STRUCTURE
PRODUCT SERIES
TYPE
PIN ASSIGNMENT
BLOCK DIAGRAM
PACKAGE
Functions

Silicon Monolithic Integrated Circuit
8-Channel Switching Regulator Controller for Digital Camera
BD9757MWV
Fig. 1
Fig. 2
Fig. 3
1.5V minimum input operating

Supplies power for the intemal circuit by step-up converter $(\mathrm{CH} 1)$.
Contains step-up converter(2ch), step-down converter(4ch), inverting (1ch), with 31 step brightness controller for step-up converter(1ch).
5channels contain transistor for synchronous rectifying action mode.
2channels contain FETs for the step-up converter.
All channels contain intemal compensation.
Olt is possible separately control except CH 1 and CH 3 .
Operating frequency $1.2 \mathrm{MHz}(\mathrm{CH} 1 \sim 5), 600 \mathrm{kHz}(\mathrm{CH} 6 \sim 8)$.
Contains output interception circuit when over load
2 channels have high side switches with soft start function.
Thermally enhanced UQFN044V6060 package($6 \mathrm{~mm} \times 6 \mathrm{~mm}, 0.4 \mathrm{~mm}$ pitch)

OAbsolute maximum ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Limit	Unit
Power Supply Voltage	VBAT	-0.3~7	V
	VHx1~5	$-0.3 \sim 7$	V
Power Input Voltage	HS78H	$-0.3 \sim 7$	V
	VLx 7,8	$-0.3 \sim 22$	V
	IomaxLx1	± 25	A
	IomaxHx1	± 1.5	A
	IomaxHx2,5	+1.0	A
O	IomaxHx3,4	+0.8	A
	IomaxHS78	+12	A
	IomaxLx 7,8	± 1.0	A
P ower Dissipation	Pd	0.54 (*1)	W
Operating Temperature	Topr	-25~+85	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$
Junction Tempareture	Tjmax	+150	${ }^{\circ} \mathrm{C}$

(*1) Without extemal heat sink, the power dissipation reduces by $4.32 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$

ORecommended operating conditions

Parameter	Symbol	Limit			Unit
		MIN	TYP	MAX	
Power Supply Voltage	VBAT	1.5	-	5.5	V
VREF Pin Connecting Capacitor	CVREF	0.47	1.0	4.7	$\mu \mathrm{~F}$
VREGA Pin Connecting Capacitor	CVREGA	0.47	1.0	4.7	$\mu \mathrm{~F}$

Status of
cument
The Japanese version of this document is the official specification. Please use the translation version of this document as a reference to expedite understanding of the official version.

If these are any uncertainty in translation version of this document, official version takes priority.

OCH8 recommended operating conditions

	Parameter	Symbo	Limit			Unit
			MIN	TYP	MAX	
Status of this	Fixed H when determine brightness	T(ON)	265X1/fosc	-	-	S
	Fixed L when OFF	T(OFF)	256X1/fosc	-	-	S
	Fixed H when setting brightness	T(H)	500	-	10000	nS
sion of this	Fixed L when setting brightness	T(L)	500	-	10000	nS
	Fixed H when EN start-up	T(EN)	4X1/fosc	-	-	S
	Fixed L before setting brightness	T(CLR)	7X1/fosc	-	255X1/fosc	S
	Brightness setting time When start-up	T(SET)	-	-	2048X1/fosc	S

OElectrical characteristics $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VCCOUT}=5.0 \mathrm{~V}, \mathrm{VBAT}=3 \mathrm{~V}, \mathrm{STB} 13 \sim 7=3 \mathrm{~V}, \mathrm{UPIC} 8=2.5 \mathrm{~V}\right.$ ）

