

STRUCTURE PRODUCT SERIES **BD9757MWV** TYPE PIN ASSIGNMENT Fig.1 **BLOCK DIAGRAM** Fig.2 PACKAGE Fig.3 Functions

#### Silicon Monolithic Integrated Circuit

8-Channel Switching Regulator Controller for Digital Camera

●1.5V minimum input operating

•Supplies power for the internal circuit by step-up converter(CH1).

• Contains step-up converter(2ch), step-down converter(4ch), inverting (1ch), with 31 step brightness controller for step-up converter(1ch).

•5channels contain transistor for synchronous rectifying action mode.

●2channels contain FETs for the step-up converter.

•All channels contain internal compensation.

●It is possible separately control except CH1 and CH3.

Operating frequency 1.2MHz(CH1~5), 600kHz(CH6~8).

Contains output interception circuit when over load.

•2 channels have high side switches with soft start function.

Thermally enhanced UQFN044V6060 package(6mm x 6mm, 0.4mm pitch).

#### OAbsolute maximum ratings (Ta=25°C)

| Parameter             | Symbol     | Limit     | Unit |
|-----------------------|------------|-----------|------|
| Power Supply Voltage  | VBAT       | -0.3~7    | V    |
|                       | VHx1~5     | -0.3~7    | V    |
| Power Input Voltage   | HS78H      | -0.3~7    | V    |
|                       | VLx7,8     | -0.3~22   | V    |
|                       | IomaxLx1   | ±25       | А    |
|                       | IomaxHx1   | ±15       | А    |
| Output Current        | IomaxHx2,5 | +1.0      | А    |
| Output Gurrent        | IomaxHx3,4 | +0.8      | А    |
|                       | IomaxHS78  | +12       | А    |
|                       | IomaxLx7,8 | ±1.0      | А    |
| Power Dissipation     | Pd         | 0.54 (*1) | W    |
| Operating Temperature | Topr       | -25~+85   | °C   |
| Storage Temperature   | Tstg       | -55~+150  | °C   |
| Junction Tempareture  | Tjmax      | +150      | °C   |

this

(\*1) Without external heat sink, the power dissipation reduces by  $4.32 \text{mW}/^\circ\text{C}~\text{over}~25^\circ\text{C}$ 

#### ORecommended operating conditions

#### OCH8 recommended operating conditions

| Demoster                       | Quarteri |      | Unit |     |      |
|--------------------------------|----------|------|------|-----|------|
| Parameter                      | Symbol   | MIN  | TYP  | MAX | Unit |
| Power Supply Voltage           | VBAT     | 1.5  | -    | 5.5 | V    |
| VREF Pin Connecting Capacitor  | CVREF    | 0.47 | 1.0  | 4.7 | μF   |
| VREGA Pin Connecting Capacitor | CVREGA   | 0.47 | 1.0  | 4.7 | μF   |

document

The Japanese version of this document is the official specification. Please use the translation version of this document as a reference to expedite understanding of the official version. If these are any uncertainty in translation version of this document, official version takes priority.

|                                       |        |            | Limit |             |      |
|---------------------------------------|--------|------------|-------|-------------|------|
| Parameter                             | Symbo  | MIN        | TYP   | MAX         | Unit |
| Fixed H when determine brightness     | T(ON)  | 265X1/fosc | -     | -           | S    |
| Fixed L when OFF                      | T(OFF) | 256X1/fosc | -     | -           | S    |
| Fixed H when setting brightness       | T(H)   | 500        | -     | 10000       | nS   |
| Fixed L when setting brightness       | T(L)   | 500        | -     | 10000       | nS   |
| Fixed H when EN start-up              | T(EN)  | 4X1/fosc   | -     | -           | S    |
| Fixed L before setting brightness     | T(CLR) | 7X1/fosc   | -     | 255X1/fosc  | S    |
| Brightness setting time When start-up | T(SET) | -          | -     | 2048X1/fosc | S    |

