

CY8C24123 CY8C24223, CY8C24423

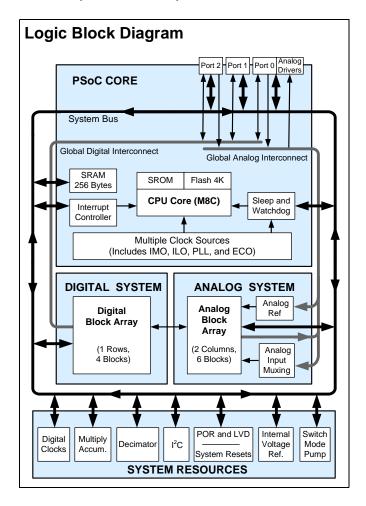
PSoC[®] Programmable System-on-Chip™

Features

- Powerful Harvard Architecture Processor
 - M8C Processor Speeds to 24 MHz
 - 8x8 Multiply, 32-Bit Accumulate
 - Low Power at High Speed
 - 3.0 to 5.25 V Operating Voltage
 - Operating Voltages Down to 1.0V Using On-Chip Switch Mode Pump (SMP)
 - Industrial Temperature Range: -40°C to +85°C

Advanced Peripherals (PSoC Blocks)

- □ Six Rail-to-Rail Analog PSoC Blocks Provide:
 - Up to 14-Bit ADCs
 - Up to 8-Bit DACs
 - Programmable Gain Amplifiers
 - Programmable Filters and Comparators
- Four Digital PSoC Blocks Provide:
- 8 to 32-Bit Timers, Counters, and PWMs
- CRC and PRS Modules
- Full-Duplex UART
- Multiple SPI™ Masters or Slaves
- · Connectable to all GPIO Pins
- Complex Peripherals by Combining Blocks


Precision, Programmable Clocking

- □ Internal ± 2.5% 24/48 MHz Oscillator
- □ High-Accuracy 24 MHz with Optional 32 kHz Crystal and PLL
- Optional External Oscillator, up to 24 MHz
- Internal Oscillator for Watchdog and Sleep

Flexible On-Chip Memory

- □ 4K Bytes Flash Program Storage 50,000 Erase/Write Cycles
- □ 256 Bytes SRAM Data Storage
- □ In-System Serial Programming (ISSP[™])
- Partial Flash Updates
- Flexible Protection Modes
- EEPROM Emulation in Flash
- Programmable Pin Configurations
- □ 25 mA Sink on all GPIO
- Pull up, Pull down, High Z, Strong, or Open Drain Drive Modes on all GPIO
- Up to 10 Analog Inputs on GPIO
- Two 30 mA Analog Outputs on GPIO
- Configurable Interrupt on all GPIO

- Additional System Resources
 - □ I²C[™] Slave, Master, and Multi-Master to 400 kHz
 - Watchdog and Sleep Timers
 - User-Configurable Low Voltage Detection
 - Integrated Supervisory Circuit
 - On-Chip Precision Voltage Reference
- Complete Development Tools
- □ Free Development Software (PSoC Designer[™])
- □ Full-Featured, In-Circuit Emulator and Programmer
- □ Full Speed Emulation
- Complex Breakpoint Structure
- 128K Bytes Trace Memory

٠

PSoC[®] Functional Overview

The PSoC[®] family consists of many Mixed Signal Array with On-Chip Controller devices. These devices are designed to replace multiple traditional MCU-based system components with one, low cost single-chip programmable device. PSoC devices include configurable blocks of analog and digital logic, and programmable interconnects. This architecture allows the user to create customized peripheral configurations that match the requirements of each individual application. Additionally, a fast CPU, Flash program memory, SRAM data memory, and configurable IO are included in a range of convenient pinouts and packages.

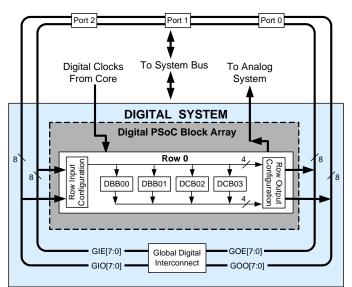
The PSoC architecture, as shown in the Logic Block Diagram on page 1, is comprised of four main areas: PSoC Core, Digital System, Analog System, and System Resources. Configurable global busing allows all the device resources to be combined into a complete custom system. The PSoC CY8C24x23 family can have up to three IO ports that connect to the global digital and analog interconnects, providing access to four digital blocks and 6 analog blocks.

PSoC Core

The PSoC Core is a powerful engine that supports a rich feature set. The core includes a CPU, memory, clocks, and configurable GPIO (General Purpose IO).

The M8C CPU core is a powerful processor with speeds up to 24 MHz, providing a four MIPS 8-bit Harvard architecture microprocessor. The CPU uses an interrupt controller with 11 vectors, to simplify programming of real time embedded events. Program execution is timed and protected using the included Sleep and Watch Dog Timers (WDT).

Memory encompasses 4 KB of Flash for program storage, 256 bytes of SRAM for data storage, and up to 2 KB of EEPROM emulated using the Flash. Program Flash uses four protection levels on blocks of 64 bytes, allowing customized software IP protection.


The PSoC device incorporates flexible internal clock generators, including a 24 MHz IMO (internal main oscillator) accurate to 2.5% over temperature and voltage. The 24 MHz IMO can also be doubled to 48 MHz for use by the digital system. A low power 32 kHz ILO (internal low speed oscillator) is provided for the Sleep timer and WDT. If crystal accuracy is desired, the ECO (32.768 kHz external crystal oscillator) is available for use as a Real Time Clock (RTC) and can optionally generate a crystal-accurate 24 MHz system clock using a PLL. The clocks, together with programmable clock dividers (as a System Resource), provide the flexibility to integrate almost any timing requirement into the PSoC device.

PSoC GPIOs provide connection to the CPU, digital and analog resources of the device. Each pin's drive mode may be selected from eight options, allowing great flexibility in external interfacing. Every pin also has the capability to generate a system interrupt on high level, low level, and change from last read.

Digital System

The Digital System is composed of four digital PSoC blocks. Each block is an 8-bit resource that can be used alone or combined with other blocks to form 8, 16, 24, and 32-bit peripherals, which are called user module references.

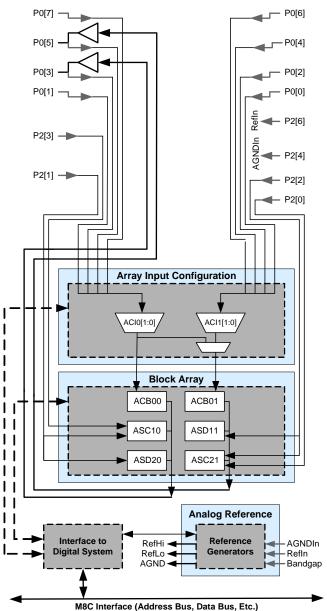
Digital peripheral configurations include:

- PWMs (8 to 32 bit)
- PWMs with Dead band (8 to 32 bit)
- Counters (8 to 32 bit)
- Timers (8 to 32 bit)
- UART 8-bit with selectable parity (up to one)
- SPI master and slave (up to one)
- I2C slave and master (one available as a System Resource)
- Cyclical Redundancy Checker/Generator (8 to 32 bit)
- IrDA (up to one)

Pseudo Random Sequence Generators (8 to 32 bit)

The digital blocks can be connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also allow for signal multiplexing and for performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.

Digital blocks are provided in rows of four, where the number of blocks varies by PSoC device family. This allows the optimum choice of system resources for your application. Family resources are listed in the table PSoC Device Characteristics on page 4.


Analog System

The Analog System is composed of six configurable blocks, each comprised of an opamp circuit allowing the creation of complex analog signal flows. Analog peripherals are very flexible and can be customized to support specific application requirements. Some of the more common PSoC analog functions (most available as user modules) are:

- Analog-to-digital converters (up to two, with 6 to 14-bit resolution, selectable as Incremental, Delta Sigma, and SAR)
- Filters (two and four pole band-pass, low-pass, and notch)
- Amplifiers (up to two, with selectable gain to 48x)
- Instrumentation amplifiers (one with selectable gain to 93x)
- Comparators (up to two, with 16 selectable thresholds)
- DACs (up to two, with 6 to 9-bit resolution)
- Multiplying DACs (up to two, with 6- to 9-bit resolution)
- High current output drivers (two with 30 mA drive as a Core Resource)
- 1.3V reference (as a System Resource)
- DTMF dialer
- Modulators
- Correlators
- Peak detectors
- Many other topologies possible

Analog blocks are provided in columns of three, which includes one CT (Continuous Time) and two SC (Switched Capacitor) blocks. The number of blocks is dependant on the device family which is detailed in the table PSoC Device Characteristics on page 4.

Additional System Resources

System Resources, some of which have been previously listed, provide additional capability useful to complete systems. Additional resources include a multiplier, decimator, switch mode pump, low voltage detection, and power on reset. Brief statements describing the merits of each system resource follow:

- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks can be routed to both the digital and analog systems. Additional clocks can be generated using digital PSoC blocks as clock dividers.
- A multiply accumulate (MAC) provides a fast 8-bit multiplier with 32-bit accumulate, to assist in both general math and digital filters.
- The decimator provides a custom hardware filter for digital signal processing applications including the creation of Delta Sigma ADCs.
- The I2C module provides 100 and 400 kHz communication over two wires. Slave, master, and multi-master modes are all supported.
- Low Voltage Detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced POR (Power On Reset) circuit eliminates the need for a system supervisor.
- An internal 1.3V reference provides an absolute reference for the analog system, including ADCs and DACs.
- An integrated switch mode pump (SMP) generates normal operating voltages from a single 1.2V battery cell, providing a low cost boost converter.

PSoC Device Characteristics

Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks and 12, 6, or 3 analog blocks. The following table lists the resources available for specific PSoC device groups.

PSoC Part Number	Digital IO	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks
CY8C29x66	up to 64	4	16	12	4	4	12
CY8C27x66	up to 44	2	8	12	4	4	12
CY8C27x43	up to 44	2	8	12	4	4	12
CY8C24x23	up to 24	1	4	12	2	2	6
CY8C22x13	up to 16	1	4	8	1	1	3

Table 1.	PSoC Device	Characteristics

Getting Started

The quickest path to understanding the PSoC silicon is by reading this data sheet and using the PSoC Designer Integrated Development Environment (IDE). This data sheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications. For in-depth information, along with detailed programming information, refer the PSoC Programmable Sytem-on-Chip Technical Reference Manual.

For up-to-date Ordering, Packaging, and Electrical Specification information, refer the latest PSoC device data sheets on the web at http://www.cypress.com/psoc.

Development Kits

Development Kits are available from the following distributors: Digi-Key, Avnet, Arrow, and Future. The Cypress Online Store contains development kits, C compilers, and all accessories for PSoC development. Go to the Cypress Online Store web site at http://www.cypress.com, click the Online Store shopping cart icon at the bottom of the web page, and click *PSoC (Programmable System-on-Chip)* to view a current list of available items.

Technical Training

Free PSoC technical training is available for beginners and is taught by a marketing or application engineer over the phone. PSoC training classes cover designing, debugging, advanced analog, and application-specific classes covering topics, such as PSoC and the LIN bus. Go to http://www.cypress.com, click on Design Support located on the left side of the web page, and select Technical Training for more details.

Consultants

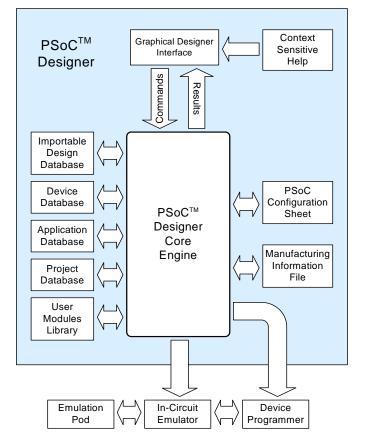
Certified PSoC Consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC Consultant go to http://www.cypress.com, click on Design Support located on the left side of the web page, and select CYPros Consultants.

