74ABT823 # 9-bit D-type flip-flop with reset and enable; 3-state Rev. 03 — 23 March 2010 Produ **Product data sheet** #### 1. **General description** The 74ABT823 high-performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive. The 74ABT823 is a 9-bit wide buffered register with clock enable input (CE) and master reset input (MR) which are ideal for parity bus interfacing in systems using many microprocessors. The 74ABT823 is designed to eliminate the extra packages required to buffer existing registers and provide extra data width for wider data and address paths of buses carrying parity. The register is fully edge-triggered. The state of each D input, one set-up time before the LOW-to-HIGH clock transition, is transferred to the corresponding output Q of the flip-flop. #### 2. **Features and benefits** - High-speed parallel registers with positive edge-triggered D-type flip-flops - Ideal where high speed, light loading, or increased fan-in are required with MOS microprocessors - Output capability: +64 mA and -32 mA - Power-on 3-state - Power-on reset - Latch-up protection exceeds 500 mA per JESD78B class II level A - ESD protection: - ◆ HBM JESD22-A114F exceeds 2000 V - MM JESD22-A115-A exceeds 200 V #### 3. **Ordering information** Table 1. **Ordering information** | Type number | Package | | | | | | | | | | |-------------|-------------------|---------|--|----------|--|--|--|--|--|--| | | Temperature range | Name | Description | Version | | | | | | | | 74ABT823D | –40 °C to +85 °C | SO24 | plastic small outline package; 24 leads;
body width 7.5 mm | SOT137-1 | | | | | | | | 74ABT823DB | –40 °C to +85 °C | SSOP24 | plastic shrink small outline package; 24 leads; body width 5.3 mm | SOT340-1 | | | | | | | | 74ABT823PW | –40 °C to +85 °C | TSSOP24 | plastic thin shrink small outline package; 24 leads; body width 4.4 mm | SOT355-1 | | | | | | | 9-bit D-type flip-flop with reset and enable; 3-state # 4. Functional diagram # 9-bit D-type flip-flop with reset and enable; 3-state 9-bit D-type flip-flop with reset and enable; 3-state # 5. Pinning information ## 5.1 Pinning # 5.2 Pin description Table 2. Pin description | Symbol | Pin | Description | |--|------------------------------------|--| | ŌE | 1 | output enable input (active LOW) | | D0, D1, D2, D3, D4, D5, D6, D7, D8 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | data input | | MR | 11 | master reset input (active LOW) | | GND | 12 | ground (0 V) | | СР | 13 | clock pulse input (active rising edge) | | CE | 14 | clock enable input (active LOW) | | Q8, Q7, Q6, Q5, Q4, Q3, Q3, Q2, Q1, Q0 | 15, 16, 17, 18, 19, 20, 21, 22, 23 | data output | | Vcc | 24 | positive supply voltage | 9-bit D-type flip-flop with reset and enable; 3-state # 6. Functional description #### 6.1 Function table Table 3. Function table [1] | Input | | | | | Operating mode | | |-------|----|----|------------|----|----------------|--------------------| | OE | MR | CE | СР | Dn | Qn | | | L | L | Χ | Χ | X | L | clear | | L | Н | L | \uparrow | h | Н | load and read data | | L | Н | L | \uparrow | I | L | | | L | Н | Н | NC | X | NC | hold | | Н | Χ | Χ | Χ | Χ | Z | high-impedance | ^[1] H = HIGH voltage level; NC = no change; X = don't care; Z = high-impedance OFF-state. # 7. Limiting values Table 4. