455A Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

DESCRIPTION

The 455A Group is a 4-bit single-chip microcomputer designed with CMOS technology. Its CPU is that of the 4500 Series using a simple, high-speed instruction set. The computer is equipped with two 8-bit timers (each timer has one or two reload registers), a 16-bit timer for clock count, interrupts, and oscillation circuit switch function.
The various microcomputers in the 455A Group include variations of type as shown in the table below.

FEATURES

- Minimum instruction execution time \qquad $0.5 \mu \mathrm{~s}$ (at 6 MHz oscillation frequency, in high-speed through-mode)
- Supply voltage 1.8 to 5.5 V (It depends on operation source clock, oscillation frequency and operation mode)
- Timers

Timer 1 \qquad 8-bit timer with a reload register and carrier wave output auto-control function Timer 2 \qquad 8-bit timer with two reload registers and carrier wave generation circuit
Timer 3 \qquad 16-bit timer (fixed dividing frequency)

- Interrupt

4 sources

- Key-on wakeup function pins ... 24
- I/O ports ... 24
- Output ports .. 1
- LCD control circuit

Segment output .. 32
Common output4

- Voltage drop detection circuit

Reset occurrence.
Typ. $1.7 \mathrm{~V}\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
Reset release
Typ. $1.8 \mathrm{~V}\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
Skip occurrence
Typ. $2.0 \mathrm{~V}\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

- Power-on reset circuit
- Watchdog timer
- Clock generating circuit

Built-in clock (high-speed/low-speed on-chip oscillator)
Main clock (ceramic resonator)
Sub-clock (quartz-crystal oscillation)

- LED drive directly enabled (port D)

APPLICATION

Remote control transmitter

Table 1 Support Product

Part number	ROM size ($\times 10$ bits)	RAM size ($\times 4$ bits)	Package	ROM type
M3455AG8FP (Note 1)	8192 words	512 words	PLQP0052JA-A	QzROM
M3455AG8-XXXFP				
M3455AGCFP (Note 1)	12288 words			
M3455AGC-XXXFP				

[^0]
PIN CONFIGURATION

Fig 1. Pin configuration (PLQP0052JA-A type)

Fig 2. Functional block diagram

PERFORMANCE OVERVIEW

Table 2 Performance overview

Parameter				Function	
Number of basic instructions				138	
Minimum instruction execution time				$0.5 \mu \mathrm{~s}$ (Oscillation frequency 6 MHz : high-speed through mode)	
Memory sizes		ROM	M3455AG8	8192 words $\times 10$ bits	
		M3455AGC	12288 words $\times 10$ bits		
		RAM	512 words $\times 4$ bits (including LCD display RAM 32 words $\times 4$ bits)		
I/O port			D0-D5	I/O (Input is examined by skip decision.)	Six independent I/O ports. A pull-up function, a key-on wakeup function and output structure can be switched by software. Port D5 is also used as INT pin.
		D6, D7	I/O (Input is examined by skip decision.)	Two independent I/O ports; each pin is equipped with a pull-up function and a key-on wakeup function. Both functions can be switched by software. Ports D6 and D7 are also used as Xcin and Xcout, respectively.	
		P00-P03	I/O	4-bit I/O port; A pull-up function, a key-on wakeup function and output structure can be switched by software. Ports $\mathrm{P} 00-\mathrm{PO} 3$ are also used as SEG16-SEG19, respectively.	
		P10-P13	I/O	4-bit I/O port; A pull-up function, a key-on wakeup function and output structure can be switched by software. Ports P10-P13 are also used as SEG20-SEG23, respectively.	
		P20-P23	I/O	4-bit I/O port; A pull-up function, a key-on wakeup function and output structure can be switched by software. Ports $\mathrm{P} 20-\mathrm{P} 23$ are also used as SEG24-SEG27, respectively.	
		P30-P33	I/O	4-bit I/O port; A pull-up function, a key-on wakeup function and output structure can be switched by software. Ports P30-P33 are also used as SEG28-SEG31, respectively.	
		C	Output	1-bit output; Port C is also used as CNTR pin.	
Timer		Timer 1		8-bit timer with a reload register and carrier wave output auto-control function, and has an event counter.	
		Timer 2		8-bit timer with two reload registers and carrier wave generation function.	
		Timer 3		16-bit timer, fixed dividing frequency (timer for clock count)	
		Timer LC		4-bit programmable timer with a reload register (for LCD clock generating)	
Watchdog timer				16-bit timer, fixed dividing frequency (timer for monitor)	
LCD control circuit		Selective bias value		1/2, 1/3 bias	
		Selective duty value		2, 3, 4 duty	
		Common output		4	
		Segment output		32	
		Internal resistor for power supply		$2 \mathrm{r} \times 3,2 \mathrm{r} \times 2, \mathrm{r} \times 3, \mathrm{r} \times 2\left(\mathrm{r}=100 \mathrm{k} \Omega,\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right.\right.$, Typical value $)$)	
Voltage drop detection circuit		Reset occurrence		Typ. $1.7 \mathrm{~V}\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$	
		Reset release		Typ. $1.8 \mathrm{~V}\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$	
		Skip occurrence		Typ. $2.0 \mathrm{~V}\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$	
Power-on reset circuit				Built-in	
Interrupt		Source		4 sources (one for external, three for timers)	
		Nesting		1 level	
Subroutine nesting				8 levels	
Device structure				CMOS silicon gate	
Package				52-pin plastic molded LQFP (PLQP0052JA-A)	
Operating temperature range				-20 to $85{ }^{\circ} \mathrm{C}$	
Power source voltage				1.8 to 5.5 V (It depends on operation source clock, oscillation frequency and operation mode)	
Power dissipation (Typ. value)	At active mode			$\begin{aligned} & 0.3 \mathrm{~mA}\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VDD}=3.0 \mathrm{~V}, \mathrm{f}(\mathrm{XiN})=4 \mathrm{MHz}, \mathrm{f}(\mathrm{XCIN})=\text { stop, } \mathrm{f}(\mathrm{HSOCO})=\right.\text { stop, } \\ & \mathrm{f}(\mathrm{LSOCO})=\text { stop, } \mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{XIN} / 8) \end{aligned}$	
	At clock operating mode			$5 \mu \mathrm{~A}\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VDD}=3.0 \mathrm{~V}, \mathrm{f}(\mathrm{XCIN})=32 \mathrm{kHz}\right)$	
	At RAM back-up			$0.1 \mu \mathrm{~A}\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right.$, output transistor is cut-off state)	

PIN DESCRIPTION

Table 3 Pin description

Pin	Name	Input/Output	Function
Vdd	Power source	-	Connected to a plus power supply.
Vss	Power source	-	Connected to a 0 V power supply.
CNVss	CNVss	-	Connect this pin to Vss and always apply "L"(0 V) to it.
VDCE	Voltage drop detection circuit enable	Input	This pin is used to operate/stop the voltage drop detection circuit. When "H" level is input to this pin, the circuit starts operating. When "L" level is input to this pin, the circuit stops operating.
XIN	Main clock input	Input	I/O pins of the main clock generating circuit. When using a ceramic resonator,
Xout	Main clock output	Output	connect it between pins XIN and Xout. A feedback resistor is built-in between them.
Xcin	Sub clock input	Input	I/O pins of the sub-clock generating circuit. Connect a 32.768 kHz quartz-crystal
Xcout	Sub clock output	Output	oscillator between pins Xcin and Xcout. A feedback resistor is built-in between them. Xcin and Xcout pins are also used as ports D6 and D7, respectively.
$\overline{\text { RESET }}$	Reset I/O	I/O	An N-channel open-drain I/O pin for a system reset. When the SRST instruction, watchdog timer, the built-in power-on reset or the voltage drop detection circuit causes the system to be reset, the RESET pin outputs "L" level.
D0-D5	I/O port D (Input is examined by skip decision.)	I/O	Each pin of port D has an independent 1-bit wide I/O function. The output structure can be switched to N -channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port Do to D5 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Port D_{5} is also used as INT pin.
D6, D7	I/O port D (Input is examined by skip decision.)	I/O	Each pin of port D has an independent 1-bit wide I/O function. The output structure is N -channel open-drain. Port $\mathrm{D}_{6}, \mathrm{D}_{7}$ has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports D6 and D7 are also used as Xcin pin and Xcout pin, respectively.
P00-P03	I/O port P0	I/O	Port P0 serves as a 4-bit I/O port. The output structure can be switched to Nchannel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P0 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports $\mathrm{PO}_{0}-\mathrm{PO}_{3}$ are also used as $\mathrm{SEG} 16-\mathrm{SEG} 19$, respectively.
P10-P13	I/O port P1	I/O	Port P1 serves as a 4-bit I/O port. The output structure can be switched to Nchannel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P1 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports $\mathrm{P} 10-\mathrm{P} 13$ are also used as SEG20-SEG23, respectively.
P20-P23	I/O port P2	I/O	Port P2 serves as a 4-bit I/O port. The output structure can be switched to Nchannel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P2 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports $\mathrm{P}_{2} 0-\mathrm{P} 23$ are also used as SEG24-SEG27, respectively.
P30-P33	I/O port P3	I/O	Port P3 serves as a 4-bit I/O port. The output structure can be switched to Nchannel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P3 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports $\mathrm{P} 30-\mathrm{P} 33$ are also used as SEG28-SEG31, respectively.
C	Output port C	Output	1-bit output port. The output structure is CMOS. Port C is also used as CNTR pin.
$\begin{array}{\|l} \hline \mathrm{COM} 0- \\ \mathrm{COM} 3 \end{array}$	Common output	Output	LCD common output pins. Pins COMo and COM1 are used at $1 / 2$ duty, pins COMoCOM 2 are used at $1 / 3$ duty and pins $\mathrm{COM} 0-\mathrm{COM} 3$ are used at $1 / 4$ duty.
$\begin{aligned} & \hline \text { SEG0- } \\ & \text { SEG31 } \end{aligned}$	Segment output	Output	LCD segment output pins. SEG0-SEG2 pins are used as VLC3-VLC1 pins, respectively. SEG16-SEG31 pins are used as Ports P00-P03, Ports P10-P13, Ports $\mathrm{P} 20-\mathrm{P} 23$, and $\mathrm{Ports} \mathrm{P} 30-\mathrm{P} 33$, respectively.
CNTR	Timer I/O	I/O	CNTR pin has the function to input the clock for the timer 1 event counter and to output the PWM signal generated by timer 2. CNTR pin is also used as Port C.
INT	Interrupt input	Input	INT pin accepts external interrupts. They have the key-on wakeup function which can be switched by software. INT pin is also used as Port D5.
$\begin{array}{\|l\|} \hline \text { VLC3- } \\ \text { VLC1 } \end{array}$	LCD power source	-	These are the LCD power supply pins. If an internal resistor is used, connect the VLC3 pin to the VDD pin. (If brightness adjustment is required, connect via a resistor.) When using an external power supply, apply voltage such that VSS \leq VLC1 \leq VLC2 \leq VLC3 \leq Vdd. Pins VLC3 to VLC1 also function as pins SEGo to SEG2.

Table 4 Pin description

Pin	Multifunction	Pin	Multifunction	Pin	Multifunction	Pin	Multifunction
P00	SEG16	SEG16	P00	P30	SEG28	SEG28	P30
P 01	SEG17	SEG17	P 01	P31	SEG29	SEG29	P31
PO_{2}	SEG18	SEG18	P 02	P32	SEG30	SEG30	P32
PO_{3}	SEG19	SEG19	PO_{3}	P33	SEG31	SEG31	P33
P10	SEG20	SEG20	P10	D5	INT	INT	D5
P11	SEG21	SEG21	P11	D6	Xcin	Xcin	D6
P12	SEG22	SEG22	P12	D7	Xcout	Xcout	D7
P13	SEG23	SEG23	P13	C	CNTR	CNTR	C
P20	SEG24	SEG24	P20	SEGo	VLC3	VLC3	SEG0
P21	SEG25	SEG25	P21	SEG1	VLC2	VLC2	SEG1
P 22	SEG26	SEG26	P 22	SEG2	VLC1	VLC1	SEG2
P23	SEG27	SEG27	P23				

Note 1. Pins except above have just single function.
Note 2. The input/output of D5 can be used even when INT is selected.
Be careful when using inputs of both INT and D5 since the input threshold value of INT pin is different from that of port D5.
Note 3. "H" output function of port C can be used even when the CNTR (output) is used.

PORT FUNCTION

Table 5 Port function

Port	Pin	Input Output	Output structure	I/O unit	Control instructions	Control registers	Remark
Port D	D0-D4, D5/INT	I/O (6)	N-channel open-drain/ CMOS	1 bit	$\begin{aligned} & \text { SD, RD } \\ & \text { SZD, CLD } \end{aligned}$	FR1, FR2, I1, K3, PU3	Programmable pull-up, keyon wakeup and output structure selection function
	$\begin{aligned} & \hline \mathrm{D}_{6} / \mathrm{XCIN}, \\ & \mathrm{D} 7 / \mathrm{XcOUT} \end{aligned}$	I / O (2)	N -channel open-drain			RG, K3, PU3	Programmable pull-up and key-on wakeup function
Port P0	P0o/SEG16, P01/SEG17, P02/SEG18, P03/SEG19	I/O (4)	N -channel open-drain/ CMOS	4 bits	$\begin{aligned} & \text { OPOA } \\ & \text { IAPO } \end{aligned}$	$\begin{aligned} & \text { PU0, K0, } \\ & \text { FR0, C1 } \end{aligned}$	Programmable pull-up, keyon wakeup and output structure selection function
Port P1	$\begin{aligned} & \mathrm{P} 10 / \mathrm{SEG} 20, \\ & \mathrm{P} 11 / \mathrm{SEG} 21,^{\mathrm{P} 12 / \mathrm{SEG} 22,} \\ & \mathrm{P} 13 / \mathrm{SEG} 23 \end{aligned}$	I/O (4)	N-channel open-drain/ CMOS	4 bits	OP1A IAP1	$\begin{aligned} & \hline \text { PU0, K0, } \\ & \text { FR0, C2 } \end{aligned}$	Programmable pull-up, keyon wakeup and output structure selection function
Port P2	$\begin{aligned} & \mathrm{P} 20 / \mathrm{SEG} 24, \\ & \mathrm{P} 21 / \mathrm{SEG} 25, \\ & \mathrm{P} 22 / \mathrm{SEG} 26, \\ & \mathrm{P} 23 / \mathrm{SEG} 27, \end{aligned}$	I / O (4)	N-channel open-drain/ CMOS	4 bits	$\begin{aligned} & \text { OP2A } \\ & \text { IAP2 } \end{aligned}$	$\begin{aligned} & \hline \text { PU1, K1, } \\ & \text { FR3, L3 } \end{aligned}$	Programmable pull-up, keyon wakeup and output structure selection function
Port P3	$\begin{aligned} & \text { P3o/SEG } 28, \\ & \text { P31/SEG29, } \\ & \text { P32/SEG30, } \\ & \text { P33/SEG } 31 \end{aligned}$	$\begin{aligned} & \mathrm{I} / \mathrm{O} \\ & (4) \end{aligned}$	N-channel open-drain/ CMOS	4 bits	$\begin{aligned} & \text { OP3A } \\ & \text { IAP3 } \end{aligned}$	$\begin{aligned} & \text { PU2, K2, K3, } \\ & \text { FR2, C3 } \end{aligned}$	Programmable pull-up, keyon wakeup and output structure selection function
Port C	C/CNTR	Output (1)	CMOS	1 bit	$\begin{array}{\|l\|} \hline \text { RCP } \\ \text { SCP } \end{array}$	W1, W2, W4	-

CONNECTIONS OF UNUSED PINS

Table 6 Port function

Pin	Connection	Usage condition
XIN	Connect to Vss.	-
Xout	Open.	-
XCIN/D6	Connect to Vss.	Pull-up transistor is OFF. The key-on wakeup function is invalid.
Xcout/D7	Open.	The key-on wakeup function is invalid.
D0-D4	Open.	The key-on wakeup function is invalid.
	Connect to Vss.	N-channel open-drain is selected for the output structure. Pull-up transistor is OFF. The key-on wakeup function is invalid.
D5/INT	Open.	INT pin input is disabled. The key-on wakeup function is invalid.
	Connect to Vss.	N-channel open-drain is selected for the output structure. Pull-up transistor is OFF. The key-on wakeup function is invalid.
C/CNTR	Open.	CNTR input is not selected for timer 1 count source.
P00/SEG16P03/SEG19	Open.	The key-on wakeup function is invalid.
	Connect to Vss.	Segment output is not selected. N-channel open-drain is selected for the output structure. Pull-up transistor is OFF. The key-on wakeup function is invalid.
$\begin{aligned} & \text { P10/SEG20- } \\ & \text { P13/SEG23 } \end{aligned}$	Open.	The key-on wakeup function is invalid.
	Connect to Vss.	Segment output is not selected. N -channel open-drain is selected for the output structure. Pull-up transistor is OFF. The key-on wakeup function is invalid.
$\begin{aligned} & \hline \text { P20/SEG24- } \\ & \text { P23/SEG27 } \end{aligned}$	Open.	The key-on wakeup function is invalid.
	Connect to Vss.	Segment output is not selected. N-channel open-drain is selected for the output structure. Pull-up transistor is OFF. The key-on wakeup function is invalid.
$\begin{aligned} & \text { P3o/SEG28- } \\ & \text { P33/SEG31 } \end{aligned}$	Open.	The key-on wakeup function is invalid.
	Connect to Vss.	Segment output is not selected. N -channel open-drain is selected for the output structure. Pull-up transistor is OFF. The key-on wakeup function is invalid.
COM0-COM3	Open.	-
SEGo/VLC3	Open.	SEG0 pin is selected.
SEG1/VLC2	Open.	SEG1 pin is selected.
SEG2/VLC1	Open.	SEG2 pin is selected.
SEG3-SEG15	Open.	-

(Note when connecting to Vss or VdD)
Connect the unused pins to Vss using the thickest wire at the shortest distance against noise.