Technical Support

PSoC application engineers take pride in fast and accurate response. They can be reached with a 4-hour guaranteed response at http://www.cypress.com/support.

Application Notes

A long list of application notes can assist you in every aspect of your design effort. To view the PSoC application notes, go to the http://www.cypress.com web site and select Application Notes under the Design Resources list located in the center of the web page. Application notes are listed by date as default.


Development Tools

The Cypress MicroSystems PSoC Designer is a Microsoft[®] Windows-based, integrated development environment for the Programmable System-on-Chip (PSoC) devices. The PSoC Designer IDE and application runs on Windows 98, Windows NT 4.0, Windows 2000, Windows Millennium (Me), or Windows XP (refer Figure 3).

PSoC Designer helps the customer to select an operating configuration for the PSoC, write application code that uses the PSoC, and debug the application. This system provides design database management by project, an integrated debugger with In-Circuit Emulator, in-system programming support, and the CYASM macro assembler for the CPUs.

PSoC Designer also supports a high-level C language compiler developed specifically for the devices in the family.

Figure 3. PSoC Designer Subsystems

PSoC Designer Software Subsystems

Device Editor

The Device Editor subsystem allows the user to select different onboard analog and digital components called user modules using the PSoC blocks. Examples of user modules are ADCs, DACs, Amplifiers, and Filters.

The device editor also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic configuration allows for changing configurations at run time.

PSoC Designer sets up power on initialization tables for selected PSoC block configurations and creates source code for an application framework. The framework contains software to operate the selected components and, if the project uses more than one operating configuration, contains routines to switch between different sets of PSoC block configurations at run time. PSoC Designer can print out a configuration sheet for a given project configuration for use during application programming in conjunction with the Device Data Sheet. After the framework is generated, the user can add application-specific code to flesh out the framework. It is also possible to change the selected components and regenerate the framework.

Design Browser

The Design Browser allows users to select and import preconfigured designs into the user's project. Users can easily browse a catalog of preconfigured designs to facilitate time-to-design. Examples provided in the tools include a 300-baud modem, LIN Bus master and slave, fan controller, and magnetic card reader.

Application Editor

In the Application Editor you can edit your C language and Assembly language source code. You can also assemble, compile, link, and build.

Assembler. The macro assembler allows the assembly code to be merged seamlessly with C code. The link libraries automatically use absolute addressing or can be compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compiler. A C language compiler is available that supports Cypress MicroSystems' PSoC family devices. Even if you have never worked in the C language before, the product quickly allows you to create complete C programs for the PSoC family devices.

The embedded, optimizing C compiler provides all the features of C tailored to the PSoC architecture. It comes complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

The PSoC Designer Debugger subsystem provides hardware in-circuit emulation, allowing the designer to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow the designer to read and program and read and write data memory, read and write IO registers, read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also allows the designer to create a trace buffer of registers and memory locations of interest.

Online Help System

The online help system displays online, context-sensitive help for the user. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer in getting started.

Hardware Tools

In-Circuit Emulator

A low cost, high functionality ICE (In-Circuit Emulator) is available for development support. This hardware has the capability to program single devices.

The emulator consists of a base unit that connects to the PC by way of the parallel or USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full speed (24 MHz) operation.

Figure 4. PSoC Development Tool Kit

User Modules and the PSoC Development Process

The development process for the PSoC device differs from that of a traditional fixed function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and by lowering inventory costs. These configurable resources, called PSoC Blocks, have the ability to implement a wide variety of user-selectable functions. Each block has several registers that determine its function and connectivity to other blocks, multiplexers, buses and to the IO pins. Iterative development cycles permit you to adapt the hardware as well as the software. This substantially lowers the risk of having to select a different part to meet the final design requirements.

To speed the development process, the PSoC Designer Integrated Development Environment (IDE) provides a library of pre-built, pre-tested hardware peripheral functions, called "User Modules." User modules make selecting and implementing peripheral devices simple, and come in analog, digital, and mixed signal varieties. The standard User Module library contains over 50 common peripherals such as ADCs, DACs Timers, Counters, UARTs, and other not-so common peripherals such as DTMF Generators and Bi-Quad analog filter sections.

Each user module establishes the basic register settings that implement the selected function. It also provides parameters that allow you to tailor its precise configuration to your particular application. For example, a Pulse Width Modulator User Module configures one or more digital PSoC blocks, one for each 8 bits of resolution. The user module parameters permit you to establish the pulse width and duty cycle. User modules also provide tested software to cut your development time. The user module application programming interface (API) provides high-level functions to control and respond to hardware events at run-time. The API also provides optional interrupt service routines that you can adapt as needed.

The API functions are documented in user module data sheets that are viewed directly in the PSoC Designer IDE. These data sheets explain the internal operation of the user module and provide performance specifications. Each data sheet describes the use of each user module parameter and documents the setting of each register controlled by the user module.

The development process starts when you open a new project and bring up the Device Editor, a pictorial environment (GUI) for configuring the hardware. You pick the user modules you need for your project and map them onto the PSoC blocks with point-and-click simplicity. Next, you build signal chains by interconnecting user modules to each other and the IO pins. At this stage, you also configure the clock source connections and enter parameter values directly or by selecting values from drop-down menus. When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Application" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the high-level user module API functions.

Device Editor Placement User Source and Module Code Parameter Generator Selection -ization Generate Application **Application Editor** Source Project Build Code Manager Manager Editor Build All Debugger Event & Interface Storage Breakpoint to ICE Inspector Manager

Figure 5. User Module and Source Code Development Flows

The next step is to write your main program, and any sub-routines using PSoC Designer's Application Editor subsystem. The Application Editor includes a Project Manager that allows you to open the project source code files (including all generated code files) from a hierarchal view. The source code editor provides syntax coloring and advanced edit features for both C and assembly language. File search capabilities include simple string searches and recursive "grep-style" patterns. A single mouse click invokes the Build Manager. It employs a professional-strength "makefile" system to automatically analyze all file dependencies and run the compiler and assembler as necessary. Project-level options control optimization strategies used by the compiler and linker. Syntax errors are displayed in a console window. Double clicking the error message takes you directly to the offending line of source code. When all is correct, the linker builds a ROM file image suitable for programming.

The last step in the development process takes place inside the PSoC Designer's Debugger subsystem. The Debugger downloads the ROM image to the In-Circuit Emulator (ICE) where it runs at full speed. Debugger capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint and watch-variable features, the Debugger provides a large trace buffer and allows you define complex breakpoint events that include monitoring address and data bus values, memory locations and external signals.

Document Conventions

Acronyms Used

The following table lists the acronyms that are used in this document.

Table 2. Acronyms

Acronym	Description
AC	alternating current
ADC	analog-to-digital converter
API	application programming interface
CPU	central processing unit
СТ	continuous time
DAC	digital-to-analog converter
DC	direct current
EEPROM	electrically erasable programmable read-only memory
FSR	full scale range
GPIO	general purpose IO
10	input/output
IPOR	imprecise power on reset
LSb	least-significant bit
LVD	low voltage detect
MSb	most-significant bit
PC	program counter
POR	power on reset
PPOR	precision power on reset
PSoC®	Programmable System-on-Chip
PWM	pulse width modulator
RAM	random access memory
ROM	read only memory
SC	switched capacitor
SMP	switch mode pump

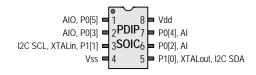
Units of Measure

A units of measure table is located in the Electrical Specifications section. Table 7 on page 11 lists all the abbreviations used to measure the PSoC devices.

Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h' or 'b' are decimal.

Pinouts


The CY8C24x23 PSoC device is available in a variety of packages which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of Digital IO. However, Vss, Vdd, SMP, and XRES are not capable of Digital IO.

8-Pin Part Pinout

Table 3. 8-Pin Part Pinout (PDIP, SOIC)

Pin	Туре		Pin Name	Description				
No.	Digital	igital Analog		Description				
1	10 10		P0[5]	Analog column mux input and column output				
2	10 10		P0[3]	Analog column mux input and column output				
3	IO		P1[1]	Crystal Input (XTALin), I2C Serial Clock (SCL)				
4	Pov	wer	Vss	Ground connection				
5	Ю		P1[0]	Crystal Output (XTALout), I2C Serial Data (SDA)				
6	IO	I	P0[2]	Analog column mux input				
7	10 I		P0[4]	Analog column mux input				
8 Power		Vdd	Supply voltage					

Figure 6. CY8C24123 8-Pin PSoC Device

LEGEND: A = Analog, I = Input, and O = Output.

20-Pin Part Pinout

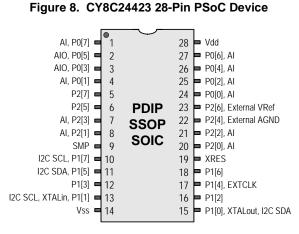
Table 4. 20-Pin Part Pinout (PDIP, SSOP, SOIC)

Pin			Pin	Description
No.	Digital	Analog	Name	Description
1	IO	I	P0[7]	Analog column mux input
2	IO	Ю	P0[5]	Analog column mux input and column output
3	IO	Ю	P0[3]	Analog column mux input and column output
4	IO	I	P0[1]	Analog column mux input
5	Po	wer	SMP	Switch Mode Pump (SMP) connection to external components required
6	IO		P1[7]	I2C Serial Clock (SCL
7	IO		P1[5]	I2C Serial Data (SDA)
8	IO		P1[3]	
9	IO		P1[1]	Crystal Input (XTALin), I2C Serial Clock (SCL)
10	Po	wer	Vss	Ground connection
11	IO		P1[0]	Crystal Output (XTALout), I2C Serial Data (SDA)
12	IO		P1[2]	
13	IO		P1[4]	Optional External Clock Input (EXTCLK)
14	IO		P1[6]	
15	Inj	out	XRES	Active high external reset with internal pull down
16	IO	I	P0[0]	Analog column mux input
17	IO	I	P0[2]	Analog column mux input
18	IO	I	P0[4]	Analog column mux input
19	IO	I	P0[6]	Analog column mux input
20	Po	wer	Vdd	Supply voltage

Figure 7. CY8C24223 20-Pin PSoC Device

AI, P0[7] AIO, P0[5] AIO, P0[3] AI, P0[1] SMP I2C SCL, P1[7] I2C SDA, P1[5] P1[3] I2C SCL, XTALin, P1[1] Vss	1 2 3 4 5 6 7 8 9 10	PDIP SSOP SOIC	20 19 18 17 16 15 14 13 12 11	Vdd P0[6], AI P0[4], AI P0[2], AI P0[0], AI XRES P1[6] P1[4], EXTCLK P1[2] P1[0], XTALout, I2C SDA
I2C SDA, P1[5] = P1[3] = I2C SCL, XTALin, P1[1] =	7 8 9	SOIC	14 13 12	■ P1[6] ■ P1[4], EXTCLK ■ P1[2]

LEGEND: A = Analog, I = Input, and O = Output.



