

10G 1310nm SFP+ Transceiver

(With monitor function, up to 10Km transmission)

Members of Flexon[™] Family

Features

- Support 10GE application at the data rate 9.95Gbps and 10.3125Gbps
- Up to 10km transmission distance on SMF
- ◆ 1310nm DFB Laser and PIN receiver
- CDR included
- SFI electrical interface
- 2-wire interface for integrated Digital Diagnostic monitoring
- SFP+ MSA package with duplex LC connector
- Hot pluggable
- Very low EMI and excellent ESD protection
- Single +3.3V power supply
- Power consumption less than 1.5 W
- Operating case temperature: 0~+70°C

Applications

- 10GBASE-LR at 10.3125Gbps
- ♦ 10GBASE-LW at 9.953Gbps
- Other optical links

Standard

- Compliant with SFF-8431
- ♦ Compliant with SFF-8472 Rev 10.1
- Compliant with IEEE 802.3-2005 10GBASE-LR and 10GBASE-LW
- Compliant with FCC 47 CFR Part 15, Class B
- Compliant with FDA 21 CFR 1040.10 and 1040.11, Class I
- ◆ Compliant with Telcordia GR-468-CORE
- RoHS compliance

Description

FTM-311XC-L10DG is a high performance, cost effective module, which is optimized for 10G Ethernet, supporting data-rate of 10.3125Gbps (10GBASE-LR) or 9.953Gbps (10GBASE-LW), and transmission distance up to 10km on SMF.

The transceiver consists of two sections: The transmitter section incorporates a 1310nm DFB Laser, driver. The receiver section consists of a PIN photodiode integrated with a transimpedance preamplifier (TIA) and a CDR.

The module is hot pluggable into the 20-pin connector. The high-speed electrical interface is based on low voltage logic, with nominal 100 Ohms differential impedance and AC coupled in the module. The optical output can be disabled by LVTTL logic high-level input of TX_Disable. Loss of signal (RX_LOS) output is provided to indicate the loss of an input optical signal of receiver.

Regulatory Compliance

The transceivers are tested according to American and European product safety and electromagnetic compatibility regulations (See Table 1). For further information regarding regulatory certification, please refer to Fiberxon regulatory specification and safety guidelines, or contact with Fiberxon, Inc. America sales office listed at the end of the documentation.

Table 1- Regulatory Compliance

Feature	Standard	Performance	
Electrostatic Discharge	MIL-STD-883E	Class 1(>1000 V)	
(ESD) to the Electrical Pins	Method 3015.7	Class 1(>1000 V)	
Electrostatic Discharge (ESD)	IEC 61000-4-2	Compliant with standards	
to the Duplex LC Receptacle	GR-1089-CORE	Compliant with standards	
Floatramagnatia	FCC Part 15 Class B	Compliant with standards	
Electromagnetic Interference (EMI)	EN55022 Class B (CISPR 22B)		
interierence (EIVII)	VCCI Class B		
Immunity	IEC 61000-4-3	Compliant with standards	
Laser Eye Safety	FDA 21CFR 1040.10 and 1040.11	Compliant with Class 1 laser	
Laser Eye Salety	EN60950, EN (IEC) 60825-1,2	product.	
Component Recognition	UL and CSA	UL file E223705	

Absolute Maximum Ratings

Stress in excess of the maximum absolute ratings can cause permanent damage to the module.

Table 2 - Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Ts	-40	+85	°C
Supply Voltage	V _{CC}	-0.5	4.0	V
Operating Relative Humidity	RH		85	%

Recommended Operating Conditions

Table 3 - Recommended Operating Conditions

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Operating Case Temperature	T_C	0		+70	°C	
Power Supply Voltage	V_{CC}	3.15	3.3	3.45		
Power Supply Current	I _{cc}		400	450	mA	
Power Dissipation	PD		1.2	1.5	W	
Data Rate			10.3125		Gbps	
Transmission Distance				10	km	