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). | Parameter | Conditions | Min | Max | Unit | |-------------------------|--|---|--|---| | supply voltage | | -0.5 | +7.0 | V | | input voltage | | <u>[1]</u> –1.2 | +7.0 | V | | output voltage | output in OFF-state or HIGH-state | [<u>1</u>] -0.5 | +5.5 | V | | input clamping current | V _I < 0 V | -18 | - | mA | | output clamping current | V _O < 0 V | -50 | - | mA | | output current | output in LOW-state | - | 128 | mA | | junction temperature | | [2] _ | 150 | °C | | storage temperature | | -65 | +150 | °C | | | supply voltage input voltage output voltage input clamping current output clamping current output current junction temperature | supply voltage input voltage output in OFF-state or HIGH-state input clamping current $V_I < 0 \text{ V}$ output clamping current $V_O < 0 \text{ V}$ output current output in LOW-state junction temperature | supply voltage -0.5 input voltage[1] -1.2 output voltageoutput in OFF-state or HIGH-state[1] -0.5 input clamping current $V_1 < 0 \text{ V}$ -18 output clamping current $V_O < 0 \text{ V}$ -50 output currentoutput in LOW-state $-$ junction temperature[2] $-$ | supply voltage -0.5 $+7.0$ input voltage $11 - 1.2$ $+7.0$ output voltageoutput in OFF-state or HIGH-state $11 - 0.5$ $+5.5$ input clamping current $V_1 < 0 \ V$ -18 $-$ output clamping current $V_0 < 0 \ V$ -50 $-$ output currentoutput in LOW-state $ 128$ junction temperature $12 150$ | ^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed. L = LOW voltage level; h = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition; I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition; $[\]uparrow$ = LOW-to-HIGH clock transition; ^[2] The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150 °C. 9-bit D-type flip-flop with reset and enable; 3-state # 8. Recommended operating conditions Table 5. Operating conditions Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |------------------|-------------------------------------|-------------|-----|-----|----------|------| | V_{CC} | supply voltage | | 4.5 | - | 5.5 | V | | VI | input voltage | | 0 | - | V_{CC} | V | | V_{IH} | HIGH-level input voltage | | 2.0 | - | - | V | | V _{IL} | LOW-level Input voltage | | - | - | 0.8 | V | | I _{OH} | HIGH-level output current | | -32 | - | - | mA | | I _{OL} | LOW-level output current | | - | - | 64 | mA | | Δt/ΔV | input transition rise and fall rate | | 0 | - | 5 | ns/V | | T _{amb} | ambient temperature | in free air | -40 | - | +85 | °C | # 9. Static characteristics Table 6. Static characteristics | Symbol | Parameter | Conditions | | | 25 °C | | -40 °C t | o +85 °C | Unit | |-----------------------|------------------------------------|---|------------|------|-------|------|----------|----------|------| | | | | | Min | Тур | Max | Min | Max | | | V_{IK} | input clamping voltage | $V_{CC} = 4.5 \text{ V}; I_{IK} = -18 \text{ mA}$ | | -1.2 | -0.9 | - | -1.2 | - | V | | V_{OH} | HIGH-level output | $V_I = V_{IL}$ or V_{IH} | | | | | | | | | | voltage | $V_{CC} = 4.5 \text{ V}; I_{OH} = -3 \text{ mA}$ | | 2.5 | 2.9 | - | 2.5 | - | V | | | | $V_{CC} = 5.0 \text{ V}; I_{OH} = -3 \text{ mA}$ | | 3.0 | 3.4 | - | 3.0 | - | V | | | | $V_{CC} = 4.5 \text{ V}; I_{OH} = -32 \text{ mA}$ | | 2.0 | 2.4 | - | 2.0 | - | V | | V_{OL} | LOW-level output voltage | V_{CC} = 4.5 V; I_{OL} = 64 mA; V_I = V_{IL} or V_{IH} | | - | 0.42 | 0.55 | - | 0.55 | V | | $V_{OL(pu)}$ | power-up LOW-level output voltage | V_{CC} = 5.5 V; I_{O} = 1 mA;
V_{I} = GND or V_{CC} | <u>[1]</u> | - | 0.13 | 0.55 | - | 0.55 | V | | l _l | input leakage current | $V_{CC} = 5.5 \text{ V}; V_I = V_{CC} \text{ or GND}$ | | - | ±0.01 | ±1.0 | - | ±1.0 | μΑ | | I _{OFF} | power-off leakage current | V_{CC} = 0 V; V_{I} or $V_{O} \le 4.5$ V | | - | ±5.0 | ±100 | - | ±100 | μΑ | | I _{O(pu/pd)} | power-up/power-down output current | V_{CC} = 2.0 V; V_{O} = 0.5 V;