DEFINITION OF CLOCK AND CYCLE

- Operation source clock

The operation source clock is the source clock to operate this product. In this product, the following clocks are used.

- Clock (f(Xiv)) by the external ceramic resonator
- Clock (f(Xin)) by the external input
- Clock (f(HSOCO)) of the high-speed on-chip oscillator which is the internal oscillator
- Clock (f(XcIN)) by the external quartz-crystal oscillation
- Clock (f(LSOCO)) by the low-speed on-chip oscillator

- System clock (STCK)

The system clock is the basic clock for controlling this product. The system clock is selected by the clock control register MR shown as the table below.

- Machine cycle

The machine cycle is the standard cycle required to execute the instruction.

- Instruction clock (INSTCK)

The instruction clock is the basic clock for controlling CPU. The instruction clock (INSTCK) is a signal derived by dividing the system clock (STCK) by 3. The one instruction clock cycle generates the one machine cycle.

Table 7 Table Selection of system clock

Register MR				System clock	Operation mode
MR3	MR2	MR1	MRo		
1	1	0	0	$f($ STCK $)=\mathrm{f}(\mathrm{HSOCO}) / 8$	Internal frequency divided by 8 mode
1	0	0	0	$f($ STCK $)=\mathrm{f}(\mathrm{HSOCO}) / 4$	Internal frequency divided by 4 mode
0	1	0	0	$f($ STCK $)=\mathrm{f}(\mathrm{HSOCO}) / 2$	Internal frequency divided by 2 mode
0	0	0	0	$\mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{HSOCO})$	Internal frequency through mode
1	1	0	1	$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 8$	High-speed frequency divided by 8 mode
1	0	0	1	$f($ STCK $)=f($ XIN $) / 4$	High-speed frequency divided by 4 mode
0	1	0	1	$f($ STCK $)=f($ XIN $) / 2$	High-speed frequency divided by 2 mode
0	0	0	1	$f($ STCK $)=f($ XIN $)$	High-speed through mode
1	1	1	0	$f($ STCK $)=f($ XCIN $) / 8$	Low-speed frequency divided by 8 mode
1	0	1	0	$f($ STCK $)=f($ XCIN $) / 4$	Low-speed frequency divided by 4 mode
0	1	1	0	$f($ STCK $)=f($ XCIN $) / 2$	Low-speed frequency divided by 2 mode
0	0	1	0	$f($ STCK $)=f($ XCIN $)$	Low-speed through mode
1	1	1	1	$f($ STCK $)=\mathrm{f}($ LSOCO) $/ 8$	Internal Low-speed frequency divided by 8 mode
1	0	1	1	$f($ STCK $)=\mathrm{f}($ LSOCO)/4	Internal Low-speed frequency divided by 4 mode
0	1	1	1	$f($ STCK $)=\mathrm{f}($ LSOCO)/2	Internal Low-speed frequency divided by 2 mode
0	0	1	1	$f($ STCK $)=\mathrm{f}($ LSOCO)	Internal Low-speed through mode

[^1]
PORT BLOCK DIAGRAM

Fig 3. Port block diagram (1)

Notes 1. ---|<---- This symbol represents a parasitic diode on the port
2. Applied potential to these ports must be VDD or less.

Fig 4. Port block diagram (2)

Notes 1. --->---. This symbol represents a parasitic diode on the port.
2. Applied potential to these ports must be Vdd or less.
3. j represents bits 0, 1 .
4. k represents bits 2,3 .

Fig 5. Port block diagram (3)

Notes 1. $--\mid<--$-- This symbol represents a parasitic diode on the port.
2. Applied potential to these ports must be VDD or less.
3. j represents bits 0,1 .
4. k represents bits 2,3 .

Fig 6. Port block diagram (4)

Notes 1. --| $4---$ This symbol represents a parasitic diode on the port.
2. Applied potential to these ports must be Vod or less.
3. j represents bits 0,1 .
4. k represents bits 2,3 .

Fig 7. Port block diagram (5)

Notes 1. $--\mid<---$ This symbol represents a parasitic diode on the port.
2. Applied potential to these ports must be VDD or less.
3. j represents bits 0,1 .
4. k represents bits 2,3 .

Fig 8. Port block diagram (6)

Notes 1. -- -- This symbol represents a parasitic diode on the port. 2. Applied potential to these ports must be Vod or less.

Fig 9. Port block diagram (7)

Fig 10. Port block diagram (8)

Notes 1: --- This symbol represents a parasitic diode on the port.
2: When 112 is 0 , "L" level is detected.
When $I 1_{2}$ is 1 , " H " level is detected.
3 : When 11_{2} is 0 , falling edge is detected. When 11_{2} is 1 , rising edge is detected.

Fig 11. External interrupt circuit structure

FUNCTION BLOCK OPERATIONS

CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, AND operation, OR operation, and bit manipulation.

(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.
Carry flag CY is a 1-bit flag that is set to " 1 " when there is a carry with the AMC instruction (Figure 12).
It is unchanged with both A n instruction and AM instruction. The value of A 0 is stored in carry flag CY with the RAR instruction (Figure 13).
Carry flag CY can be set to " 1 " with the SC instruction and cleared to " 0 " with the RC instruction.

(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A.
Register E is an 8 -bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 14).
Register E is undefined after system is released from reset and returned from the power down mode. Accordingly, set the initial value.

(4) Register D

Register D is a 3-bit register.
It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p , BLA p , or BMLA p instruction is executed (Figure 15).
Also, when the TABP p instruction is executed at UPTF flag $=$ " 1 ", the high-order 2 bits of ROM reference data is stored to the low-order 2 bits of register D , the high-order 1 bit of register D is " 0 ".
When the TABP p instruction is executed at UPTF flag $=$ " 0 ", the contents of register D remains unchanged. The UPTF flag is set to " 1 " with the SUPT instruction and cleared to " 0 " with the RUPT instruction
The initial value of UPTF flag is " 0 ".
Register D is undefined after system is released from reset and returned from the power down mode. Accordingly, set the initial value.

Fig 12. AMC instruction execution example

Fig 13. RAR instruction execution example

Fig 14. Registers A, B and register E

Flag UPTF $=1$;
High-order 2 bits of reference data is transferred to the low-order 2 bits of register D.
0 " is stored to the high-order 1 bit of register D .
Flag UPTF $=0$;
Data is not transferred to register D.
Fig 15. TABP p instruction execution example

(5) Stack registers (SKs) and stack pointer (SP)

Stack registers are 14-bit registers.
Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- branching to an interrupt service routine (referred to as an interrupt service routine),
- performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together. The contents of registers SKs are destroyed when 8 levels are exceeded.
The register SK nesting level is pointed automatically by 3-bit stack pointer (SP). The contents of the stack pointer (SP) can be transferred to register A with the TASP instruction.
Figure 16 shows the stack registers (SKs) structure.
Figure 17 shows the example of operation at subroutine call.

(6) Interrupt stack register (SDP)

Interrupt stack register (SDP) is a 1 -stage register. When an interrupt occurs, this register (SDP) is used to temporarily store the contents of data pointer, carry flag, skip flag, register A, and register B just before an interrupt until returning to the original routine.
Unlike the stack registers (SKs), this register (SDP) is not used when executing the subroutine call instruction and the table reference instruction.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt occurs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained.

Stack pointer (SP) points "7" at reset or returning from power down mode.
It points " 0 " by executing the first BM instruction, and the contents of program counter is stored in SKo.
When the BM instruction is executed after eight stack registers are used $((S P)=7),(S P)$ $=0$ and the contents of $S K_{0}$ is destroyed.

Fig 16. Stack registers (SKs) structure

Note :Returning to the BM instruction execution address with the RT instruction, and the BM instruction becomes the NOP instruction.

Fig 17. Example of operation at subroutine call

(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.
Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCL (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 18).
Make sure that the PCH does not specify after the last page of the built-in ROM.

(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers Z, X, and Y. Register Z specifies a RAM file group, register X specifies a file, and register Y specifies a RAM digit (Figure 19).
Register Y is also used to specify the port D bit position.
When using port D , set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 20).

- Note

Register Z of data pointer is undefined after system is released from reset.
Also, registers Z, X and Y are undefined in the power down mode. After system is returned from the power down mode, set these registers.

Fig 18. Program counter (PC) structure

Fig 19. Data pointer (DP) structure

Fig 20. SD instruction execution example

PROGRAM MEMORY (ROM)

The program memory is a mask ROM. 1 word of ROM is composed of 10 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127). Table 8 shows the ROM size and pages. Figure 21 shows the ROM map of M3455AGD.
A part of page 1 (addresses 008016 to 00 FF 16) is reserved for interrupt addresses (Figure 22). When an interrupt occurs, the address (interrupt address) corresponding to each interrupt is set in the program counter, and the instruction at the interrupt address is executed. When using an interrupt service routine, write the instruction generating the branch to that routine at an interrupt address.
Page 2 (addresses 010016 to 017 F 16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1 -word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.
ROM pattern (bits 9 to 0) of all addresses can be used as data areas with the TABP p instruction.

Table 8 ROM size and pages

Part number	ROM (PROM) size $(\times 10$ bits $)$	Pages
M3455AG8	8192 words	$64(0$ to 63$)$
M3455AGC (Note 1)	12288 words	$96(0$ to 95$)$

Note1.In the initial state, data in pages 0 to 63 can be refered with the TABP instruction. Data in pages 64 to 95 can be refferd with the TABP p instruction after the SBK instruction is executed.Data in pages 0 to 63 can be referred with the TABP p instruction after the RBK instruction is executed.

ROM Code Protect Address

When selecting the protect bit write by using a serial programmer or selecting protect enabled for writing shipment by Renesas Technology corp., reading or writing from/to QzROM is disabled by a serial programmer.
As for the QzROM product in blank, the ROM code is protected by selecting the protect bit write at ROM writing with a serial programmer.
As for the QzROM product shipped after writing, whether the ROM code protect is used or not can be selected as ROM option setup ("MASK option" written in the mask file converter) when ordering.

Fig 21. ROM map of M3455AGC

Fig 22. Page 1 (addresses 008016 to 00FF16) structure

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j , RB j , and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers Z, X, and Y. Set a value to the data pointer certainly when executing an instruction to access RAM (also, set a value after system returns from power down mode).
RAM includes the area for LCD
When writing " 1 " to a bit corresponding to displayed segment, the segment is turned on.
Table 9 shows the RAM size. Figure 23 shows the RAM map.

- Note

Register Z of data pointer is undefined after system is released from reset.
Also, registers Z, X and Y are undefined in power down mode. After system is returned from the power down mode, set these registers.

Table 9 RAM size and pages

Part number	RAM size
M3455AG8	512 words $\times 4$ bits $(2048$ bits $)$
M3455AGC	

RAM 512 words $\times 4$ bits (2048 bits)

	Register Z	0									1									
	Register X	0	1	2	3	\cdots	12	13	14	15	0	1	1	2	3	\cdots	12	13	14	15
	0																			
	1																			
	2																			
	3																			
	4																			
	5																			
	6																			
	7																			
	8																0	8	16	24
	9																1	9	17	25
	10																2	10	18	26
	11																3	11	19	27
	12																4	12	20	28
	13																5	13	21	29
	14																6	14	22	30
	15																7	15	23	31

Note: The numbers in the shaded area indicate the corresponding segment output pin numbers.

Fig 23. RAM map

INTERRUPT FUNCTION

The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are satisfied.

- An interrupt activated condition is satisfied (request flag = "1")
- Interrupt enable bit is enabled ("1")
- Interrupt enable flag is enabled (INTE = " 1 ")

Table 10 shows interrupt sources. (Refer to each interrupt request flag for details of activated conditions.)

(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable. Interrupts are enabled when INTE flag is set to " 1 " with the EI instruction and disabled when INTE flag is cleared to " 0 " with the DI instruction. When any interrupt occurs, the INTE flag is automatically cleared to " 0 ," so that other interrupts are disabled until the EI instruction is executed.

(2) Interrupt enable bit

Use an interrupt enable bit of interrupt control registers V1 and V2 to select the corresponding interrupt or skip instruction.
Table 11 shows the interrupt request flag, interrupt enable bit and skip instruction.
Table 12 shows the interrupt enable bit function.

(3) Interrupt request flag

When the activated condition for each interrupt is satisfied, the corresponding interrupt request flag is set to " 1. ." Each interrupt request flag except the voltage drop detection circuit interrupt request flag is cleared to " 0 " when either;

- an interrupt occurs, or
- a skip instruction is executed.

The voltage drop detection circuit interrupt request flag cannot be cleared to " 0 " at the state that the activated condition is satisfied.
Each interrupt request flag is set when the activated condition is satisfied even if the interrupt is disabled by the INTE flag or its interrupt enable bit. Once set, the interrupt request flag retains set until a clear condition is satisfied.
Accordingly, an interrupt occurs when the interrupt disable state is released while the interrupt request flag is set.
If more than one interrupt request flag is set when the interrupt disable state is released, the interrupt priority level is as follows shown in Table 10.

Table 10 Interrupt sources

Priority level	Interrupt source		Interrupt

\hline 1\end{array} $$
\begin{array}{l}\text { Activated } \\
\text { condition } \\
\text { External 0 }\end{array}
$$ $$
\begin{array}{l}\text { Level change of } \\
\text { INT0 pin }\end{array}
$$ \quad $$
\begin{array}{c}\text { Address 0 } \\
\text { in page 1 }\end{array}
$$\right|\)

Table 11 Interrupt request flag, interrupt enable bit and skip instruction

Interrupt name	Interrupt request flag	Skip instruction	Interrupt enable bit
External 0 interrupt	EXF0	SNZ0	V10
Timer 1 interrupt	T1F	SNZT1	V12
Timer 2 interrupt	T2F	SNZT2	V13
Timer 3 interrupt	T3F	SNZT3	V20

Table 12 Interrupt enable bit function

Interrupt enable bit	Occurrence of interrupt	Skip instruction
1	Enabled	Invalid
0	Disabled	Valid

(4) Internal state during an interrupt

The internal state of the microcomputer during an interrupt is as follows (Figure 25).

- Program counter (PC)

An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically stored in the stack register (SK).

- Interrupt enable flag (INTE)

INTE flag is cleared to " 0 " so that interrupts are disabled.

- Interrupt request flag

Only the request flag for the current interrupt source is cleared to " 0 ".

- Data pointer, carry flag, skip flag, registers A and B

The contents of these registers and flags are stored automatically in the interrupt stack register (SDP).

(5) Interrupt processing

When an interrupt occurs, a program at an interrupt address is executed after branching a data store sequence to stack register. Write the branch instruction to an interrupt service routine at an interrupt address. Use the RTI instruction to return from an interrupt service routine.
Interrupt enabled by executing the EI instruction is performed after executing 1 instruction (just after the next instruction is executed). Accordingly, when the EI instruction is executed just before the RTI instruction, interrupts are enabled after returning the main routine. (Refer to Figure 24)

Fig 24. Program example of interrupt processing

Fig 25. Internal state when interrupt occurs

Fig 26. Interrupt system diagram

(6) Interrupt control registers

- Interrupt control register V1

Interrupt enable bits of external 0, timer 1 and timer 2 are assigned to register V1. Set the contents of this register through register A with the TV1A instruction. The TAV1 instruction can be used to transfer the contents of register V1 to register A .

- Interrupt control register V2

The timer 3 interrupt enable bit are assigned to register V2. Set the contents of this register through register A with the TV2A instruction. The TAV2 instruction can be used to transfer the contents of register V2 to register A.

Table 13 Interrupt control registers

Interrupt control register V1		at reset : 00002		at power down : 00002	$\begin{gathered} \text { R/W } \\ \text { TAV1/TV1A } \end{gathered}$
V13	Timer 2 interrupt enable bit	0	Interrupt disabled (SNZT2 instruction is valid)		
		1	Interrupt enabled (SNZT2 instruction is invalid)		
V12	Timer 1 interrupt enable bit	0	Interrupt disabled (SNZT1 instruction is valid)		
		1	Interrupt enabled (SNZT1 instruction is invalid)		
V11	Not used	0	This bit has no function, but read/write is enabled.		
		1			
V10	External 0 interrupt enable bit	0	Interrupt disabled (SNZO instruction is valid)		
		1	Interrupt enabled (SNZ0 instruction is invalid)		

Interrupt control register V2		at reset : 00002		at power down : 0000	$\begin{gathered} \text { R/W } \\ \text { TAV2/TV2A } \end{gathered}$
V23	Not used	0	This bit has no function, but read/write is enabled.		
		1			
V22	Not used	0	This bit has no function, but read/write is enabled.		
		1			
V21	Not used	0	This bit has no function, but read/write is enabled.		
		1			
V20	Timer 3 interrupt enable bit	0	Interrupt disabled (SNZT3 instruction is valid)		
		1	Interrupt enabled (SNZT3 instruction is invalid)		

Note 1."R" represents read enabled, and "W" represents write enabled.

(7) Interrupt sequence

Interrupts occur only when the respective INTE flag, interrupt enable bits (V10, V12, V13, V30), and interrupt request flag are set to " 1 ." The interrupt occurs two or three cycles after the cycle where all the above three conditions are satisfied.
The interrupt occurs after three machine cycles if instructions other than one-cycle instruction are executed when the conditions are satisfied (Refer to Figure 27).
When an interrupt request flag is set after its interrupt is enabled

$$
\begin{aligned}
& \text { External } 0 \\
& \text { interrupt }
\end{aligned}
$$

Timer 1
Timer 2
Timer 3
interrupt

Notes 1: The address is stacked to the last cycle.
2: This interval of cycles depends on the executed instruction at the time
when each interrupt activated condition is satisfied.
when each interrupt activated condition is satisfied.