Optical Characteristics

Table 4 - Optical Characteristics

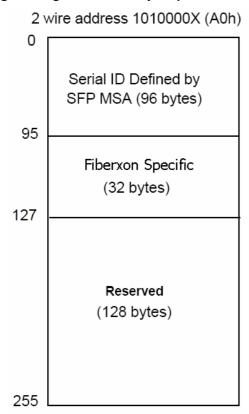
Parameter	Symbol	Min.	Typical	Max.	Unit	Notes		
Transmitter								
Operating Data Rate			10.3125		Gbps			
Centre Wavelength	$\lambda_{ extsf{C}}$	1260		1355	nm			
Average Output Power	P _{0UT}	-8.2		0.5	dBm	1		
Extinction Ratio	ER	3.5			dB	2		
Optical Modulation Amplitude	OMA	-5.2			dBm			
Side Mode Suppression Ratio	SMSR	30			dB			
Dispersion Penalty	DP			3.2	dB			
Optical Eye Mask Compliant with IEEE 802.3-2005								
		Receiver						
Operating Data Rate			10.3125		Gbps			
Centre Wavelength	λ_{C}	1260		1355	nm			
Receiver Sensitivity	P _{IN}		-16	-14.4	dBm	3		
Receiver Sensitivity in OMA	P _{IN}			-12.6	dBm	3		
Receiver Overload	P _{IN}	0.5			dBm	3		
Receiver Totle Jitter	TJ			0.70	UI			
Receiver Determinstic Jitter	DJ			0.42	UI			
LOS Assert	LOS _A	-25			dBm			
LOS Deassert	LOS _D			-15	dBm			
LOS Hysteresis		0.5		5	dB			

Notes:

- 1. The optical power is launched into SMF.
- 2. Measured with a PRBS 2³¹-1 test pattern @10.3125Gbps.
- 3. Measured with a PRBS 2^{31} -1 test pattern @10.3125Gbps, BER \leq 10⁻¹².

Electrical Characteristics

Table 5 - Electrical Characteristics


Parameter	Symbol	Min.	Typical	Max.	Unit	Notes			
High-speed Signal (CML) Interface Specification									
Differential Data Input Amplitude		400		1600	mVpp				
Input Differential Impedance		85	100	115	Ω				
Differential Data Output Amplitude		300		850	mVpp				
Output Differential Impedance		80	100	120	Ω				
Low-speed Signal (LVTTL) Interface	e Specifica	tion							
Input High Voltage		2.0		3.3	V				
Input Low Voltage		GND		0.8	V				
Output High Voltage		2.4		3.3	V				
Output Low Voltage GND 0.4 V									
2 Wire Serial Interface (LVTTL) Spe	2 Wire Serial Interface (LVTTL) Specification								
Clock Frequency	f _{SCL}			100	KHz				

EEPROM Information.

EEPROM describing the transceiver's capabilities, standard interfaces, manufacturer, and other information, which is accessible over a 2 wire serial interface at the 8-bit address 1010000X (A0h). The memory contents refer to Table 6

Table 6 - Digital Diagnostic Memory Map

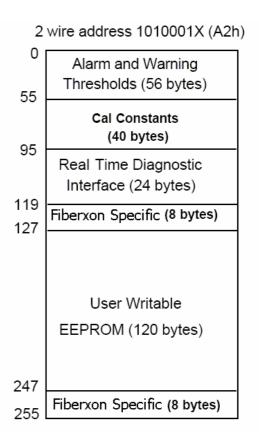


Table 7 - EEPROM Serial ID Memory Contents (A0h)

Addr.	(Bytes)	Name of Field	Hex	Description
0	1	Identifier	03	SFP
1	1	Ext. Identifier	04	SFP with Serial ID
2	1	Connector	07	LC
3-10	8	Transceiver	20 00 00 00 00 00 00 00	10GBASE-LR
11	1	Encoding	06	64B/66B
12	1	BR, nominal	67	10.3G
13	1	Rate identifier	00	unspecified
14	1	Length (9um)-km	0A	10km of 9/125um fiber
15	1	Length (9um)	64	10000m of 9/125um fiber
16	1	Length (50um,OM2)	00	
17	1	Length (62.5um,OM1)	00	
18	1	Length (copper)	00	
19	1	Length (50um, OM3)	00	