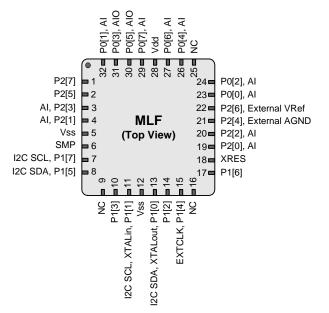
CY8C24123 CY8C24223, CY8C24423

28-Pin Part Pinout

Table 5. 28-Pin Part Pinout (PDIP, SSOP, SOIC)

Pin	Ту	ре	Pin	Description
No.	Digital	Analog	Name	Description
1	IO	I	P0[7]	Analog column mux input
2	Ю	IO	P0[5]	Analog column mux input and column output
3	Ю	Ю	P0[3]	Analog column mux input and column output
4	IO		P0[1]	Analog column mux input.
5	IO		P2[7]	
6	IO		P2[5]	
7	IO	Ι	P2[3]	Direct switched capacitor block input
8	IO	Ι	P2[1]	Direct switched capacitor block input
9	Pov	wer	SMP	Switch Mode Pump (SMP) connection to external components required
10	IO		P1[7]	I2C Serial Clock (SCL)
11	IO		P1[5]	I2C Serial Data (SDA)
12	IO		P1[3]	
13	Ю		P1[1]	Crystal Input (XTALin), I2C Serial Clock (SCL)
14	Pov	ver	Vss	Ground connection
15	Ю		P1[0]	Crystal Output (XTALout), I2C Serial Data (SDA)
16	IO		P1[2]	
17	IO		P1[4]	Optional External Clock Input (EXTCLK)
18	IO		P1[6]	
19	Inp	out	XRES	Active high external reset with internal pull down
20	IO	I	P2[0]	Direct switched capacitor block input
21	IO	I	P2[2]	Direct switched capacitor block input
22	IO		P2[4]	External Analog Ground (AGND)
23	IO		P2[6]	External Voltage Reference (VRef)
24	IO	I	P0[0]	Analog column mux input
25	IO		P0[2]	Analog column mux input
26	IO	I	P0[4]	Analog column mux input
27	IO	I	P0[6]	Analog column mux input
28	Pov	wer	Vdd	Supply voltage

LEGEND: A = Analog, I = Input, and O = Output.



32-Pin Part Pinout

Table 6. 32-Pin Part Pinout (MLF*)

Pin	Туре		Pin	_
No.	Digital	Analog	Name	Description
1	10		P2[7]	
2	10		P2[5]	
3	10		P2[3]	Direct switched capacitor block input
4	10	I	P2[1]	Direct switched capacitor block input
5	Po	wer	Vss	Ground connection
6	Po	wer	SMP	Switch Mode Pump (SMP) connection to external components required
7	10		P1[7]	I2C Serial Clock (SCL)
8	10		P1[5]	I2C Serial Data (SDA)
9			NC	No connection. Do not use.
10	10		P1[3]	
11	Ю		P1[1]	Crystal Input (XTALin), I2C Serial Clock (SCL)
12	Po	wer	Vss	Ground connection
13	Ю	IO		Crystal Output (XTALout), I2C Serial Data (SDA)
14	10		P1[2]	
15	IO		P1[4]	Optional External Clock Input (EXTCLK)
16			NC	No connection. Do not use.
17	10		P1[6]	
18	Inj	out	XRES	Active high external reset with internal pull down
19	IO	I	P2[0]	Direct switched capacitor block input
20	10	I	P2[2]	Direct switched capacitor block input
21	IO		P2[4]	External Analog Ground (AGND)
22	10		P2[6]	External Voltage Reference (VRef)
23	10	I	P0[0]	Analog column mux input
24	IO	I	P0[2]	Analog column mux input
25			NC	No connection. Do not use.
26	Ю	I	P0[4]	Analog column mux input
27	Ю	I	P0[6]	Analog column mux input
28	Po	wer	Vdd	Supply voltage
29	IO	I	P0[7]	Analog column mux input
30	IO	IO	P0[5]	Analog column mux input and column output
31	IO	IO	P0[3]	Analog column mux input and column output
32	Ю	I	P0[1]	Analog column mux input

Figure 9. CY8C24423 32-Pin PSoC Device

LEGEND: A = Analog, I = Input, and O = Output.

 * The MLF package has a center pad that must be connected to the same ground as the Vss pin.

Register Reference

This section lists the registers of the CY8C27xxx PSoC device by way of mapping tables, in offset order. For detailed register information, reference the PSoC Programmable System-on-Chip Technical Reference Manual.

Register Conventions

Abbreviations Used

The register conventions specific to this section are listed in the following table.

Table 7. Abbreviations

Convention	Description
RW	Read and write register or bit(s)
R	Read register or bit(s)
W	Write register or bit(s)
L	Logical register or bit(s)
С	Clearable register or bit(s)
#	Access is bit specific

Register Mapping Tables

The PSoC device has a total register address space of 512 bytes. The register space is also referred to as IO space and is broken into two parts. The XOI bit in the Flag register determines which bank the user is currently in. When the XOI bit is set, the user is said to be in the "extended" address space or the "configuration" registers.

Note In the following register mapping tables, blank fields are Reserved and must not be accessed.

Table 8. Register Map Bank 0 Table: User Space

Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
PRT0DR	00	RW		40		ASC10CR0	80	RW		C0	
PRTOIE	01	RW		41		ASC10CR1	81	RW		C1	
PRT0GS	02	RW		42		ASC10CR2	82	RW		C2	
PRT0DM2	03	RW		43		ASC10CR3	83	RW		C3	
PRT1DR	04	RW		44		ASD11CR0	84	RW		C4	
PRT1IE	05	RW		45		ASD11CR1	85	RW		C5	
PRT1GS	06	RW		46		ASD11CR2	86	RW		C6	
PRT1DM2	07	RW		47		ASD11CR3	87	RW		C7	
PRT2DR	08	RW		48			88			C8	
PRT2IE	09	RW		49			89			C9	
PRT2GS	0A	RW		4A			8A			CA	
PRT2DM2	0B	RW		4B			8B			СВ	
	0C			4C			8C			CC	
	0D			4D			8D			CD	
	0E			4E			8E			CE	
	0F			4F			8F			CF	
	10			50		ASD20CR0	90	RW		D0	
	11			51		ASD20CR1	91	RW		D1	
	12			52		ASD20CR2	92	RW		D2	
	13			53		ASD20CR3	93	RW		D3	
	14			54		ASC21CR0	94	RW		D4	
	15			55		ASC21CR1	95	RW		D5	
	16			56		ASC21CR2	96	RW	I2C_CFG	D6	RW
	17			57		ASC21CR3	97	RW	I2C_SCR	D7	#
	18			58			98		I2C_DR	D8	RW
	19			59			99		I2C_MSCR	D9	#
	1A			5A			9A		INT_CLR0	DA	RW
	1B			5B			9B		INT_CLR1	DB	RW
	1C			5C			9C			DC	
	1D			5D			9D		INT_CLR3	DD	RW
	1E			5E			9E		INT_MSK3	DE	RW
	1F			5F			9F			DF	
DBB00DR0	20	#	AMX_IN	60	RW		A0		INT_MSK0	E0	RW
DBB00DR1	21	W		61			A1		INT_MSK1	E1	RW
DBB00DR2	22	RW		62			A2		INT_VC	E2	RC
DBB00CR0	23	#	ARF_CR	63	RW		A3		RES_WDT	E3	W
DBB01DR0	24	#	CMP_CR0	64	#		A4		DEC_DH	E4	RC
DBB01DR1	25	W	ASY_CR	65	#		A5		DEC_DL	E5	RC
DBB01DR2	26	RW	CMP_CR1	66	RW		A6		DEC_CR0	E6	RW
DBB01CR0	27	#		67			A7		DEC_CR1	E7	RW
DCB02DR0	28	#		68			A8		MUL_X	E8	W
DCB02DR1	29	W		69			A9		MUL_Y	E9	W
DCB02DR2	2A	RW		6A			AA		MUL_DH	EA	R
DCB02CR0	2B	#		6B			AB		MUL_DL	EB	R
DCB03DR0	2C	#		6C			AC		ACC_DR1	EC	RW
DCB03DR1	2D	W		6D			AD		ACC_DR0	ED	RW

Blank fields are Reserved and must not be accessed.

Access is bit specific.

Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
DCB03DR2	2E	RW		6E			AE		ACC_DR3	EE	RW
DCB03CR0	2F	#		6F			AF		ACC_DR2	EF	RW
	30		ACB00CR3	70	RW	RDIORI	B0	RW		F0	
	31		ACB00CR0	71	RW	RDI0SYN	B1	RW		F1	
	32		ACB00CR1	72	RW	RDI0IS	B2	RW		F2	
	33		ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	
	34		ACB01CR3	74	RW	RDIOLT1	B4	RW		F4	
	35		ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	
	36		ACB01CR1	76	RW	RDI0RO1	B6	RW		F6	
	37		ACB01CR2	77	RW		B7		CPU_F	F7	RL
	38			78			B8			F8	
	39			79			B9			F9	
	ЗA			7A			BA			FA	
	3B			7B			BB			FB	
	3C			7C			BC			FC	
	3D			7D			BD			FD	
	3E			7E			BE		CPU_SCR1	FE	#
	3F			7F			BF		CPU_SCR0	FF	#

Table 8. Register Map Bank 0 Table: User Space (continued)

Blank fields are Reserved and must not be accessed.

Access is bit specific.

Table 9. Register Map Bank 1 Table: Configuration Space

Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access
PRT0DM0	00	RW	2	40		ASC10CR0	80	RW	-	C0	
PRT0DM1	01	RW		41		ASC10CR1	81	RW		C1	
PRT0IC0	02	RW		42		ASC10CR2	82	RW		C2	
PRT0IC1	03	RW		43		ASC10CR3	83	RW		C3	
PRT1DM0	04	RW		44		ASD11CR0	84	RW		C4	
PRT1DM1	05	RW		45		ASD11CR1	85	RW		C5	
PRT1IC0	06	RW		46		ASD11CR2	86	RW		C6	
PRT1IC1	07	RW		47		ASD11CR3	87	RW		C7	
PRT2DM0	08	RW		48			88			C8	
PRT2DM1	09	RW		49			89			C9	
PRT2IC0	0A	RW		4A			8A			CA	
PRT2IC1	0B	RW		4B			8B			СВ	
	0C			4C			8C			CC	
	0D			4D			8D			CD	
	0E			4E			8E			CE	
	0F			4F			8F			CF	
	10			50		ASD20CR0	90	RW	GDI_O_IN	D0	RW
	11			51		ASD20CR1	91	RW	GDI_E_IN	D1	RW
	12			52		ASD20CR2	92	RW	GDI_O_OU	D2	RW
	13			53		ASD20CR3	93	RW	GDI_E_OU	D3	RW
	14			54		ASC21CR0	94	RW		D4	
	15			55		ASC21CR1	95	RW		D5	
	16			56		ASC21CR2	96	RW		D6	

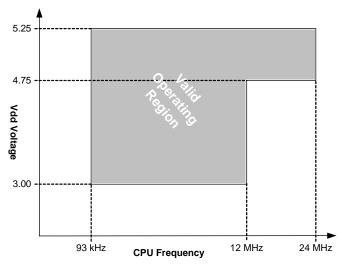
Blank fields are Reserved and must not be accessed.

Access is bit specific.

Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access
	17			57		ASC21CR3	97	RW		D7	
	18			58			98			D8	
	19			59			99			D9	
	1A			5A			9A			DA	
	1B			5B			9B			DB	
	1C			5C			9C			DC	
	1D			5D			9D		OSC_GO_EN	DD	RW
	1E			5E			9E		OSC_CR4	DE	RW
	1F			5F			9F		OSC_CR3	DF	RW
DBB00FN	20	RW	CLK_CR0	60	RW		A0		OSC_CR0	E0	RW
DBB00IN	21	RW	CLK_CR1	61	RW		A1		OSC_CR1	E1	RW
DBB00OU	22	RW	ABF_CR0	62	RW		A2		OSC_CR2	E2	RW
	23		AMD_CR0	63	RW		A3		VLT_CR	E3	RW
DBB01FN	24	RW		64			A4		VLT_CMP	E4	R
DBB01IN	25	RW		65			A5			E5	
DBB01OU	26	RW	AMD_CR1	66	RW		A6			E6	
	27		ALT_CR0	67	RW		A7			E7	
DCB02FN	28	RW		68			A8		IMO_TR	E8	W
DCB02IN	29	RW		69			A9		ILO_TR	E9	W
DCB02OU	2A	RW		6A			AA		BDG_TR	EA	RW
	2B			6B			AB		ECO_TR	EB	W
DCB03FN	2C	RW		6C			AC			EC	
DCB03IN	2D	RW		6D			AD			ED	
DCB03OU	2E	RW		6E			AE			EE	
	2F			6F			AF			EF	
	30		ACB00CR3	70	RW	RDIORI	B0	RW		F0	
	31		ACB00CR0	71	RW	RDI0SYN	B1	RW		F1	
	32		ACB00CR1	72	RW	RDI0IS	B2	RW		F2	
	33		ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	
	34		ACB01CR3	74	RW	RDIOLT1	B4	RW		F4	
	35		ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	
	36		ACB01CR1	76	RW	RDI0RO1	B6	RW		F6	
	37		ACB01CR2	77	RW		B7		CPU_F	F7	RL
	38		1	78			B8			F8	
	39		1	79			B9			F9	
	3A			7A			BA			FA	
	3B	1		7B	1		BB	1	1	FB	
	3C	1		7C	1		BC	1	1	FC	
	3D	1	1	7D	1	1	BD	1		FD	
	3E			7E			BE		CPU_SCR1	FE	#
	3F	1	1	7F	1	1	BF	1	CPU_SCR0	FF	#

Table 9. Register Map Bank 1 Table: Configuration Space (continued)

Blank fields are Reserved and must not be accessed.


Access is bit specific.

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C24x23 PSoC device. For latest electrical specifications, http://www.cypress.com.

Specifications are valid for $-40^{\circ}C \le T_A \le 85^{\circ}C$ and $T_J \le 100^{\circ}C$, except where noted. Specifications for devices running at greater than 12 MHz are valid for $-40^{\circ}C \le T_A \le 70^{\circ}C$ and $T_J \le 82^{\circ}C$.

Figure 10. Voltage versus Operating Frequency

The following table lists the units of measure that are used in this section.

Table 10. Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure	
°C	degree Celsius	μW	micro watts	
dB	decibels	mA	milli-ampere	
fF	femto farad	ms	milli-second	
Hz	hertz	mV	milli-volts	
KB	1024 bytes	nA	nano ampere	
Kbit	1024 bits	ns	nanosecond	
kHz	kilohertz	nV	nanovolts	
kΩ	kilohm	W	ohm	
MHz	megahertz	pА	pico ampere	
MΩ	megaohm	pF	pico farad	
μA	micro ampere	рр	peak-to-peak	
μF	micro farad	ppm	parts per million	
μH	micro henry	ps	picosecond	
μs	microsecond	sps	samples per second	
μV	micro volts	S	sigma: one standard deviation	
μVrms	micro volts root-mean-square	V	volts	

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Table 11. Absolute Maximum Ratings

Symbol	Description	Min	Тур	Max	Units	Notes
T _{STG}	Storage Temperature	-55	-	+100	°C	Higher storage temperatures reduce data retention time.
T _A	Ambient Temperature with Power Applied	-40	-	+85	°C	
Vdd	Supply Voltage on Vdd Relative to Vss	-0.5	-	+6.0	V	
V _{IO}	DC Input Voltage	Vss - 0.5	-	Vdd + 0.5	V	
-	DC Voltage Applied to Tri-state	Vss - 0.5	-	Vdd + 0.5	V	
I _{MIO}	Maximum Current into any Port Pin	-25	-	+50	mA	
I _{MAIO}	Maximum Current into any Port Pin Configured as Analog Driver	-50	_	+50	mA	
-	Static Discharge Voltage	2000	_	-	V	
-	Latch-up Current	-	-	200	mA	

Operating Temperature

Table 12. Operating Temperature

Symbol	Description	Min	Тур	Max	Units	Notes
T _A	Ambient Temperature	-40	-	+85	°C	
TJ	Junction Temperature	-40	_	+100	°C	The temperature rise from ambient to junction is package specific. See Thermal Impedances per Package on page 41. The user must limit the power consumption to comply with this requirement.

DC Electrical Characteristics

DC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only or unless otherwise specified.

Table 13. DC Chip-Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
Vdd	Supply Voltage	3.00	-	5.25	V	
I _{DD}	Supply Current	-	5	8	mA	Conditions are Vdd = $5.0V$, $25 {}^{\circ}C$, CPU = $3 $ MHz, $48 $ MHz disabled. VC1 = $1.5 $ MHz, VC2 = $93.75 $ kHz, VC3 = $93.75 $ kHz.
I _{DD3}	Supply Current	-	3.3	6.0	mA	Conditions are Vdd = $3.3V$, T _A = 25 ^o C, CPU = 3 MHz, 48 MHz = Disabled, VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz.
I _{SB}	Sleep (Mode) Current with POR, LVD, Sleep Timer, and WDT. ^a	-	3	6.5	μA	Conditions are with internal slow speed oscillator, Vdd = $3.3V$, -40 °C <= T_A <= 55 °C.
I _{SBH}	Sleep (Mode) Current with POR, LVD, Sleep Timer, and WDT at high temper- ature. ^a	-	4	25	μA	Conditions are with internal slow speed oscillator, Vdd = 3.3 V, 55 °C < T _A <= 85 °C.
I _{SBXTL}	Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT, and external crystal. ^a	-	4	7.5	μΑ	Conditions are with properly loaded, 1 μ W max, 32.768 kHz crystal. Vdd = 3.3V, -40 °C <= T _A <= 55 °C.
I _{SBXTLH}	Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT, and external crystal at high temperature. ^a	-	5	26	μA	Conditions are with properly loaded, 1 μ W max, 32.768 kHz crystal. Vdd = 3.3 V, 55 °C < T _A <= 85 °C.
V _{REF}	Reference Voltage (Bandgap)	1.275	1.3	1.325	V	Trimmed for appropriate Vdd.

a. Standby current includes all functions (POR, LVD, WDT, Sleep Time) needed for reliable system operation. This must be compared with devices that have similar functions enabled.

DC General Purpose IO Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only or unless otherwise specified.

Table 14. DC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{PU}	Pull up Resistor	4	5.6	8	kΩ	
R _{PD}	Pull down Resistor	4	5.6	8	kΩ	
V _{OH}	High Output Level	Vdd - 1.0	_	_	V	IOH = 10 mA, Vdd = 4.75 to 5.25V (80 mA maximum combined IOH budget)
V _{OL}	Low Output Level	-	_	0.75	V	IOL = 25 mA, Vdd = 4.75 to 5.25V (150 mA maximum combined IOL budget)
V _{IL}	Input Low Level	-	-	0.8	V	Vdd = 3.0 to 5.25
V _{IH}	Input High Level	2.1	-		V	Vdd = 3.0 to 5.25
V _H	Input Hysterisis	-	60	-	mV	
IIL	Input Leakage (Absolute Value)	-	1	-	nA	Gross tested to 1 µA
C _{IN}	Capacitive Load on Pins as Input	-	3.5	10	pF	Package and pin dependent. Temp = 25°C
C _{OUT}	Capacitive Load on Pins as Output	-	3.5	10	pF	Package and pin dependent. Temp = 25ºC

DC Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only or unless otherwise specified.

The Operational Amplifier is a component of both the Analog Continuous Time PSoC blocks and the Analog Switched Cap PSoC blocks. The guaranteed specifications are measured in the Analog Continuous Time PSoC block. Typical parameters apply to 5V at 25°C and are for design guidance only.

Table 15.	5V DC Operational	Amplifier Specifications
-----------	-------------------	---------------------------------

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input Offset Voltage (absolute value) Low Power	-	1.6	10	mV	
	Input Offset Voltage (absolute value) Mid Power	-	1.3	8	mV	
	Input Offset Voltage (absolute value) High Power	-	1.2	7.5	mV	
TCV _{OSOA}	Average Input Offset Voltage Drift	-	7.0	35.0	μV/ºC	
I _{EBOA}	Input Leakage Current (Port 0 Analog Pins)	-	20	-	pА	Gross tested to 1 µA.
C _{INOA}	Input Capacitance (Port 0 Analog Pins)	_	4.5	9.5	pF	Package and pin dependent. Temp = 25ºC.
V _{CMOA}	Common Mode Voltage Range Common Mode Voltage Range (high power or high opamp bias)	0.0 0.5	_	Vdd Vdd - 0.5	V	The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.

Symbol	Description	Min	Тур	Max	Units	Notes
G _{OLOA}	Open Loop Gain Power = Low Power = Medium Power = High	60 60 80	_	_	dB	Specification is appli- cable at high power. For all other bias modes (except high power, high opamp bias), minimum is 60 dB.
V _{OHIGHOA}	High Output Voltage Swing (worst case internal load) Power = Low Power = Medium Power = High	Vdd - 0.2 Vdd - 0.2 Vdd - 0.5		- - -	V V V	
V _{OLOWOA}	Low Output Voltage Swing (worst case internal load) Power = Low Power = Medium Power = High			0.2 0.2 0.5	V V V	
I _{SOA}	Supply Current (including associated AGND buffer) Power = Low Power = Low, Opamp Bias = High Power = Medium Power = Medium, Opamp Bias = High Power = High Power = High, Opamp Bias = High	- - - - -	150 300 600 1200 2400 4600	200 400 800 1600 3200 6400	μΑ μΑ μΑ μΑ μΑ μΑ	
PSRR _{OA}	Supply Voltage Rejection Ratio	60	-	_	dB	

Table 16. 3.3V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input Offset Voltage (absolute value) Low Power Input Offset Voltage (absolute value) Mid Power High Power is 5 Volt Only		1.65 1.32	10 8	mV mV	
TCV _{OSOA}	Average Input Offset Voltage Drift	-	7.0	35.0	μV/ºC	
I _{EBOA}	Input Leakage Current (Port 0 Analog Pins)	_	20	-	pА	Gross tested to 1 µA.
C _{INOA}	Input Capacitance (Port 0 Analog Pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25°C.
V _{CMOA}	Common Mode Voltage Range	0.2	-	Vdd - 0.2	V	The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
G _{OLOA}	Open Loop Gain Power = Low Power = Medium Power = High	60 60 80	_	-	dB	Specification is applicable at high power. For all other bias modes (except high power, high opamp bias), minimum is 60 dB.
Vohighoa	High Output Voltage Swing (worst case internal load) Power = Low Power = Medium Power = High is 5V only	Vdd - 0.2 Vdd - 0.2 Vdd - 0.2	_ _ _		V V V	
V _{OLOWOA}	Low Output Voltage Swing (worst case internal load) Power = Low Power = Medium Power = High	- - -	_ _ _	0.2 0.2 0.2	V V V	
I _{SOA}	Supply Current (including associated AGND buffer) Power = Low Power = Low, Opamp Bias = High Power = Medium Power = Medium, Opamp Bias = High Power = High Power = High, Opamp Bias = High	- - - - - -	150 300 600 1200 2400 4600	200 400 800 1600 3200 6400	μΑ μΑ μΑ μΑ μΑ	
PSRR _{OA}	Supply Voltage Rejection Ratio	50	_	_	dB	

DC Analog Output Buffer Specifications

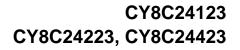

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C $\leq T_A \leq 85^{\circ}$ C, or 3.0V to 3.6V and -40°C $\leq T_A \leq 85^{\circ}$ C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only or unless otherwise specified.

