FEATURES

- InGaP HBT Technology
- High Efficiency:

$$
\begin{aligned}
& 40 \% \text { @ +28 dBm output } \\
& 19 \% \text { @ }+16 \mathrm{dBm} \text { output }
\end{aligned}
$$

- Low Quiescent Current: 15 mA
- Low Leakage Current in Shutdown Mode: $<1 \mu \mathrm{~A}$
- Internal Voltage Regulation
- Optimized for a 50Ω System
- Low Profile Miniature Surface Mount Package: 1 mm
- CDMA 1XRTT, 1xEV-DO Compliant
- Pinout Enables Easy Phone Board Migration From $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Package
- RoHS-Compliant Package, $250^{\circ} \mathrm{C}$ MSL-3

APPLICATIONS

- CDMA/EVDO PCS-band Wireless Handsets and Data Devices

PRODUCT DESCRIPTION

The AWT6308R meets the increasing demands for higher efficiency and smaller footprint in CDMA 1X handsets. The package pinout was chosen to enable handset manufacturers to switch from a $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ PA module with few layout changes while reducing board area requirements by 44%. The AWT6308R uses ANADIGICS' exclusive InGaPPlus ${ }^{\text {TM }}$ technology, which combines HBT and pHEMT devices on the same die, to enable state-of-the-art reliability, temperature stability, and ruggedness. The AWT6308R is part of ANADIGICS' High-Efficiency-at-Low-Power (HELP ${ }^{\text {TM }}$) family of CDMA power amplifiers, which deliver low quiescent currents and significantly greater efficiency without a costly external DAC or DC-DC converter. Through selectable bias modes, the AWT6308R achieves optimal efficiency across different output power levels, specifically at low- and mid-range power levels where the PA typically operates, thereby dramatically increasing handset talk-time and standby-time. Its built-in voltage regulator eliminates the need for external voltage regulation components. The $3 \mathrm{~mm} \times 3 \mathrm{~mm} \times$ 1 mm surface mount package incorporates matching networks optimized for output power, efficiency, and linearity in a 50Ω system.

AWT6308R HELP2 ${ }^{\text {TM }}$ PCS/CDMA $3.4 \mathrm{~V} / 28 \mathrm{dBm}$ Linear Power Amplifier Module

Data Sheet - Rev 2.3

Figure 1: Block Diagram

GND

Figure 2: Pinout (X-ray Top View)

Table 1: Pin Description

PIN	NAME	DESCRIPTION
1	V $_{\text {bAT }}$	Battery Voltage
2	RFin	RF Input
3	V $_{\text {MODE }}$	Mode Control Voltage
4	Ven	PA Enable Voltage
5	GND	Ground
6	GND	Ground
7	RFout	RF Output
8	V $_{\text {cc }}$	Supply Voltage

ELECTRICAL CHARACTERISTICS

Table 2: Absolute Minimum and Maximum Ratings

PARAMETER	MIN	MAX	UNIT
Supply Voltage (Vcc and $\mathrm{V}_{\text {bat }}$)	0	+5	V
Mode Control Voltage (Vmode)	0	+3.5	V
Enable Voltage (VEn)	0	+3.5	V
RF Input Power (PiN)	-	+10	dBm
Storage Temperature (Tsts)	-40	+150	${ }^{\circ} \mathrm{C}$

Stresses in excess of the absolute ratings may cause permanent damage. Functional operation is not implied under these conditions. Exposure to absolute ratings for extended periods of time may adversely affect reliability.

Table 3: Operating Ranges

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
Operating Frequency (f)	1850	-	1915	MHz	
Supply Voltage (Vcc and V ватт)	+3.2	+3.4	+4.2	V	
Enable Voltage (Ven)	$\begin{gathered} +2.2 \\ 0 \end{gathered}$	$+2.4$	$\begin{aligned} & +3.1 \\ & +0.5 \end{aligned}$	V	PA "on" PA "shut down"
Mode Control Voltage (V ${ }_{\text {mоde }}$)	$\begin{gathered} +2.2 \\ 0 \end{gathered}$	$+2.4$	$\begin{aligned} & +3.1 \\ & +0.5 \end{aligned}$	V	Low Bias Mode High Bias Mode
RF Output Power (Pout)	$27.5{ }^{(1)}$	+28.0	-	dBm	
Case Temperature (Tc)	-30	-	+85	${ }^{\circ} \mathrm{C}$	

The device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defined in the electrical specifications.
Notes:
(1) For operation at $V c c=+3.2 \mathrm{~V}$, Pout is derated by 0.5 dB .