			46 49 42 45 52 58 4F 4E	
20-35	16	Vendor name	20 49 4E 43 2E 20 20 20	"FIBERXON INC. "(ASC II)
36	1	Reserved	00	
37-39	3	Vendor OUI	00 00 00	
			46 54 4D 2D 33 31 31 58	
40-55	16	Vendor PN	43 2D 4C 31 30 44 47 20	"FTM-311XC-L10DG" (ASC II)
56-59	4	Vendor rev	xx xx xx xx	ASC II ("31 30 20 20" means 1.0 revision)
60-61	2	Wavelength	05 1E	1310nm
62	1	Reserved	00	
63	1	CC BASE	XX	Check sum of bytes 0-62
64-65	2	Options	02 1A	LOS, TX_FAULT and TX_DISABLE
66	1	BR, max	00	
67	1	BR, min	00	
68-83	16	Vendor SN	xx xx xx xx xx xx xx xx	ASC II
84-91	8	Vendor date code	xx xx xx xx xx xx 20 20	Year (2 bytes), Month (2 bytes), Day (2 bytes)
92	1	Diagnostic type	68	Diagnostics (Int.Cal)
				Alarm/warning flags, soft LOS, TX_FAULT and
93	1	Enhanced option	F0	TX_DISABLE
94	1	SFF-8472	03	Diagnostics (SFF-8472 Rev 10.0)
95	1	CC_EXT	XX	Check sum of bytes 64-94
96-255	160	Fiberxon specific		Fiberxon specific EEPROM

Note:

1. The "xx" byte should be filled in according to practical case.

Table 8 - EEPROM Diagnostics Data Map (A2h)

	able 6 - EEFROM Diagnostics Data Map (AZII)								
Addr.	(Bytes)	Name of Field	Description						
0-1	2	Temp High Alarm	MSB at low address						
2-3	2	Temp Low Alarm	MSB at low address						
4-5	2	Temp High Warning	MSB at low address						
6-7	2	Temp Low Warning	MSB at low address						
8-9	2	Voltage High Alarm	MSB at low address						
10-11	2	Voltage Low Alarm	MSB at low address						
12-13	2	Voltage High Warning	MSB at low address						
14-15	2	Voltage Low Warning	MSB at low address						
16-17	2	Bias High Alarm	MSB at low address						
18-19	2	Bias Low Alarm	MSB at low address						
20-21	2	Bias High Warning	MSB at low address						
22-23	2	Bias Low Warning	MSB at low address						
24-25	2	TX Power High Alarm	MSB at low address						
26-27	2	TX Power Low Alarm	MSB at low address						
28-29	2	TX Power High Warning	MSB at low address						
30-31	2	TX Power Low Warning	MSB at low address						
32-33	2	RX Power High Alarm	MSB at low address						
34-35	2	RX Power Low Alarm	MSB at low address						
36-37	2	RX Power High Warning	MSB at low address						
38-39	2	RX Power Low Warning	MSB at low address						
40-55	16	Reserved	For future definition						
56-59	4	Rx_PWR(4)	External calibration constant						
60-63	4	Rx_PWR(3)	External calibration constant						
64-67	4	Rx_PWR(2)	External calibration constant						
68-71	4	Rx_PWR(1)	External calibration constant						
72-75	4	Rx_PWR(0)	External calibration constant						
76-77	2	Tx_I(Slope)	External calibration constant						
78-79	2	Tx_I(Offset)	External calibration constant						
80-81	2	Tx_PWR(Slope)	External calibration constant						
82-83	2	Tx_PWR(Offset)	External calibration constant						
84-85	2	T(Slope)	External calibration constant						
86-87	2	T(Offset)	External calibration constant						
88-89	2	V(Slope)	External calibration constant						
90-91	2	V(Offset)	External calibration constant						
92-94	3	Reserved							
95	1	Checksum	Low order 8 bits of sum from 0-94						
96	1	Temperature MSB	Internal temperature AD values						
97	1	Temperature LSB							
	1	· · · · · · · · · · · · · · · · · · ·	I .						