Table 17.	5V DC Analog	Output Buffer	Specifications
-----------	--------------	----------------------	----------------

Symbol	Description	Min	Тур	Max	Units
V _{OSOB}	Input Offset Voltage (Absolute Value)	-	3	12	mV
TCV _{OSOB}	Average Input Offset Voltage Drift	-	+6	-	μV/°C
V _{CMOB}	Common-Mode Input Voltage Range	0.5	-	Vdd - 1.0	V
R _{OUTOB}	Output Resistance Power = Low Power = High		1 1		W W
V _{OHIGHOB}	High Output Voltage Swing (Load = 32 ohms to Vdd/2) Power = Low Power = High	0.5 x Vdd + 1.1 0.5 x Vdd + 1.1			V V
V _{OLOWOB}	Low Output Voltage Swing (Load = 32 ohms to Vdd/2) Power = Low Power = High			0.5 x Vdd - 1.3 0.5 x Vdd - 1.3	V V
I _{SOB}	Supply Current Including Bias Cell (No Load) Power = Low Power = High		1.1 2.6	5.1 8.8	mA mA
PSRR _{OB}	Supply Voltage Rejection Ratio	60	_	_	dB

Table 18. 3.3V DC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units
V _{OSOB}	Input Offset Voltage (Absolute Value)	-	3	12	mV
TCV _{OSOB}	Average Input Offset Voltage Drift	-	+6	-	μV/°C
V _{CMOB}	Common-Mode Input Voltage Range	0.5	-	Vdd - 1.0	V
R _{OUTOB}	Output Resistance Power = Low Power = High		1 1		W W
V _{OHIGHOB}	High Output Voltage Swing (Load = 1K ohms to Vdd/2) Power = Low Power = High	0.5 x Vdd + 1.0 0.5 x Vdd + 1.0	-		V V
V _{OLOWOB}	Low Output Voltage Swing (Load = 1K ohms to Vdd/2) Power = Low Power = High		-	0.5 x Vdd - 1.0 0.5 x Vdd - 1.0	V V
I _{SOB}	Supply Current Including Bias Cell (No Load) Power = Low Power = High	_	0.8 2.0	2.0 4.3	mA mA
PSRR _{OB}	Supply Voltage Rejection Ratio	50	_	_	dB

DC Switch Mode Pump Specifications

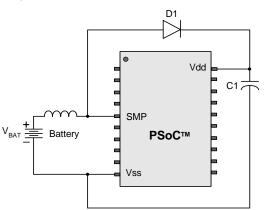

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only or unless otherwise specified.

Table 19. DC 5	witch mode Pump (SMP) Specifications					
Symbol	Description	Min	Тур	Max	Units	Notes
V _{PUMP} 5V	5V Output voltage	4.75	5.0	5.25	V	Average, neglecting ripple
V _{PUMP} 3V	3V Output voltage	3.00	3.25	3.60	V	Average, neglecting ripple
I _{PUMP}	Available Output Current $V_{BAT} = 1.5V$, $V_{PUMP} = 3.25V$ $V_{BAT} = 1.8V$, $V_{PUMP} = 5.0V$	8 5			mA mA	For implementation, which includes 2 uH inductor, 1 uF cap, and Schottky diode
V _{BAT} 5V	Input Voltage Range from Battery	1.8	-	5.0	V	
V _{BAT} 3V	Input Voltage Range from Battery	1.0	-	3.3	V	
VBATSTART	Minimum Input Voltage from Battery to Start Pump	1.1	-	-	V	
ΔV_{PUMP_Line}	Line Regulation (over V _{BAT} range)	-	5	-	%V _O a	
ΔV_{PUMP_Load}	Load Regulation	-	5	-	%V _O a	
ΔV_{PUMP_Ripple}	Output Voltage Ripple (depends on cap/load)	-	25	-	mVpp	Configuration of note 2, load is 5mA
-	Efficiency	35	50	-	%	Configuration of note 2, load is 5mA, Vout is 3.25V.
F _{PUMP}	Switching Frequency	-	1.3	_	MHz	
DC _{PUMP}	Switching Duty Cycle	-	50	_	%	

Table 19. DC Switch Mode Pump (SMP) Specifications

a. V_O is the "Vdd Value for PUMP Trip" specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 23 on page 25.

Figure 11. Basic Switch Mode Pump Circuit

DC Analog Reference Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only or unless otherwise specified.

The guaranteed specifications are measured through the Analog Continuous Time PSoC blocks. The power levels for AGND refer to the power of the Analog Continuous Time PSoC block. The power levels for RefHi and RefLo refer to the Analog Reference Control register. The limits stated for AGND include the offset error of the AGND buffer local to the Analog Continuous Time PSoC block.

Note Avoid using P2[4] for digital signaling when using an analog resource that depends on the Analog Reference. Some coupling of the digital signal may appear on the AGND.

Symbol	Description	Min	Тур	Max	Units
BG	Bandgap Voltage Reference	1.274	1.30	1.326	V
_	AGND = Vdd/2 ^a CT Block Power = High	Vdd/2 - 0.043	Vdd/2 - 0.025	Vdd/2 + 0.003	V
_	AGND = 2 x BandGap ^a CT Block Power = High	2 x BG - 0.048	2 x BG - 0.030	2 x BG + 0.024	V
_	AGND = P2[4] (P2[4] = Vdd/2) ^a CT Block Power = High	P2[4] - 0.013	P2[4]	P2[4] + 0.014	V
_	AGND = BandGap ^a CT Block Power = High	BG - 0.009	BG + 0.008	BG + 0.016	V
_	AGND = 1.6 x BandGap ^a CT Block Power = High	1.6 x BG - 0.022	1.6 x BG - 0.010	1.6 x BG + 0.018	V
_	AGND Column to Column Variation (AGND = Vdd/2) ^a CT Block Power = High	-0.034	0.000	0.034	V
_	RefHi = Vdd/2 + BandGap Ref Control Power = High	Vdd/2 + BG - 0.140	Vdd/2 + BG - 0.018	Vdd/2 + BG + 0.103	V
_	RefHi = 3 x BandGap Ref Control Power = High	3 x BG - 0.112	3 x BG - 0.018	3 x BG + 0.076	V
_	RefHi = 2 x BandGap + P2[6] (P2[6] = 1.3V) Ref Control Power = High	2 x BG + P2[6] - 0.113	2 x BG + P2[6] - 0.018	2 x BG + P2[6] + 0.077	V
-	RefHi = P2[4] + BandGap (P2[4] = Vdd/2) Ref Control Power = High	P2[4] + BG - 0.130	P2[4] + BG - 0.016	P2[4] + BG + 0.098	V
_	RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V) Ref Control Power = High	P2[4] + P2[6] - 0.133	P2[4] + P2[6] - 0.016	P2[4] + P2[6]+ 0.100	V
_	RefHi = 3.2 x BandGap Ref Control Power = High	3.2 x BG - 0.112	3.2 x BG	3.2 x BG + 0.076	V
-	RefLo = Vdd/2 – BandGap Ref Control Power = High	Vdd/2 - BG - 0.051	Vdd/2 - BG + 0.024	Vdd/2 - BG + 0.098	V
-	RefLo = BandGap Ref Control Power = High	BG - 0.082	BG + 0.023	BG + 0.129	V
_	RefLo = 2 x BandGap - P2[6] (P2[6] = 1.3V) Ref Control Power = High	2 x BG - P2[6] - 0.084	2 x BG - P2[6] + 0.025	2 x BG - P2[6] + 0.134	V
-	RefLo = P2[4] – BandGap (P2[4] = Vdd/2) Ref Control Power = High	P2[4] - BG - 0.056	P2[4] - BG + 0.026	P2[4] - BG + 0.107	V
_	RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V) Ref Control Power = High	P2[4] - P2[6] - 0.057	P2[4] - P2[6] + 0.026	P2[4] - P2[6] + 0.110	V

Table 20. 5V DC Analog Reference Specifications

a. AGND tolerance includes the offsets of the local buffer in the PSoC block. Bandgap voltage is $1.3V \pm 2\%$.

Table 21. 3.3V DC Analog Reference Specifications

Symbol	Description	Min	Тур	Мах	Units		
BG	Bandgap Voltage Reference	1.274	1.30	1.326	V		
-	AGND = Vdd/2 ^a CT Block Power = High	Vdd/2 - 0.037	Vdd/2 - 0.037 Vdd/2 - 0.020		V		
_	AGND = 2 x BandGap ^a CT Block Power = High		Not Allowed	b			
_	AGND = P2[4] (P2[4] = Vdd/2) CT Block Power = High	P2[4] - 0.008	P2[4] + 0.001	P2[4] + 0.009	V		
-	AGND = BandGap ^a CT Block Power = High	BG - 0.009	BG + 0.005	BG + 0.015	V		
-	AGND = 1.6 x BandGap ^a CT Block Power = High	1.6 x BG - 0.027	1.6 x BG - 0.010	1.6 x BG + 0.018	V		
-	AGND Column to Column Variation (AGND = Vdd/2) ^a CT Block Power = High	-0.034	0.000	0.034	mV		
-	RefHi = Vdd/2 + BandGap Ref Control Power = High		Not Allowed	b			
-	RefHi = 3 x BandGap Ref Control Power = High	Not Allowed					
-	RefHi = 2 x BandGap + P2[6] (P2[6] = 0.5V) Ref Control Power = High		Not Allowed	b			
-	RefHi = P2[4] + BandGap (P2[4] = Vdd/2) Ref Control Power = High		Not Allowed	b			
-	RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V) Ref Control Power = High	P2[4] + P2[6] - 0.075	P2[4] + P2[6] - 0.009	P2[4] + P2[6] + 0.057	V		
-	RefHi = 3.2 x BandGap Ref Control Power = High		Not Allowed	b			
-	RefLo = Vdd/2 - BandGap Ref Control Power = High		Not Allowed	b			
-	RefLo = BandGap Ref Control Power = High		Not Allowed	b			
-	RefLo = 2 x BandGap - P2[6] (P2[6] = 0.5V) Ref Control Power = High	Not Allowed					
-	RefLo = P2[4] – BandGap (P2[4] = Vdd/2) Ref Control Power = High	Not Allowed					
_	RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V) Ref Control Power = High	P2[4] - P2[6] - 0.048	P2[4]- P2[6] + 0.022	P2[4] - P2[6] + 0.092	V		

a. AGND tolerance includes the offsets of the local buffer in the PSoC block. Bandgap voltage is 1.3V \pm 2%

DC Analog PSoC Block Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only or unless otherwise specified.

Table 22. DC Analog PSoC Block Specifications

Symbol	Description	Min	Тур	Max	Units
R _{CT}	Resistor Unit Value (Continuous Time)	-	12.24	-	kΩ
C _{SC}	Capacitor Unit Value (Switch Cap)	_	80	_	fF

DC POR and LVD Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only or unless otherwise specified.

Note The bits PORLEV and VM in the following table refer to bits in the VLT_CR register. See the *PSoC Programmable System-on-Chip Technical Reference Manual* for more information on the VLT_CR register.

Table 23. DC POR and LVD Specifications

Symbol	Description	Min	Тур	Max	Units
V _{PPOR0R} V _{PPOR1R} V _{PPOR2R}	Vdd Value for PPOR Trip (positive ramp) PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	_	2.908 4.394 4.548	Ι	V V V
V _{PPOR0} V _{PPOR1} V _{PPOR2}	Vdd Value for PPOR Trip (negative ramp) PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	_	2.816 4.394 4.548	Η	V V V
V _{PH0} V _{PH1} V _{PH2}	PPOR Hysteresis PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	- - -	92 0 0		mV mV mV
VLVD0 VLVD1 VLVD2 VLVD3 VLVD4 VLVD5 VLVD6 VLVD7	$\begin{array}{l} \mbox{Vdd Value for LVD Trip} \\ \mbox{VM[2:0]} = 000b \\ \mbox{VM[2:0]} = 001b \\ \mbox{VM[2:0]} = 010b \\ \mbox{VM[2:0]} = 011b \\ \mbox{VM[2:0]} = 100b \\ \mbox{VM[2:0]} = 101b \\ \mbox{VM[2:0]} = 111b \\ \mbox{VM[2:0]} = 111b \\ \end{array}$	2.863 2.963 3.070 3.920 4.393 4.550 4.632 4.718	2.921 3.023 3.133 4.00 4.483 4.643 4.727 4.814	2.979 ^a 3.083 3.196 4.080 4.573 4.736 ^b 4.822 4.910	V V V V V V V V V V
Vpumpo Vpump1 Vpump2 Vpump3 Vpump4 Vpump5 Vpump6 Vpump7	Vdd Value for PUMP Trip VM[2:0] = 000b VM[2:0] = 001b VM[2:0] = 010b VM[2:0] = 011b VM[2:0] = 100b VM[2:0] = 101b VM[2:0] = 110b VM[2:0] = 111b	2.963 3.033 3.185 4.110 4.550 4.632 4.719 4.900	3.023 3.095 3.250 4.194 4.643 4.727 4.815 5.000	3.083 3.157 3.315 4.278 4.736 4.822 4.911 5.100	V V V V V V V V V V

a. Always greater than 50 mV above PPOR (PORLEV = 00) for falling supply.

b. Always greater than 50 mV above PPOR (PORLEV = 10) for falling supply.

