

STG5123

Low voltage 1 Ω single SPDT switch with break-before-make feature

Features

- High speed:
 - t_{PD} = 130 ps (typ.) at V_{CC} = 3.0 V
 - t_{PD} = 140 ps (typ.) at V_{CC} = 2.3 V
- Ultra low power dissipation:
 - I_{CC} = 0.2 μ A (max.) at T_A = 85 °C
- Low ON resistance:
 - R_{ON} = 1.0 Ω (Typ.) at V_{CC} = 4.5 V
 - $R_{ON} = 1.2 \Omega$ (Typ.) at $V_{CC} = 3.0 \text{ V}$
 - R_{ON} = 2.0 Ω(Typ.) at V_{CC} = 1.8 V
- Wide operating voltage range:
 - V_{CC} (opr) = 1.65 to 4.5 V single supply
- 5 V tolerant and 1.8 V compatible threshold on digital control input at V_{CC} = 1.65 to 4.5 V
- Latch-up performance exceeds 200 mA per JESD 78, Class II
- ESD performance tested per JESD22
 - 2000 V human-body model (A114-B, Class II)
 - 200 V machine model (A115-A)
 - 1000 V charged-device model (C101)

Description

The STG5123 is a high-speed CMOS low voltage single analog SPDT (single-pole dual-throw) switch or 2:1 multiplexer/demultiplexer switch fabricated using silicon gate C²MOS technology. Designed to operate from 1.65 to 4.5 V, this device is ideal for portable applications.

The device offers very low ON resistance (1 Ω) at V_{CC} = 4.5 V. The switch S1 is ON (connected to common ports Dn) when the SEL input is held high and OFF (state of high impedance state exists between the two ports) when SEL is held low. The switch S2 is ON (connected to common port D) when the SEL input is held low and OFF (state of high impedance state exists between the two ports) when SEL is held high.

Additional key features are fast switching speed, break-before-make delay time and ultra low power consumption. All inputs and outputs are equipped with protection circuits against static discharge, giving them ESD and transient excess voltage immunity.

Table 1. Device summary

Order code	Package	Packaging
STG5123DTR	DFN6L (1.2 x 1 mm)	Tape and reel

Contents STG5123

Contents

1	Pin connections and functions	3
2	Electrical ratings	5
3	Electrical characteristics	6
	3.1 DC electrical characteristics	6
	3.2 AC electrical characteristics	7
	3.3 Analog switch characteristics	8
4	Test circuits	9
5	Package mechanical data	3
6	Revision history	7

1 Pin connections and functions

Figure 1. Pin connections (top through view)

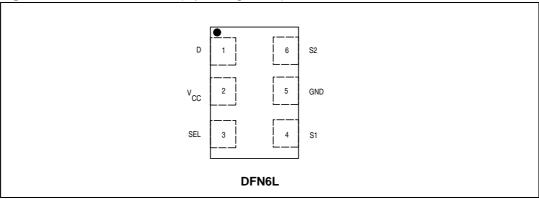


Table 2. Pin descriptions

Pin number	Symbol	Name and function
4	S1	Independent channel
6	S2	Independent channel
1	D	Common channels
3	SEL	Control
2	V _{CC}	Positive supply voltage
5	GND	Ground (0V)