Fig 27. Interrupt sequence

EXTERNAL INTERRUPTS

The 455A Group has the external 0 interrupt. An external interrupt request occurs when a valid waveform is input to an interrupt input pin (edge detection).
The external interrupt can be controlled with the interrupt control register I1.

Table 14 External interrupt activated conditions

Name	Input pin	Activated condition	Valid waveform selection bit
External 0 interrupt	D5/INT	When the next waveform is input to D5/INT pin - Falling waveform ("H" \rightarrow "L") - Rising waveform ("L" \rightarrow "H") - Both rising and falling waveforms	111
112			

Note 1: -- \mid---- This symbol represents a parasitic diode on the port
2: When $I 1_{2}=0(X=0$ or 1$)$ is 0 , " L " level is detected.
When 11_{2} is 1 , " H " level is detected.
3: When 11_{2} is 0 , falling edge is detected.
When $I 1_{2}$ is 1 , rising edge is detected.

Fig 28. External interrupt circuit structure

(1) External 0 interrupt request flag (EXF0)

External 0 interrupt request flag (EXF0) is set to " 1 " when a valid waveform is input to D5/INT pin.
The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 27).
The state of EXF0 flag can be examined with the skip instruction (SNZ0). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF0 flag is cleared to " 0 " when an interrupt occurs or when the next instruction is skipped with the skip instruction.

- External 0 interrupt activated condition

External 0 interrupt activated condition is satisfied when a valid waveform is input to D5/INT pin.
The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 0 interrupt is as follows.
(1) Set the bit 3 of register I1 to " 1 " for the INT pin to be in the input enabled state.
(2) Select the valid waveform with the bits 1 and 2 of register I1.
(3) Clear the EXF0 flag to " 0 " with the SNZ0 instruction.
(4) Set the NOP instruction for the case when a skip is performed with the SNZ0 instruction.
(5) Set both the external 0 interrupt enable bit (V10) and the INTE flag to " 1. ."
The external 0 interrupt is now enabled. Now when a valid waveform is input to the D5/INT pin, the EXF0 flag is set to " 1 " and the external 0 interrupt occurs.

(2) External interrupt control registers

(1) Interrupt control register I1

Register I1 controls the valid waveform for the external 0 interrupt. Set the contents of this register through register A with the TI1A instruction. The TAI1 instruction can be used to transfer the contents of register I1 to register A.

Table 15 External interrupt control register

Interrupt control register I1		at reset : 00002		at power down : state retained	R/W TAI1/TI1A
113	INT pin input control bit (Note 2)	0	INT pin input disabled		
		1	INT pin input enabled		
112	Interrupt valid waveform for INT pin/ return level selection bit (Note 2)	0	Falling waveform ("L" level of INT pin is recognized with the SNZIO instruction)/"L" level		
		1	Rising waveform ("H" level of INT pin is recognized with the SNZIO instruction)/"H" level		
111	INT pin edge detection circuit control bit	0	One-sided edge detected		
		1	Both edges detected		
110	INT pin timer 1 count start synchronous circuit selection bit	0	Timer 1 count start synchronous circuit not selected		
		1	Timer 1 count start synchronous circuit selected		

Note 1."R" represents read enabled, and "W" represents write enabled.
Note 2. When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set.

(3) Notes on interrupts

(1) Bit 3 of register I1

When the input of the INT pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.

- Depending on the input state of the $\mathrm{D} 5 / \mathrm{INT}$ pin, the external 0 interrupt request flag (EXFO) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to " 0 " (refer to (1) in Figure 29.) and then, change the bit 3 of register I1.
In addition, execute the SNZ0 instruction to clear the EXF0 flag to " 0 " after executing at least one instruction (refer to (2) in Figure 29.).
Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to (3) in Figure 29.).

:	
LA 4	; (x××02)
TV1A	; The SNZO instruction is valid (1)
LA 8	; (1×××2)
TI1A	; Control of INT pin input is changed
NOP	.. (2)
SNZO	; The SNZO instruction is executed (EXFO flag cleared)
NOP	.. (3)
x : these bits are not used here.	

Fig 29. External 0 interrupt program example-1
(2) Bit 3 of register I1

When the bit 3 of register I1 is cleared to " 0 ", the power down mode is selected and the input of INT pin is disabled, be careful about the following notes.

- When the INT pin input is disabled (register I13 = " 0 "), set the key-on wakeup of INT pin to be invalid (register K20 $=$ " 0 ") before system enters to power down mode. (refer to (1) in Figure 30.).

Fig 30. External 0 interrupt program example-2
(3) Bit 2 of register I1

When the interrupt valid waveform of the INT pin is changed with the bit 2 of register I1 in software, be careful about the following notes.

- Depending on the input state of the D5/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to " 0 " (refer to (1) in Figure 31.) and then, change the bit 2 of register I1 is changed.
In addition, execute the SNZ0 instruction to clear the EXF0 flag to " 0 " after executing at least one instruction (refer to (2) in Figure 31.).
Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to (3) in Figure 31.).

Fig 31. External 0 interrupt program example-3

TIMERS

The 455A Group has the following timers.

- Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n . When it underflows (count to $\mathrm{n}+1$), a timer interrupt request flag is set to " 1 ," new data is loaded from the reload register, and count continues (auto-reload function).

- Fixed dividing frequency timer The fixed dividing frequency timer has the fixed frequency dividing ratio (n). An interrupt request flag is set to " 1 " after every n count of a count pulse.

Fig 32. Auto-reload function

The 455A Group timer consists of the following circuits.

- Prescaler : 8-bit programmable timer
- Timer 1:8-bit programmable timer
- Timer $2: 8$-bit programmable timer
- Timer $3: 16$-bit fixed frequency timer
- Timer LC : 4-bit programmable timer
- Watchdog timer: 16 -bit fixed frequency timer
(Timers 1, 2 and 3 have the interrupt function, respectively)

Prescaler, timer 1, timer 2, timer 3 and timer LC can be controlled with the timer control registers PA and W1 to W5. The watchdog timer is a free counter which is not controlled with the control register.
Each function is described below.

Table 16 Function related timers

Circuit	Structure	Count source	Frequency dividing ratio	Use of output signal	Control register
Prescaler	8-bit programmable binary down counter	- Instruction clock (INSTCK)	1 to 256	- Timer 1 count source - Timer 2 count source - Timer 3 count source	PA
Timer 1	8-bit programmable binary down counter (link to INT input) (carrier wave output autocontrol function)	- PWM signal (PWMOUT) - Prescaler output (ORCLK) - Timer 3 underflow (T3UDF) - CNTR input	1 to 256	- CNTR output control - Timer 1 interrupt	$\begin{aligned} & \mathrm{W} 1 \\ & \mathrm{~W} 4 \end{aligned}$
Timer 2	8-bit programmable binary down counter (with carrier wave generation function)	- Xin input - Prescaler output divided by 2 (ORCLK/2)	1 to 256	- Timer 1 count source - CNTR output - Timer 2 interrupt	$\begin{aligned} & \hline \text { W2 } \\ & \text { W4 } \end{aligned}$
Timer 3	16-bit fixed dividing frequency	- Xcin input - Prescaler output (ORCLK) - High-speed on-chip oscillator (f(HSOCO)) - Low-speed on-chip oscillator (f(LSOCO))	$\begin{gathered} \hline 512 \\ 1024 \\ 2048 \\ 4096 \\ 8192 \\ 16384 \\ 32768 \\ 65536 \end{gathered}$	- Timer 1 count source - Timer LC count source - Timer 3 interrupt	$\begin{aligned} & \hline \text { W3 } \\ & \text { W5 } \end{aligned}$
Timer LC	4-bit programmable binary down counter	- Bit 4 of timer 3 (T34) - System clock (STCK)	1 to 16	- LCD clock	W4
Watchdog timer	16-bit fixed dividing frequency	- Instruction clock (INSTCK)	65536	- System reset (counting twice) - Decision of flag WDF1	-

Fig 33. Timers structure (1)

- Data is set automatically from each reload register
when timer underflows (auto-reload function).

Note 1: Flag WDF1 is cleared to " 0 " and the next instruction is skipped when the WRST instruction is executed while flag WDF1 = " 1 ".
The WRST instruction is equivalent to the NOP instruction while flag WDF1 = "0".
2: Flag WEF is cleared to " 0 " and watchdog timer reset does not occur when the DWDT instruction and WRST instruction are executed continuously.
3: The WEF flag is set to " 1 " at system reset or RAM back-up mode.

Fig 34. Timers structure (2)

Table 17 Timer control registers

Timer control register PA		at reset :02		at power down :02	W
PA0	Prescaler control bit	0	Stop (state retained)		

Timer control register W1		at reset : 00002			at power down : state retained	R/W TAW1/TW1A
W13	Timer 1 count auto-stop circuit selection bit (Note 2)	0	Timer 1 count auto-stop circuit not selected			
		1	Timer 1 count auto-stop circuit selected			
W12	Timer 1 control bit	0	Stop (state retained)			
W12		1	Operating			
W11	Timer 1 count source selection bits (Note 3)	W11	W10	Count source		
		0	0	PWM signal (PWMOUT)		
		0	1	Prescaler output (ORCLK)		
W10			0	Timer 3 underflow signal (T3UDF)		
		1	1	CNTR input		

Timer control register W2		at reset : 00002		at power down : 00002	R/W TAW2/TW2A
W23	CNTR pin function control bit	0	CNTR pin output invalid		
		1	CNTR pin output valid		
W22	PWM signal "H" interval expansion function control bit	0	PWM signal "H" interval expansion function invalid		
		1	PWM signal "H" interval expansion function valid		
W21	Timer 2 control bit	0	Stop (state retained)		
		1	Operating		
W20	Timer 2 count source selection bit	0	XIN input		
		1	Prescaler output (ORCLK)/2		

Timer control register W3		at reset : 00002		at power down : state retained	R/W TAW3/TW3A
W33	Timer 3 control bit	0 Stop	Stop (initial state)		
		1 Oper	Operating		
W32	Timer 3 count value selection bits	W32 W31 W30	Count value		
		000	Underflow every 512 count		
		001	Underflow every 1024 count		
		010	Underflow every 2048 count		
W31		011	Underflow every 4096 count		
		100	Underflow every 8192 count		
W30		101	Underflow every 16384 count		
		110	Underflow every 32768 count		
		111	Underflow every 65536 count		

Timer control register W4		at reset : 00002		at power down : state retained	R/W TAW4/TW4A
W43	Timer LC control bit	0	Stop (state retained)		
		1	Operating		
W42	Timer LC count source selection bit	0	Bit 4 (T34) of timer 3		
		1	System clock (STCK)		
W41	CNTR pin output auto-control circuit selection bit	0	CNTR output auto-control circuit not selected		
		1	CNTR output auto-control circuit selected		
W4o	CNTR pin input count edge selection bit	0	Falling edge		
		1	Rising edge		

Note 1. "R" represents read enabled, and "W" represents write enabled.
Note 2. This function is valid only when the timer 1 control start synchronous circuit is selected ($110=$ " 1 ").
Note 3. Port C output is invalid when CNTR input is selected for the timer 1 count source.

Timer control register W5		at reset: 00002		at power down : state retained	R/W TAW5/TW5A
W53	Not used	This bit has no function, but read/write is enabled.			
		This bit has no function, but read/write is enabled.			
W52	Not used	This bit has no function, but read/write is enabled.			
		This bit has no function, but read/write is enabled.			
W51	Timer 3 count source selection bits	W51W52	Count so		
		00	XCIN inp		
W50		01	ORCLK input		
		10	Low-speed on-chip oscillator		
		11	High-speed on-chip oscillator		

(1) Timer control registers

- Timer control register PA

Register PA controls the count operation of prescaler. Set the contents of this register through register A with the TPAA instruction.

- Timer control register W1

Register W1 controls the count operation and count source of timer 1, and timer 1 count auto-stop circuit. Set the contents of this register through register A with the TW1A instruction. The TAW1 instruction can be used to transfer the contents of register W1 to register A.

- Timer control register W2

Register W2 controls the count operation and count source of timer 2, CNTR pin output, and extension function of PWM signal "H" interval. Set the contents of this register through register A with the TW2A instruction. The TAW2 instruction can be used to transfer the contents of register W 2 to register A.

- Timer control register W3

Register W3 controls the count operation and count value of timer 3. Set the contents of this register through register A with the TW3A instruction. The TAW3 instruction can be used to transfer the contents of register W3 to register A.

- Timer control register W4

Register W4 controls the input count edge of CNTR pin, CNTR1 pin output auto-control circuit. Set the contents of this register through register A with the TW4A instruction. The TAW4 instruction can be used to transfer the contents of register W 4 to register A .

- Timer control register W5

Register W5 controls the count source of timer 3. Set the contents of this register through register A with the TW5A instruction. The TAW5A instruction can be used to transfer the contents of register W5 to register A.

(2) Prescaler

Prescaler is an 8-bit binary down counter with the prescaler reload register PRS. Data can be set simultaneously in prescaler and the reload register RPS with the TPSAB instruction. Data can be read from reload register RPS with the TABPS instruction.
Stop counting and then execute the TPSAB or TABPS instruction to read or set prescaler data.
Prescaler starts counting after the following process;
(1) set data in prescaler, and
(2) set the bit 0 of register PA to " 1. ."

When a value set in reload register RPS is n, prescaler divides the count source signal by $n+1(n=0$ to 255$)$.
Count source for prescaler can be selected the instruction clock (INSTCK).
Once count is started, when prescaler underflows (the next count pulse is input after the contents of prescaler becomes " 0 "), new data is loaded from reload register RPS, and count continues (auto-reload function).
The output signal (ORCLK) of prescaler can be used for timer 1, 2 and 3 count sources.

(3) Timer 1 (interrupt function)

Timer 1 is an 8 -bit binary down counter with a timer 1 reload register (R1). Data can be set simultaneously in timer 1 and the reload register R1 with the T1AB instruction. Data can be read from timer 1 with the TAB1 instruction.
Stop counting and then execute the T1AB or TAB1 instruction to read or set timer 1 data.
When executing the TR1AB instruction to set data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.
Timer 1 starts counting after the following process;
(1) set data in timer 1
(2) set count source by bit 0 and 1 of register W1, and
(3) set the bit 2 of register W1 to " 1 ."

When a value set in reload register R1 is n , timer 1 divides the count source signal by $\mathrm{n}+1$ ($\mathrm{n}=0$ to 255).
Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes " 0 "), the timer 1 interrupt request flag (T1F) is set to " 1 ," new data is loaded from reload register R1, and count continues (auto-reload function).
The INT pin input can be used as the start trigger for timer 1 count operation by setting " 1 " in bit 0 of interrupt control register 11.

Also, in this time, the auto-stop function by timer 1 underflow can be performed by setting the bit 3 of register W 1 to " 1 ."

(4) Timer 2 (interrupt function)

Timer 2 is an 8 -bit binary down counter with two timer 2 reload register (R2L, R2H). Data can be set simultaneously in timer 2 and the reload register R2L with the T2AB instruction. Data can be set in the reload register R 2 H with the T2HAB instruction. The contents of reload register R 2 L set with the T 2 AB instruction can be set to timer 2 again with the T2R2L instruction. Data can be read from timer 2 with the TAB2 instruction.
Stop counting and then execute the T2AB or TAB2 instruction to read or set timer 2 data.
When executing the T2HAB instruction to set data to reload register R 2 H while timer 2 is operating, avoid a timing when timer 2 underflows.
Timer 2 starts counting after the following process;
(1) set data in timer 2
(2) set count source by bit 0 of register W2, and
(3) set the bit 1 of register W2 to " 1. ."

When a value set in reload register R2L is n and R2H is m, timer 2 divides the count source signal by $\mathrm{n}+1$ or $\mathrm{m}+1$ ($\mathrm{n}=0$ to 255 , $\mathrm{m}=0$ to 255).
Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes " 0 "), the timer 2 interrupt request flag (T 2 F) is set to " 1 ," new data is loaded from reload register R2L, and count continues (autoreload function).
When bit 3 of register W2 is set to " 1 ", timer 2 reloads data from reload register R2L and R2H alternately each underflow.
Timer 2 generates the PWM signal (PWMOUT) of the "L" interval set as reload register R2L, and the "H" interval set as reload registerR2H. The PWM signal (PWMOUT) is output from CNTR pin. When bit 2 of register W2 is set to " 1 " at this time, the interval (PWM signal "H" interval) set to reload register R 2 H for the counter of timer 2 is extended for a half period of count source.
In this case, when a value set in reload register R2H is m, timer 2 divides the count source signal by $\mathrm{n}+1.5$ ($\mathrm{m}=1$ to 255).
When this function is used, set " 1 " or more to reload register R2H.
When bit 1 of register W4 is set to " 1 ", the PWM signal output to CNTR pin is switched to valid/invalid each timer 1 underflow. However, when timer 1 is stopped (bit 2 of register W1 is cleared to " 0 "), this function is canceled.
Even when bit 1 of a register W2 is cleared to " 0 " in the " H " interval of PWM signal, timer 2 does not stop until it next timer 2 underflow.
When clearing bit 1 of register W2 to " 0 " to stop timer 2 , avoid a timing when timer 2 underflows.

(5) Timer 3 (interrupt function)

Timer 3 is a 16-bit binary down counter.
Timer 3 starts counting after the following process;
(1) set count value by bits 0,1 and 2 of register W 3 ,
(2) set count source by bit 0 and 1 of register W5, and
(3) set the bit 3 of register W3 to " 1 ."

Once count is started, when timer 3 underflows (the set count value is counted), the timer 3 interrupt request flag (T3F) is set to " 1 ," and count continues.
Bit 4 of timer 3 can be used as the timer LC count source for the LCD clock generating.
When bit 3 of register W3 is cleared to " 0 ", timer 3 is initialized to "FFFF16" and count is stopped.
Timer 3 can be used as the counter for clock because it can be operated at clock operating mode (POF instruction execution). When timer 3 underflow occurs at clock operating mode, system returns from the power down state.
When operating timer 3 during clock operating mode, set 1 cycle or more of count source to the following period; from setting bit 3 of register W3 to " 1 " till executing the POF instruction.

