, \text{ T}_{ch} = 25^{\circ}\text{C}$ (Initial), L = 1.0 mH, R_G = 25 Ω , I_{AR} = 8.5 A
- Note 5: Repetitive rating; pulse width limited by max channel temperature.
- Note 6: on lower left of the marking indicates Pin 1.
 - * Weekly code: (Three digits)

Week of manufacture (01 for first week of year, continues up to 52 or 53)

Year of manufacture
(One low-order digits of calendar year)

Q1

Electrical Characteristics (Ta = 25°C)

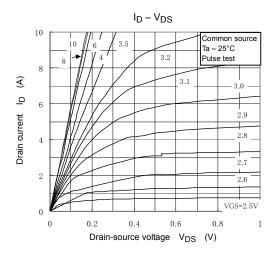
Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage current		I _{GSS}	$V_{GS}=\pm 16~V,~V_{DS}=0~V$			±10	μA
Drain cut-OFF current		I _{DSS}	$V_{DS} = 30 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$		_	-10	μA
Drain-source breakdown voltage		V (BR) DSS	D 1 , 63 1	30			v
		V (BR) DSX		15	_	_	
Gate threshold vo	oltage	V _{th}	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 1 \text{ mA}$	1.1		2.3	V
Drain-source ON	rogistance	D	$V_{GS} = 4.5 \text{ V}, I_D = 3.0 \text{ A}$	_	23	30	
Drain-source ON	resistance	R _{DS} (ON)	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 3.0 \text{ A}$		18	25	mΩ
Forward transfer	admittance	Y _{fs}	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 3.0 \text{ A}$	4.5	9		S
Input capacitance	9	C _{iss}			940		
Reverse transfer capacitance		C _{rss}	V_{DS} = 10 V, V_{GS} = 0 V, f = 1 MHz		130		pF
Output capacitance		C _{oss}			390		
Switching time	Rise time	tr	$V_{GS} \begin{array}{c} 10 \text{ V} \\ 0 \text{ V} \end{array} \begin{array}{c} I_{D} = 3.0 \text{ A} \\ \circ \text{V}_{OUT} \\ \circ \text{V}_{OUT} \\ R_{L} = \\ 5.0 \Omega \\ V_{DD} \approx 15 \text{ V} \end{array}$ Duty $\leq 1\%, t_{W} = 10 \ \mu s$		17	_	- ns
	Turn-ON time	t _{on}		_	25	_	
	Fall time	t _f		_	4	_	
	Turn-OFF time	toff		_	21	_	
Total gate charge (gate-source plus gate-drain)			$V_{DD}\simeq 24~V,~V_{GS}=10~V, I_D=6.0~A$	_	17	_	
		Qg	$V_{DD}\simeq 24~V,~V_{GS}=5~V,I_D=6.0~A$	_	10	_	nC
Gate-source charge 1		Q _{gs} 1			1.9		
Gate-drain ("miller") charge		Q _{gd}	$V_{DD}\simeq 24~V,~V_{GS}=10~V, I_D=6.0~A$	_	4.1		
Gateswitch charge		Q _{sw}			6		

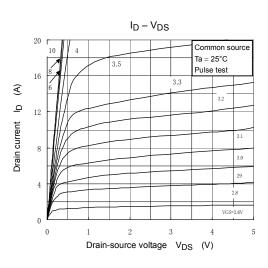
Source-Drain Ratings and Characteristics (Ta = 25°C)

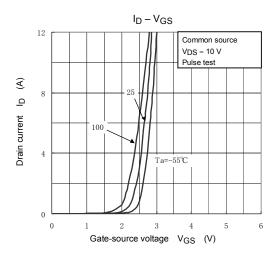
Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Drain reverse current	Pulse (Note 1)	I _{DRP}	—	_		24	А
Forward voltage (diode)		V _{DSF}	$I_{DR} = 6.0 \text{ A}, V_{GS} = 0 \text{ V}$	_	_	-1.2	V

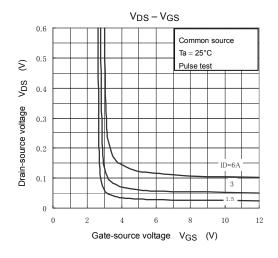
Q2 (Includes Schottky Barrier Diode)

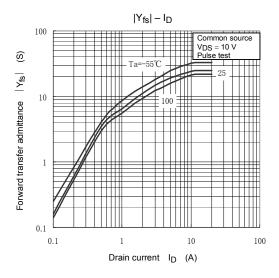
Electrical Characteristics (Ta = 25°C)