V_{I} = GND or V_{CC} ; \overline{OE} HIGH | <u>[2]</u> | - | ±5.0 | ±50 | - | ±50 | μΑ | | l _{OZ} | OFF-state output | $V_{CC} = 5.5 \text{ V}; V_I = V_{IL} \text{ or } V_{IH}$ | | | | | | | | | | current | V _O = 2.7 V | | - | 5.0 | 50 | - | 50 | μΑ | | | | V _O = 0.5 V | | - | -5.0 | -50 | - | -50 | μΑ | | I _{LO} | output leakage current | HIGH-state; $V_O = 5.5 \text{ V}$;
$V_{CC} = 5.5 \text{ V}$; $V_I = \text{GND or } V_{CC}$ | | - | 5.0 | 50 | - | 50 | μΑ | | Io | output current | $V_{CC} = 5.5 \text{ V}; V_{O} = 2.5 \text{ V}$ | [3] | -180 | -50 | -50 | -180 | -50 | mΑ | | I _{CC} | supply current | V_{CC} = 5.5 V; V_I = GND or V_{CC} | | | | | | | | | | | outputs HIGH-state | | - | 0.5 | 250 | - | 250 | μΑ | | | | outputs LOW-state | | - | 27 | 34 | - | 34 | mΑ | | | | outputs disabled | | - | 0.5 | 250 | - | 250 | μΑ | #### 9-bit D-type flip-flop with reset and enable; 3-state Table 6. Static characteristics ...continued | Symbol | Parameter | Conditions | | | 25 °C | | –40 °C t | Unit | | |-----------------|---------------------------|---|------------|-----|-------|-----|----------|------|----| | | | | | Min | Тур | Max | Min | Max | | | ΔI_{CC} | additional supply current | per input pin; $V_{CC} = 5.5 \text{ V}$;
one input at 3.4 V;
other inputs at V_{CC} or GND | <u>[4]</u> | - | 0.5 | 1.5 | - | 1.5 | mA | | C _I | input capacitance | $V_I = 0 \text{ V or } V_{CC}$ | | - | 4 | - | - | - | pF | | Co | output capacitance | outputs disabled; $V_O = 0 \text{ V or } V_{CC}$ | | - | 7 | - | - | - | pF | ^[1] For valid test results, data must not be loaded into the flip-flops (or latches) after applying the power. # 10. Dynamic characteristics **Table 7. Dynamic characteristics** GND = 0 *V; for test circuit, see Figure 9.* | Symbol | Parameter | Conditions | 25 °C; V _{CC} = 5.0 | | 5.0 V | | C to +85 °C;
5.0 V ± 0.5 V | | |--------------------|-------------------------------------|------------------------|------------------------------|------|-------|------|-------------------------------|-----| | | | | Min | Тур | Max | Min | Max | | | f_{max} | maximum frequency | see Figure 5 | 125 | 200 | - | 125 | - | MHz | | t _{PLH} | LOW to HIGH propagation delay | CP to Qn, see Figure 5 | 2.1 | 4.3 | 5.9 | 2.1 | 6.8 | ns | | t _{PHL} | HIGH to LOW | CP to Qn, see Figure 5 | 2.2 | 4.4 | 6.1 | 2.2 | 6.7 | ns | | | propagation delay | MR to Qn, see Figure 6 | 2.0 | 4.1 | 6.3 | 2.0 | 7.1 | ns | | t _{PZH} | OFF-state to HIGH propagation delay | OE to Qn; see Figure 8 | 1.0 | 3.0 | 4.5 | 1.0 | 5.3 | ns | | t _{PZL} | OFF-state to LOW propagation delay | OE to Qn; see Figure 8 | 2.2 | 4.1 | 5.6 | 2.2 | 6.3 | ns | | t _{PHZ} | HIGH to OFF-state propagation delay | OE to Qn; see Figure 8 | 2.7 | 4.8 | 6.2 | 2.7 | 6.9 | ns | | t _{PLZ} | LOW to OFF-state propagation delay | OE to Qn; see Figure 8 | 2.5 | 5.0 | 6.4 | 2.5 | 6.9 | ns | | t _{su(H)} | set-up time HIGH | Dn to CP; see Figure 7 | 2.1 | 0.5 | - | 2.1 | - | ns | | | | CE to CP; see Figure 7 | +2.0 | -0.5 | - | +2.0 | - | ns | | $t_{su(L)}$ | set-up time LOW | Dn to CP; see Figure 7 | 2.1 | 0.2 | - | 2.1 | - | ns | | | | CE to CP; see Figure 7 | 3.3 | 1.5 | - | 3.3 | - | ns | | t _{h(H)} | hold time HIGH | CP to Dn; see Figure 7 | 1.3 | 0.0 | - | 1.3 | - | ns | | | | CP to CE; see Figure 7 | +1.0 | -1.4 | - | +1.0 | - | ns | | t _{h(L)} | hold time LOW | CP to Dn; see Figure 7 | +1.3 | -0.3 | - | +1.3 | - | ns | | | | CP to CE; see Figure 7 | 2.0 | 0.7 | - | 2.0 | - | ns | | t_{WH} | pulse width HIGH | CP; see Figure 5 | 2.9 | 1.9 | - | 2.9 | - | ns | ^[2] This parameter is valid for any V_{CC} between 0 V and 2.1 V, with a transition time of up to 10 ms. From V_{CC} = 2.1 V to V_{CC} = 5 V \pm 10 % a transition time of up to 100 μ s is permitted. ^[3] Not more than one output should be tested at a time, and the duration of the test should not exceed one second. ^[4] This is the increase in supply current for each input at 3.4 V. #### 9-bit D-type flip-flop with reset and enable; 3-state **Table 7. Dynamic characteristics** ...continued GND = 0 V; for test circuit, see Figure 9. | Symbol | Parameter | Conditions | 25 °C; | V _{CC} = | | -40 °C to
V _{CC} = 5.0 | | | |------------------|-----------------|------------------------|--------|-------------------|-----|------------------------------------|-----|----| | | | | Min | Тур | Max | Min | Max | | | t_{WL} | pulse width LOW | CP; see Figure 5 | 3.8 | 2.8 | - | 3.8 | - | ns | | | | MR; see Figure 6 | 5.5 | 4.0 | - | 5.5 | - | ns | | t _{rec} | recovery time | MR to CP; see Figure 6 | 2.5 | 0.6 | - | 2.5 | - | ns | ### 11. Waveforms $V_{M} = 1.5 \text{ V}$ V_{OL} and V_{OH} are typical voltage output levels that occur with the output load. Fig 5. Propagation delay clock input (CP) to output (Qn), clock pulse (CP) width and maximum clock (CP) frequency $V_{M} = 1.5 V$ $V_{\mbox{\scriptsize OL}}$ and $V_{\mbox{\scriptsize OH}}$ are typical voltage output levels that occur with the output load. Fig 6. Master reset (MR) pulse width, propagation delay master reset (MR) to output (Qn) and recovery time master reset (MR) to clock (CP) ### 9-bit D-type flip-flop with reset and enable; 3-state ## 9-bit D-type flip-flop with reset and enable; 3-state a. Input pulse definition b. Test circuit Test data is given in Table 8. R_L = Load resistance. C_L = Load capacitance including jig and probe capacitance. R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator. V_{EXT} = External voltage for measuring switching times. Fig 9. Load circuitry for switching times Table 8. Test data | Input | | | | Load | | V _{EXT} | | | | |-------|-------------------------------|--------|---------------------------------|-------|----------------|-------------------------------------|-------------------------------------|-------------------------------------|--| | VI | f _I t _W | | t _r , t _f | CL | R _L | t _{PHL} , t _{PLH} | t _{PZH} , t _{PHZ} | t _{PZL} , t _{PLZ} | | | 3.0 V | 1 MHz | 500 ns | ≤ 2.5 ns | 50 pF | 500Ω | open | open | 7.0 V | | ## 9-bit D-type flip-flop with reset and enable; 3-state # 12. Package outline ### SO24: plastic small outline package; 24 leads; body width 7.5 mm SOT137-1 | UNIT | A
max. | A ₁ | A ₂ | A ₃ | bp | С | D ⁽¹⁾ | E ⁽¹⁾ | е | HE | L | Lp | q | v | w | у | z ⁽¹⁾ | θ | |--------|-----------|----------------|----------------|----------------|----------------|----------------|------------------|------------------|------|----------------|-------|----------------|----------------|------|------|-------|------------------|----| | mm | 2.65 | 0.3
0.1 | 2.45
2.25 | 0.25 | 0.49
0.36 | 0.32
0.23 | 15.6
15.2 | 7.6
7.4 | 1.27 | 10.65
10.00 | 1.4 | 1.1
0.4 | 1.1
1.0 | 0.25 | 0.25 | 0.1 | 0.9
0.4 | 8° | | inches | 0.1 | 0.012
0.004 | 0.096
0.089 | 0.01 | 0.019
0.014 | 0.013
0.009 | 0.61
0.60 | 0.30
0.29 | 0.05 | 0.419
0.394 | 0.055 | 0.043
0.016 | 0.043
0.039 | 0.01 | 0.01 | 0.004 | 0.035
0.016 | 0° | #### Note 1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included. | OUTLINE | | REFER | ENCES | EUROPEAN | ISSUE DATE | |----------|--------|--------|-------|------------|---------------------------------| | VERSION | IEC | JEDEC | JEITA | PROJECTION | 1330E DATE | | SOT137-1 | 075E05 | MS-013 | | | 99-12-27