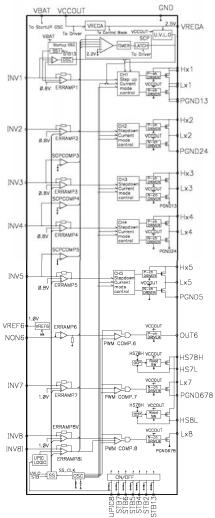


#### OElectrical characteristics (Ta=25°C, VCCOUT=5.0V, VBAT=3V, STB13~7=3V, UPIC8=2.5V)

|                                             |                 |              | Limit         |        |      |                         |
|---------------------------------------------|-----------------|--------------|---------------|--------|------|-------------------------|
| Parameter                                   | Symbol          | MIN          | TYP           | MAX    | Unit | Conditions              |
| [Internal Regulat                           | tor VREGA       |              |               |        |      |                         |
| Output<br>Voltage                           | VREGA           | 24           | 2.5           | 2.6    | v    | lo=5mA                  |
| [Prevention Circ                            | cuit of Miss Op | eration by L | .ow voltage I | (nput) |      |                         |
| Threshold<br>Voltage                        | Vstd1           | -            | 2.0           | 23     | v    | VREGA Monitor           |
| Hysteresis<br>Width1                        | ⊿Vstd1          | 50           | 100           | 200    | mV   |                         |
| Threshold<br>Voltage 2                      | Vstd2           | -            | 2.4           | 25     | V    | VCCOUT Monitor          |
| Hysteresis<br>Width                         | ⊿Vstd1          | 100          | 200           | 300    | mV   |                         |
| [Short Circuit P                            | rotection       |              |               |        |      |                         |
| SCP detect<br>time                          | Tscp            | 20           | 25            | 30     | ms   |                         |
| Timer start<br>threshold<br>voltage         | Vtcinv          | 0.38         | 0. 48         | 0.58   | v    | INV Monitor CH3~5       |
| [Start-up Circui                            | it]             | 1            | 1             | 1      | ı    |                         |
| Frequency                                   | -<br>Fstart     | 150          | 300           | 600    | kHz  |                         |
| Start-up<br>VBAT<br>Voltage                 | Vst1            | 1.5          | -             | -      | v    |                         |
| Start-up CH<br>Soft Start<br>Time           | Tss1            | 1.8          | 3.0           | 5.3    | msec |                         |
| [Oscillator]                                | 1               | L            | L             | L      | ı    |                         |
| Frequency<br>CH1~5                          | fosc1           | 1.0          | 1.2           | 1.4    | MHz  |                         |
| Frequency                                   | fosc2           | 0.5          | 0.6           | 0.7    | MHz  |                         |
| CH6~8<br>Max duty<br>2,3,4,5<br>(step-down) | Dmax1d          | -            | -             | 100    | %    | (※1)                    |
| Max duty 1<br>(step-up)                     | Dmax1u          | 86           | 92            | 96     | %    |                         |
| Max duty<br>6,7,8                           | Dmax2           | 86           | 92            | 96     | %    |                         |
| [Error Amp]                                 |                 |              |               |        |      |                         |
| Input Bias<br>current                       | INV             | -            | 0             | 50     | nA   | INV1~8, NON6=3.0V       |
| INV threshold<br>1                          | VINV1           | 0.79         | 0.80          | 0.81   | v    | CH1~5                   |
| INV threshold<br>2                          | VINV2           | 0.99         | 1.00          | 1.01   | v    | CH7,8V                  |
| INV threshold<br>3 (max)                    | VINV3           | 370          | 400           | 430    | mV   | CH8I                    |
| [For Inverting Ba                           | ase Bias Volta  | ge Vref      |               |        |      |                         |
| CH6 Output<br>Voltage                       | VOUT6           | -6.09        | -6.00         | -5.91  | v    | NON5 12kΩ, 72kΩ<br>(※2) |
| Line<br>Regulation                          | DVLi            | I            | 4.0           | 125    | mV   | VCCOUT=2.8~5.5V         |
| Output<br>Current When<br>Shorted           | los             | 02           | 1.0           | -      | mA   | Vref=0V                 |
| [Soft Start]                                | 1               |              |               |        | 1    |                         |
| CH2,5 Soft<br>Start Time                    | Tss2,5          | 3.4          | 4.4           | 5.4    | msec |                         |
| CH3,4 Soft<br>Start Time                    | Tss3,4          | 12           | 22            | 32     | msec |                         |
| CH6 Soft<br>Start Time                      | Tss6            | 3.4          | 4.4           | 5.4    | msec |                         |
| CH7,8 Soft<br>Start Time                    | Tss7,8          | 4.4          | 5.4           | 6.6    | msec |                         |