Figure 2. Input equivalent circuit

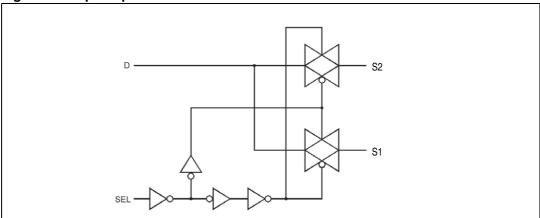


Table 2. Truth table

Sel	Switch S1	Switch S2
Н	ON	OFF ⁽¹⁾
L	OFF ⁽¹⁾	ON

1. High impedance

Electrical ratings STG5123

2 Electrical ratings

Stressing the device above the rating listed in the "Absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	-0.5 to 5.5	V
V _I	DC input voltage	-0.5 to V _{CC} +0.5	V
V _{IC}	DC control input voltage	-0.5 to 5.5	V
Vo	DC output voltage	-0.5 to V _{CC} +0.5	V
I _{IKC}	DC input diode current on control pin (V _{SEL} < 0 V)	-50	mA
I _{IK}	DC input diode current (V _{IN} < 0 V)	±50	mA
I _{OK}	DC output diode current	±20	mA
I _O	DC output current	±200	mA
I _{OP}	DC output current peak (pulse at 1 ms, 10% duty cycle)	±400	mA
I _{CC} or I _{GND}	DC V _{CC} or ground current	±100	mA
P_{D}	Power dissipation at T _A = 70°C ⁽¹⁾	1120	mW
T _{STG}	Storage temperature	-65 to 150	°C
T _L	Lead temperature (10 sec)	300	°C

^{1.} Derate above 70°C by 18.5mW/C

Table 4. Recommended operating conditions

Symbol	Paran	Value	Unit	
V _{CC}	Supply voltage		1.65 to 4.5	V
V _I	Input voltage	Input voltage		
V _{IC}	Control input voltage	0 to 4.5	V	
V _O	Output voltage	Output voltage		
T _{op}	Operating temperature		-40 to 85	°C
dt/dv	Input rise and fall time control input	$V_{CC} = 1.65 \text{ to } 2.7 \text{ V}$	0 to 20	ns/V
di/dv		V _{CC} = 3.0 to 4.5 V	0 to 10	115/V

3 Electrical characteristics

3.1 DC electrical characteristics

Table 5. DC specifications

Table 5.	DC Specifica					Value			
Symbol	Parameter	V _{CC} (V)	Test condition	TA	_ = 25 °C	;	-40 to 8	85 °C	Unit
		(*)		Min	Тур	Max	Min	Max	
		1.65 – 1.95		0.65 V _{CC}			0.65 V _{CC}		
		2.3 – 2.5		1.2			1.2		
V_{IH}	High level input voltage	2.7 – 3.0		1.3			1.3		V
		3.3 – 3.6		1.4			1.4		
		4.5		1.6			1.6		
		1.65 – 1.95				0.40		0.40	
		2.3 – 2.5				0.60		0.60	
V _{IL}	Low level input voltage	2.7 – 3.0				0.60		0.60	V
		3.3 – 3.6				0.60		0.60	
		4.5				0.80		0.80	
		1.8			2.0	3.0		3.5	Ω
	Switch ON	2.7	$V_S = 0 V \text{ to } V_{CC}$		1.3	1.6		1.8	
R _{ON}	resistance	3.0	I _S = 100 mA		1.2	1.5		1.7	
		4.5			1.0	1.2		1.4	
	ON register as	1.8			0.06				
ΛD	ON resistance match	2.7	V _S at R _{ON} max		0.05				Ω
ΔR _{ON}	between channels (1)	3.0	I _S = 100 mA		0.05				
	Charmers	4.5			0.05				
		1.8			1.0	1.5		1.5	
D	ON resistance	2.7	$V_S = 0 V \text{ to } V_{CC}$		0.45	0.60		0.70	Ω
R _{FLAT}	flatness (2)	3.0	I _S = 100 mA		0.43	0.50		0.60	1 52
		4.5			0.39	0.50		0.60	
I _{OFF}	OFF state leakage current (SN), (D)	4.3	V _S = 0.3 or 4 V			±20		±100	nA
I _{IN}	Input leakage current	0 – 5.0	V _{SEL} = 0 to 4.5 V			±0.1		±1	μΑ
I _{CC}	Quiescent supply current	1.65 – 5.0	V _{SEL} = V _{CC} or GND			±0.05		±0.2	μА