(6) Timer LC

Timer LC is a 4-bit binary down counter with the timer LC reload register (RLC). Data can be set simultaneously in timer LC and the reload register (RLC) with the TLCA instruction. Data cannot be read from timer LC. Stop counting and then execute the TLCA instruction to set timer LC data.
Timer LC starts counting after the following process;
(1) set data in timer LC,
(2) select the count source with the bit 2 of register W4, and
(3) set the bit 3 of register W4 to " 1. ."

When a value set in reload register RLC is n, timer LC divides the count source signal by $n+1(n=0$ to 15$)$.
Once count is started, when timer LC underflows (the next count pulse is input after the contents of timer LC becomes " 0 "), new data is loaded from reload register RLC, and count continues (auto-reload function).
Timer LC underflow signal divided by 2 can be used for the LCD clock.

(7) Timer input/output pin (C/CNTR pin)

CNTR pin is used to input the timer 1 count source and output the PWM signal generated by timer 2 . The selection of CNTR output signal can be controlled by bit 3 of register W2.
When the PWM signal is output from C/CNTR pin, set " 0 " to the output latch of port C.
When the CNTR input is selected for timer 1 count source, timer 1 counts the waveform of CNTR input selected by bit 0 of register W4. Also, when the CNTR input is selected, the output of port C is invalid (high-impedance state).

(8) Timer interrupt request flags (T1F, T2F, T3F)

Each timer interrupt request flag is set to " 1 " when each timer underflows. The state of these flags can be examined with the skip instructions (SNZT1, SNZT2, SNZT3).
Use the interrupt control register V1, V2 to select an interrupt or a skip instruction.
An interrupt request flag is cleared to " 0 " when an interrupt occurs or when the next instruction is skipped with a skip instruction.

(9) Count start synchronization circuit (timer 1)

Timer 1 has the count start synchronous circuit which synchronizes the input of INT pin, and can start the timer count operation.
Timer 1 count start synchronous circuit function is selected by setting the bit 0 of register I1 to " 1 " and the control by INT pin input can be performed.
When timer 1 count start synchronous circuit is used, the count start synchronous circuit is set, the count source is input to timer by inputting valid waveform to INT pin.
The valid waveform of INT pin to set the count start synchronous circuit is the same as the external interrupt activated condition. Once set, the count start synchronous circuit is cleared by clearing the bit I10 to " 0 " or system reset.
However, when the count auto-stop circuit is selected, the count start synchronous circuit is cleared (auto-stop) at the timer 1 underflow.

(10)Count auto-stop circuit (timer 1)

Timer 1 has the count auto-stop circuit which is used to stop timer 1 automatically by the timer 1 underflow when the count start synchronous circuit is used.
The count auto-stop circuit is valid by setting the bit 3 of register W1 to " 1 ". It is cleared by the timer 1 underflow and the count source to timer 1 is stopped.
This function is valid only when the timer 1 count start synchronous circuit is selected.

(11) Precautions

- Prescaler

Stop prescaler counting and then execute the TABPS instruction to read its data.
Stop prescaler counting and then execute the TPSAB instruction to write data to prescaler.

- Timer count source

Stop timer 1, 2, 3 or LC counting to change its count source.

- Reading the count value

Stop timer 1 or 2 counting and then execute the TAB 1 or TAB2 instruction to read its data.

- Writing to the timer Stop timer 1, 2 or LC counting and then execute the T1AB, T2AB, T2R2L or TLCA instruction to write data to timer.
- Writing to reload register

In order to write a data to the reload register R1 while the timer 1 is operating, execute the TR1AB instruction except a timing of the timer 1 underflow.
In order to write a data to the reload register R 2 H while the timer 2 is operating, execute the T2HAB instruction except a timing of the timer 3 underflow.

- PWM signal

If the timer 2 count stop timing and the timer 2 underflow timing overlap during output of the PWM signal, a hazard may occur in the PWM output waveform.
When " H " interval expansion function of the PWM signal is used, set " 1 " or more to reload register R2H.
Set the port C output latch to " 0 " to output the PWM signal from C/CNTR pin.

- Timer 3

Stop timer 3 counting to change its count source.
When operating timer 3 during clock operating mode, set 1 cycle or more of count source to the following period; from setting bit 3 of register W3 to " 1 " till executing the POF instruction.

- Prescaler and timer 1 count start timing and count time when operation starts
Count starts from the first rising edge of the count source (2) in Figure 35 after prescaler and timer operations start (1) in Figure 35.
Time to first underflow (3) in Figure 35 is shorter (for up to 1 period of the count source) than time among next underflow (4) in Figure 35 by the timing to start the timer and count source operations after count starts.
When selecting CNTR input as the count source of timer 1 , timer 1 operates synchronizing with the falling edge of CNTR input.

Fig 35. Timer count start timing and count time when operation starts

- Timer 2 and Timer LC count start timing and count time when operation starts
Count starts from the rising edge (2) after the first falling edge of the count source, after Timer 2 and Timer LC operations start (1).
Time to first underflow (3) is different from time among next underflow (4) by the timing to start the timer and count source operations after count starts.

Fig 36. Timer count start timing and count time when operation starts (Timer 2 and Timer LC)

- CNTR pin output invalid (W23=0)

- CNTR pin output valid (W23=1), PWM signal "H" interval expansion function invalid (W22=0)

- CNTR pin output valid (W23=1), PWM signal "H" interval expansion function valid (W22=1) (Note)

*: "0316" is set to reload register R3L and "0216" is set to reload register R3H.

Note: When the PWM signal "H" interval expansion function is valid, set "1" or more to reload register R2H.

Fig 37. Timer 2 operation example

- CNTR output auto-control circuit operation example 1 (W23 = "1", W41 = "1")

PWM signal

Timer 1 underflow signal

CNTR output

\uparrow CNTR output start

* When the CNTR1 output auto-control circuit is selected, valid/invalid of CNTR output is repeated every timer 1 underflows.
- CNTR output auto-control circuit operation example $2(\mathrm{~W} 23=$ " 1 ", W41 = "1")

PWM signal

Timer 1 underflow signal

Register W41

CNTR output

(1) When the CNTR output auto-control function is not selected while the CNTR output is invalid,

CNTR output invalid state is retained.
(2) When the CNTR output auto-control function is not selected while the CNTR output is valid, CNTR output valid state is retained.
(3) When the timer 1 is stopped, the CNTR output auto-control function becomes invalid

Fig 38. CNTR output auto-control function by timer 1

Timer 2 count start timing (R2L = "0216", R2H = "0216", W23 = " 1 ")

Timer 2 count stop timing (R2L = "0216", R2H = "0216", W23 = " 1 ")

Notes 1: If the timer count stop timing and the timer underflow timing overlap while the CNTR pin output is valid ($\mathrm{W} 23=$ " 1 "), a hazard may occur in the PWM signal waveform.
2: When timer count is stopped during "H" interval of the PWM signal, timer is stopped after the end of the " H " output interval.

Fig 39. Timer count start/stop timing

WATCHDOG TIMER

Watchdog timer provides a method to reset the system when a program run-away occurs. Watchdog timer consists of timer WDT(16-bit binary counter), watchdog timer enable flag (WEF), and watchdog timer flags (WDF1, WDF2).
The timer WDT downcounts the instruction clocks (INSTCK) as the count source from "FFFF16" after system is released from reset.
After the count is started, when the timer WDT underflow occurs (after the count value of timer WDT reaches " 000016 ," the next count pulse is input), the WDF1 flag is set to " 1 ." If the WRST instruction is never executed until the timer WDT underflow occurs (until timer WDT counts 65534), WDF2 flag is set to " 1 ," and the RESET pin outputs "L" level to reset the microcomputer. Execute the WRST instruction at each period of 65534 machine cycle or less by software when using watchdog timer to keep the microcomputer operating normally.

When the WEF flag is set to " 1 " after system is released from reset, the watchdog timer function is valid.
When the DWDT instruction and the WRST instruction are executed continuously, the WEF flag is cleared to " 0 " and the watchdog timer function is invalid.
The WEF flag is set to " 1 " at system reset or RAM back-up mode.
The WRST instruction has the skip function. When the WRST instruction is executed while the WDF1 flag is " 1 ", the WDF1 flag is cleared to " 0 " and the next instruction is skipped.
When the WRST instruction is executed while the WDF1 flag is " 0 ", the next instruction is not skipped.
The skip function of the WRST instruction can be used even when the watchdog timer function is invalid.

(1) After system is released from reset (= after program is started), timer WDT starts count down.
(2) When timer WDT underflow occurs, WDF1 flag is set to "1."
(3) When the WRST instruction is executed while the WDF1 flag is " 1 ", WDF1 flag is cleared to " 0 ," the next instruction is skipped.
(4) When timer WDT underflow occurs while WDF1 flag is " 1 ," WDF2 flag is set to " 1 " and the watchdog reset signal is output.
(5) The output transistor of $\overline{\text { RESET }}$ pin is turned "ON" by the watchdog reset signal and system reset is executed.

Note: The number of count is equal to the number of machine cycle because the count source of watchdog timer is the instruction clock.

Fig 40. Watchdog timer function

When the watchdog timer is used, clear the WDF1 flag at the period of 65534 machine cycles or less with the WRST instruction.
When the watchdog timer is not used, execute the DWDT instruction and the WRST instruction continuously (refer to Figure 41).
The watchdog timer is not stopped with only the DWDT instruction.
The contents of WDF1 flag and timer WDT are initialized at the power down mode.
When using the watchdog timer and the power down mode, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the power down mode. Also, set the NOP instruction after the WRST instruction, for the case when a skip is performed with the WRST instruction (refer to Figure 42).

Fig 41. Program example to start/stop watchdog timer

Fig 42. Program example when using the watchdog timer

LCD FUNCTION

The 455A Group has an LCD (Liquid Crystal Display) controller/ driver. When data are set in LCD RAM and timer LC, LCD control registers (L1, L2, L3, C1, C2, C3), and timer control registers (W3, W4), the LCD controller/driver automatically reads the display data and controls the LCD display by setting duty and bias.
4 common signal output pins and 32 segment signal output pins can be used to drive the LCD. By using these pins, up to 128 pixels (when internal power, $1 / 4$ duty and $1 / 3$ bias are selected) can be controlled to display. When using the external input, set necessary pins with the LCD control register 2 and apply the proper voltage to the pins .
The LCD power input pins (VLC3-VLC1) are also used as pins SEG0-SEG2. When SEG0 is selected, the internal power (VDD) is used for the LCD power.

(1) Duty and bias

There are 3 combinations of duty and bias for displaying data on the LCD. Use bits 0 and 1 of LCD control register (L1) to select the proper display method for the LCD panel being used.

- $1 / 2$ duty, $1 / 2$ bias
- $1 / 3$ duty, $1 / 3$ bias
- 1/4 duty, $1 / 3$ bias

Table 18 Duty and maximum number of displayed pixels

Duty	Maximum number of displayed pixels	Used COM pins
$1 / 2$	64 pixels	$\mathrm{COM}, \mathrm{COM} 1$ (Note)
$1 / 3$	96 pixels	COMo-COM2 (Note)
$1 / 4$	128 pixels	COMo-COM 3

Note. Leave unused COM pins open.

Fig 43. LCD controller/driver

(2) LCD clock control

The LCD clock is determined by the timer LC setting value and timer LC count source.
After setting data to timer LC, timer LC starts counting by setting count source with bit 2 of register W4 and setting bit 3 of register W4 to "1."
Accordingly, the frequency (F) of the LCD clock is obtained by the following formula. Numbers ((1) to (3)) shown below the formula correspond to numbers in Figure 44, respectively.

- When using the system clock (STCK) as timer LC count source (W42="1")

$$
\begin{aligned}
\mathrm{F}=\operatorname{STCK} \times \frac{1}{\mathrm{LC}+1} & \times \frac{1}{2} \\
\underbrace{L_{(2)}^{2}}_{(1)} & \underbrace{}_{(3)}
\end{aligned}
$$

- When using the bit 4 of timer 3 as timer LC count source (W42="0")

$$
\begin{aligned}
\mathrm{F} & =\mathrm{T} 34 \times \frac{1}{\mathrm{LC}+1} \times \frac{1}{2} \\
& L_{(1)}
\end{aligned}
$$

[LC: 0 to 15]

The frame frequency and frame period for each display method can be obtained by the following formula:

Frame frequency $=\frac{F}{n}$

Frame frequency $=\frac{\mathrm{n}}{\mathrm{F}} \quad(\mathrm{Hz})$
F: LCD clock frequency 1/n: Duty

Fig 44. LCD clock control circuit structure

(3) LCD RAM

RAM contains areas corresponding to the liquid crystal display. When " 1 " is written to this LCD RAM, the display pixel corresponding to the bit is automatically displayed.

Z	1															
X	12				13				14				15			
$Y \quad$ bit	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0
8	SEGo	SEGo	SEG0	SEGo	SEG8	SEG8	SEG8	SEG8	SEG16	SEG16	SEG16	SEG16	SEG24	SEG24	SEG24	SEG24
9	SEG1	SEG1	SEG1	SEG1	SEG9	SEG9	SEG9	SEG9	SEG17	SEG17	SEG17	SEG17	SEG25	SEG25	SEG25	SEG25
10	SEG2	SEG2	SEG2	SEG2	SEG10	SEG10	SEG10	SEG10	SEG18	SEG18	SEG18	SEG18	SEG26	SEG26	SEG26	SEG26
11	SEG3	SEG3	SEG3	SEG3	SEG11	SEG11	SEG11	SEG11	SEG19	SEG19	SEG19	SEG19	SEG27	SEG27	SEG27	SEG27
12	SEG4	SEG4	SEG4	SEG4	SEG12	SEG12	SEG12	SEG12	SEG20	SEG20	SEG20	SEG20	SEG28	SEG28	SEG28	SEG28
13	SEG5	SEG5	SEG5	SEG5	SEG13	SEG13	SEG13	SEG13	SEG21	SEG21	SEG21	SEG21	SEG29	SEG29	SEG29	SEG29
14	SEG6	SEG6	SEG6	SEG6	SEG14	SEG14	SEG14	SEG14	SEG22	SEG22	SEG22	SEG22	SEG30	SEG30	SEG30	SEG30
15	SEG7	SEG7	SEG7	SEG7	SEG15	SEG15	SEG15	SEG15	SEG23	SEG23	SEG23	SEG23	SEG31	SEG31	SEG31	SEG31
COM	COM3	COM2	COM 1	COMo	COM_{3}	COM2	COM ${ }_{1}$	COM0	COM_{3}	COM2	COM 1	COM0	COM3	COM2	COM1	COM0

Fig 45. LCD RAM map

(4) LCD drive waveform

When " 1 " is written to a bit in the LCD RAM data, the voltage difference between common pin and segment pin which correspond to the bit automatically becomes IVLC31 and the display pixel at the cross section turns on.
When returning from reset, and in the RAM back-up mode, a display pixel turns off because every segment output pin and common output pin becomes VlC3 level.

1/2 Duty, $1 / 2$ Bias: When writing (XX10) 2 to address $\mathrm{M}(1,14,8)$ in RAM.

1/3 Duty, $1 / 3$ Bias: When writing (X101)2 to address $M(1,14,8)$ in RAM.

$1 / 4$ Duty, $1 / 3$ Bias: When writing (1010) 2 to address $M(1,14,8)$ in RAM.

Fig 46. LCD controller/driver structure

(5) LCD power supply circuit

Select the LCD power supply circuit suitable for the using LCD panel.
The LCD power supply circuit is fixed by the followings;

- The internal dividing resistor is controlled by bit 0 of register L2.
- The internal dividing resistor is selected by bit 3 of register L1.
- The bias condition is selected by bits 0 and 1 of register L1.
- Internal dividing resistor

The 4553 Group has the internal dividing resistor for LCD power supply.
When bit 0 of register L2 is set to ioî, the internal dividing resistor is valid. However, when the LCD is turned off by setting bit 2 of register L1 to ioî, the internal dividing resistor is turned off.
The same six resistor (r) is prepared for the internal dividing resistor.
According to the setting value of bit 3 of register L1 and using bias condition, the resistor is prepared as follows;

- L13 $=$ " 0 ", $1 / 3$ bias used: $2 \mathrm{r} \times 3=6 \mathrm{r}$
- L13 = " 0 ", $1 / 2$ bias used: $2 \mathrm{r} \times 2=4 \mathrm{r}$
- L13 = " 1 ", $1 / 3$ bias used: $\mathrm{r} \times 3=3 \mathrm{r}$
- L13 $=$ " 1 ", $1 / 2$ bias used: $\mathrm{r} \times 2=2 \mathrm{r}$
- SEGo/VLC3 pin

The selection of SEG0/VLC3 pin function is controlled with the bit 3 of register L2.
When the VLC3 pin function is selected, apply voltage of VLC3 < VdD to the pin externally
When the SEG0 pin function is selected, VLC3 is connected to VDD internally.

- SEG1/VLC2, SEG2/VLC1 pin

The selection of SEG1/VLC2 pin function is controlled with the bit 2 of register L2.
The selection of SEG2/VLC1 pin function is controlled with the bit 1 of register L2.
When the VlC2 pin and VlC1 pin functions are selected and the internal dividing resistor is not used, apply voltage of $0<\mathrm{VLCl}_{1}<$ VlC2 < VLC3 to these pins. Short the VlC2 pin and VlC1 pin at $1 / 2$ bias.
When the VlC2 pin and VlC1 pin functions are selected and the internal dividing resistor is used, the dividing voltage value generated internally is output from the VLC1 pin and VLC2 pin. The VLC2 pin and VLC1 pin have the same electric potential at $1 / 2$ bias.
When SEG1 and SEG2 pin functions are selected, use the internal dividing resistor (L20 = "0"). In this time, VLC2 and VLCl are connected to the generated dividing voltage.