DC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only or unless otherwise specified.

Table 24.	DC Programming Specifications	
-----------	--------------------------------------	--

Symbol	Description	Min	Тур	Max	Units	Notes
I _{DDP}	Supply Current During Programming or Verify	-	5	25	mA	
V _{ILP}	Input Low Voltage During Programming or Verify	-	-	0.8	V	
V _{IHP}	Input High Voltage During Programming or Verify	2.2	_	-	V	
I _{ILP}	Input Current when Applying Vilp to P1[0] or P1[1] During Programming or Verify	-	_	0.2	mA	Driving internal pull down resistor.
I _{IHP}	Input Current when Applying Vihp to P1[0] or P1[1] During Programming or Verify	-	_	1.5	mA	Driving internal pull down resistor.
V _{OLV}	Output Low Voltage During Programming or Verify	-	_	Vss + 0.75	V	
V _{OHV}	Output High Voltage During Programming or Verify	Vdd - 1.0	_	Vdd	V	
Flash _{ENPB}	Flash Endurance (per block)	50,000	-	-	-	Erase/write cycles per block.
Flash _{ENT}	Flash Endurance (total) ^a	1,800,000	-	-	-	Erase/write cycles.
Flash _{DR}	Flash Data Retention	10	-	_	Years	

A maximum of 36 x 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2 blocks of 25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (and so forth to limit the total number of cycles to 36x50,000 and that no single block ever sees more than 50,000 cycles). For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information. a.

AC Electrical Characteristics

AC Chip-Level Specifications

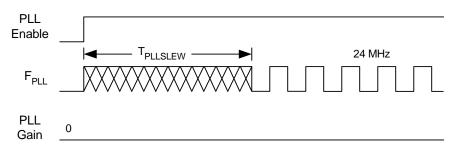
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only or unless otherwise specified.

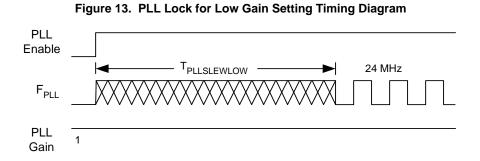
Table 25. AC Chip-Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{IMO}	Internal Main Oscillator Frequency	23.4	24	24.6 ^a	MHz	Trimmed. Using factory trim values.
F _{CPU1}	CPU Frequency (5V Nominal)	0.93	24	24.6 ^{a,b}	MHz	
F _{CPU2}	CPU Frequency (3.3V Nominal)	0.93	12	12.3 ^{b,c}	MHz	
F _{48M}	Digital PSoC Block Frequency	0	48	49.2 ^{a,b,d}	MHz	Refer to the AC Digital Block Specifications.
F _{24M}	Digital PSoC Block Frequency	0	24	24.6 ^{b,e,d}	MHz	
F _{32K1}	Internal Low Speed Oscillator Frequency	15	32	64	kHz	
F _{32K2}	External Crystal Oscillator	_	32.768	-	kHz	Accuracy is capacitor and crystal dependent. 50% duty cycle.
F _{PLL}	PLL Frequency	-	23.986	-	MHz	Is a multiple (x732) of crystal frequency.
Jitter24M2	24 MHz Period Jitter (PLL)	-	-	600	ps	
T _{PLLSLEW}	PLL Lock Time	0.5	-	10	ms	
T _{PLLSLEWSLOW}	PLL Lock Time for Low Gain Setting	0.5	-	50	ms	
T _{OS}	External Crystal Oscillator Startup to 1%	-	1700	2620	ms	
T _{OSACC}	External Crystal Oscillator Startup to 100 ppm	_	2800	3800 ^f	ms	
Jitter32k	32 kHz Period Jitter	_	100		ns	
T _{XRST}	External Reset Pulse Width	10	-	-	μS	
DC24M	24 MHz Duty Cycle	40	50	60	%	
Step24M	24 MHz Trim Step Size	-	50	-	kHz	
Fout48M	48 MHz Output Frequency	46.8	48.0	49.2 ^{a,c}	MHz	Trimmed. Using factory trim values.
Jitter24M1	24 MHz Period Jitter (IMO)	-	600		ps	
F _{MAX}	Maximum frequency of signal on row input or row output.	-	-	12.3	MHz	
T _{RAMP}	Supply Ramp Time	0	-	-	μS	

a. 4.75V < Vdd < 5.25V.

 b. Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range.
 c. 3.0V < Vdd < 3.6V. See Application Note AN2012 "Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation" for information on trimming for opera- tion at 3.3V.


d. See the individual user module data sheets for information on maximum frequencies for user modules.


3.0V < 5.25V.

The crystal oscillator frequency is within 100 ppm of its final value by the end of the T_{osacc} period. Correct operation assumes a properly loaded 1 uW maximum f. drive level 32.768 kHz crystal. 3.0V \leq Vdd \leq 5.5V, -40 oC \leq T_A \leq 85 $^oC.$

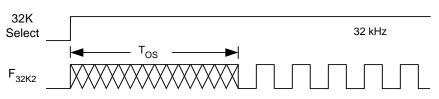
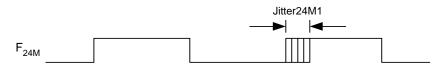



Figure 15. 24 MHz Period Jitter (IMO) Timing Diagram

Figure 16. 32 kHz Period Jitter (ECO) Timing Diagram

AC General Purpose IO Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only or unless otherwise specified.

Table 26. AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO Operating Frequency	0	-	12	MHz	
TRiseF	Rise Time, Normal Strong Mode, Cload = 50 pF	3	-	18	ns	Vdd = 4.5 to 5.25V, 10% - 90%
TFallF	Fall Time, Normal Strong Mode, Cload = 50 pF	2	-	18	ns	Vdd = 4.5 to 5.25V, 10% - 90%
TRiseS	Rise Time, Slow Strong Mode, Cload = 50 pF	10	27	—	ns	Vdd = 3 to 5.25V, 10% - 90%
TFallS	Fall Time, Slow Strong Mode, Cload = 50 pF	10	22	—	ns	Vdd = 3 to 5.25V, 10% - 90%

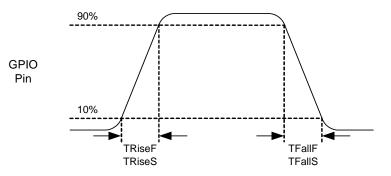


Figure 17. GPIO Timing Diagram

AC Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only or unless otherwise specified.

Note Settling times, slew rates, and gain bandwidth are based on the Analog Continuous Time PSoC block.

Symbol	Description	Min	Тур	Max	Units	Notes
T _{ROA}	Rising Settling Time from 80% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain) Power = Low Power = Low, Opamp Bias = High Power = Medium		_	3.9	μs μs μs	Specification maximums for low power and high opamp bias, medium power, and medium power and high opamp bias levels are
	Power = Medium, Opamp Bias = High Power = High Power = High, Opamp Bias = High	_ _ _	_	0.72 0.62	μS μS μS	between low and high power levels.
T _{SOA}	Falling Settling Time from 20% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain) Power = Low Power = Low, Opamp Bias = High Power = Medium Power = Medium, Opamp Bias = High Power = High Power = High, Opamp Bias = High		-	5.9 0.92 0.72	μs μs μs μs μs μs	Specification maximums for low power and high opamp bias, medium power, and medium power and high opamp bias levels are between low and high power levels.
SR _{ROA}	Rising Slew Rate (20% to 80%) (10 pF load, Unity Gain) Power = Low Power = Low, Opamp Bias = High Power = Medium Power = Medium, Opamp Bias = High Power = High Power = High, Opamp Bias = High	0.15 1.7 6.5	-		V/μs V/μs V/μs V/μs V/μs V/μs V/μs	Specification minimums for low power and high opamp bias, medium power, and medium power and high opamp bias levels are between low and high power levels.
SR _{FOA}	Falling Slew Rate(20% to 80%) (10 pF load, Unity Gain) Power = Low Power = Low, Opamp Bias = High Power = Medium Power = Medium, Opamp Bias = High Power = High Power = High, Opamp Bias = High	0.01 0.5 4.0	-		V/μs V/μs V/μs V/μs V/μs V/μs	Specification minimums for low power and high opamp bias, medium power, and medium power and high opamp bias levels are between low and high power levels.
BW _{OA}	Gain Bandwidth Product Power = Low Power = Low, Opamp Bias = High Power = Medium Power = Medium, Opamp Bias = High Power = High Power = High, Opamp Bias = High	0.75 3.1 5.4	-		MHz MHz MHz MHz MHz MHz	Specification minimums for low power and high opamp bias, medium power, and medium power and high opamp bias levels are between low and high power levels.
E _{NOA}	Noise at 1 kHz (Power = Medium, Opamp Bias = High)	-	200	-	nV/rt-Hz	

Table 28. 3.3V AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{ROA}	Rising Settling Time from 80% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain) Power = Low Power = Low, Opamp Bias = High Power = Medium Power = Medium, Opamp Bias = High Power = High (3.3 Volt High Bias Operation not supported) Power = High, Opamp Bias = High (3.3 Volt High			3.92 0.72 -	μs μs μs μs	Specification maximums for low power and high opamp bias, medium power, and medium power and high opamp bias levels are between low and high power levels.
	Power, High Opamp Bias not supported)	_	_	_	μS	
T _{SOA}	Falling Settling Time from 20% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain) Power = Low	_	_	5.41	μS	Specification maximums for low power and high opamp bias, medium power, and
	Power = Low, Opamp Bias = High Power = Medium Power = Medium, Opamp Bias = High	- - -	_	0.72	μS μS μS	medium power and high opamp bias levels are between low and high power
	Power = High (3.3 Volt High Bias Operation not supported)	-	-	-	μS μS	levels.
	Power = High, Opamp Bias = High (3.3 Volt High Power, High Opamp Bias not supported)	-	-	-	μS	
SR _{ROA}	Rising Slew Rate (20% to 80%) (10 pF load, Unity Gain) Power = Low Power = Low, Opamp Bias = High	0.31	_		V/μs V/μs	Specification minimums for low power and high opamp bias, medium power, and
	Power = Medium Power = Medium, Opamp Bias = High Power = High (3.3 Volt High Bias Operation not supported)	2.7 -		-	V/μs V/μs V/μs	medium power and high opamp bias levels are between low and high power levels.
	Power = High, Opamp Bias = High (3.3 Volt High Power, High Opamp Bias not supported)	-	-	-	V/µs	
SR _{FOA}	Falling Slew Rate(20% to 80%) (10 pF load, Unity Gain) Power = Low Power = Low, Opamp Bias = High Power = Medium	0.24	-		V/μs V/μs V/μs	Specification minimums for low power and high opamp bias, medium power, and medium power and high
	Power = Medium, Opamp Bias = High Power = High (3.3 Volt High Bias Operation not supported)	1.8 -		-	V/μs V/μs	opamp bias levels are between low and high power levels.
	Power = High, Opamp Bias = High (3.3 Volt High Power, High Opamp Bias not supported)	_	-	-	V/µs	
BW _{OA}	Gain Bandwidth Product Power = Low Power = Low, Opamp Bias = High	0.67	_		MHz MHz	Specification minimums for low power and high opamp bias, medium power, and
	Power = Medium Power = Medium, Opamp Bias = High Power = High (3.3 Volt High Bias Operation not supported)	2.8 _		_	MHz MHz MHz	medium power and high opamp bias levels are between low and high power levels.
	Power = High, Opamp Bias = High (3.3 Volt High Power, High Opamp Bias not supported)	_	-	-	MHz	
E _{NOA}	Noise at 1 kHz (Power = Medium, Opamp Bias = High)	—	200	-	nV/rt-Hz	

AC Digital Block Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C $\leq T_A \leq 85^{\circ}$ C, or 3.0V to 3.6V and -40°C $\leq T_A \leq 85^{\circ}$ C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only or unless otherwise specified.