Parameter	Symbol	Limit			Unit	Conditions
		MiN	TYP	MAX		
【Intemal Regulator VREGA】						
Output Voltage	VREGA	24	2.5	26	V	Io $=5 \mathrm{~mA}$
【Prevention Circuit of Miss Operation by Low voltage Input】						
Threshold Voltage	Vstd1	－	20	23	V	VREGA Monitor
Hysteresis Width1	\triangle vstd1	50	100	200	mV	
Threshold Voltage 2	Vstd2	－	24	25	V	VCCOUT Monitor
Hysteresis Width	$\Delta \mathrm{Vstd} 1$	100	200	300	mV	
【Short Circuit Protection】						
$\begin{aligned} & \text { SCP detect } \\ & \text { time } \end{aligned}$	Tscp	20	25	30	ms	
Timer start threshold voltage	Vtcinv	0.38	0.48	0.58	V	\mathbb{N} N Monitor ${ }^{\text {CH3 }}$～5
【Start－up Circuit】						
Frequency	Fstart	150	300	600	kHz	
Start－up VBAT Voltage	Vst1	1.5	－	－	V	
Start－up CH Soft Start Time	Tss 1	1.8	3.0	5.3	msec	
【Oscillator】						
$\begin{aligned} & \text { Frequency } \\ & \mathrm{CH} 1 \sim 5 \\ & \hline \end{aligned}$	fosc1	1.0	1.2	1.4	MHz	
$\begin{aligned} & \text { Frequency } \\ & \mathrm{CH} 6 \sim 8 \\ & \hline \end{aligned}$	fosc2	0.5	0.6	0.7	MHz	
Max duty 2，3，4，5 （step－down） Maxdty	Dmax1d	－	－	100	\％	（※1）
Max duty 1 （step－up）	Dmax1u	86	92	96	\％	
Max duty 6,7,8	Dmax2	86	92	96	\％	
【Emror Amp】						
Input Bias curent	$\mathbb{I N}$ V	－	0	50	nA	$\mathbb{I N} 1 \sim 8, \mathrm{NON6}=3.0 \mathrm{~V}$
$\mathbb{I N} V$ threshold 1	VINV1	0.79	0.80	0.81	V	CH1～5
$\mathbb{I N V}$ threshold 2	VINV2	0.99	1.00	1.01	V	CH7，8V
$\mathbb{I N V}$ threshold 3 （max）	VINV3	370	400	430	mV	CH8I
【For Inverting Base Bias Voltage Vref】						
CH6 Output Voltage	VOUT6	-6.09	-6.00	-5.91	V	$\begin{aligned} & \text { NON5 12k } \Omega, 72 \mathrm{k} \Omega \\ & (※ 2) \end{aligned}$
Line Regulation	DVi	－	4.0	12.5	mV	VCCOUT $=2.8 \sim 5.5 \mathrm{~V}$
Output Current When Shorted	los	02	1.0	－	mA	Vref $=0 \mathrm{~V}$
【Soft Start】						
CH2，5 Soft Start Time	Tss2，5	3.4	4.4	5.4	msec	
CH3，4 Soft Start Time	Tss3，4	12	22	3.2	msec	
CH6 Soft Start Time	Tss6	3.4	4.4	5.4	msec	
CH7，8 Soft Start Time	Tss7，8	4.4	5.4	6.6	msec	

Parameter	Symbol	Limit			Unit	Conditions
		MIN	TYP	MAX		
【Output Driver】						
CH1 Highside SW ON Resistance	RON1p	－	120	270	$\mathrm{m} \Omega$	$\mathrm{Hx} 1=5 \mathrm{~V}$
CH1 Lowside SW ON Resistance	RON1N	－	80	240	$\mathrm{m} \Omega$	Vccour＝5．0．
CH2 Highside SW ON Resistance	RON21p	－	250	400	$\mathrm{m} \Omega$	Hx2＝3V
CH2 Lowside SW ON Resistance	RON21N	－	250	400	$\mathrm{m} \Omega$	Vccour－5．0．
CH3 Highside SW ON Resistance	RON3p	－	250	400	$\mathrm{m} \Omega$	$\mathrm{H} \times 3=3 \mathrm{~V}$ ， VCCOUT＝5V
CH3 Lowside SW ON Resistance	RON3N	－	250	400	$\mathrm{m} \Omega$	Vccour＝5．0V
CH4 Highside SW ON Resistance	RON4p	－	250	400	$\mathrm{m} \Omega$	$\mathrm{H} \times 4=3 \mathrm{~V}$ ， VCCOUT＝5V
CH4 Lowside SW ON Resistance	RON4N	－	250	400	$\mathrm{m} \Omega$	VCCOUT 5.0 V
CH5 Highside SW ON Resistance	RON5p	－	250	400	$\mathrm{m} \Omega$	Hx5 3 3V
CH5 Lowside SW ON Resistance	RON5N	－	150	300	$\mathrm{m} \Omega$	Vccour＝50．
CH6 Driver Output voltage H	Vout6H	$\begin{gathered} \text { vccour } \\ -1.5 \end{gathered}$	$\begin{gathered} \hline \text { vccout } \\ -1.0 \end{gathered}$	－	V	IOUT6 $=50 \mathrm{~mA}$ ，NON6＝0．2V
CH6 Driver Output voltage L	Vout6L	－	0.5	1.0	V	$\begin{aligned} & \text { IOUT }=-50 \mathrm{~mA} \\ & \text { NONG }=-02 \mathrm{~V} \end{aligned}$
CH7，8 NMOS SW ON Resistance	$\begin{aligned} & \text { RON7,8 } \\ & \mathrm{N} \end{aligned}$	－	500	800	$\mathrm{m} \Omega$	Vccour＝5．0V
CH7，8 Load SW ON Resistance	RON7，8p	－	200	350	$\mathrm{m} \Omega$	HS7，8H－3V， VCCOUT＝5．0．
【STB13～7】						
STB Control Active 	$\begin{gathered} \hline \text { VSTBH } \\ 1 \\ \hline \end{gathered}$	1.5	－	5.5	V	
Control voltage Not Active	VSTBL1	－0．3	－	0.3	V	
Pull down Resistance	RSTB1	250	400	700	k Ω	
【UPIC8】						
UPIC8 ${ }^{\text {a }}$	VUPIH	2.1	－	4.00	V	
Control Not voltage \quadActive	VUPIL	0	－	0.40	V	
Pull down Resistance	RUPIC1	30	50	80	k Ω	
【Circuit Current】						
VBAT terminal Stand by Hx terminal Lx terminal $\mathrm{HS} 7,8 \mathrm{H}$ terminal	ISTB1	－	－	5	$\mu \mathrm{A}$	
	ISTB2	－	－	5	$\mu \mathrm{A}$	Step down
	ISTB3	－	－	5	$\mu \mathrm{A}$	Step up
	ISTB4	－	－	5	$\mu \mathrm{A}$	
Circuit Current when start－up （VBAT current when voltage supplied for the terminal）	IST	－	150	450	$\mu \mathrm{A}$	VBAT $=1.5 \mathrm{~V}$
Circcit Current 1 （VBAT current when voltage supplied for the terminal）	Icc1	－	45	150	$\mu \mathrm{A}$	VBAT $=3.0 \mathrm{~V}$
Circuit Current 2 （VCCOUT current when voltage supplied for the terminal）	Icc2	－	5.0	9.7	mA	$\begin{aligned} & \mathbb{N V} 1 \sim 8=1.2 \mathrm{~V} \\ & \text { NON6 }=-0.2 \mathrm{~V} \end{aligned}$