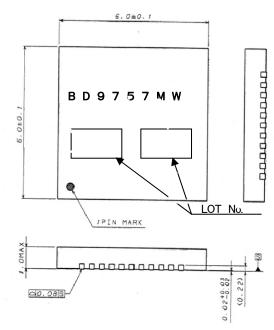
|                                                                          |                    | -           | -             |                |        |      | 1                          |
|--------------------------------------------------------------------------|--------------------|-------------|---------------|----------------|--------|------|----------------------------|
| Param                                                                    | neter              | Symbol      | MIN           | Limit<br>TYP   | MAX    | Unit | Conditions                 |
| [Output Drive                                                            | ۳]                 |             | IV III N      |                | 100-01 |      |                            |
| CH1 Highside                                                             |                    |             |               |                |        |      |                            |
| Resistance                                                               |                    | RON1p       | -             | 120            | 270    | mΩ   | Hx1=5V                     |
| CH1 Lowside<br>Resistance                                                | SWON               | RON1N       | -             | 80             | 240    | mΩ   | VCCOUT=5.0V                |
| CH2 Highside<br>Resistance                                               | SWON               | RON21p      | -             | 250            | 400    | mΩ   | Hx2=3V                     |
| CH2 Lowside<br>Resistance                                                | SWON               | RON21N      | -             | 250            | 400    | mΩ   | VCCOUT=5.0V                |
| CH3 Highside SW ON<br>Resistance                                         |                    | RON3p       | -             | 250            | 400    | mΩ   | Hx3=3V,<br>VCCOUT=5V       |
| CH3 Lowside<br>Resistance                                                | SWON               | RON3N       | -             | 250            | 400    | mΩ   | VCCOUT=5.0V                |
| CH4 Highside<br>Resistance                                               | SWON               | RON4p       | -             | 250            | 400    | mΩ   | Hx4=3V,<br>VCCOUT=5V       |
| CH4 Lowside<br>Resistance                                                | SWON               | RON4N       | -             | 250            | 400    | mΩ   | VCCOUT=50V                 |
| CH5 Highside<br>Resistance                                               | SWON               | RON5p       | -             | 250            | 400    | mΩ   | Hx5=3V                     |
| CH5 Lowside<br>Resistance                                                | SWON               | RON5N       | -             | 150            | 300    | mΩ   | VCCOUT=5.0V                |
| CH6 Driver O<br>voltage H                                                | utput              | Vout6H      | VCCOUT<br>-15 | VCCOUT<br>-1.0 | -      | v    | IOUT6=50mA<br>,NON6=0.2V   |
| CH6 Driver O<br>voltage L                                                | utput              | Vout6L      | -             | 0.5            | 1.0    | v    | IOUT6=-50mA<br>NON6=-02V   |
| CH7,8 NMOS<br>Resistance                                                 | SWON               | RON7,8<br>N | -             | 500            | 800    | mΩ   | VCCOUT=5.0V                |
| CH7,8 Load S<br>Resistance                                               | WON                | RON7,8p     | -             | 200            | 350    | mΩ   | HS7,8H=3V,<br>VCCOUT=5.0V  |
| [STB13~7]                                                                |                    |             |               |                |        |      |                            |
| STB                                                                      | Active             | VSTBH<br>1  | 1.5           | -              | 5.5    | V    |                            |
| Control<br>voltage                                                       | Not<br>Active      | VSTBL1      | -0.3          | -              | 0.3    | v    |                            |
| Pull down Res                                                            | sistance           | RSTB1       | 250           | 400            | 700    | kΩ   |                            |
| [UPIC8]                                                                  |                    |             |               |                |        |      |                            |
| UPIC8                                                                    | Active             | VUPIH       | 2.1           | -              | 4.00   | V    |                            |
| Control<br>voltage                                                       | Not                | VUPIL       | 0             | -              | 0.40   | v    |                            |
| Pull down Res                                                            | Active             | RUPIC1      | 30            | 50             | 80     | kΩ   |                            |
| Circuit Curre                                                            |                    |             | 30            | 50             | 50     | 1/30 | l                          |
|                                                                          | vbat               |             |               |                |        |      |                            |
|                                                                          | terminal<br>Hx     | ISTB1       | -             | -              | 5      | μA   |                            |
| Stand-by<br>Current                                                      | terminal<br>Lx     | ISTB2       | -             | -              | 5      | μA   | Step down                  |
| Control IC                                                               | terminal<br>HS7,8H | ISTB3       | -             | -              | 5      | μA   | Step up                    |
| Circuit C                                                                | terminal           | ISTB4       | -             | -              | 5      | μA   |                            |
| Circuit Curr<br>start-up<br>(VBAT currer<br>voltage supplie<br>terminal) | nt when            | IST         | -             | 150            | 450    | μA   | VBAT=1.5V                  |
| Circuit Curren<br>(VBAT curren<br>voltage supplie<br>terminal)           | nt when            | lcc1        | -             | 45             | 150    | μA   | VBAT=3.0V                  |
| Circuit Curren<br>(VCCOUT cu<br>when voltage<br>the terminal)            | irrent             | lcc2        | -             | 5.0            | 9.7    | mA   | INV1~8=1.2V,<br>NON6=-0.2V |

(%1)The protective circuit start working when circuit is operated by 100% duty.