Fig 47. LCD power supply circuit example (1/3 bias condition selected)

(6) LCD control register

- LCD control register L1

Register L1 controls duty/bias selection, LCD operation, internal dividing resistor selection. Set the contents of this register through register A with the TL1A instruction. The TAL1 instruction can be used to transfer the contents of register L1.

- LCD control register L2

Register L2 controls internal dividing resistor operation, selection of pin functions; SEG0/VLC3, SEG1/VLC2, SEG2/VLC1. Set the contents of this register through register A with the TL2A instruction.

- LCD control register L3

Register L3 controls selection of pin functions; P20/SEG24 to P23/SEG27. Set the contents of this register through register A with the TL3A instruction.

- LCD control register C1

Register C1 controls selection of pin functions; P00/SEG16 to P03/SEG19. Set the contents of this register through register A with the TC1A instruction.

- LCD control register C2

Register C2 controls selection of pin functions; P10/SEG20 to P13/SEG23. Set the contents of this register through register A with the TC2A instruction.

- LCD control register C3

Register C3 controls selection of pin functions; P30/SEG28 to $\mathrm{P} 33 / \mathrm{SEG} 31$. The contents of this register through register A with the TC3A instruction.

Table 19 LCD control registers (1)

	LCD control register L1	at reset : 00002			at power down : state retained		R/W TAL1/TL1A
L13	Internal dividing resistor for LCD power supply selection bit (Note 2)	0	$2 r \times 3,2 r \times 2$				
		1	$r \times 3, r \times 2$				
L12	LCD control bit	0	Stop (OFF)				
		1	Operating				
L11	LCD duty and bias selection bits	L11	L1				
		0	0	Not ava		Not available	
		0	1	1/2		1/2	
L10		1	0	1/3		1/3	
		1	1	1/4		1/3	

LCD control register L2		at reset : 00002		at power down : state retained	W
L23	SEG0/VLC3 pin function switch bit (Note 3)	0	SEG0		
		1	VLC3		
L22	SEG1/VLC2 pin function switch bit (Note 4)	0	SEG1		
		1	VLC2		
L21	SEG2/VLC1 pin function switch bit (Note 4)	0	SEG2		
		1	VLC1		
L20	Internal dividing resistor for LCD power	0	Internal dividing resistor valid		

LCD control register L3		at reset :11112		at power down : state retained	W
L33	P23/SEG27 pin function switch bit	0	SEG27		
		1	P23		
L32	P22/SEG26 pin function switch bit	0	SEG26		
		1	P22		
L31	P21/SEG25 pin function switch bit	0	SEG25		
		1	P21		
L30	P20/SEG24 pin function switch bit	0	SEG24		
		1	P20		

Note 1."R" represents read enabled, and "W" represents write enabled.
Note 2." r (resistor) multiplied by 3 " is used at $1 / 3$ bias, and "r multiplied by 2 " is used at $1 / 2$ bias.
Note 3.VLC3 is connected to VDD internally when SEGo pin is selected.
Note 4.Use internal dividing resistor when SEG1 and SEG2 pins are selected.

Table 20 LCD control registers (2)

LCD control register C1		at reset : 11112		at power down : state retained	$\begin{gathered} \mathrm{W} \\ \mathrm{TC} 1 \mathrm{~A} \end{gathered}$
C13	$\mathrm{P} 03 / \mathrm{SEG} 19$ pin function switch bit	0	SEG19		
		1	P03		
C12	P02/SEG18 pin function switch bit	0	SEG18		
		1	P02		
C11	P01/SEG17 pin function switch bit	0	SEG17		
		1	P01		
C10	P00/SEG16 pin function switch bit	0	SEG16		
		1	P00		

LCD control register C2		at reset : 11112		at power down : state retained	$\begin{gathered} \mathrm{W} \\ \mathrm{TC} 2 \mathrm{~A} \end{gathered}$
C23	$\mathrm{P} 13 / \mathrm{SEG} 23$ pin function switch bit	0	SEG23		
		1	P13		
C22	P12/SEG22 pin function switch bit	0	SEG22		
		1	P12		
C21	P11/SEG21 pin function switch bit	0	SEG21		
		1	P11		
C20	P10/SEG20 pin function switch bit	0	SEG20		
		1	P00		

LCD control register C3		at reset :11112		at power down : state retained	W
TC3A					

Note 1."R" represents read enabled, and "W" represents write enabled.

RESET FUNCTION

System reset is performed by the followings:

- "L" level is applied to the RESET pin externally,
- System reset instruction (SRST) is executed,
- Reset occurs by watchdog timer,
- Reset occurs by built-in power-on reset
- Reset occurs by voltage drop detection circuit

Then when "H" level is applied to $\overline{\text { RESET }}$ pin, software starts from address 0 in page 0 .

Notes 1:--|<---- This symbol represents a parasitic diode. 2: Applied potential to RESET pin must be VDD or less.

Fig 48. Structure of RESET pin and its peripherals

Table 21 Port state at reset

Name	Function	State
D0-D4	Do-D4	High-impedance (Notes 1, 2)
D5/INT	D5	High-impedance (Notes 1, 2)
XcIN/D6, Xcout/D7	XCIN, Xcout	Sub-clock input
P00/SEG16-P03/SEG19	P00-P03	High-impedance (Notes 1, 2, 3)
P10/SEG20-P13/SEG23	P10-P13	High-impedance (Notes 1, 2, 3)
P20/SEG24-P23/SEG27	P20-P23	High-impedance (Notes 1, 2, 3)
P30/SEG28-P33/SEG31	P30-P33	High-impedance (Notes 1, 2, 3)
SEG9/VLC3-SEG2/VLC1	SEG0-SEG2	VLC3 (VdD) level
SEG3-SEG15	SEG3-SEG15	VLC3 (VdD) level
COM0-COM3	COM0-COM3	VLC3 (VDD) level
C/CNTR	C/CNTR	"L" (Vss) level

Note 1. Output latch is set to "1."
Note 2. The output structure is N-channel open-drain.
Note 3. Pull-up transistor is turned OFF.

(1) $\overline{\text { RESET }}$ pin input

System reset is performed certainly by applying "L" level to RESET pin for 1 machine cycle or more when the following condition is satisfied;
the value of supply voltage is the minimum value or more of the recommended operating conditions.

Notes 1: Keep the value of supply voltage to the minimum value or more of the recommended operating conditions.
2: It depends on the internal state at reset.
Fig 49. RESET pin input waveform and reset release timing

(2) Power-on reset

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, set the time for the supply voltage to rise from 0 V to the minimum voltage of recommended operating conditions to 100μ s or less.
If the rising time exceeds $100 \mu \mathrm{~s}$, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

(3) System reset instruction (SRST)

By executing the SRST instruction, "L" level is output to $\overline{\text { RESET }}$ pin and system reset is performed.

Note: Keep the value of supply voltage to the minimum value or more of the recommended operating conditions.

Fig 50. Power-on reset operation

(4) Internal state at reset

Figure 51 and 52 shows internal state at reset (they are the same after system is released from reset). The contents of timers, registers, flags and RAM except shown in Figure 51 and 52 are undefined, so set the initial value to them.

- Program counter (PC)																
- Interrupt control register I1																
- Timer control register PA ---0000000 (Prescaler stopped)																

Fig 51. Internal state at reset (1)

Fig 52. Internal state at reset (2)

VOLTAGE DROP DETECTION CIRCUIT (WITH SKIP JUDGMENT)

The built-in voltage drop detection circuit is used to set the voltage drop detection circuit flag (VDF) or to perform system reset.

Fig 53. Voltage drop detection reset circuit

(1) Operating state of voltage drop detection circuit

The voltage drop detection circuit becomes valid by inputting " H " to the VDCE pin and it becomes invalid by inputting "L." When not executing the SVDE instruction under " H " level of the VDCE pin, the voltage drop detection circuit become invalid in power down state (RAM back-up, clock operating mode). As for this, the voltage drop detection circuit becomes valid at returning from power down, again.
When executing the SVDE instruction under " H " level of the VDCE pin, the voltage drop detection circuit becomes valid in power down state (RAM back-up, clock operating mode).
The state of executing SVDE instruction can be cleared by system reset.

Table 22 Operating state of voltage drop detection circuit

VDCE pin	SVDE instruction	at CPU operating	at power down
"L"	No execute	\times	\times
	Execute	\times	\times
"H"	No execute	O	\times
	Execute	O	O

Note. "O" indicates valid, "x" indicates invalid.

(2) Voltage drop detection circuit flag (VDF)

Voltage drop detection circuit flag (VDF) is set to " 1 " when the supply voltage goes the skip occurrence voltage (VSKIP) or less. Moreover, voltage drop detection circuit flag (VDF) is cleared to " 0 " when the supply voltage goes the skip occurrence voltage (VSKIP) or more. The state of the voltage drop detection circuit flag (VDF) can be examined with the skip instruction (SNZVD). Even when the skip instruction is executed, the voltage drop detection circuit flag is not cleared to " 0 ".
Refer to the electrical characteristics for skip occurrence voltage value.

(3) Voltage drop detection circuit reset

System reset is performed when the supply voltage goes the reset occurrence voltage (VRST-) or less.
When the supply voltage goes reset release voltage $\left(\mathrm{VRST}^{+}\right)$or more, the oscillation circuit goes to be in the operating enabled state and system reset is released .
Refer to the electrical characteristics for reset occurrence value and reset release voltage value.

Fig 54. Voltage drop detection circuit operation waveform

Fig 55. Vdd and Vrst

(4) Note on voltage drop detection circuit

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.
When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and regoes up, depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 55);
supply voltage does not fall below to VRST², and its voltage regoes up with no reset.
In such a case, please design a system which supply voltage is once reduced below to VRST and re-goes up after that.

POWER DOWN FUNCTION

The 455A Group has 2-type power down functions.
System enters into each power down state by executing the following instructions.

- Clock operating mode \qquad EPOF and POF instructions
- RAM back-up mode \qquad EPOF and POF2 instructions

When the EPOF instruction is not executed before the POF or POF2 instruction is executed, these instructions are equivalent to the NOP instruction.

(1) Clock operating mode

The following functions and states are retained.

- RAM
- Reset circuit
- Xcin-Xcout oscillation
- LCD display
- Timer 3
- Low-speed on-chip oscillator

(2) RAM back-up mode

The following functions and states are retained.

- RAM
- Reset circuit

(3) Warm start condition

The system returns from the power down state when;

- External wakeup signal is input
- Timer 3 underflow occurs
in the power down mode.
In either case, the CPU starts executing the software from address 0 in page 0 . In this case, the P flag is " 1 ."

(4) Cold start condition

The CPU starts executing the software from address 0 in page 0 when;

- external "L" level is input to $\overline{\text { RESET }}$ pin,
- execute system reset instruction (SRST instruction)
- reset by watchdog timer is performed
- reset by internal power-on reset, or
- reset by the voltage drop detection circuit is performed.

In this case, the P flag is " 0 ."

(5) Identification of the start condition

Warm start or cold start can be identified by examining the state of the power down flag (P) with the SNZP instruction.
(6) Identification of the return condition using the timer 3 interrupt request flag
When the system returns from the power down mode, the following conditions can be identified by examining the state of the timer 3 interrupt request flag (T3F):

- When T3F = " 1 ", return by timer 3 underflow (time elapse)
- When T3F = " 0 ", return by key-on wakeup (key input)

Table 23 Functions and states retained at power down mode

Function	Power down mode	
	Clock operating	RAM back-up
Program counter (PC), registers A, B, carry flag (CY), stack pointer (SP) (Note 2)	\times	\times
Contents of RAM	0	0
Interrupt control registers V1, V2	\times	\times
Interrupt control registers I1, V2	O	O
Selected oscillation circuit	O	O
Clock control register MR, RG	\bigcirc	\bigcirc
Timer 1, Timer 2 functions	(Note 3)	(Note 3)
Timer 3 function	\bigcirc	\bigcirc
Timer LC function	\bigcirc	(Note 3)
Watchdog timer function	\times (Note 4)	$\times \text { (Note }$ 4)
Timer control registers PA, W2	\times	\times
Timer control registers W1, W3, W4, W5	\bigcirc	\bigcirc
LCD display function	0	(Note 5)
LCD control registers L1 to L3, C1 to C3	\bigcirc	\bigcirc
Voltage drop detection circuit	(Note 6)	(Note 6)
Port level	(Note 7)	(Note 7)
Key-on wakeup control registers K0 to K3	0	0
Pull-up control registers PU0 to PU3	\bigcirc	\bigcirc
Port output structure control registers FR0 to FR3	0	O
External interrupt request flags (EXF0)	\times	\times
Timer interrupt request flags (T1F, T2F)	(Note 3)	(Note 3)
Timer interrupt request flag (T3F)	\bigcirc	\bigcirc
Interrupt enable flag (INTE)	\times	\times
Voltage drop detection circuit flag (VDF)	\times	\times
Watchdog timer flags (WDF1, WDF2)	\times (Note 4)	\times (Note 4)
Watchdog timer enable flag (WEF)	\times (Note 4)	\times (Note 4)

Note 1. "O" represents that the function can be retained, and " x " represents that the function is initialized.
Registers and flags other than the above are undefined at power down mode, and set an initial value after returning.
Note 2. The stack pointer (SP) points the level of the stack register and is initialized to " 7 " at power down mode.
Note 3. The state of the timer is undefined.
Note 4. Initialize the WDF1 flag with the WRST instruction, and then go into the power down state.
Note 5. LCD is turned off.
Note 6. When the SVDE instruction is executed, this function is valid at power down.
Note 7. In the power down mode, C/CNTR pin outputs "L" level. However, when the CNTR input is selected (W11, W $10=$ " 11 "), C/CNTR pin is in an input enabled state (output = high-impedance).
Other ports retain their respective output levels.

(7) Return signal

An external wakeup signal or timer 3 interrupt request flag (T3F) is used to return from the clock operating mode.
An external wakeup signal is used to return from the RAM backup mode because the oscillation is stopped.
Table 24 shows the return condition for each return source.

(8) Control registers

- Key-on wakeup control register K0

Register K0 controls the ports P0 and P1 key-on wakeup function. Set the contents of this register through register A with the TK0A instruction. In addition, the TAK0 instruction can be used to transfer the contents of register K0 to register A.

- Key-on wakeup control register K1

Register K1 controls the port P2 key-on wakeup function. Set the contents of this register through register A with the TK1A instruction. In addition, the TAK1 instruction can be used to transfer the contents of register K1 to register A.

- Key-on wakeup control register K2

Register K2 controls the port P3 and INT pin key-on wakeup function and the selection of return condition of INT pin. Set the contents of this register through register A with the TK2A instruction. In addition, the TAK2 instruction can be used to transfer the contents of register K2 to register A.

- Key-on wakeup control register K3

Register K3 controls the port D0 to D7 pin key-on wakeup function. Set the contents of this register through register A with the TK3A instruction. In addition, the TAK3 instruction can be used to transfer the contents of register K3 to register A.

- Pull-up control register PU0

Register PU0 controls the ON/OFF of the port P0 and P1 pullup transistor. Set the contents of this register through register A with the TPU0A instruction. In addition, the TAPU0 instruction can be used to transfer the contents of register PU0 to register A.

- Pull-up control register PU1

Register PU1 controls the ON/OFF of the port P2 pull-up transistor. Set the contents of this register through register A with the TPU1A instruction. In addition, the TAPU1 instruction can be used to transfer the contents of register PU1 to register A .

- Pull-up control register PU2

Register PU2 controls the ON/OFF of the ports P3 pull-up transistor. Set the contents of this register through register A with the TPU2A instruction. In addition, the TAPU2 instruction can be used to transfer the contents of register PU2 to register A.

- Pull-up control register PU3

Register PU3 controls the ON/OFF of the ports D0 to D7 pullup transistor. Set the contents of this register through register A with the TPU3A instruction. In addition, the TAPU3 instruction can be used to transfer the contents of register PU3 to register A.

- External interrupt control register I1

Register I1 controls the input control and the selection of valid waveform/level of INT pin. Set the contents of this register through register A with the TI1A instruction. In addition, the TAI1 instruction can be used to transfer the contents of register I1 to register A.

Table 24 Return source and return condition

Return source		Return condition	Remarks
	Ports $\mathrm{P} 00-\mathrm{PO} 3$ Ports P10-P13 Ports P20-P23 Ports P30-P33 Ports Do-D7	Return by an external falling edge ("H" \rightarrow "L").	For ports P0, P1, P3 and Do to D7 the key-on wakeup function can be selected by two port unit, for port P2, it can be selected by a unit.
	INT pin	Return by an external "H" level or "L" level input, or rising edge (" L " \rightarrow " H ") or falling edge ("H" \rightarrow "L"). When the return level is input, the interrupt request flag (EXF0) is not set.	Select the return level ("L" level or "H" level) with register I1 and return condition (return by level or edge) with register K2 according to the external state before going into the power down state.
Timer 3 interrupt request flag (T3F)		Return by timer 3 underflow or by setting T3F to "1". It can be used in the clock operating mode.	Clear T3F with the SNZT3 instruction before system enters into the power down state. When system enters into the power down state while T3F is " 1 ", system returns from the state immediately because it is recognized as return condition.

Stabilizing time [a] : Microcomputer starts its operation after counting the $\mathrm{f}(\mathrm{HSOCO})$ to 1376 times.
Stabilizing time [b] : Microcomputer starts its operation after counting the f(HSOCO) to (system clock division ratio X 15) times.
Stabilizing time [c] : Microcomputer starts its operation after counting the $f($ XIN $)$ to (system clock division ratio X 171) times.
Stabilizing time [d] : Microcomputer starts its operation after counting the $f(X C I N)$ to (system clock division ratio X 171) times.
Stabilizing time [e] : Microcomputer starts its operation after counting the $\mathrm{f}(\mathrm{LSOCO})$ to (system clock division ratio X 15) times.