03-02-19 | | SOT137-1 | 075E05 | MS-013 | | | \oplus | Fig 10. Package outline SOT137-1 (SO24) All information provided in this document is subject to legal disclaimers. 9-bit D-type flip-flop with reset and enable; 3-state SSOP24: plastic shrink small outline package; 24 leads; body width 5.3 mm SOT340-1 | | | | | | | -, | | | | | | | | | | | | | |------|-----------|----------------|----------------|----------------|--------------|--------------|------------------|------------------|------|------------|------|--------------|------------|-----|------|-----|------------------|----------| | UNIT | A
max. | A ₁ | A ₂ | A ₃ | bp | С | D ⁽¹⁾ | E ⁽¹⁾ | е | HE | L | Lp | Q | v | w | у | Z ⁽¹⁾ | θ | | mm | 2 | 0.21
0.05 | 1.80
1.65 | 0.25 | 0.38
0.25 | 0.20
0.09 | 8.4
8.0 | 5.4
5.2 | 0.65 | 7.9
7.6 | 1.25 | 1.03
0.63 | 0.9
0.7 | 0.2 | 0.13 | 0.1 | 0.8
0.4 | 8°
0° | #### Note 1. Plastic or metal protrusions of 0.2 mm maximum per side are not included. | OUTLINE | | REFER | ENCES | EUROPEAN | ISSUE DATE | | |----------|-----|--------|-------|------------|---------------------------------|--| | VERSION | IEC | JEDEC | JEITA | PROJECTION | ISSUE DATE | | | SOT340-1 | | MO-150 | | | 99-12-27
03-02-19 | | | | | | | | | | Fig 11. Package outline SOT340-1 (SSOP24) All information provided in this document is subject to legal disclaimers. 9-bit D-type flip-flop with reset and enable; 3-state TSSOP24: plastic thin shrink small outline package; 24 leads; body width 4.4 mm SOT355-1 | | | | | | | -, | | | | | | | | | | | | | |------|-----------|----------------|----------------|----------------|--------------|------------|------------------|------------------|------|------------|---|--------------|------------|-----|------|-----|------------------|----------| | UNIT | A
max. | A ₁ | A ₂ | A ₃ | bp | С | D ⁽¹⁾ | E ⁽²⁾ | е | HE | L | Lp | Q | v | w | у | Z ⁽¹⁾ | θ | | mm | 1.1 | 0.15
0.05 | 0.95
0.80 | 0.25 | 0.30
0.19 | 0.2
0.1 | 7.9
7.7 | 4.5
4.3 | 0.65 | 6.6
6.2 | 1 | 0.75
0.50 | 0.4
0.3 | 0.2 | 0.13 | 0.1 | 0.5
0.2 | 8°
0° | - 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. - 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included. | OUTLINE | | REFER | EUROPEAN | ISSUE DATE | | | | |----------|-----|--------|----------|------------|------------|---------------------------------|--| | VERSION | IEC | JEDEC | JEITA | | PROJECTION | ISSUE DATE | | | SOT355-1 | | MO-153 | | | | 99-12-27
03-02-19 | | | | | | | | | | | Fig 12. Package outline SOT355-1 (TSSOP24) 74ABT823_3 All information provided in this document is subject to legal disclaimers. 9-bit D-type flip-flop with reset and enable; 3-state # 13. Abbreviations #### Table 9. Abbreviations | Acronym | Description | |---------|---| | BiCMOS | Bipolar Complementary Metal-Oxide Semiconductor | | DUT | Device Under Test | | ESD | ElectroStatic Discharge | | НВМ | Human Body Model | | MM | Machine Model | # 14. Revision history ### Table 10. Revision history | Release date | Data sheet status | Change notice | Supersedes | | | | | |--|--|--|---|--|--|--|--| | 20100323 | Product data sheet | - | 74ABT823_2 | | | | | | | | redesigned to comply v | vith the new identity | | | | | | Legal texts have been adapted to the new company name where appropriate. | | | | | | | | | • | · · · · · · · · · · · · · · · · · · · | rom Section 3 "Orderin | g information" and. Section | | | | | | 20050207 | Product specification | - | 74ABT823_1 | | | | | | 19960314 | Product specification | | | | | | | | | 20100323 The