So it is possible to use only for transition time shorter than charge time for SCP.

( $\$ 2)Recommend resistor value over 20k $\Omega$  between VREF to NON6, because VREF current is under 100uA.

©This product is not designed for normal operation with in a radioactive environment


# 

#### OBlock Diagram





### OPackage



## **OPin Description**

| 端子名                | 機能                                                                                 |
|--------------------|------------------------------------------------------------------------------------|
| VBAT               | Input for battery voltage                                                          |
| VCCOUT             | Power Supply Input Terminal voltage<br>(Input CH1 output voltage)                  |
| GND                | Ground terminal                                                                    |
| PGND13, 24, 5, 678 | Ground terminal for internal FET                                                   |
| VREGA              | VREGA Output                                                                       |
| VREF6              | CH6 base bias voltage                                                              |
| OUT6               | Terminal for connecting gate of CH6 PMOS                                           |
| Hx1,2,3,4,5        | Input terminal for synchronous<br>High side switch, Power supply<br>for Pch Driver |
| Lx1,2,3,45,7,8     | Terminal for connecting inductors                                                  |
| HS78H              | Power supply for internal load switch                                              |
| HS7L,HS8L          | Output terminal for internal load switch                                           |
| INV1,2,3,4,5,7,8   | Error AMP inverted input                                                           |
| NON6               | Error AMP non-inverted input                                                       |
| INV8I              | Error AMP inverted input                                                           |
| STB13,2,4,5,6,7    | ON/OFF switch<br>H: operating over 1.5V                                            |
| UPIC8              | CH8 ON/OFF switch、<br>for CH8 brightness control                                   |

#### **OPin Assignment**

| INV8       INV1       VBAT       VBAT <th< th=""></th<> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4   0.0176   PGND13 @     @   UPIC8   LX3 @     @   STB7   F     @   STB6   50     %   STB7   F     %   STB6   50     %   STB7   F     %   STB6   S     %   S   S     %   S   S     %   S   S     %   S   S     %   S   S     %   S   S     %   S   S     %   S   S     %   S   S     %   S   S     %   S   S     %   S   S     %   S   S     %   S   S     %   S   S     %   S   S     %   S   S     %   S   S     %   S   S     %   S   S <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

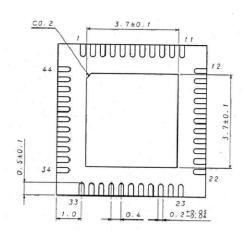



Fig.3

3/4



#### **OOperation Notes**

1.) Absolute maximum ratings

This product is produced with strict quality control. However, the IC may be destroyed if operated beyond its absolute maximum ratings. If the device is destroyed by exceeding the recommended maximum ratings, the failure mode will be difficult to determine. (E.g. short mode, open mode) Therefore, physical protection counter-measures (like fuse) should be implemented when operating conditions beyond the absolute maximum ratings anticipated.

2.) GND potential

Make sure GND is connected at lowest potential. All pins except NON6, must not have voltage below GND. Also, NON6 pin must not have voltage below - 0.3V on start up.

3.) Setting of heat

Make sure that power dissipation does not exceed maximum ratings.

4.) Pin short and mistake fitting

Avoid placing the IC near hot part of the PCB. This may cause damage to IC. Also make sure that the output-to-output and output to GND condition will not happen because this may damage the IC.

5.) Actions in strong magnetic field

Exposing the IC within a strong magnetic field area may cause malfunction.

6.) Mutual impedance

Use short and wide wiring tracks for the main supply and ground to keep the mutual impedance as small as possible. Use inductor and capacitor network to keep the ripple voltage minimum.

7.) Voltage of STB pin

The threshold voltages of STB pin are 0.3V and 1.5V. STB state is set below 0.3V while action state is set beyond 1.5V. The region between 0.3V and 1.5V is not recommended and may cause improper operation.

The rise and fall time must be under 10msec. In case to put capacitor to STB pin, it is recommended to use under  $0.01 \,\mu$  F. 8.) Thermal shutdown circuit (TSD circuit)

The IC incorporates a built-in thermal shutdown circuit (TSD circuit). The thermal shutdown circuit (TSD circuit) is designed only to shut the IC off to prevent runaway thermal operation. It is not designed to protect the IC or guarantee its operation. Do not continue to use the IC after operating this circuit or use the IC in an environment where the operation of this circuit is assumed.

9.)Rush current at the time of power supply injection.

An IC which has plural power supplies, or CMOS IC could have momentary rush current at the time of power supply injection. Please take care about power supply coupling capacity and width of power Supply and GND pattern wiring.