98	1	Vcc MSB	Internally measured supply voltage AD values
99	1	Vcc LSB	
100	1	TX Bias MSB	TX bias current AD values
101	1	TX Bias LSB	
102	1	TX Power MSB	Measured TX output power AD values
103	1	TX Power LSB	
104	1	RX Power MSB	Measured RX input power AD values
105	1	RX Power LSB	
106-109	4	Reserved	For future definition
110-7		TX Disable State	Digital state of Tx disable Pin
			Writing "1" disables laser, this is OR'd with
110-6		Soft TX Disable Control	Tx_Dissable pin
110-5		RS(1) State	Digital state of input pin RS(1) per SFF-8431
110-4		Rate Select State	Digital State of Rate Select Pin RS(0)
110-3		Soft Rate Select Control	
110-2		TX Fault State	Digital state
110-1		LOS State	Digital state
110-0		Data Ready State	Digital state; "1" until transceiver is ready
111	1	Reserved	Reserved
112-117	8	Optional alarm & warning flag bit	Refer to SFF-8472 rev 10.1
118	1	Extended module control/status	Refer to SFF-8472 rev 10.1
119	1	unallocated	1000 10 011 0472 107 10.1
120-127	8		Vandar appoific
_	-	Vendor specific	Vendor specific
128-247	16	User/Customer EEPROM	Field writeable EEPROM
248-255	8	Vendor specific	Vendor specific

Recommended Host Board Power Supply Circuit

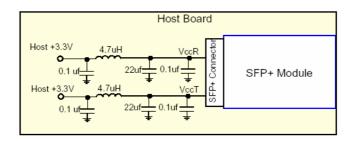


Figure 1, Recommended Host Board Power Supply Circuit

Recommended Interface Circuit

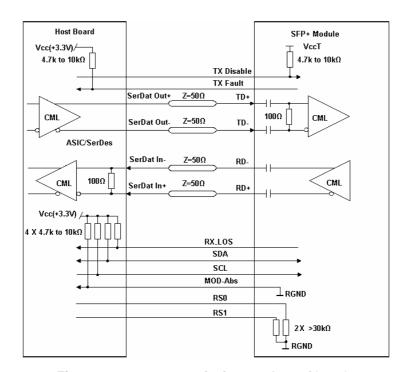


Figure 2, Recommended Interface Circuit

Pin Definitions

Figure 3 below shows the pin numbering of SFP+ electrical interface. The pin functions are described in Table 7 with some accompanying notes. SFP+ module pins make contact to the host in the order of ground, power, and followed by signal as given by Figure 4.

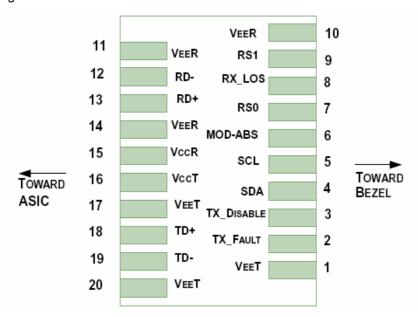


Figure 3, Host PCB Pinout Top View

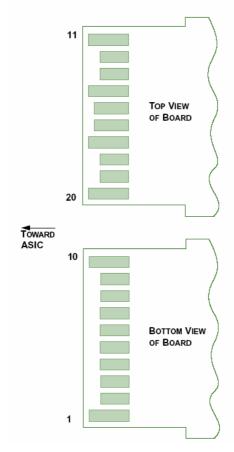


Figure 4, SFP+ module PCB Pinout Fiberxon Proprietary and Confidential, Do Not Copy or Distribute

Table 7 - Pin Function Definitions

Pin	Logic	Symbol	Name/Description	Note	
1		VeeT	Module Transmitter Ground	1	
2	LVTTL-O	TX_Fault	Module Transmitter Fault	2	
3	LVTTL-I	TX_DISABLE	Transmitter Disable; Turns off transmitter laser output	3	
4	LVTTL-I/O	SDL	2-Wire Serial Interface Data Line (MOD-DEF2)		
5	LVTTL-I/O	SCL	2-Wire Serial Interface Clock (MOD-DEF1)		
6		MOD_ABS	Module Absent, connected to VeeT or VeeR in the module	3	
			Rate Select 0, optionally controls SFP+ module receiver as the		
7	LVTTL-I	RS0	following when HIGH input data rate>4.25 Gb/s and when LOW		
			input data rate ≤4.25 Gb/s.		
			Receiver Loss of Signal Indication (in FC designated as RX_LOS,		
8	LVTTL-O	RX_LOS	in SONET designated as LOS, and in Ethernet designated as	2	
			NOT Signal Detect)		
			Rate Select 1, optionally controls SFP+ module transmitter as the		
9	LVTTL-I	RS1	following when HIGH input data rate>4.25 Gb/s and when LOW		
			input data rate ≤4.25 Gb/s.		
10		VeeR	Module Receiver Ground	1	
11		VeeR	Module Receiver Ground	1	
12	CML-O	RD-	Receiver Inverted Data Output		
13	CML-O	RD+	Receiver Non-Inverted Data Output		
14		VeeR	Module Receiver Ground	1	
15		VccR	Module Receiver 3.3 V Supply		
16		VccT	Module Transmitter 3.3 V Supply		
17		VeeT	Module Transmitter Ground	1	
18	CML-I	TD+	Transmitter Non-Inverted Data Input		
19	CML-I	TD-	Transmitter Inverted Data Input		
20		VeeT	Module Transmitter Ground	1	