Table 4: Electrical Specifications - CDMA Operation
($\mathrm{T}_{\mathrm{c}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{batt}}=\mathrm{V}_{\mathrm{cc}}=+3.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+2.4 \mathrm{~V}, 50 \Omega$ system, IS-95 uplink waveform)

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
Gain	$\begin{gathered} 24.5 \\ 14 \\ 14 \end{gathered}$	$\begin{aligned} & 27 \\ & 16 \\ & 16 \end{aligned}$	$\begin{gathered} 29.5 \\ 18 \\ 18 \end{gathered}$	dB	$\begin{aligned} & \text { Pout }=+28 \mathrm{dBm}, \mathrm{~V}_{\text {MODE }}=0 \mathrm{~V} \\ & \text { Pout }=+16 \mathrm{dBm}, \mathrm{~V}_{\text {MOOE }}=+2.4 \mathrm{~V} \\ & \text { Pout }=+18 \mathrm{dBm}, \mathrm{~V}_{\text {MODE }}=+2.4 \mathrm{~V}, \\ & \mathrm{~V}_{\text {cC }}=+3.7 \mathrm{~V} \end{aligned}$
Adjacent Channel Power at $\pm 1.25 \mathrm{MHz}$ offset Primary Channel BW $=1.23 \mathrm{MHz}$ Adjacent Channel BW $=30 \mathrm{kHz}$		$\begin{aligned} & -51 \\ & -58 \\ & -52 \end{aligned}$	$\begin{gathered} -46.5 \\ -47 \\ -47 \end{gathered}$	dBc	$\begin{aligned} & \text { Pout }=+28 \mathrm{dBm}, \mathrm{~V}_{\text {Móe }}=0 \mathrm{~V} \\ & \text { Pout }=+16 \mathrm{dBm}, \mathrm{~V}_{\text {Móe }}=+2.4 \mathrm{~V} \\ & \text { Pout }=+18 \mathrm{dBm}, \mathrm{~V}_{\text {MODe }}=+2.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{cc}}=+3.7 \mathrm{~V} \end{aligned}$
Adjacent Channel Power at $\pm 1.98 \mathrm{MHz}$ offset Primary Channel BW $=1.23 \mathrm{MHz}$ Adjacent Channel BW $=30 \mathrm{kHz}$		$\begin{aligned} & -56 \\ & -56 \end{aligned}$	$\begin{aligned} & -53 \\ & -53 \end{aligned}$	dBc	$\begin{aligned} & \text { Pout }=+28 \mathrm{dBm}, V_{\text {Móe }}=0 \mathrm{~V} \\ & \text { Pout }=+16 \mathrm{dBm}, V_{\text {MODe }}=+2.4 \mathrm{~V} \end{aligned}$
Adjacent Channel Power at +2.25 MHz offset Primary Channel BW $=1.23 \mathrm{MHz}$ Adjacent Channel BW $=30 \mathrm{kHz}$		$\begin{aligned} & -62 \\ & -62 \end{aligned}$	$\begin{aligned} & -57 \\ & -57 \end{aligned}$	dBc	$\begin{aligned} & \text { Pout }=+28 \mathrm{dBm}, \mathrm{~V}_{\text {Móe }}=0 \mathrm{~V} \\ & \text { Pout }=+16 \mathrm{dBm}, \mathrm{~V}_{\text {MODe }}=+2.4 \mathrm{~V} \end{aligned}$
Power-Added Efficiency	$\begin{aligned} & 36 \\ & 16 \end{aligned}$	$\begin{aligned} & 40 \\ & 19 \end{aligned}$	-	\%	$\begin{aligned} & \text { Pout }=+28 \mathrm{dBm}, \mathrm{~V}_{\text {Mode }}=0 \mathrm{~V} \\ & \text { Pout }=+16 \mathrm{dBm}, \mathrm{~V}_{\text {MODE }}=+2.4 \mathrm{~V} \end{aligned}$
Quiescent Current (lcq)	-	15	20	mA	through $\mathrm{V}_{\text {cc }}$ pin, $\mathrm{V}_{\text {MODE }}=+2.4 \mathrm{~V}$
Enable Current	-	0.3	0.8	mA	through Ven pin, PA "on"
Mode Control Current	-	0.3	0.8	mA	through $\mathrm{V}_{\text {mode }} \mathrm{pin}$, $\mathrm{V}_{\text {MODe }}=+2.4 \mathrm{~V}$
Battery Current	-	3	5	mA	through $\mathrm{V}_{\text {batt }} \mathrm{pin}, \mathrm{V}_{\text {mode }}=+2.4 \mathrm{~V}$
Leakage Current	-	<1	5	$\mu \mathrm{A}$	$\begin{aligned} & V_{\mathrm{CC}}=+4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {MODE }}=0 \mathrm{~V} \end{aligned}$
Noise in Receive Band	-	-135	-133	dBm/Hz	1930 MHz to 1990 MHz
Harmonics 2fo 3fo, 4fo	-	$\begin{aligned} & -43 \\ & -55 \end{aligned}$	$\begin{aligned} & -30 \\ & -30 \end{aligned}$	dBc	
Input Impedance	-	-	2:1	VSWR	
Spurious Output Level (all spurious outputs)	-	-	-65	dBc	Pout $\leq+28 \mathrm{dBm}$ In-band load VSWR < 5:1 Out-of-band load VSWR < 10:1 Applies over all operating ranges
Load mismatch stress with no permanent degradation or failure	8:1	-	-	VSWR	Applies over full operating range

Notes:

1. ACPRs and Efficiency Limits at mid-band only.

APPLICATION INFORMATION

To ensure proper performance, refer to all related Application Notes on the ANADIGICS web site: http://www.anadigics.com

Shutdown Mode

The power amplifier may be placed in a shutdown mode by applying logic low levels (see Operating Ranges table) to both the $\mathrm{V}_{\text {ref }}$ and $\mathrm{V}_{\text {mode }}$ voltages.