5/18

Electrical characteristics STG5123

Table 5. DC specifications (continued)

						Value			
Symbol	Parameter	V _{CC} (V)	Test conditions	Т,	₄ = 25 °C	;	-40 to 8	35 °C	Unit
		()		Min	Тур	Max	Min	Max	
	Quiescent	4.3	V _{SEL} = 1.65 V		±17	±35		±70	
I _{CCLV}	supply current low voltage	4.3	V _{SEL} = 1.80 V		±15	±30		±60	μА
	driving	4.3	V _{SEL} = 2.60 V		±5	±10		±20	

^{1.} $\Delta R_{ON} = R_{ON(Max)} - R_{ON(Min)}$

3.2 AC electrical characteristics

Table 6. AC electrical characteristics ($C_L = 35 \text{ pF}, R_L = 50 \Omega t_f = t_f \le 5 \text{ ns}$)

	710 0100111011 01			_		Value			
Symbol	Parameter	V _{CC} (V)	Test conditions	-	Γ _A = 25 °	С	– 40 t	o 85 °C	Unit
		(-7		Min	Тур	Max	Min	Max	
		1.65 – 1.95			0.15				
	Propagation delay	2.3 – 2.7			0.14				ns
t _{PLH} , t _{PHL}	Fropagation delay	3.0 - 3.3			0.13				115
		3.6 - 5.0			0.13				
		1.65 – 1.95	$V_S = 0.8 \text{ V}$		36				
t	Turn-ON time	2.3 - 2.7			31	40		45	ns
t _{ON}	Turn-ON time	3.0 - 3.3	V _S = 1.5 V		24	31		40	113
		3.6 - 5.0			21	28		32	
t		1.65 – 1.95	$V_{S} = 0.8$		29				
	Turn-OFF time	2.3 - 2.7			17	27		37	ns
t _{OFF}	$3.0 - 3.3$ $V_S = 1.5 \text{ V}$	$V_{S} = 1.5 \text{ V}$		12	23		33		
		3.6 - 5.0			11	21		31	
		1.65 – 1.95			15				
t_	Break-before-	2.3 – 2.7	$C_L = 35 \text{ pF}$ $R_L = 50 \Omega$		10				ns
t _D	make time delay	3.0 - 3.3	$V_{S} = 1.5 \text{ V}$		8				113
		3.6 - 5.0			6				
		1.65			16				
Q	Charge injection	2.3	$C_L = 100pF$ $V_{GEN} = 0 V$		22				pC
	Onarge injection	3	$R_{GEN} = 0 \Omega$		26				
		5.0			33				

^{2.} Flatness is defined as the difference between the maximum and minimum value of ON resistance as measured over the specified analog signal ranges.

3.3 Analog switch characteristics

Table 7. Analog switch characteristics (C_L = 5 pF, R_L = 50 Ω , T_A = 25 °C)

			\			Value			
Symbol	Parameter	V _{CC} (V)	Test conditions	Т	A = 25 °	,C	-40 to	85 °C	Unit
		()		Min	Тур	Max	Min	Max	
OIRR	Off isolation (1)	1.65 – 5.0	$V_S = 1 V_{RMS}$ f = 100 kHz		- 75				dB
Xtalk	Crosstalk	1.6 – 5.0	$V_S = 1 V_{RMS}$ f = 100 kHz		- 80				dB
THD	Total harmonic distortion	2.3 – 5.0	$R_L = 600 \Omega$ $V_S = 2 V_{PP}$ f = 20 Hz to 20 kHz		0.03				%
BW	-3dB bandwidth	1.65 – 5.0	R _L = 50 Ω		150				MHz
C _{IN}	Control pin input capacitance				6				
C _{ON}	Sn port capacitance when switch is enabled	3.3	f = 1 MHz		52				
C _{OFF}	Sn port capacitance when switch is disabled	3.3	f = 1 MHz		25				pF
C _D	D port capacitance when switch is enabled	3.3	f = 1 MHz		50				

^{1.} OFF isolation = $20Log_{10}$ (V_D/V_S), V_D = output. V_S = input to OFF switch.