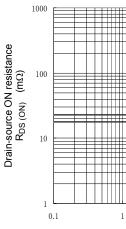

Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage current		I _{GSS}	$V_{GS} = \pm 16 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$	_	_	±10	μA
Drain cut-OFF current		I _{DSS}	$V_{DS} = 30 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	_	_	10	μA
Drain-source breakdown voltage		V (BR) DSS	$I_D = 10 \text{ mA}, V_{GS} = 0 \text{ V}$	30			v
		V (BR) DSX	$I_D = 10 \text{ mA}, V_{GS} = -20 \text{ V}$	15			v
Gate threshold ve	oltage	V _{th}	$V_{DS} = 10 \text{ V}, \text{ I}_D = 1 \text{ mA}$	1.1	_	2.3	V
Drain-source ON	resistance	Ppp (on)	$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 4.3 \text{ A}$		16	21	- mΩ
Dialit-source ON	resistance	R _{DS} (ON)	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 4.3 \text{ A}$	_	13	18	
Forward transfer	admittance	Y _{fs}	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 4.3 \text{ A}$	5.5	11		S
Input capacitance		C _{iss}	$V_{DS} = 10 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$	_	2295		pF
Reverse transfer capacitance		C _{rss}		_	360	_	
Output capacitance		C _{oss}		_	510	_	
	Rise time	tr	$V_{GS} \begin{array}{c} 10 \text{ V} \\ 0 \text{ V} \end{array} \begin{array}{c} I_D = 4.3 \text{ A} \\ 0 \text{ V} \\ 0 \text{ V} \end{array} \begin{array}{c} 0 \text{ V} \\ 0 \text$	_	8	_	ns
	Turn-ON time	t _{on}			17		
Switching time	Fall time	tf			15	_	115
	Turn-OFF time	t _{off}	Duty \leq 1%, t_{W} = 10 μs	_	52	_	
Total gate charge		0	$V_{DD}\simeq 24~V,~V_{GS}=10~V, I_D=8.5~A$	_	49		
(gate-source plus gate-drain)		Qg	$V_{DD}\simeq 24~V,~V_{GS}=5~V, I_D=8.5~A$		27		
Gate-source charge 1		Q _{gs} 1			3.7		nC
Gate-drain ("miller") charge		Q _{gd}	$V_{DD}\simeq 24~V,~V_{GS}=10~V,I_{D}=8.5~A$		10.8		
Gateswitch charge		Q _{sw}		_	14.5	_	

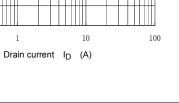

Source-Drain Ratings and Characteristics (Ta = 25°C)


Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Drain reverse current	Pulse (Note 1)	I _{DRP}	—	_	_	34	А
Forward voltage (diode)		\/	$I_{DR} = 1.0 \text{ A}, V_{GS} = 0 \text{ V}$	_	-0.5	-0.6	V
		V _{DSF}	$I_{DR} = 8.5 \text{ A}, V_{GS} = 0 \text{ V}$	_	_	-1.2	