（※1）The protective circuit start working when circuit is operated by 100% duty．
So it is possible to use only for transition time shorter than charge time for SCP．
$(※ 2)$ Recommend resistor value over $20 \mathrm{k} \Omega$ between VREF to NON6，because VREF current is under 100 uA ．
OThis product is not designed for normal operation with in a radioactive environment

OBlock Diagram

Fig. 1

OPackage

OOperation Notes

1.) Absolute maximum ratings

This product is produced with strict quality control. However, the IC may be destroyed if operated beyond its absolute maximum ratings. If the device is destroyed by exceeding the recommended maximum ratings, the failure mode will be difficult to determine. (E.g. short mode, open mode) Therefore, physical protection counter-measures (like fuse) should be implemented when operating conditions beyond the absolute maximum ratings anticipated.
2.) GND potential

Make sure GND is connected at lowest potential. All pins except NON6, must not have voltage below GND. Also, NON6 pin must not have voltage below - 0.3 V on start up.
3.) Setting of heat

Make sure that power dissipation does not exceed maximum ratings.
4.) Pin short and mistake fitting

Avoid placing the IC near hot part of the PCB. This may cause damage to IC. Also make sure that the output-to-output and output to GND condition will not happen because this may damage the IC.
5.) Actions in strong magnetic field

Exposing the IC within a strong magnetic field area may cause malfunction.
6.) Mutual impedance

Use short and wide wiring tracks for the main supply and ground to keep the mutual impedance as small as possible. Use inductor and capacitor network to keep the ripple voltage minimum.
7.) Voltage of STB pin

The threshold voltages of STB pin are 0.3 V and 1.5 V . STB state is set below 0.3 V while action state is set beyond 1.5 V .
The region between 0.3 V and 1.5 V is not recommended and may cause improper operation.
The rise and fall time must be under 10 msec . In case to put capacitor to STB pin, it is recommended to use under $0.01 \mu \mathrm{~F}$.
8.) Thermal shutdown circuit (TSD circuit)

The IC incorporates a built-in thermal shutdown circuit (TSD circuit). The thermal shutdown circuit (TSD circuit) is designed only to shut the IC off to prevent runaway thermal operation. It is not designed to protect the IC or guarantee its operation. Do not continue to use the IC after operating this circuit or use the IC in an environment where the operation of this circuit is assumed.
9.)Rush current at the time of power supply injection.

An IC which has plural power supplies, or CMOS IC could have momentary rush current at the time of power supply injection. Please take care about power supply coupling capacity and width of power Supply and GND pattern wiring.
10.)IC Terminal Input

This IC is a monolithic IC that has a P - board and $\mathrm{P}+$ isolation for the purpose of keeping distance between elements. AP-N junction is formed between the P -layer and the N -layer of each element, and various types of parasitic elements are then formed. For example, an application where a resistor and a transistor are connected to a terminal (shown in Fig.9):
OWhen GND > (terminal A) at the resistor and GND > (terminal B) at the transistor (NPN), the P-N junction operates as a parasitic diode.
OWhen GND > (terminal B) at the transistor (NPN), a parasitic NPN transistor operates as a result of the NHayers of other elements in the proximity of the aforementioned parasitic diode.
Parasitic elements are structurally inevitable in the IC due to electric potential relationships. The operation of parasitic elements Induces the interference of circuit operations, causing malfunctions and possibly the destruction of the IC. Please be careful not to use the IC in a way that would cause parasitic elements to operate. For example, by applying a voltage that is lower than the GND (P-board) to the input terminal.

Fig - 9 Simplified structure of a Bipolar IC

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

