BYV36C

SINTERED GLASS JUNCTION FAST AVALANCHE RECTIFIER E: 600V CURRENT: 1.6A

VOLTAGE: 600V

MECHANICAL DATA

Case: SOD-57 sintered glass case Terminal: Plated axial leads solderable per MIL-STD 202E, method 208C Polarity: color band denotes cathode end Mounting position: any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

(single-phase, half-wave, 60HZ, resistive or inductive load rating at 25°C, unless otherwise stated)

	SYMBOL	BYV36C	units
Maximum Recurrent Peak Reverse Voltage	V _{RRM}	600	V
Maximum RMS Voltage	V _{RMS}	420	V
Maximum DC blocking Voltage	V _{DC}	600	V
Reverse Breakdown Voltage at IR =0. 1mA	V _{(BR)R}	700min	V
Maximum Average Forward Rectified Current at Ttp=60°C, lead length=10mm	I _{F(AV)}	1.6	A
Peak Forward Surge Current at t=10ms half sinewave	I _{FSM}	30	A
$\begin{array}{ll} \mbox{Maximum Forward Voltage at rated Forward} \\ \mbox{Current and } 25^{\circ}\mbox{C} & \mbox{I}_{\rm F} = 1.0\mbox{A} \end{array}$	VF	1.35	V
Maximum DC Reverse Current $Tj = 25^{\circ}C$ at rated DC blocking voltage $Tj = 165^{\circ}C$	I _R	5.0 150	μΑ μΑ
Maximum Reverse Recovery Time (Note 1)	Trr	100	nS
Non Repetitive Reverse Avalanche Energy at L=120Mh	E _R	10	mJ
Typical Diode Capacitance at f=1MHz, V_R =0V	Cd	45	pF
Typical Thermal Resistance (Note 2)	R _{th(ja)}	100	K/W
Storage and Operating Junction Temperature	Tstg, Tj	-65 to +175	°C

Note:

1. Reverse Recovery Condition $I_F = 0.5A$, $I_R = 1.0A$, $I_{RR} = 0.25A$

2. Device mounted on an epoxy-glass printed-circuit boars, 1.5mm thick; thickness of Cu-layer \ge 40 μ m

RATINGS AND CHARACTERISTIC CURVES BYV36C

Fig.1 Maximum average forward current as a function of tie-point temperature (including losses due to reverse leakage).

Fig.3 Reverse current as a function of junction temperature; maximum values.

Fig. 5 Maximum permissible junction temperature as a function of reverse voltage.

Fig.2 Forward current as a function of forward

voltage; maximum values.

Fig.4 Diode capacitance as a function of reverse voltage, typical values.