Function	Description	Min	Тур	Max	Units	Notes
Timer	Capture Pulse Width	50 ^a	-	-	ns	
	Maximum Frequency, No Capture	_	-	49.2	MHz	4.75V < Vdd < 5.25V
	Maximum Frequency, With Capture	-	_	24.6	MHz	
Counter	Enable Pulse Width	50 ^a	-	-	ns	
	Maximum Frequency, No Enable Input	-	_	49.2	MHz	4.75V < Vdd < 5.25V
	Maximum Frequency, Enable Input	-	_	24.6	MHz	
Dead Band	Kill Pulse Width:					
	Asynchronous Restart Mode	20	_	-	ns	
	Synchronous Restart Mode	50 ^a	_	_	ns	
	Disable Mode	50 ^a	_	-	ns	
	Maximum Frequency	_	-	49.2	MHz	4.75V < Vdd < 5.25V
CRCPRS (PRS Mode)	Maximum Input Clock Frequency	-	-	49.2	MHz	4.75V < Vdd < 5.25V
CRCPRS (CRC Mode)	Maximum Input Clock Frequency	-	-	24.6	MHz	
SPIM	Maximum Input Clock Frequency	-	_	8.2	MHz	
SPIS	Maximum Input Clock Frequency	-	_	4.1	ns	
	Width of SS_Negated Between Transmissions	50 ^a	_	-	ns	
Transmitter	Maximum Input Clock Frequency	-	_	16.4	MHz	
Receiver	Maximum Input Clock Frequency	-	16	49.2	MHz	4.75V < Vdd < 5.25V

Table 29. AC Digital Block Specifications

a. 50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).

AC Analog Output Buffer Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only or unless otherwise specified.

Table 30.	5V AC Analog	Output Buffer	Specifications
-----------	--------------	----------------------	----------------

Symbol	Description	Min	Тур	Max	Units
T _{ROB}	Rising Settling Time to 0.1%, 1V Step, 100 pF Load Power = Low Power = High			2.5 2.5	μs μs
T _{SOB}	Falling Settling Time to 0.1%, 1V Step, 100 pF Load Power = Low Power = High			2.2 2.2	μs μs
SR _{ROB}	Rising Slew Rate (20% to 80%), 1V Step, 100 pF Load Power = Low Power = High	0.65 0.65			V/μs V/μs
SR _{FOB}	Falling Slew Rate (80% to 20%), 1V Step, 100 pF Load Power = Low Power = High	0.65 0.65			V/μs V/μs
BW _{OB}	Small Signal Bandwidth, 20mV _{pp} , 3dB BW, 100 pF Load Power = Low Power = High	0.8 0.8			MHz MHz
BW _{OB}	Large Signal Bandwidth, 1V _{pp} , 3dB BW, 100 pF Load Power = Low Power = High	300 300	_ _		kHz kHz

Table 31. 3.3V AC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units
T _{ROB}	Rising Settling Time to 0.1%, 1V Step, 100 pF Load Power = Low Power = High			3.8 3.8	μs μs
T _{SOB}	Falling Settling Time to 0.1%, 1V Step, 100 pF Load Power = Low Power = High			2.6 2.6	μs μs
SR _{ROB}	Rising Slew Rate (20% to 80%), 1V Step, 100 pF Load Power = Low Power = High	0.5 0.5			V/μs V/μs
SR _{FOB}	Falling Slew Rate (80% to 20%), 1V Step, 100 pF Load Power = Low Power = High	0.5 0.5			V/μs V/μs
BW _{OB}	Small Signal Bandwidth, 20mV _{pp} , 3dB BW, 100 pF Load Power = Low Power = High	0.7 0.7			MHz MHz
BW _{OB}	Large Signal Bandwidth, 1V _{pp} , 3dB BW, 100 pF Load Power = Low Power = High	200 200	-		kHz kHz

AC External Clock Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only or unless otherwise specified.

Table 32. 5V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units
FOSCEXT	Frequency	0	-	24.24	MHz
-	High Period	20.6	-	-	ns
-	Low Period	20.6	-	-	ns
-	Power Up IMO to Switch	150	-	-	μS

Table 33. 3.3V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units
FOSCEXT	Frequency with CPU Clock divide by 1 ^a	0	Ι	12.12	MHz
FOSCEXT	Frequency with CPU Clock divide by 2 or greater ^b	0	Ι	24.24	MHz
-	High Period with CPU Clock divide by 1	41.7	-	-	ns
-	Low Period with CPU Clock divide by 1	41.7	_	_	ns
-	Power Up IMO to Switch	150	Ι	-	μS

a. Maximum CPU frequency is 12 MHz at 3.3V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements.

b. If the frequency of the external clock is greater than 12 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met.

AC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only or unless otherwise specified.

Table 34. AC Programming Specifications

Symbol	Description	Min	Тур	Max	Units
T _{RSCLK}	Rise Time of SCLK	1	-	20	ns
T _{FSCLK}	Fall Time of SCLK	1	-	20	ns
T _{SSCLK}	Data Set up Time to Falling Edge of SCLK	40	-	-	ns
T _{HSCLK}	Data Hold Time from Falling Edge of SCLK	40	-	-	ns
F _{SCLK}	Frequency of SCLK	0	-	8	MHz
T _{ERASEB}	Flash Erase Time (Block)	-	15	-	ms
T _{WRITE}	Flash Block Write Time	-	30	-	ms
T _{DSCLK}	Data Out Delay from Falling Edge of SCLK	_	_	45	ns

AC I²C Specifications

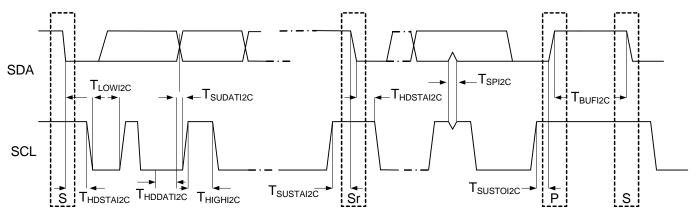
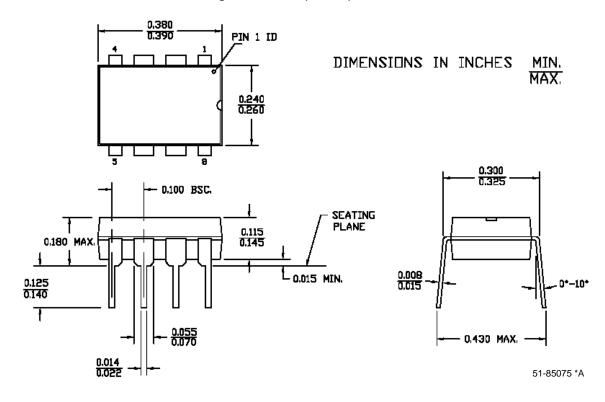

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C $\leq T_A \leq 85^{\circ}$ C, or 3.0V to 3.6V and -40°C $\leq T_A \leq 85^{\circ}$ C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only or unless otherwise specified.

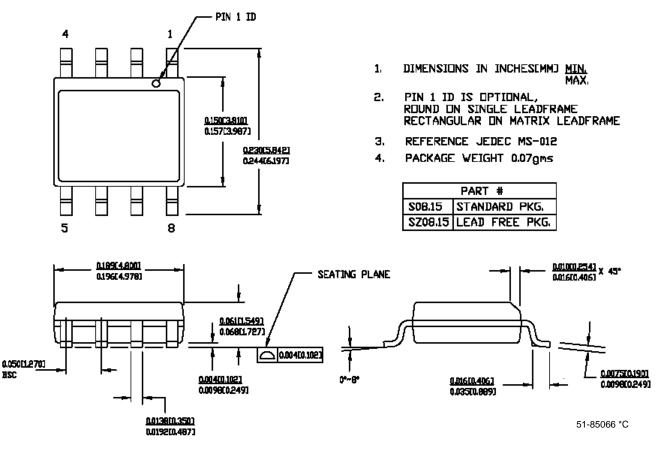
Table 35.	AC Characteristics	s of the I ² C SDA and SCL Pir	าร
-----------	--------------------	---	----

Symbol	Description		rd Mode	Fast	Units	
Symbol	Description	Min	Max	Min	Max	Units
F _{SCLI2C}	SCL Clock Frequency	0	100	0	400	kHz
T _{HDSTAI2C}	Hold Time (repeated) START Condition. After this period, the first clock pulse is generated.	4.0	-	0.6	-	μs
T _{LOWI2C}	LOW Period of the SCL Clock	4.7	-	1.3	-	μS
T _{HIGHI2C}	HIGH Period of the SCL Clock	4.0	-	0.6	-	μS
T _{SUSTAI2C}	Setup Time for a Repeated START Condition	4.7	-	0.6	-	μS
T _{HDDATI2C}	Data Hold Time	0	-	0	-	μS
T _{SUDATI2C}	Data Setup Time	250	-	100 ^a	-	ns
T _{SUSTOI2C}	Setup Time for STOP Condition	4.0	-	0.6	-	μS
T _{BUFI2C}	Bus Free Time Between a STOP and START Condition	4.7	-	1.3	-	μS
T _{SPI2C}	Pulse Width of spikes are suppressed by the input filter.	_	_	0	50	ns

a. A Fast-Mode I2C-bus device can be used in a Standard-Mode I2C-bus system, but the requirement t_{SU;DAT} ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SU;DAT} = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.



Packaging Information


This section presents the packaging specifications for the CY8C24x23 PSoC device, along with the thermal impedances for each package and the typical package capacitance on crystal pins.