Notes 1. The system clock selected by the clock control registers MR and RG is retained at power down.
The oscillation stability time at return can be adjusted by setting the clock control registers MR and RG before transiting to the power down state.
2. To transmit to the clock operating mode, the EPOF and POF instructions must be executed continuously.
3. To transmit to the RAM back- up mode, the EPOF and POF2 instructions must be executed continuously.
4. After reset release, the main clock ($f(X \mathrm{XI})$), the sub-clock, and the internal clock ($\mathrm{f}(\mathrm{HSOCO}$)) are enabled.
5. To select a stopped clock as the system clock, first start the clock selected by the clock control register RG and generate the oscillation stability time by software. Then switch the system clock.

Fig 56. State transition

Fig 57. Set source and clear source of the P flag

Fig 58. Start condition identified example using the SNZP instruction

Table 25 Key-on wakeup control register

Key-on wakeup control register K0		at reset :00002		at power down : state retained	R/W
K03	Ports P12 and P13 key-on wakeup control bit	0	Key-on wakeup not used		
	Ports P10 and P11 key-on wakeup control bit	0	Key-on wakeup used		
K01	Ports P02 and P03 key-on wakeup control bit	1	Key-on wakeup used		
	Ports P00 and P01 key-on wakeup control bit	0	Key-on wakeup not used		
	1	Key-on wakeup used			

Key-on wakeup control register K1		at reset : 00002		at power down : state retained	$\begin{gathered} \text { R/W } \\ \text { TAK1/TK1A } \end{gathered}$
K13	Port P23 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K12	Port P22 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K11	Port P21 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K10	Port P2o key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		

Key-on wakeup control register K2		at reset : 00002		at power down : state retained	R/W TAK2/TK2A
K23	Ports P32 and P33 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K22	Ports P3o and P31 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K21	INT pin return condition selection bit	0	Return by level		
		1	Return by edge		
K20	INT pin key-on wakeup control bit	0	Key-on wakeup invalid		
		1	Key-on wakeup valid		

Key-on wakeup control register K3		at reset : 00002		at power down : state retained	$\begin{gathered} \text { R/W } \\ \text { TAK } / \text { TKЗA } \end{gathered}$
K33	Ports D6 and D7 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K32	Ports D4 and D5 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K31	Ports D2 and D3 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K30	Ports Do and D1 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		

Note 1. "R" represents read enabled, and "W" represents write enabled.

Table 26 Pull-up control register

Pull-up control register PU0		at reset: 00002		at power down : state retained	R/W TAPU0/TPU0A
PU03	Port P12 and P13 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU02	Port P10 and P11 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU01	Port PO_{2} and P 03 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU00	Port P00 and P01 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		

Pull-up control register PU1		at reset : 00002		at power down : state retained	$\begin{gathered} \text { R/W } \\ \text { TAPU1/TPU1A } \end{gathered}$
PU13	Port P23 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU12	Port P22 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU11	Port P21 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU10	Port P20 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		

| Pull-up control register PU2 | | at reset : 00002 | | | at power down : state retained |
| :--- | :---: | :---: | :--- | :--- | :--- | \(\left.\begin{array}{l}R/W

TAPU2/TPU2A\end{array}\right]\)

Pull-up control register PU3		at reset : 00002		at power down : state retained	$\begin{gathered} \text { R/W } \\ \text { TAPU3/TPU3A } \end{gathered}$
PU33	Port D6 and D7 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU32	Port D4 and D5 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU31	Port D2 and D3 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU30	Port Do and D1 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		

Note 1."R" represents read enabled, and "W" represents write enabled.

Table 27 Interrupt control register

Interrupt control register I1		at reset : 00002		at power down : state retained	$\begin{gathered} \text { R/W } \\ \text { TAI1/TI1A } \end{gathered}$
113	INT pin input control bit (Note 2)	0	INT pin input disabled		
		1	INT pin input enabled		
112	Interrupt valid waveform for INT pin/ return level selection bit (Note 2)	0	Falling waveform ("L" level of INT pin is recognized with the SNZIO instruction)/"L" level		
		1	Rising waveform ("H" level of INT pin is recognized with the SNZIO instruction)/"H" level		
111	INT pin edge detection circuit control bit	0	One-sided edge detected		
		1	Both edges detected		
110	INT pin timer 1 count start synchronous circuit selection bit	0	Timer 1 count start synchronous circuit not selected		
		1	Timer 1 count start synchronous circuit selected		

Note 1. "R" represents read enabled, and "W" represents write enabled.
Note 2. When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set.

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- High-speed on-chip oscillator
- Ceramic resonator
- Low-speed on-chip oscillator
- Quartz-crystal oscillation circuit
- Frequency divider
- Internal clock generating circuit

The system clock and the instruction clock are generated as the source clock for operation by these circuits.
Figure 59 shows the structure of the clock control circuit.
The 455A Group operates by the high-speed on-chip oscillator clock ($\mathrm{f}(\mathrm{HSOCO})$) which is the internal oscillator after system is released from reset.
The quartz-crystal oscillator can be used for sub-clock (f(XCIN)).

Fig 59. Clock control circuit structure

(1) High-speed on-chip oscillator operation

After system is released from reset, the MCU starts operation by the clock output from the high-speed on-chip oscillator which is the internal oscillator.
The clock frequency of the high-speed on-chip oscillator depends on the supply voltage and the operation temperature range.
Be careful that variable frequencies when designing application products.

(2) Main clock generating circuit ($f($ XiN))

After reset release, the ceramic oscillation is valid for the main clock. Connect the ceramic oscillator and the external circuit to pins Xin and Xout at the shortest distance (Figure 61). A feedback resistor is built in between pins XIN and Xout.
If the main clock is not used, connect the Xin pin to Vss and leave the Xout pin open.

(3) Low-speed on-chip oscillator operation

After system is released from reset, the low-speed on-chip oscillator turns invalid which is the internal oscillator.
Oscillator operation/stopping and the control of system clock selection are operated by the register RG and MR.
The clock frequency of the low-speed on-chip oscillator depends on the supply voltage and the operation temperature range. Be careful that variable frequencies when designing application products.

Fig 60. Handling of XIN and Xout when operating onchip oscillator

Note: Externally connect a damping resistor Rd depending on the oscillation frequency. (A feedback resistor is built-in.) Use the resonator manufacturer's recommended value because constants such as capacitance depend on the resonator.

Fig 61. Ceramic resonator external circuit

(4) External clock

When the external clock signal is used as the main clock (f (XIN)), connect the Xin pin to the clock source and leave Xout pin open (Figure 62).
Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to the recommended operating condition). Also, note that the power down mode (POF and POF2 instructions) cannot be used when using the external clock.

(5) Sub-clock generating circuit $f(X \operatorname{Cln})$

Sub-clock signal $\mathrm{f}(\mathrm{XCIN})$ is obtained by externally connecting a quartz-crystal oscillator. Connect this external circuit and a quartz-crystal oscillator to pins Xcin and Xcout at the shortest distance. A feedback resistor is built in between pins Xcin and Xcout (Figure 63). Xcin pin and Xcout pin are also used as ports D6 and D7, respectively. The sub-clock oscillation circuit is invalid and the function of ports D6 and D7 are valid by setting bit 2 of register RG to " 1 ".
When sub-clock, ports D6 and D7 are not used, connect Xcin/D6 to Vss and leave Xcout/D7 open.

Fig 62. External clock input circuit

Note: Externally connect a damping resistor Rd depending on the oscillation frequency. (A feedback resistor is built-in.)
Use the quartz-crystal manufacturer's
recommended value because constants such as capacitance depend on the resonator.

Fig 63. External quarts-crystal circuit

(6) Clock control register MR

Register MR controls system clock and operation mode (frequency division of system clock). Set the contents of this register through register A with the TMRA instruction. In addition, the TAMR instruction can be used to transfer the contents of register MR to register A.

(7) Clock control register RG

Register RG controls the start/stop of each oscillation circuit. Set the contents of this register through register A with the TRGA instruction.

Table 28 Clock control registers

Clock control register MR		at reset : 11002			at power down : state retained	R/W TAMR/TMRA
MR3	Operation mode selection bits	MR3	MR2		Operation mode	
		0	0	Through m		
MR2		0	1	Frequency	2 mode	
		1	0	Frequency	4 mode	
		1	1	Frequency	8 mode	
MR1	System clock selection bits (Note 2)	MR1	MRo		System clock	
		0	0	f(HSOCO)		
MRo		0	1	f (Xin)		
		1	0	$f($ XCIN $)$		
		1	1	f(LSOCO)		

Clock control register RG		at reset : 10002		at power down : state retained	W
TRGA					

Note 1. R" represents read enabled, and "W" represents write enabled.
Note 2. The stopped clock cannot be selected for system clock.
Note 3. The oscillation circuit selected for system clock cannot be stopped.

QzROM Writing Mode

In the QzROM writing mode, the user ROM area can be rewritten while the microcomputer is mounted on-board by using a serial pro-grammer which is applicable for this microcomputer. Table 29 lists the pin description (QzROM writing mode) and Figure 64 shows the pin connections.
Refer to Figure 65 for examples of a connection with a serial programmer.
Contact the manufacturer of your serial programmer for serial pro-grammer. Refer to the user's manual of your serial programmer for details on how to use it.

Table 29 Pin description (QzROM writing mode)

Pin	Name	I/O	Function
Vdd, Vss	Power source, GND		Apply 2.7 to 4.7V to Vcc, and 0V to Vss.
RESET	Reset input	input	Reset input pin for active "L". Reset occurs when RESET pin is hold at an "L" level for 16 cycles or more of XIN.
XIn, Xcin	Clock input	input	Either connect an oscillator circuit or connect XIN and Xcin to Vss
Xout, Xcout	Clock output	output	and leave Xout and Xcout open.
	I/O port	I/O	Input "H" or "L" level signal or leave the pin open.
CNVss	VPP input	input	QzROM programmable power source pin.
D4	SDA input/output	I/O	Serial data I/O pin.
D3	SCLK input	input	Serial clock input pin.
D2	$\overline{\text { PGM }}$ input	input	Read/program pulse input pin.
VDCE	Voltage drop detection circuit enable	input	Input "H" or "L" level signal
$\begin{aligned} & \text { SEG } 0 / \text { VLC3 }- \text { SEG } 2 / \text { VLC1 } \\ & \text { SEG } 3-\text { SEG } 15 \\ & \text { COM } 0-\mathrm{COM} 3 \end{aligned}$	Segment output/ LCD power source/ Common output	output	Either connect to an LCD panel or leave open.
C/CNTR	$\begin{array}{\|l} \hline \text { Output port C/ } \\ \text { Timer I/O } \end{array}$	output	C/CNTR pin outputs "L" level.

Note 1. Note that the P2o/SEG24 pin is pulled down internally by the MCU during the transition period (the period when Vpp is approximately 0.5 VDD to 1.3 VDD) when the programming power supply (VPP) is applied to the CNVss pin. In addition, the P20/SEG24 pin is high inpedance when VPP is approximately 1.3 VDD or grater.

Fig 64. Pin connection diagram

Note: For the programming circuit, the wiring capacity of each signal pin must not exceed 47 pF .

Fig 65. When using programmer of Suisei Electronics System Co., LTD, connection example

LIST OF PRECAUTIONS

(1) Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. $0.1 \mu \mathrm{~F}$) between pins VdD and Vss at the shortest distance,
- equalize its wiring in width and length, and
- use relatively thick wire.

CNVSS is also used as VPP pin. Accordingly, when using this pin, connect this pin to VSS through a resistor about $5 \mathrm{k} \Omega$ (connect this resistor to CNVSS/Vpp pin as close as possible).

(2) Note on Power Source Voltage

When the power source voltage value of a microcomputer is less than the value which is indicated as the recommended operating conditions, the microcomputer does not operate normally and may perform unstable operation.
In a system where the power source voltage drops slowly when the power source voltage drops or the power supply is turned off, reset a microcomputer when the supply voltage is less than the recommended operating conditions and design a system not to cause errors to the system by this unstable operation.

(3) Register initial values 1

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

(4) Register initial values 2

The initial value of the following registers are undefined at RAM back-up. After system is returned from RAM back-up, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)

(5) Program counter

Make sure that the PCH does not specify after the last page of the built-in ROM.

(6) Stack registers (SKS)

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together.

(7) Multifunction

- The input/output of D_{5} can be used even when INT is used. Be careful when using inputs of both INT and D5 since the input threshold value of INT pin is different from that of port D5.
- "H" output function of port C can be used even when the CNTR (output) is used.

(8) Power-on reset

When the built-in power-on reset circuit is used, set the time for the supply voltage to rise from 0 V to the minimum voltage of recommended operating conditions to 100μ s or less.
If the rising time exceeds $100 \mu \mathrm{~s}$, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to $\overline{\text { RESET }}$ pin until the value of supply voltage reaches the minimum operating voltage.

(9) POF, POF2 instruction

When the POF or POF2 instruction is executed continuously after the EPOF instruction, system enters the RAM back-up state.
Note that system cannot enter the RAM back-up state when executing only the POF or POF2 instruction.
Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction and the POF/POF2 instruction continuously.

(10)D5/INT pin

(1) Bit 3 of register I1

When the input of the D5/INT pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.

- Depending on the input state of the D5/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to (1) in Figure 66.) and then, change the bit 3 of register I1.
In addition, execute the SNZ0 instruction to clear the EXF0 flag to " 0 " after executing at least one instruction (refer to (2) in Figure 66.).
Also, set the NOP instruction for the case when a skip is performed with the $\mathrm{SNZ0}$ instruction (refer to (3) in Figure 66.).

:	
LA 4	; $(x \times \times 02)$
TV1A	; The SNZ0 instruction is valid (1)
LA 8	; (1×x $\times 2$)
Tl1A	; Control of INT pin input is changed
NOP	.. (2)
SNZ0	; The SNZO instruction is executed (EXFO flag cleared)
NOP	.. (3)
x : these bits are not used here.	

Fig 66. External 0 interrupt program example-1
(2) Bit 3 of register I1

When the bit 3 of register I1 is cleared to " 0 ", the power down mode is selected and the input of INT pin is disabled, be careful about the following notes.

- When the INT pin input is disabled (register I13 = " 0 "), set the key-on wakeup of INT pin to be invalid (register K20 = "0") before system enters to the power down mode. (refer to (1) in Figure 67.).

Fig 67. External 0 interrupt program example-2
(3) Bit 2 of register I1

When the interrupt valid waveform of the D5/INT pin is changed with the bit 2 of register I1 in software, be careful about the following notes.

- Depending on the input state of the D5/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to " 0 " (refer to (1) in Figure 68.) and then, change the bit 2 of register I1 is changed.
In addition, execute the SNZ0 instruction to clear the EXF0 flag to " 0 " after executing at least one instruction (refer to (2) in Figure 68.).
Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to (3) in Figure 68.).

:	
LA 4	; $(\times \times \times 02)$
TV1A	; The SNZO instruction is valid(1)
LA 12	; $(\times 1 \times \times 2)$
Tl1A	; Interrupt valid waveform is changed
NOP	..(2)
SNZ0	; The SNZO instruction is executed (EXFO flag cleared)
NOP	..(3)
$:$	
x : these bits are not used here.	

Fig 68. External 0 interrupt program example-3

(11)Prescaler

Stop prescaler counting and then execute the TABPS instruction to read its data.
Stop prescaler counting and then execute the TPSAB instruction to write data to prescaler.

(12)Timer count source

Stop timer 1, 2 or LC counting to change its count source.

(13)Reading the count value

Stop timer 1 or 2 counting and then execute the TAB1 or TAB2 instruction to read its data.

(14)Writing to the timer

Stop timer 1, 2 or LC counting and then execute the T1AB, T2AB, T2R2L or TLCA instruction to write data to timer.

(15)Writing to reload register

In order to write a data to the reload register R 1 while the timer 1 is operating, execute the TR1AB instruction except a timing of the timer 1 underflow.
In order to write a data to the reload register R2H while the timer 2 is operating, execute the T3HAB instruction except a timing of the timer 2 underflow.

(16)PWM signal

If the timer 2 count stop timing and the timer 2 underflow timing overlap during output of the PWM signal, a hazard may occur in the PWM output waveform.
When "H" interval expansion function of the PWM signal is used, set " 1 " or more to reload register R2H.
Set the port C output latch to " 0 " to output the PWM signal from C/CNTR pin.

(17)Timer 3

Stop timer 3 counting to change its count source.
When operating timer 3 during clock operating mode, set 1 cycle or more of count source to the following period; from setting bit 3 of register W3 to " 1 " till executing the POF instruction.
(18)Prescaler, timer 1 count start timing and count time when operation starts
Count starts from the first rising edge of the count source (2) in Figure 69 after prescaler and timer operations start (1) in Figure 69.

Time to first underflow (3) in Figure 69 is shorter (for up to 1 period of the count source) than time among next underflow (4) in Figure 69 by the timing to start the timer and count source operations after count starts.
When selecting CNTR input as the count source of timer 1, timer 1 operates synchronizing with the count edge (falling edge or rising edge) of CNTR input selected by software.

Fig 69. Timer count start timing and count time when operation starts (1)

(19)Timer 2, LC count start timing and count time when operation starts

Count starts from the first edge of the count source (2) in Figure 70 after timer 2 and LC operation start (1) in Figure 70.
Time to first underflow (3) in Figure 70 is different (for up to 1 period of the count source) from time among next underflow (4) in Figure 70 by the timing to start the timer and count source operations after count starts.

Fig 70. Timer count start timing and count time when operation starts (2)

(20)Watchdog timer

- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously, and clear the WEF flag to " 0 " to stop the watchdog timer function.
- The contents of WDF1 flag and timer WDT are initialized at the power down.
- When using the watchdog timer and the power down, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the power down mode.
Also, set the NOP instruction after the WRST instruction, for the case when a skip is performed with the WRST instruction.