Bias Modes

The power amplifier may be placed in either a Low Bias mode or a High Bias mode by applying the appropriate logic level (see Operating Ranges table) to the Vmode voltage. The Bias Control table lists the recommended modes of operation for various applications.

Table 5: Bias Control

APPLICATION	Pout LEVELS	LOGIC	$\mathbf{V}_{\text {EN }}$	$\mathbf{V}_{\text {моое }}$
CDMA - low power	$\leq+16 \mathrm{dBm}$	Low	+2.4 V	+2.4 V
CDMA - high power	$>+16 \mathrm{dBm}$	High	+2.4 V	0 V
Shutdown	-	Shutdown	0 V	0 V

Figure 3: Application Circuit

PACKAGE OUTLINE

${ }^{S_{T_{M_{B_{0}}}}}$	MILLIMETERS			INCHES			NOTE
	MIN.	Nom.	MAX.	MIN.	NOM.	MAX.	
A	0.90	1.00	1.10	0.035	0.039	0.043	-
A1	-	0.35	-	-	0.013	-	-
b	0.35	-	0.60	0.013	-	0.024	3
c	-	0.10	-	-	0.004	-	-
D	2.88	3.00	3.12	0.113	0.118	0.123	-
D1	1.20	-	1.50	0.047	-	0.060	3
E	2.88	3.00	3.12	0.113	0.118	0.123	-
E1	2.75	-	2.85	0.108	-	0.112	3
e	0.80 BSC			0.0315 BSC			-
L	0.35	-	0.60	0.013	-	0.024	3

NOTES:

1. CONTROLLING DIMENSIONS: MILLIMETERS
2. UNLESS SPECIFIED TOLERANCE $= \pm 0.076[0.003]$.
3. PADS (INCLUDING CENTER) SHOWN UNIFORM SIZE FOR REFERENCE ONLY. ACTUAL PAD SIZE AND LOCATION WILL ARY WITHIN MIN. AND MAX. DIMENSIONS
4. UNLESS SPECIFIED DIMENSIONS ARE SYMMETRICAL ABOUT CENTER LINES SHOWN.

Figure 4: M9 Package Outline - 8 Pin $3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 1 \mathrm{~mm}$ Surface Mount Module

TOP BRAND

O 6308R LLLLNN BBBBCC

NOTES:

1. ANADIGICS LOGO SIZE: NONE
2. PART NUMBER:

FOUR DIGIT NUMERICAL
3. WAFER LOT NUMBER:

LLLL $=$ LOT NUMBER
NN = WAFER I.D.
4. PIN 1 INDICATOR: LASER DOT
5. B.O.M.

BBBB

CC $=$ TH-for-THAILAND, TW-for-TAIWAN $\mathrm{CC}=\mathrm{PH}-$ for-PHILIPPINES, $\mathrm{CH}-$ for-CHINA
7. TYPE : ARIAL

SIZE : 1.5-POINT
COLOR : LASER
Figure 5: Branding Specification

COMPONENT PACKAGING

NOTES:

1. MATERIAL: 3000 (CARBON FILLED POLYCARBONATE)
dimensions are in millimeters [inches]
DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994

Figure 6: Tape \& Reel Packaging

Table 6: Tape \& Reel Dimensions

PACKAGE TYPE	TAPE WIDTH	POCKET PITCH	REEL CAPACITY	MAX REEL DIA
$3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 1 \mathrm{~mm}$	12 mm	4 mm	2500	$7 "$

ORDERING INFORMATION

ORDER NUMBER	TEMPERATURE RANGE	PACKAGE DESCRIPTION	COMPONENT PACKAGING
AWT6308RM9Q7	$-30^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$	RoHS-Compliant 8 Pin $3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 1 \mathrm{~mm}$ Surface Mount Module	Tape and Reel, 2500 pieces per Reel

Saniadicics

ANADIGICS, Inc.
141 Mount Bethel Road
Warren, New Jersey 07059, U.S.A.
Tel: +1 (908) 668-5000
Fax: +1 (908) 668-5132
URL: http://www.anadigics.com
E-mail: Mktg@anadigics.com

IMPORTANT NOTICE

ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to change prior to a product's formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders.

WARNING
ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product in any such application without written consent is prohibited.