Test circuits STG5123

4 Test circuits

Figure 3. ON resistance

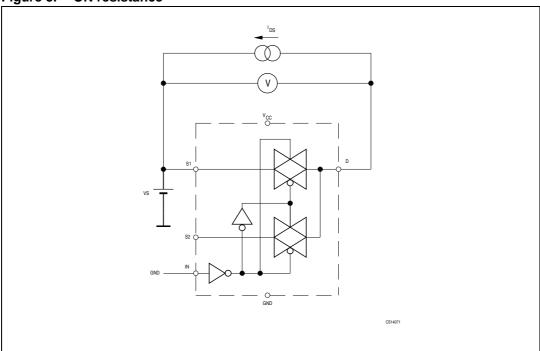
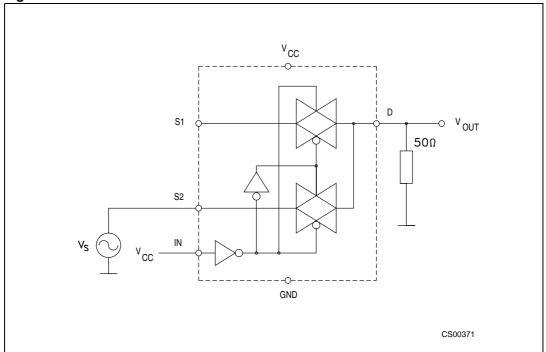



Figure 4. Bandwidth

STG5123 Test circuits

Figure 5. OFF leakage

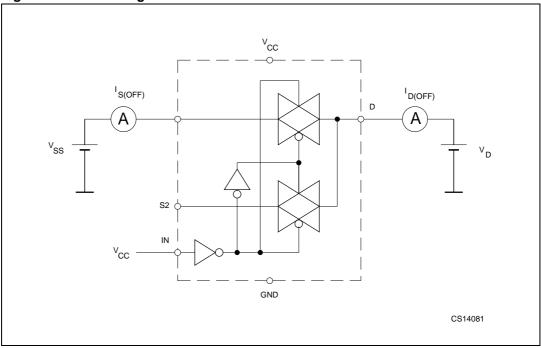
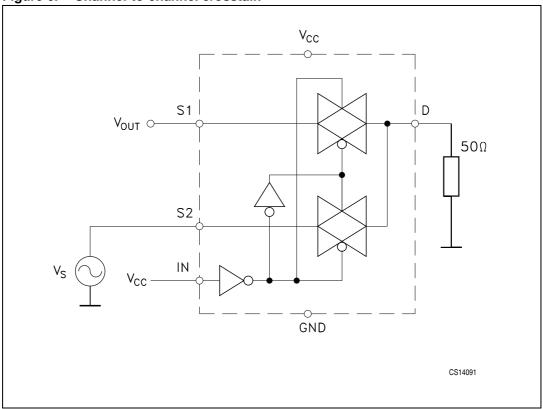



Figure 6. Channel-to-channel crosstalk

Test circuits STG5123

Figure 7. OFF isolation

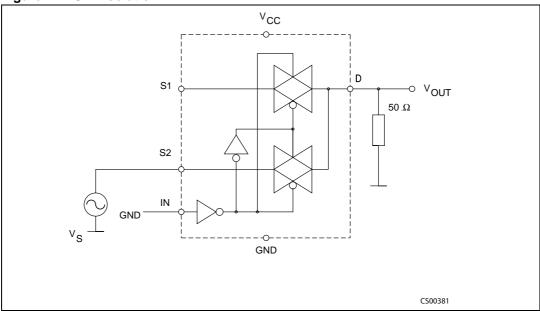
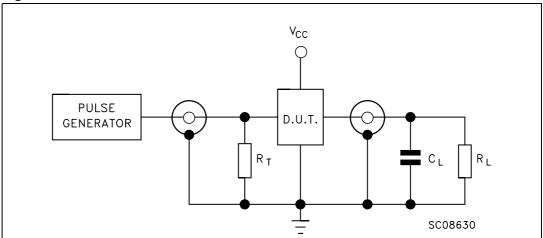