(21)Voltage drop detection circuit

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.
When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and regoes up (ex. battery exchange of an application product), depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 71);
supply voltage does not fall below to VRST, and its voltage regoes up with no reset.
In such a case, please design a system which supply voltage is once reduced below to VRST ${ }^{-}$and re-goes up after that.

Fig 71. Vdd and Vrst-

(22)On-chip oscillator

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.
Be careful that variable frequencies when designing application products.
Also, the oscillation stabilize wait time after system is released from reset is generated by the on-chip oscillator clock. When considering the oscillation stabilize wait time after system is released from reset, be careful that the variable frequency of the on-chip oscillator clock.

(23)External clock

Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to the recommended operating condition).
Also, note that the power-down mode (POF or POF2 instruction) cannot be used when using the external clock.

(24)QzROM

(1) Be careful not to apply overvoltage to MCU. The contents of QzROM may be overwritten because of overvoltage. Take care especially at turning on the power.
(2) As for the product shipped in blank, Renesas does not perform the writing test to user ROM area after the assembly process though the QzROM writing test is performed enough before the assembly process. Therefore, a writing error of approx. 0.1% may occur. Moreover, please note the contact of cables and foreign bodies on a socket, etc. because a writing environment may cause some writing errors.

(25)Notes On ROM Code Protect (QzROM product shipped after writing)

As for the QzROM product shipped after writing, the ROM code protect is specified according to the ROM option setup data in the mask file which is submitted at ordering.
The ROM option setup data in the mask file is " 0016 " for protect enabled or "FF16" for protect disabled.
Note that the mask file which has nothing at the ROM option data or has the data other than " 0016 " and "FF16" can not be accepted.

(26)Data Required for QzROM Writing Orders

The following are necessary when ordering a QzROM product shipped after writing:

1. QzROM Writing Confirmation Form*
2. Mark Specification Form*
3. ROM data...........Mask file

* For the QzROM writing confirmation form and the mark specification form, refer to the "Renesas Technology Corp." Homepage (http://www.renesas.com/homepage.jsp).
Note that we cannot deal with special font marking (customer's trademark etc.) in QzROM microcomputer.

NOTES ON NOISE

Countermeasures against noise are described below.
The following countermeasures are effective against noise in theory, however, it is necessary not only to take measures as follows but to evaluate before actual use.

(1) Shortest wiring length

The wiring on a printed circuit board can function as an antenna which feeds noise into the microcomputer.
The shorter the total wiring length (by mm unit), the less the possibility of noise insertion into a microcomputer.
(1) Wiring for RESET input pin

Make the length of wiring which is connected to the $\overline{\text { RESET }}$ input pin as short as possible.
Especially, connect a capacitor across the $\overline{\text { RESET }}$ input pin and the Vss pin with the shortest possible wiring.

- Reason

In order to reset a microcomputer correctly, 1 machine cycle or more of the width of a pulse input into the $\overline{\operatorname{RESET}}$ pin is required
If noise having a shorter pulse width than this is input to the $\overline{\mathrm{RESET}}$ input pin, the reset is released before the internal state of the microcomputer is completely initialized.
This may cause a program runaway.

Fig 72. Wiring for the $\overline{\text { RESET }}$ input pin
(2) Wiring for clock input/output pins

- Make the length of wiring which is connected to clock I/O pins as short as possible.
- Make the length of wiring across the grounding lead of a capacitor which is connected to an oscillator and the Vss pin of a microcomputer as short as possible.
- Separate the VSS pattern only for oscillation from other Vss patterns.

Fig 73. Wiring for clock I/O pins

- Reason

If noise enters clock I/O pins, clock waveforms may be deformed. This may cause a program failure or program runaway.
Also, if a potential difference is caused by the noise between the Vss level of a microcomputer and the Vss level of an oscillator, the correct clock will not be input in the microcomputer.
(3) Wiring to CNVss pin

Connect an approximately $5 \mathrm{k} \Omega$ resistor to the VPP pin and also to the GND pattern supplied to the Vss pin with shortest possible wiring.

- Reason

The CNVss pin is the power source input pin for the built-in QzROM. When programming in the built-in QzROM, the impedance of the CNVSS pin is low to allow the electric current for writing flow into the QzROM. Because of this, noise can enter easily. If noise enters the CNVss pin, abnormal instruction codes or data are read from the built-in QzROM, which may cause a program runaway.

Fig 74. Wiring for CNVss pin

(2) Connection of bypass capacitor across Vss line and Vdd line

Connect an approximately $0.1 \mu \mathrm{~F}$ bypass capacitor across the Vss line and the VDD line as follows:

- Connect a bypass capacitor across the Vss pin and the VdD pin at equal length.
- Connect a bypass capacitor across the Vss pin and the Vdd pin with the shortest possible wiring.
- Use lines with a larger diameter than other signal lines for Vss line and Vdd line.
- Connect the power source wiring via a bypass capacitor to the Vss pin and the Vdd pin.

Fig 75. Bypass capacitor across the Vss line and the Vdd line

(3) Oscillator concerns

Take care to prevent an oscillator that generates clocks for a microcomputer operation from being affected by other signals.
(1) Keeping oscillator away from large current signal lines Install a microcomputer (and especially an oscillator) as far as possible from signal lines where a current larger than the tolerance of current value flows.

- Reason

In the system using a microcomputer, there are signal lines for controlling motors, LEDs, and thermal heads or others. When a large current flows through those signal lines, strong noise occurs because of mutual inductance.

Fig 76. Wiring for a large current signal line
(2) Installing oscillator away from signal lines where potential levels change frequently
Install an oscillator and a connecting pattern of an oscillator away from signal lines where potential levels change frequently. Also, do not cross such signal lines over the clock lines or the signal lines which are sensitive to noise.

- Reason

Signal lines where potential levels change frequently (such as the CNTR pin signal line) may affect other lines at signal rising edge or falling edge. If such lines cross over a clock line, clock waveforms may be deformed, which causes a microcomputer failure or a program runaway.

Fig 77. Wiring to a signal line where potential levels change frequently
(3) Oscillator protection using Vss pattern

As for a two-sided printed circuit board, print a Vss pattern on the underside (soldering side) of the position (on the component side) where an oscillator is mounted.
Connect the Vss pattern to the microcomputer Vss pin with the shortest possible wiring.
Besides, separate this Vss pattern from other Vss patterns.

Fig 78. Vss pattern on the underside of an oscillator
(4) Setup for I/O ports

Setup I/O ports using hardware and software as follows:
<Hardware>

- Connect a resistor of 100Ω or more to an I/O port in series. <Software>
- As for an input port, read data several times by a program for checking whether input levels are equal or not.
- As for an output port or an I/O port, since the output data may reverse because of noise, rewrite data to its output latch at fixed periods.
- Rewrite data to pull-up control registers at fixed periods.
(5) Providing of watchdog timer function by software

If a microcomputer runs away because of noise or others, it can be detected by a software watchdog timer and the microcomputer can be reset to normal operation. This is equal to or more effective than program runaway detection by a hardware watchdog timer. The following shows an example of a watchdog timer provided by software.
In the following example, to reset a microcomputer to normal operation, the main routine detects errors of the interrupt processing routine and the interrupt processing routine detects errors of the main routine.
This example assumes that interrupt processing is repeated multiple times in a single main routine processing.
<The main routine>

- Assigns a single word of RAM to a software watchdog timer (SWDT) and writes the initial value N in the SWDT once at each execution of the main routine. The initial value N should satisfy the following condition:

$\mathrm{N}+1 \geq$

As the main routine execution cycle may change because of an interrupt processing or others, the initial value N should have a margin.

- Watches the operation of the interrupt processing routine by comparing the SWDT contents with counts of interrupt processing after the initial value N has been set.
- Detects that the interrupt processing routine has failed and determines to branch to the program initialization routine for recovery processing in the following case:
If the SWDT contents do not change after interrupt processing.
<The interrupt processing routine>
- Decrements the SWDT contents by 1 at each interrupt processing.
- Determines that the main routine operates normally when the SWDT contents are reset to the initial value N at almost fixed cycles (at the fixed interrupt processing count).
- Detects that the main routine has failed and determines to branch to the program initialization routine for recovery processing in the following case:
If the SWDT contents are not initialized to the initial value N but continued to decrement and if they reach 0 or less.

Fig 79. Watchdog timer by software

CONTROL REGISTERS

Interrupt control register V1		at reset : 00002		at power down : 00002	R/W (Note 1) TAV1/TV1A
V13	Timer 2 interrupt enable bit	0	Interrupt disabled (SNZT2 instruction is valid)		
		1	Interrupt enabled (SNZT2 instruction is invalid)		
V12	Timer 1 interrupt enable bit	0	Interrupt disabled (SNZT1 instruction is valid)		
		1	Interrupt enabled (SNZT1 instruction is invalid)		
V11	Not used	0	This bit has no function, but read/write is enabled.		
		1			
V10	External 0 interrupt enable bit	0	Interrupt disabled (SNZ0 instruction is valid)		
		1	Interrupt enabled (SNZO instruction is invalid)		

Interrupt control register V2		at reset : 00002		at power down : 0000	R/W TAV2/TV2A
V23	Not used	0	This bit has no function, but read/write is enabled.		
		1			
V22	Not used	0	This bit has no function, but read/write is enabled.		
		1			
V21	Not used	0	This bit has no function, but read/write is enabled.		
		1			
V2o	Timer 3 interrupt enable bit	0	Interrupt disabled (SNZT3 instruction is valid)		
		1	Interrupt enabled (SNZT3 instruction is invalid)		

Interrupt control register I1		at reset : 00002		at power down : state retained	$\begin{gathered} \hline \text { R/W } \\ \text { TAI1/TI1A } \end{gathered}$
113	INT pin input control bit (Note 2)	0	INT pin input disabled		
		1	INT pin input enabled		
112	Interrupt valid waveform for INT pin/ return level selection bit (Note 2)	0	Falling waveform ("L" level of INT pin is recognized with the SNZIO instruction)/"L" level		
		1	Rising waveform ("H" level of INT pin is recognized with the SNZIO instruction)/"H" level		
111	INT pin edge detection circuit control bit	0	One-sided edge detected		
		1	Both edges detected		
110	INT pin timer 1 count start synchronous circuit selection bit	0	Timer 1 count start synchronous circuit not selected		
		1	Timer 1 count start synchronous circuit selected		

Note 1. "R" represents read enabled, and "W" represents write enabled.
Note 2. When the contents of I 12 and I 13 are changed, the external interrupt request flag (EXF0) may be set.

Clock control register MR		at reset : 11002			at power down : state retained	R/W TAMR/TMRA
MR3	Operation mode selection bits	MR3	MR2		Operation mode	
		0	0	Through		
MR2		0	1	Frequency	d by 2 mode	
		1	0	Frequenc	d by 4 mode	
		1	1	Frequency	d by 8 mode	
MR1	System clock selection bits (Note 2)	MR1	MRo		System clock	
		0	0	f(HSOCO		
MRo		0	1	$f($ Xin)		
		1	0	$f($ XCIN $)$		
		1	1	f(LSOCO		

Clock control register RG		at reset : 10002		at power down : state retained	$\begin{gathered} \text { W } \\ \text { TRGA } \end{gathered}$
RG3	Low-speed on-chip oscillator (f(LSOCO)) control bit (Note 3)	0	Low-speed on-chip oscillator (f(LSOCO)) oscillation available		
		1	Low-speed on-chip oscillator (f(LSOCO)) oscillation stop		
RG2	Sub-clock (f(Xcin)) control bit (Note 3)	0	Sub-clock (f(Xcin)) oscillation available, ports D6 and D7 not selected		
		1	Sub-clock (f(Xcin)) oscillation stop, ports D6 and D7 selected		
RG1	Main-clock (f(XIN)) control bit (Note 3)	0	Main clock (f(XIN)) oscillation available		
		1	Main clock (f(XIN)) oscillation stop		
RGo	High-speed on-chip oscillator (f(HSOCO)) control bit (Note 3)	0	High-speed on-chip oscillator (f(HSOCO)) oscillation available		
		1	High-speed on-chip oscillator (f(HSOCO)) oscillation stop		

Note 1. R" represents read enabled, and "W" represents write enabled.
Note 2. The stopped clock cannot be selected for system clock.
Note 3. The oscillation circuit selected for system clock cannot be stopped.

Timer control register PA		at reset : 02		at power down :02	W TAPP
PA0	Prescaler control bit	0	Stop (state retained)		
		1	Operating		

$\left.$| Timer control register W1 | | at reset : 00002 | | | at power down : state retained |
| :--- | :--- | :---: | :--- | :--- | :--- | | R/W (Note 1) |
| :--- |
| TAW1/TW1A | \right\rvert\,

Timer control register W2		at reset:00002		at power down : 00002	R/W TAW2/TW2A
W23	CNTR pin function control bit	0	CNTR pin output invalid		
		1	CNTR pin output valid		
W22	PWM signal "H" interval expansion function control bit	0	PWM signal "H" interval expansion function invalid		
		1	PWM signal " H " interval expansion function valid		
W21	Timer 2 control bit	0	Stop (state retained)		
		1	Operating		
W20	Timer 2 count source selection bit	0	XIN input		
		1	Prescaler output (ORCLK)/2		

Timer control register W3		at reset : 00002		at power down : state retained	R/W TAW3/TW3A
W33	Timer 3 control bit	0 Stop	Stop (initial state)		
		Oper	Operating		
W32	Timer 3 count value selection bits	W32 W31 W30	Count value		
		000	Underflow every 512 count		
W31		001	Underflow every 1024 count		
		010	Underflow every 2048 count		
		011	Underflow every 4096 count		
W30		100	Underflow every 8192 count		
		101	Underflow every 16384 count		
		110	Underflow every 32768 count		
		111	Underflow every 65536 count		

Timer control register W4		at reset : 00002		at power down : state retained	R/W TAW4/TW4A
W43	Timer LC control bit	0	Stop (state retained)		
		1	Operating		
W42	Timer LC count source selection bit	0	Bit 4 (T34) of timer 3		
		1	System clock (STCK)		
W41	CNTR pin output auto-control circuit selection bit	0	CNTR output auto-control circuit not selected		
		1	CNTR output auto-control circuit selected		
W40	CNTR pin input count edge selection bit	0	Falling edge		
		1	Rising edge		

Note 1. "R" represents read enabled, and "W" represents write enabled.
Note 2. This function is valid only when the timer 1 count start synchronous circuit is selected ($110=$ " 1 ").
Note 3. Port C output is invalid when CNTR input is selected for the timer 1 count source.

Timer control register W5		at reset : 00002		at power down : state retained	R/W TAW5/TW5A
W53	Not used	0 This	This bit has no function, but read/write is enabled.		
		This bit has no function, but read/write is enabled.			
W52	Not used	This bit has no function, but read/write is enabled.			
		This bit has no function, but read/write is enabled.			
W51	Timer 3 count source selection bits	W51 W52		Count source	
		00	XCin input		
W5o		01	ORCLK in		
		10	Low-speed	oscillator	
		11	High-spee	ip oscillator	

| LCD control register L1 | | at reset $: 00002$ | | | at power down : state retained |
| :--- | :--- | :---: | :--- | :--- | :--- | \(\left.\begin{array}{c}R/W

TAL1/TL1A\end{array}\right]\)

LCD control register L2		at reset : 00002		at power down : state retained	$\begin{gathered} \hline W \\ T L 2 A \end{gathered}$
L23	SEGo/VLC3 pin function switch bit (Note 3)	SEGo			
		1	VLC3		
L22	SEG1/VLC2 pin function switch bit (Note 4)	0	SEG1		
		1	VLC2		
L21	SEG2/VLC1 pin function switch bit (Note 4)	0	SEG2		
		1	VLC1		
L20	Internal dividing resistor for LCD power supply control bit	0	Internal dividing resistor valid		
		1	Internal dividing resistor invalid		

LCD control register L3		at reset : 11112		at power down : state retained	$\begin{gathered} \hline W \\ \text { TL3A } \end{gathered}$
L33	P23/SEG27 pin function switch bit	0	SEG27		
		1	P23		
L32	P22/SEG26 pin function switch bit	0	SEG26		
		1	P22		
L31	P21/SEG25 pin function switch bit	0	SEG25		
		1	P21		
L30	P20/SEG24 pin function switch bit	0	SEG24		
		1	P20		

Note 1. "R" represents read enabled, and "W" represents write enabled.
Note 2. "r (resistor) multiplied by 3 " is used at $1 / 3$ bias, and " r multiplied by 2 " is used at $1 / 2$ bias.
Note 3. VLC3 is connected to VDD internally when SEGo pin is selected.
Note 4. Use internal dividing resistor when SEG1 and SEG2 pins are selected.

LCD control register C1		at reset : 11112		at power down : state retained	$\begin{gathered} \hline W \\ T C 1 A \end{gathered}$
C13	P03/SEG19 pin function switch bit	0	SEG19		
		1	P03		
C12	P02/SEG18 pin function switch bit	0	SEG18		
		1	P02		
C11	P01/SEG17 pin function switch bit	0	SEG17		
		1	P01		
C10	P00/SEG16 pin function switch bit	0	SEG16		
		1	P00		

LCD control register C2		at reset : 11112		at power down : state retained	$\begin{gathered} \text { W } \\ \text { TC2A } \end{gathered}$
C23	P13/SEG23 pin function switch bit	0	SEG23		
		1	P13		
C22	P12/SEG22 pin function switch bit	0	SEG22		
		1	P12		
C21	P11/SEG21 pin function switch bit	0	SEG21		
		1	P11		
C20	P10/SEG20 pin function switch bit	0	SEG20		
		1	P10		

LCD control register C3		at reset : 11112		at power down : state retained	$\begin{gathered} \mathrm{W} \\ \text { TC3A } \end{gathered}$
C33	P33/SEG31 pin function switch bit	0	SEG31		
		1	P33		
C32	P32/SEG30 pin function switch bit	0	SEG30		
		1	P32		
C31	P31/SEG29 pin function switch bit	0	SEG29		
		1	P31		
C30	P30/SEG28 pin function switch bit	0	SEG28		
		1	P30		

Note 1."R" represents read enabled, and "W" represents write enabled.