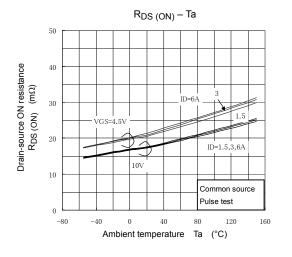

TOSHIBA

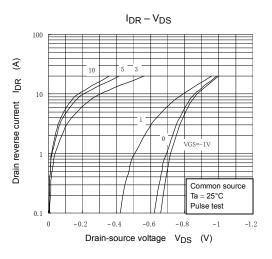

Q1

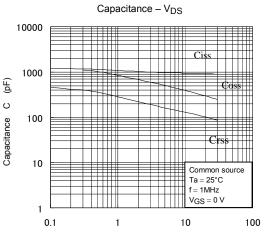


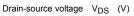


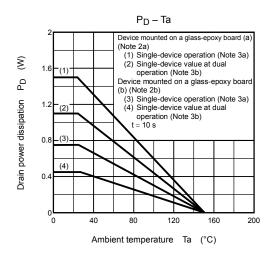
Common source $Ta = 25^{\circ}C$

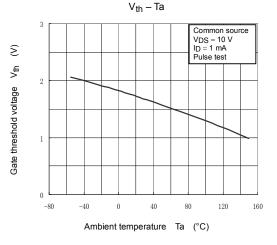

Pulse test

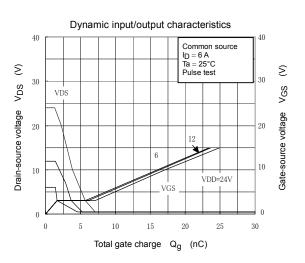

VGS=4.5V

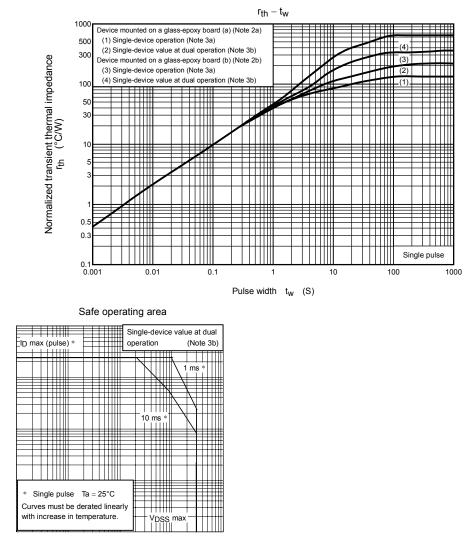

10


<u>TOSHIBA</u>


Q1

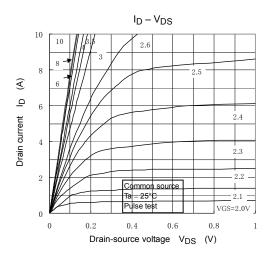


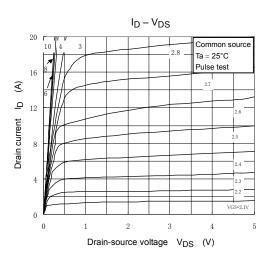


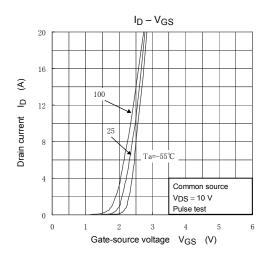

<u>TOSHIBA</u>

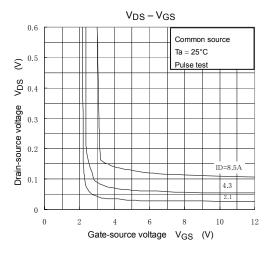
Q1

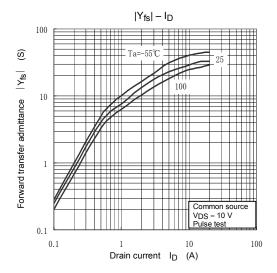
₹

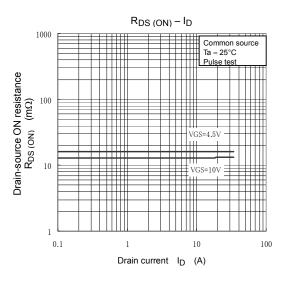

₽

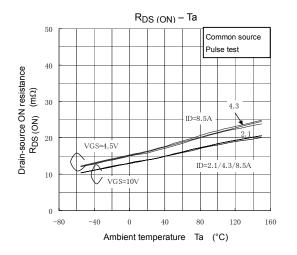

Drain current

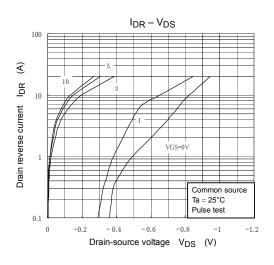


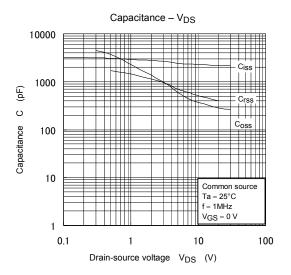

Drain-source voltage V_{DS} (V)

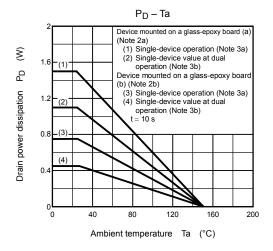

Q2(Includes Schottky Barrier Diode)

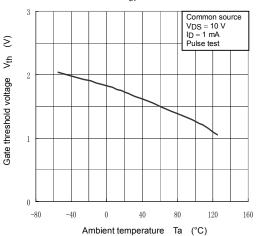


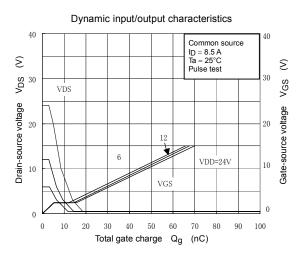




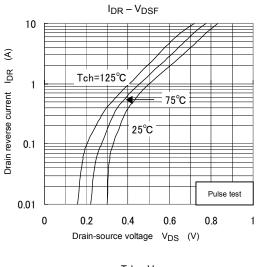


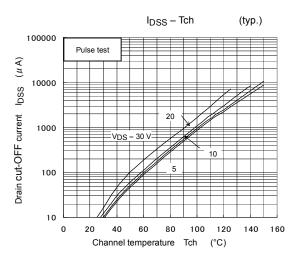


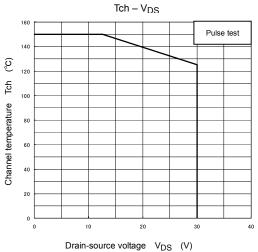

Q2(Includes Schottky Barrier Diode)






V_{th} – Ta


Q2(Includes Schottky Barrier Diode)



<u>TOSHIBA</u>

Q2 (V_{GS}=0V)

RESTRICTIONS ON PRODUCT USE

030619EAA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.