Notes:

- 1. The module ground pins, VeeR and VeeT, shall be isolated from the module case.
- 2. This pin is an open collector/drain output pin and shall be pulled up with 4.7K-10Kohms to a Host_Vcc on the host board.
- 3. Shall be pulled up with 4.7K-10Kohms to VccT in the module.
- 4. This pin is an open collector/drain input pin and shall be pulled up with 4.7K-10Kohms to VccT in the module.

Mechanical Design Diagram

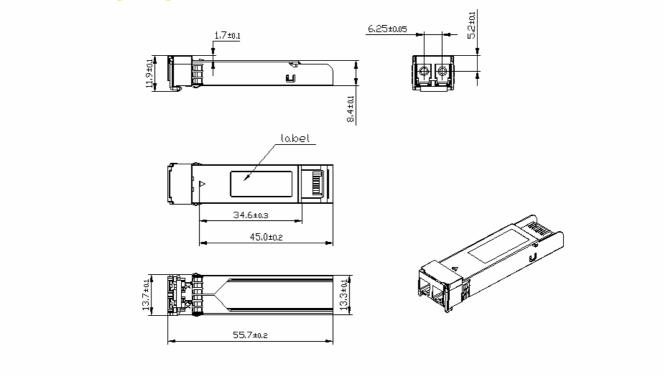
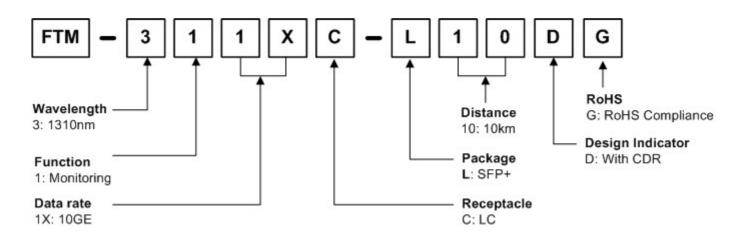



Figure 4, Mechanical Design Diagram of SFP+

Ordering information

Part No.	Product Description	
FTM-311XC-L10DG	1310nm DFB, 10Gbps, 10km, SFP+, RoHS compliance, with CDR	

Related Documents

SFF-8431 (Specifications for Enhanced 8.5 and 10 Gigabit Small Form Factor Pluggable Module "SFP+"), Revision 1.3 February 16, 2007..

SFF-8432 (Specifications for Improved Pluggable Form factor), Revision 3.6 October 25, 2006. SFF-8083 (Specifications for 0.8 mm SFP+ Card Edge Connector Dimensioning), Rev 0.9 January 2, 2007

Revision History

Revision	Initiate	Review	Approve	Subject	Release Date
Rev. 1a	Andy Xiao	Tripper Huang	Walker Wei	Initial datasheet	2007-10-11
Rev. 1b	Andy.Xiao	Tripper Huang	Alain.Shang	Update EEPROM contents	2007-11-30

© Copyright Fiberxon Inc. 2007

All Rights Reserved.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons.

The information contained in this document does not affect or change Fiberxon product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Fiberxon or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environment may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will Fiberxon be liable for damages arising directly from any use of the information contained in this document.

Contact

U.S.A. Headquarter: 5201 Great America Parkway, Suite 340 Santa Clara, CA 95054 U. S. A.

Tel: 408-562-6288 Fax: 408-562-6289

Or visit our website: http://www.fiberxon.com