1 O.)IC Terminal Input

This IC is a monolithic IC that has a P- board and P+ isolation for the purpose of keeping distance between elements. A P-N junction is formed between the P-layer and the N-layer of each element, and various types of parasitic elements are then formed. For example, an application where a resistor and a transistor are connected to a terminal (shown in Fig.9):

- OWhen GND > (terminal A) at the resistor and GND > (terminal B) at the transistor (NPN), the P-N junction operates as a parasitic diode.
- When GND > (terminal B) at the transistor (NPN), a parasitic NPN transistor operates as a result of the NHayers of other elements in the proximity of the aforementioned parasitic diode.

Parasitic elements are structurally inevitable in the IC due to electric potential relationships. The operation of parasitic elements Induces the interference of circuit operations, causing malfunctions and possibly the destruction of the IC. Please be careful not to use the IC in a way that would cause parasitic elements to operate. For example, by applying a voltage that is lower than the GND (P-board) to the input terminal.

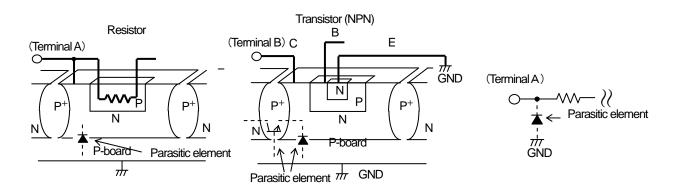



Fig - 9 Simplified structure of a Bipolar IC

|                                                                       | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                       | g or reproduction of this document, in part or in whole, is permitted without the ROHM Co.,Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| The conten                                                            | t specified herein is subject to change for improvement without notice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| "Products")                                                           | It specified herein is for the purpose of introducing ROHM's products (hereinafte<br>b. If you wish to use any such Product, please be sure to refer to the specifications<br>be obtained from ROHM upon request.                                                                                                                                                                                                                                                                                                                                                                                           |
| illustrate th                                                         | of application circuits, circuit constants and any other information contained herein<br>e standard usage and operations of the Products. The peripheral conditions mus<br>to account when designing circuits for mass production.                                                                                                                                                                                                                                                                                                                                                                          |
| However, s                                                            | was taken in ensuring the accuracy of the information specified in this document<br>should you incur any damage arising from any inaccuracy or misprint of sucl<br>, ROHM shall bear no responsibility for such damage.                                                                                                                                                                                                                                                                                                                                                                                     |
| examples of<br>implicitly, a<br>other partie                          | cal information specified herein is intended only to show the typical functions of and<br>of application circuits for the Products. ROHM does not grant you, explicitly o<br>ny license to use or exercise intellectual property or other rights held by ROHM and<br>es. ROHM shall bear no responsibility whatsoever for any dispute arising from the<br>technical information.                                                                                                                                                                                                                            |
| equipment                                                             | cts specified in this document are intended to be used with general-use electronic<br>or devices (such as audio visual equipment, office-automation equipment, commu<br>vices, electronic appliances and amusement devices).                                                                                                                                                                                                                                                                                                                                                                                |
| The Produc                                                            | ts specified in this document are not designed to be radiation tolerant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                       | M always makes efforts to enhance the quality and reliability of its Products, a<br>ay fail or malfunction for a variety of reasons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| against the<br>failure of ar<br>shall bear r                          | sure to implement in your equipment using the Products safety measures to guard<br>possibility of physical injury, fire or any other damage caused in the event of the<br>product, such as derating, redundancy, fire control and fail-safe designs. ROHM<br>responsibility whatsoever for your use of any Product outside of the prescribed<br>of in accordance with the instruction manual.                                                                                                                                                                                                               |
| system whi<br>may result<br>instrument<br>fuel-contro<br>any of the F | cts are not designed or manufactured to be used with any equipment, device or<br>ch requires an extremely high level of reliability the failure or malfunction of which<br>in a direct threat to human life or create a risk of human injury (such as a medica<br>, transportation equipment, aerospace machinery, nuclear-reactor controller<br>ller or other safety device). ROHM shall bear no responsibility in any way for use of<br>Products for the above special purposes. If a Product is intended to be used for any<br>al purpose, please contact a ROHM sales representative before purchasing. |
| be controlle                                                          | d to export or ship overseas any Product or technology specified herein that may<br>ed under the Foreign Exchange and the Foreign Trade Law, you will be required to<br>ense or permit under the Law.                                                                                                                                                                                                                                                                                                                                                                                                       |



Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

# ROHM Customer Support System

http://www.rohm.com/contact/