BYV26C

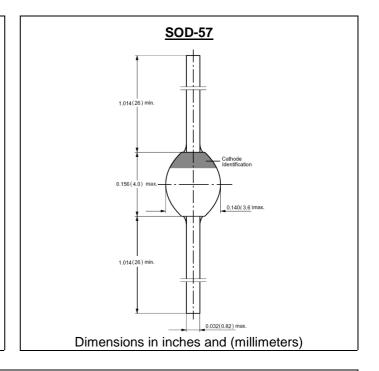
SINTERED GLASS JUNCTION FAST AVALANCHE RECTIFIER

VOLTAGE: 600V CURRENT: 1.0A

FEATURE

Glass passivated
High maximum operating temperature
Low leakage current
Excellent stability
Guaranteed avalanche energy absorption capability

MECHANICAL DATA


Case: SOD-57 sintered glass case

Terminal: Plated axial leads solderable per

MIL-STD 202E, method 208C

Polarity: color band denotes cathode end

Mounting position: any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

(single-phase, half-wave, 60HZ, resistive or inductive load rating at 25°C, unless otherwise stated)

	SYMBOL	BYV26C	units
Maximum Recurrent Peak Reverse Voltage	V _{RRM}	600	V
Maximum RMS Voltage	V_{RMS}	420	V
Maximum DC blocking Voltage	V_{DC}	600	V
Reverse avalanche breakdown voltage at IR = 0.1 mA	$V_{(BR)R}$	700min	V
Maximum Average Forward Rectified Current 3/8"lead length at Ttp =85°C	I _{FAV}	1.0	А
Non-repetitive Peak Forward Current at t=10ms half sine wave	I _{FSM}	30	А
Maximum Forward Voltage at rated Forward Current	V _F	2.5	V
Non-repetitive peak reverse avalanche energy (Note 1)	E _{RSM}	10	mJ
Maximum DC Reverse Current $Ta = 25^{\circ}C$ at rated DC blocking voltage $Ta = 165^{\circ}C$	I _R	5.0 150.0	μA μA
Maximum Reverse Recovery Time (Note 2)	Trr	30	nS
Diode Capacitance (Note 3)	C _d	45	pF
Typical Thermal Resistance (Note 4)	R _{th(ja)}	100	°C M
Storage and Operating Junction Temperature	Tstg, Tj	-65 to +175	°C

Note:

- 1. R=400mA; Tj=Tjmax prior to surge; inductive load switched off
- 2. Reverse Recovery Condition If =0.5A, Ir =1.0A, Irr =0.25A
- 3. Measured at 1.0 MHz and applied reverse voltage of 0Vdc
- 4. Device mounted on an epoxy-glass printed-circuit board, 1.5mm thick; thickness of Cu-layer \geqslant 40 μ m

Rev.A1 www.gulfsemi.com

RATINGS AND CHARACTERISTIC CURVES BYV26C

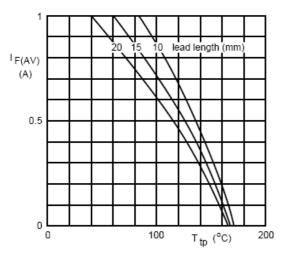


Fig.1 Maximum average forward current as a function of tie-point temperature (including losses due to reverse leakage).

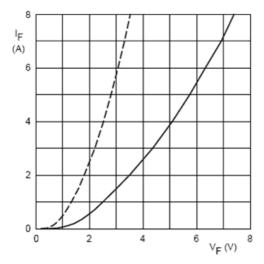


Fig. 3 Forward current as a function of forward voltage; maximum values.

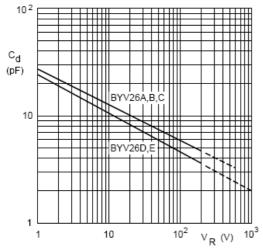


Fig. 5 Diode capacitance as a function of reverse voltage, typical values.

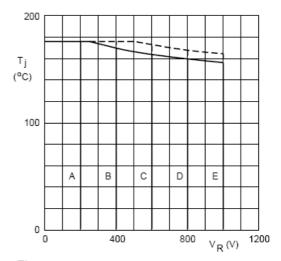


Fig. 2 Maximum permissible junction temperature as a function of reverse voltage.

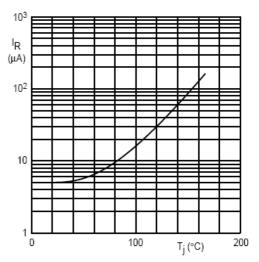


Fig.4 Reverse current as a function of junction temperature; maximum values.

Rev.A1 www.gulfsemi.com