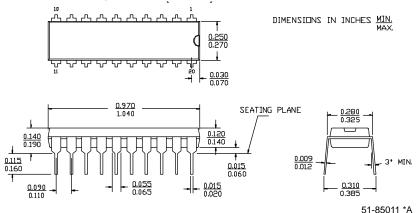
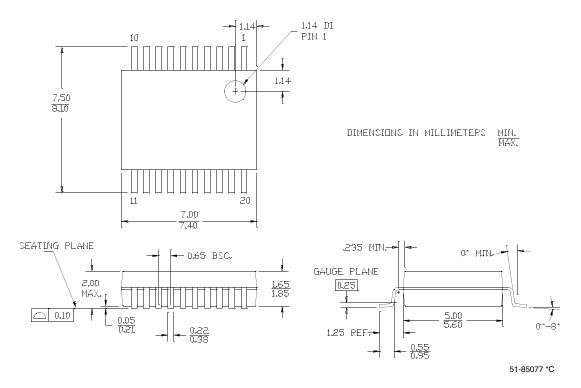
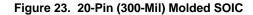

Figure 19. 8-Pin (300-Mil) PDIP

Figure 20. 8-Pin (150-Mil) SOIC




Figure 21. 20-Pin (300-Mil) Molded DIP

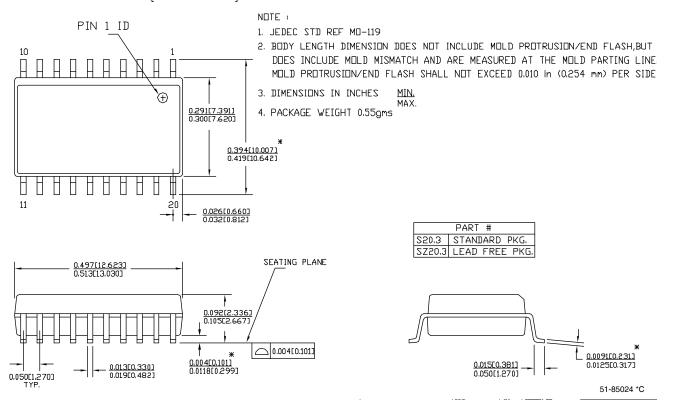
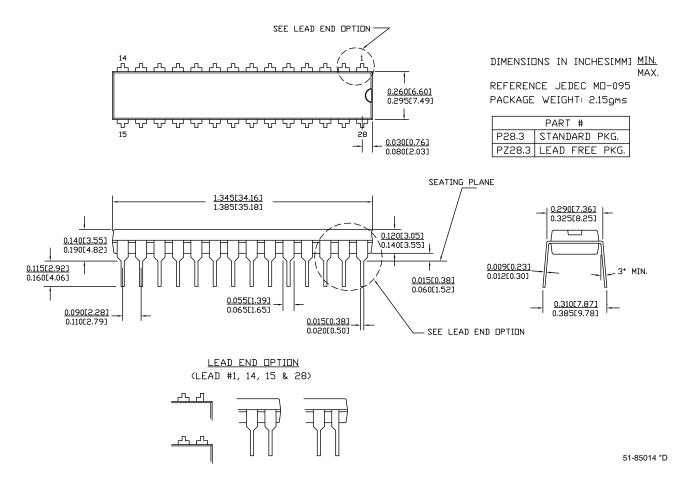


Figure 22. 20-Pin (210-Mil) SSOP



Page 38 of 43

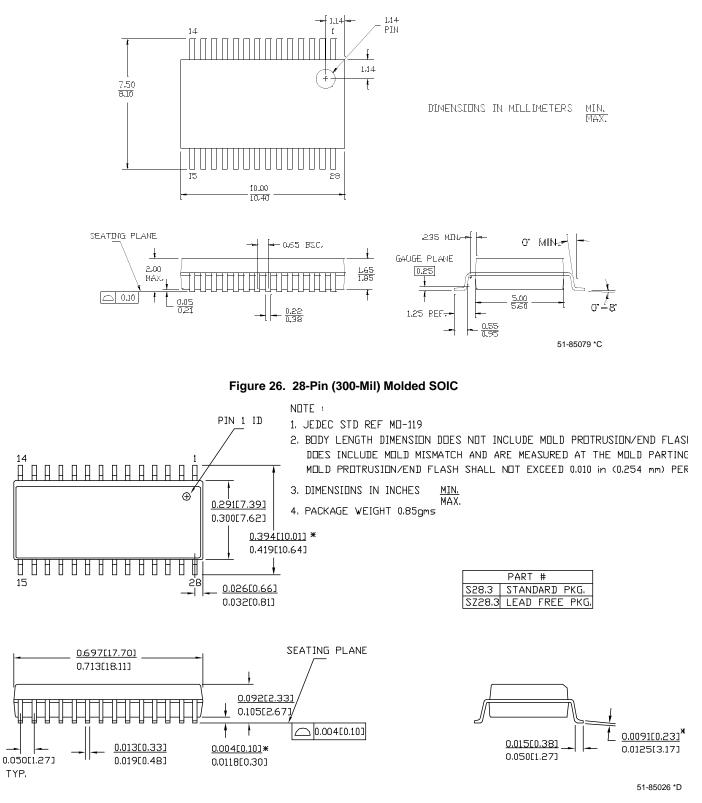
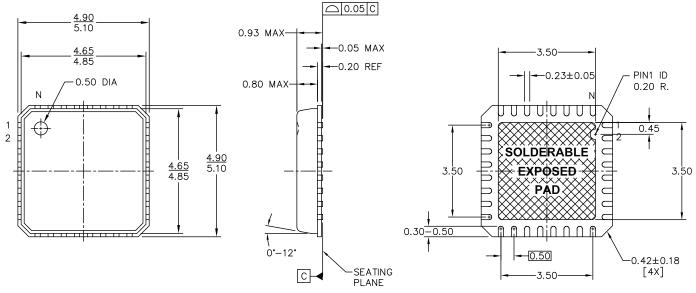


Figure 24. 28-Pin (300-Mil) Molded DIP


Figure 25. 28-Pin (210-Mil) SSOP

Page 40 of 43

Figure 27. 32-Pin (5x5 mm) MLF

NOTES:

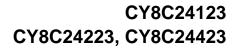
- 1. 🗱 HATCH AREA IS SOLDERABLE EXPOSED PAD.
- 2. REFERENCE JEDEC#: MO-220
- 3. PACKAGE WEIGHT: 0.054g
- 4. ALL DIMENSIONS ARE IN MM [MIN/MAX]
- 5. PACKAGE CODE

PART #	DESCRIPTION
LF32	STANDARD
LY32	PB-FREE

Thermal Impedances

Table 36. Thermal Impedances per Package

Package	Typical θ _{JA} *			
8 PDIP	123 °C/W			
8 SOIC	185 °C/W			
20 PDIP	109 °C/W			
20 SSOP	117 °C/W			
20 SOIC	81 °C/W			
28 PDIP	69 °C/W			
28 SSOP	101 °C/W			
28 SOIC	74 °C/W			
32 MLF	22 °C/W			


* T_J = T_A + POWER x θ_{JA}

Capacitance on Crystal Pins

Table 37. Typical Package Capacitance on Crystal Pins

Package	Package Capacitance
8 PDIP	2.8 pF
8 SOIC	2.0 pF
20 PDIP	3.0 pF
20 SSOP	2.6 pF
20 SOIC	2.5 pF
28 PDIP	3.5 pF
28 SSOP	2.8 pF
28 SOIC	2.7 pF
32 MLF	2.0 pF

51-85188 *B

Ordering Information

The following table lists the CY8C24x23 PSoC Device family's key package features and ordering codes.

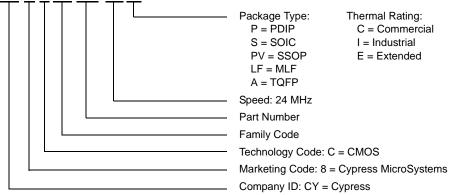

Package	Ordering Code	Flash (Kbytes)	RAM (Bytes)	Switch Mode Pump	Temperature Range	Digital Blocks (Rows of 4)	Analog Blocks (Columns of 3)	Digital IO Pins	Analog Inputs	Analog Outputs	XRES Pin
8 Pin (300 Mil) DIP	CY8C24123-24PI	4	256	No	-40°C to +85°C	4	6	6	4	2	No
8 Pin (150 Mil) SOIC	CY8C24123-24SI	4	256	Yes	-40°C to +85°C	4	6	6	4	2	No
8 Pin (150 Mil) SOIC (Tape and Reel)	CY8C24123-24SIT	4	256	Yes	-40°C to +85°C	4	6	6	4	2	No
20 Pin (300 Mil) DIP	CY8C24223-24PI	4	256	Yes	-40°C to +85°C	4	6	16	8	2	Yes
20 Pin (210 Mil) SSOP	CY8C24223-24PVI	4	256	Yes	-40°C to +85°C	4	6	16	8	2	Yes
20 Pin (210 Mil) SSOP (Tape and Reel)	CY8C24223-24PVIT	4	256	Yes	-40°C to +85°C	4	6	16	8	2	Yes
20 Pin (300 Mil) SOIC	CY8C24223-24SI	4	256	Yes	-40°C to +85°C	4	6	16	8	2	Yes
20 Pin (300 Mil) SOIC (Tape and Reel)	CY8C24223-24SIT	4	256	Yes	-40°C to +85°C	4	6	16	8	2	Yes
28 Pin (300 Mil) DIP	CY8C24423-24PI	4	256	Yes	-40°C to +85°C	4	6	24	10	2	Yes
28 Pin (210 Mil) SSOP	CY8C24423-24PVI	4	256	Yes	-40°C to +85°C	4	6	24	10	2	Yes
28 Pin (210 Mil) SSOP (Tape and Reel)	CY8C24423-24PVIT	4	256	Yes	-40°C to +85°C	4	6	24	10	2	Yes
28 Pin (300 Mil) SOIC	CY8C24423-24SI	4	256	Yes	-40°C to +85°C	4	6	24	10	2	Yes
28 Pin (300 Mil) SOIC (Tape and Reel)	CY8C24423-24SIT	4	256	Yes	-40°C to +85°C	4	6	24	10	2	Yes
32 Pin (5x5 mm) MLF	CY8C24423-24LFI	4	256	Yes	-40°C to +85°C	4	6	24	10	2	Yes

 Table 38. CY8C24x23 PSoC Device Family Key Features and Ordering Information

Note For Die sales information, contact a local Cypress sales office or Field Applications Engineer (FAE).

Ordering Code Definitions

CY 8 C 24 xxx-SPxx

Document History Page

Document Title: CY8C24123, CY8C24223, CY8C24423 PSoC [®] Programmable System-on-Chip™ Document Number: 38-12011							
Revision	ECN	Orig. of Change	Submission Date	Description of Change			
**	127043	New Silicon and NWJ	05/15/2003	New document – Advanced Data Sheet (two page product brief).			
*A	128779	NWJ	08/13/2003	New document – Preliminary Data Sheet (300 page product detail).			
*В	129775	MWR/NWJ	09/26/2003	Changes to Electrical Specifications section, Register Details chapter, and chapter changes in the Analog System section.			
*C	130128	NWJ	10/14/2003	Revised document for Silicon Revision A.			
*D	131678	NWJ	12/04/2003	Changes to Electrical Specifications section, Miscellaneous changes to I2C, GDI, RDI, Registers, and Digital Block chapters.			
*E	131802	NWJ	12/22/2003	Changes to Electrical Specifications and miscellaneous small changes throughout the data sheet.			
*F	229418	SFV	06/04/2004	New data sheet format and organization. Reference the <i>PSoC Programmable System-on-Chip Technical Reference Manual</i> for additional information. Title change.			
*G	2619935	ONGE/AESA	12/11/2008	Changed title to "CY8C24123, CY8C24223, CY8C24423 PSoC® Programmable System-on-Chip™" Updated package diagrams 51-85188, 51-85024, 51-85014, and 51-85026. Added note on digital signaling in Table on page 23. Added Die Sales information note to Ordering Information on page 42. Updated data sheet template.			

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

Products		PSoC Solutions	
PSoC	psoc.cypress.com	General	psoc.cypress.com/solutions
Clocks & Buffers	clocks.cypress.com	Low Power/Low Voltage	psoc.cypress.com/low-power
Wireless	wireless.cypress.com	Precision Analog	psoc.cypress.com/precision-analog
Memories	memory.cypress.com	LCD Drive	psoc.cypress.com/lcd-drive
Image Sensors	image.cypress.com	CAN 2.0b	psoc.cypress.com/can
		USB	psoc.cypress.com/usb

© Cypress Semiconductor Corporation, 2003-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 38-12011 Rev. *G

Revised December 11, 2008

Page 43 of 43

PSoC Designer[™], Programmable System-on-Chip[™], and PSoC Express[™] are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are property of the respective corporations. Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips. All products and company names mentioned in this document may be the trademarks of their respective holders.