format guidelines of Legal texts DIP 24 (SO 12 "Package 20050207 | Product data sheet The format of this data sheet has been guidelines of NXP Semiconductors. Legal texts have been adapted to the new DIP 24 (SOT222-1) package removed for 12 "Package outline" Product specification | 20100323 Product data sheet The format of this data sheet has been redesigned to comply viguidelines of NXP Semiconductors. Legal texts have been adapted to the new company name where DIP 24 (SOT222-1) package removed from Section 3 "Ordering 12 "Package outline" 20050207 Product specification - | | | | | #### 9-bit D-type flip-flop with reset and enable; 3-state # 15. Legal information #### 15.1 Data sheet status | Document status[1][2] | Product status[3] | Definition | |--------------------------------|-------------------|---| | Objective [short] data sheet | Development | This document contains data from the objective specification for product development. | | Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. | | Product [short] data sheet | Production | This document contains the product specification. | - [1] Please consult the most recently issued document before initiating or completing a design. - [2] The term 'short data sheet' is explained in section "Definitions" - [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. #### 15.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. **Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet. #### 15.3 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. The product is not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on a weakness or default in the customer application/use or the application/use of customer's third party customer(s) (hereinafter both referred to as "Application"). It is customer's sole responsibility to check whether the NXP Semiconductors product is suitable and fit for the Application planned. Customer has to do all necessary testing for the Application in order to avoid a default of the Application and the product. NXP Semiconductors does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. **Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities. #### 15.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. 74ABT823 3 All information provided in this document is subject to legal disclaimers. 9-bit D-type flip-flop with reset and enable; 3-state # 16. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com # 9-bit D-type flip-flop with reset and enable; 3-state # 17. Contents | 1 | General description | | | | | | | | |------|----------------------------------|--|--|--|--|--|--|--| | 2 | Features and benefits | | | | | | | | | 3 | Ordering information | | | | | | | | | 4 | Functional diagram | | | | | | | | | 5 | Pinning information | | | | | | | | | 5.1 | Pinning | | | | | | | | | 5.2 | Pin description | | | | | | | | | 6 | Functional description | | | | | | | | | 6.1 | Function table | | | | | | | | | 7 | Limiting values | | | | | | | | | 8 | Recommended operating conditions | | | | | | | | | 9 | Static characteristics | | | | | | | | | 10 | Dynamic characteristics | | | | | | | | | 11 | Waveforms | | | | | | | | | 12 | Package outline | | | | | | | | | 13 | Abbreviations14 | | | | | | | | | 14 | Revision history | | | | | | | | | 15 | Legal information | | | | | | | | | 15.1 | Data sheet status | | | | | | | | | 15.2 | Definitions15 | | | | | | | | | 15.3 | Disclaimers | | | | | | | | | 15.4 | Trademarks15 | | | | | | | | | 16 | Contact information | | | | | | | | | 17 | Contents 17 | | | | | | | | Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.