Figure 8. Test circuit

- 1. $C_L = 5/35$ pF or equivalent: (includes jig capacitance)
- 2. $R_L = 50 \Omega$ or equivalent
- 3. $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)

STG5123 Test circuits

Figure 9. Break-before-make time delay

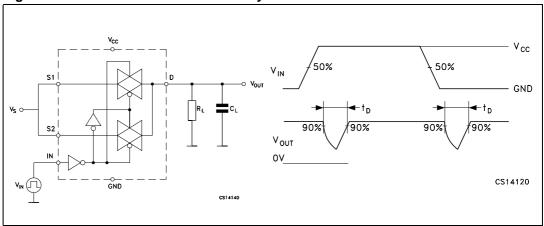


Figure 10. Switching time and charge injection

 $(V_{GEN} = 0 \text{ V}, R_{GEN} = 0 \Omega, R_L = 1 \text{ M}\Omega, C_L = 100 \text{ pF})$

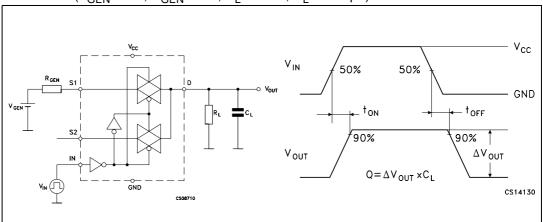
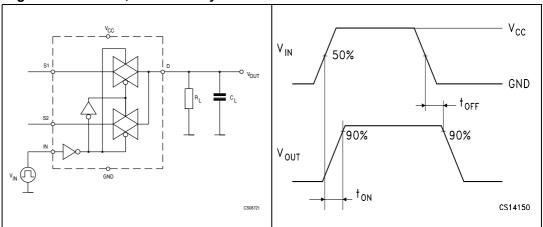
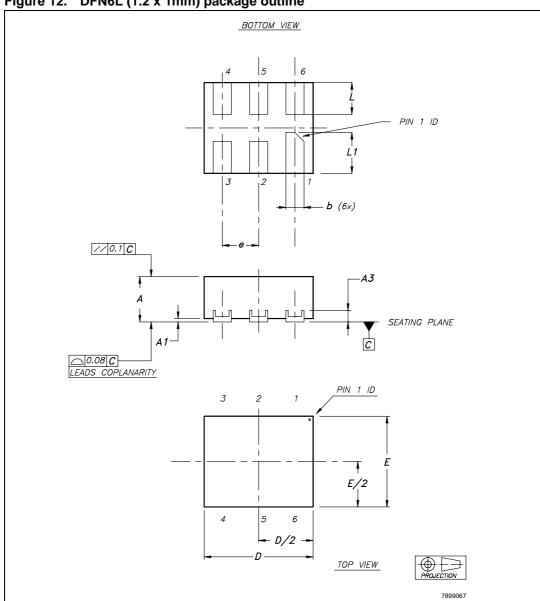
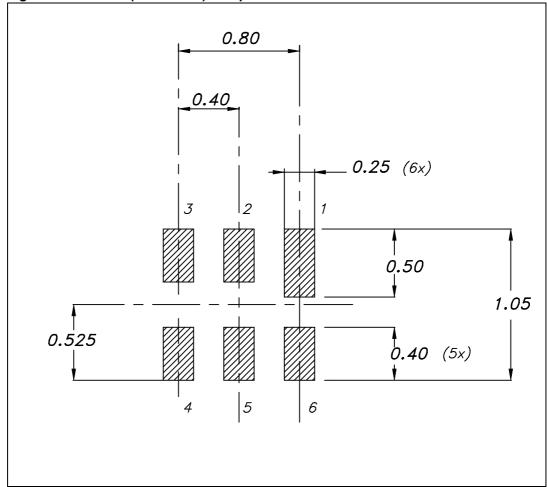



Figure 11. Turn on, turn off delay time

Package mechanical data 5

In order to meet environmental requirements, ST offers these devices in $\mathsf{ECOPACK}^{\circledR}$ packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.




Figure 12. DFN6L (1.2 x 1mm) package outline

1. Drawing not to scale.

Table 8. DFN6L (1.2 x 1 mm) mechanical data

Symbol	millimeters					
Symbol	Тур	Min	Max			
A	0.50	0.45	0.55			
A1	0.02	0	0.05			
А3	0.127					
b	0.20	0.15	0.25			
D	1.20	1.15	1.25			
E	1	0.95	1.05			
е	0.40					
L	0.35	0.30	0.40			
L1	0.45	0.40	0.50			

Figure 13. DFN6L (1.2 x 1 mm) foot print recommendation

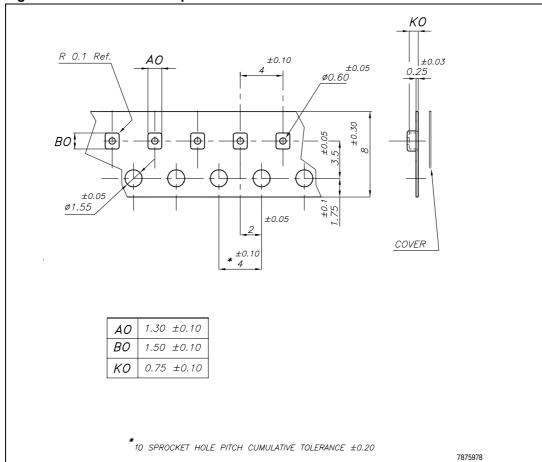


Figure 14. DFN6L carrier tape information

- 1. Drawing not to scale.
- 2. Dimensions are in millimeters.

Figure 15. DFN6L reel information drawing (back view)

- 1. Drawing not to scale.
- 2. Dimensions are in millimeters.

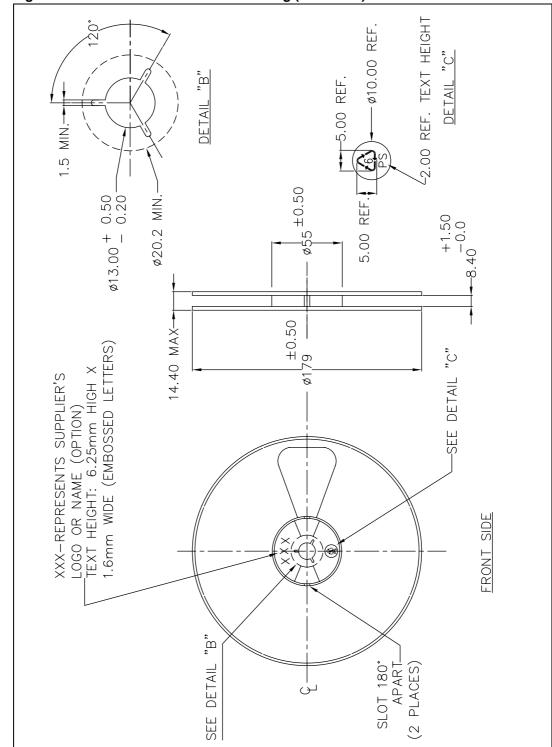


Figure 16. DFN6L reel information drawing (front view)

- Drawing not to scale.
- 2. Dimensions are in millimeters.

STG5123 Revision history

6 Revision history

Table 9. Document revision history

Date	Revision	Changes
30-Oct-2007	1	Initial release

17/18

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com