Key-on wakeup control register K0		at reset :00002		at power down : state retained	R/W
K03	Ports P12 and P13 key-on wakeup control bit	0	Key-on wakeup not used		
	1	Key-on wakeup used			
K02	Ports P10 and P11 key-on wakeup control bit	0	Key-on wakeup not used		
	1	Key-on wakeup used			
K01	Ports P02 and P03 key-on wakeup control bit	0	Key-on wakeup not used		
K00	Ports P00 and P01 key-on wakeup control bit	0	Key-on wakeup used		

Key-on wakeup control register K1		at reset : 00002		at power down : state retained	R/W
K13	Port P23 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K12	Port P22 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K11	Port P21 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K10	Port P20 key-on wakeup control bit	0	Key-on wakeup not used		

Key-on wakeup control register K2		at reset : 00002		at power down : state retained	$\begin{gathered} \text { R/W } \\ \text { TAK2/TK2A } \end{gathered}$
K23	Ports P32 and P33 key-on wakeup control bit (Note 3)	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K22	Ports P30 and P31 key-on wakeup control bit (Note 2)	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K21	INT pin return condition selection bit	0	Return by level		
		1	Return by edge		
K20	INT pin key-on wakeup control bit	0	Key-on wakeup invalid		
		1	Key-on wakeup valid		

Key-on wakeup control register K3		at reset : 00002		at power down : state retained	$\begin{gathered} \text { R/W } \\ \text { TAK3/TK3A } \end{gathered}$
K33	Ports D6 and D7 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K32	Ports D4 and D5 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K31	Ports D2 and D3 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K30	Ports D0 and D1 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		

Note 1. "R" represents read enabled, and "W" represents write enabled.
Note 2. To be invalid ($\mathrm{K} 22=$ " 0 ") key-on wakeup of ports P 30 and P 31 , set the registers K 30 and K 31 to " 0 ."
Note 3. To be invalid ($\mathrm{K} 23=$ " 0 ") key-on wakeup of ports P 32 and P 33 , set the registers K 32 and K 33 to " 0 ."

Pull-up control register PU0		at reset : 00002		at power down : state retained	R/W TAPUO/TPUOA
PU03	Port P12 and P13 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU02	Port P10 and P11 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU01	Port P02 and P 03 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU00	Port P00 and P01 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		

Pull-up control register PU1		at reset : 00002		at power down : state retained	$\begin{gathered} \text { R/W } \\ \text { TAPU1/TPU1A } \end{gathered}$
PU13	Port P23 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU12	Port P22 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU11	Port P21 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU10	Port P20 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		

Pull-up control register PU2		at reset:00002		at power down : state retained	R/W TAPU2/TPU2A
PU23	Port P33 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU22	Port P32 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU21	Port P31 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU20	Port P3o pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		

| Pull-up control register PU3 | | at reset : 00002 | | | at power down : state retained |
| :--- | :---: | :---: | :--- | :--- | :--- | \(\left.\begin{array}{r}R/W

TAPU3/TPU3A\end{array}\right]\)

Note 1. "R" represents read enabled, and "W" represents write enabled.

Port output structure control register FR0		at reset : 00002		at power down : state retained	$\begin{gathered} \text { W } \\ \text { TFROA } \end{gathered}$
FR03	Ports P12 and P13 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR02	Ports P10 and P11 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR01	Ports P02 and P03 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR00	Ports P 00 and P 01 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		

\left.| Port output structure control register FR1 | | at reset : 00002 | | at power down : state retained | W (Note 1) |
| :--- | :--- | :---: | :--- | :--- | :--- |
| TFR1A | | | | | |$\right]$

Port output structure control register FR2		at reset : 00002		at power down : state retained	W
TFR2A					

Port output structure control register FR3		at reset :00002		at power down : state retained	W
FR33	Ports P23 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR32	Ports P22 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR31	Ports P21 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR30	Ports P20 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		

Note 1. "W" represents write enabled.

INSTRUCTIONS

Each instruction is described as follows;

1. Index list of instruction function
2. Machine instructions (index by alphabet)
3. Machine instructions (index by function)
4. Instruction code table

SYMBOL

Symbol	Contents	Symbol	Contents
A	Register A (4 bits)	R2H	Timer 2 reload register (8 bits)
B	Register B (4 bits)	RLC	Timer LC reload register (4 bits)
DR	Register DR (3 bits)	PS	Prescaler
E	Register E (8 bits)	T1	Timer 1
V1	Interrupt control register V1 (4 bits)	T2	Timer 2
V2	Interrupt control register V2 (4 bits)	TLC	Timer LC
11	Interrupt control register I1 (4 bits)	T1F	Timer 1 interrupt request flag
PA	Timer control register PA (1 bit)	T2F	Timer 2 interrupt request flag
W1	Timer control register W1 (4 bits)	T3F	Timer 3 interrupt request flag
W2	Timer control register W2 (4 bits)	WDF1	Watchdog timer flag
W3	Timer control register W3 (4 bits)	WEF	Watchdog timer enable flag
W4	Timer control register W4 (4 bits)	INTE	Interrupt enable flag
W5	Timer control register W5 (5 bits)	EXF0	External 0 interrupt request flag
MR	Clock control register MR (4 bits)	VDF	Voltage drop detection circuit flag
RG	Clock control register RG (3 bits)	P	Power down flag
L1	LCD control register L1 (4 bits)	D	Port D (8 bits)
L2	LCD control register L2 (4 bits)	P0	Port P0 (4 bits)
L3	LCD control register L3 (4 bits)	P1	Port P1 (4 bits)
C1	LCD control register C1 (4 bits)	P2	Port P2 (4 bits)
C2	LCD control register C2 (4 bits)	P3	Port P3 (4 bits)
C3	LCD control register C3 (4 bits)	C	Port C (1 bit)
K0	Key-on wakeup control register K0 (4 bits)	INT	INT pin (1 bit)
K1	Key-on wakeup control register K1 (4 bits)		
K2	Key-on wakeup control register K2 (4 bits)	X	Hexadecimal variable
K3	Key-on wakeup control register K3 (4 bits)	y	Hexadecimal variable
PU0	Pull-up control register PU0 (4 bits)	z	Hexadecimal variable
PU1	Pull-up control register PU1 (4 bits)	p	Hexadecimal variable
PU2	Pull-up control register PU2 (4 bits)	n	Hexadecimal constant
PU3	Pull-up control register PU3 (4 bits)	i	Hexadecimal constant
FR0	Port output structure control register FR0 (4 bits)		Hexadecimal constant
FR1	Port output structure control register FR1 (4 bits)	$\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$	Binary notation of hexadecimal variable A
FR2	Port output structure control register FR2 (4 bits)		(same for others)
FR3	Port output structure control register FR3 (4 bits)	\leftarrow	Direction of data movement
X	Register X (4 bits)	()	Contents of registers and memories
Y	Register Y (4 bits)	-	Negate, Flag unchanged after executing instruction
Z	Register Z (2 bits)	M (DP)	RAM address pointed by the data pointer
DP	Data pointer (10 bits) (It consists of registers X, Y, and Z)	p, a	Label indicating address a6 a5 a4 a3 a2 a1 a0 Label indicating address a6 a5 a4 a3 a2 a1 ao in page
PC	Program counter (14 bits)		p6 p5 p4 p3 p2 p1 po
PCH	High-order 7 bits of program counter		
PCL	Low-order 7 bits of program counter	C+x	Hex. C + Hex. number x (also same for others)
SK	Stack register (14 bits $\times 8$)	$?$	Decision of state shown before "?"
SP	Stack pointer (3 bits)	$\leftarrow \rightarrow$	Data exchange between a register and memory
CY	Carry flag		
UPTF	High-order bit reference enable flag		
RPS	Prescaler reload register (8 bits)		
R1	Timer 1 reload register (8 bits)		
R2L	Timer 2 reload register (8 bits)		

Note 1. The 455A Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

INDEX LIST OF INSTRUCTION FUNCTION

Grouping	Mnemonic	Function	Page
	TAB	$(\mathrm{A}) \leftarrow(\mathrm{B})$	103122
	TBA	$(\mathrm{B}) \leftarrow(\mathrm{A})$	110122
	TAY	$(\mathrm{A}) \leftarrow(\mathrm{Y})$	110122
	TYA	$(\mathrm{Y}) \leftarrow(\mathrm{A})$	119122
	TEAB	$\begin{aligned} & \left(\mathrm{E}_{7}-\mathrm{E}_{4}\right) \leftarrow(\mathrm{B}) \\ & \left(\mathrm{E}_{3}-\mathrm{E}_{0}\right) \leftarrow(\mathrm{A}) \end{aligned}$	112122
	TABE	$\begin{aligned} & (B) \leftarrow\left(\mathrm{E}_{7}-\mathrm{E}_{4}\right) \\ & (\mathrm{A}) \leftarrow\left(\mathrm{E}_{3}-\mathrm{E}_{0}\right) \end{aligned}$	104122
	TDA	$\left(\mathrm{DR}_{2}-\mathrm{DR} 0\right) \leftarrow\left(\mathrm{A}_{2}-\mathrm{A}_{0}\right)$	111122
	TAD	$\begin{aligned} & \left(\mathrm{A}_{2}-\mathrm{A} 0\right) \leftarrow\left(\mathrm{DR}_{2}-\mathrm{DR} 0\right) \\ & (\mathrm{A} 3) \leftarrow 0 \end{aligned}$	105122
	TAZ	$\begin{aligned} & \left(\mathrm{A}_{1}, \mathrm{~A}_{0}\right) \leftarrow\left(\mathrm{Z}_{1}, \mathrm{Z}_{0}\right) \\ & \left(\mathrm{A}_{3}, \mathrm{~A}_{2}\right) \leftarrow 0 \end{aligned}$	110122
	TAX	$(\mathrm{A}) \leftarrow(\mathrm{X})$	110122
	TASP	$\begin{aligned} & \left(\mathrm{A}_{2}-\mathrm{A} 0\right) \leftarrow\left(\mathrm{SP}_{2}-\mathrm{SP} 0\right) \\ & \left(\mathrm{A}_{3}\right) \leftarrow 0 \end{aligned}$	108122
	LXY x, y	$(X) \leftarrow x, x=0$ to 15 $(Y) \leftarrow y, y=0$ to 15	93122
	LZ z	$(Z) \leftarrow z, z=0$ to 3	93122
	INY	$(\mathrm{Y}) \leftarrow(\mathrm{Y})+1$	92122
	DEY	$(\mathrm{Y}) \leftarrow(\mathrm{Y})-1$	90122
	TAM j	$\begin{aligned} & (A) \leftarrow(\mathrm{M}(\mathrm{DP})) \\ & (\mathrm{X}) \leftarrow(\mathrm{X}) \operatorname{EXOR}(\mathrm{j}) \\ & \mathrm{j}=0 \text { to } 15 \end{aligned}$	106122
	XAM j	$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{M}(\mathrm{DP})) \\ & (\mathrm{X}) \leftarrow(\mathrm{X}) \operatorname{EXOR}(\mathrm{j}) \\ & \mathrm{j}=0 \text { to } 15 \end{aligned}$	120122
	XAMD j	$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{M}(\mathrm{DP})) \\ & (\mathrm{X}) \leftarrow(\mathrm{X}) \operatorname{EXOR}(\mathrm{j}) \\ & \mathrm{j}=0 \text { to } 15 \\ & (\mathrm{Y}) \leftarrow(\mathrm{Y})-1 \end{aligned}$	120122
	XAMI j	$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{M}(\mathrm{DP})) \\ & (\mathrm{X}) \leftarrow(\mathrm{X}) \operatorname{EXOR}(\mathrm{j}) \\ & \mathrm{j}=0 \text { to } 15 \\ & (\mathrm{Y}) \leftarrow(\mathrm{Y})+1 \end{aligned}$	120122
	TMA j	$\begin{aligned} & (\mathrm{M}(\mathrm{DP})) \leftarrow(\mathrm{A}) \\ & (\mathrm{X}) \leftarrow(\mathrm{X}) \operatorname{EXOR}(\mathrm{j}) \\ & \mathrm{j}=0 \text { to } 15 \end{aligned}$	115122

Note 1. M3455AG8: $p=0$ to 63 and M3455AGC: $p=0$ to 95.

Grouping	Mnemonic	Function	Page
	$\begin{aligned} & \text { LA n } \\ & \text { TABP p } \end{aligned}$	$\begin{aligned} & (\mathrm{A}) \leftarrow \mathrm{n} \\ & \mathrm{n}=0 \text { to } 15 \\ & (\mathrm{SP}) \leftarrow(\mathrm{SP})+1 \\ & (\mathrm{SK}(\mathrm{SP})) \leftarrow(\mathrm{PC}) \\ & (\mathrm{PCH}) \leftarrow \mathrm{p} \\ & (\mathrm{PCL}) \leftarrow(\mathrm{DR} 2-\mathrm{DR} 0, \mathrm{~A} 3-\mathrm{Ao}) \\ & (\mathrm{UPTF})=1, \\ & (\mathrm{DR} 2) \leftarrow 0 \\ & (\mathrm{DR} 1, \mathrm{DR}) \leftarrow(\mathrm{ROM}(\mathrm{PC})) 9,8 \\ & (\mathrm{~B}) \leftarrow(\mathrm{ROM}(P \mathrm{PC})) 7-4 \\ & (\mathrm{~A}) \leftarrow(\mathrm{ROM}(P C)) 3-0 \\ & (\mathrm{PC}) \leftarrow(\mathrm{SK}(\mathrm{SP})) \\ & (\mathrm{SP}) \leftarrow(\mathrm{SP})-1 \end{aligned}$	$\begin{array}{ll}92 & 124 \\ 104 & 124\end{array}$
	AM	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{M}(\mathrm{DP}))$	87124
	AMC	$(A) \leftarrow(A)+(M(D P))+(C Y)$ $(C Y) \leftarrow$ Carry	87124
	A n	$\begin{aligned} & (A) \leftarrow(A)+n \\ & n=0 \text { to } 15 \end{aligned}$	87124
	AND	$(\mathrm{A}) \leftarrow(\mathrm{A}) \mathrm{AND}(\mathrm{M}(\mathrm{DP}))$	87124
	OR	$(\mathrm{A}) \leftarrow(\mathrm{A}) \mathrm{OR}(\mathrm{M}(\mathrm{DP}))$	94124
	SC	$(C Y) \leftarrow 1$	$98 \quad 124$
	RC	$(\mathrm{CY}) \leftarrow 0$	96124
	SZC	$(C Y)=0 ?$	102124
	CMA	$(\mathrm{A}) \leftarrow \overline{(\mathrm{A})}$	89124
	RAR	$\rightarrow \mathrm{CY} \rightarrow \mathrm{~A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$	95124
	SB j	$\begin{aligned} & (\mathrm{Mj}(\mathrm{DP})) \leftarrow 1 \\ & \mathrm{j}=0 \text { to } 3 \end{aligned}$	97124
	RB j	$\begin{aligned} & (\mathrm{Mj}(\mathrm{DP})) \leftarrow 0 \\ & \mathrm{j}=0 \text { to } 3 \end{aligned}$	$95 \quad 124$
	SZB j	$\begin{aligned} & (\mathrm{Mj}(\mathrm{DP}))=0 ? \\ & \mathrm{j}=0 \text { to } 3 \end{aligned}$	101124
	SEAM	$(\mathrm{A})=(\mathrm{M}(\mathrm{DP}))$?	99126
	SEA n	$\begin{aligned} & (\mathrm{A})=\mathrm{n} ? \\ & \mathrm{n}=0 \text { to } 15 \end{aligned}$	98126
	B a	$(\mathrm{PCL}) \leftarrow \mathrm{a} 6-\mathrm{ao}$	88126
	BL p, a	$\begin{aligned} & (\mathrm{PCH}) \leftarrow \mathrm{p} \\ & (\mathrm{PCL}) \leftarrow \mathrm{a} 6-\mathrm{a} 0 \end{aligned}$	$88 \quad 126$
	BLA p	$\begin{aligned} & (\mathrm{PCH}) \leftarrow p \\ & (\mathrm{PCL}) \leftarrow\left(\mathrm{DR} 2-\mathrm{DR} 0, \mathrm{~A}_{3}-\mathrm{A} 0\right) \end{aligned}$	88126

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Grouping	Mnemonic	Function	Page	Grouping	Mnemonic	Function	Page
	BM a	$\begin{aligned} & (\mathrm{SP}) \leftarrow(\mathrm{SP})+1 \\ & (\mathrm{SK}(\mathrm{SP})) \leftarrow(\mathrm{PC}) \\ & (\mathrm{PCH}) \leftarrow 2 \\ & (\mathrm{PCL}) \leftarrow \mathrm{a} 6-\mathrm{a} 0 \end{aligned}$	88126		TPAA TAW1	$(P A) \leftarrow(A)$ $(\mathrm{A}) \leftarrow(\mathrm{W} 1)$	$\begin{aligned} & 116 \quad 128 \\ & 109 \quad 128 \end{aligned}$
	BML p, a	$(S P) \leftarrow(S P)+1$	89126		TW1A	$(\mathrm{W} 1) \leftarrow(\mathrm{A})$	118128
		$\begin{aligned} & (\mathrm{SK}(\mathrm{SP})) \leftarrow(\mathrm{PC}) \\ & (\mathrm{PCH}) \leftarrow \mathrm{p} \end{aligned}$			TAW2	$(\mathrm{A}) \leftarrow(\mathrm{W} 2)$	109128
		$(\mathrm{PCL}) \leftarrow \mathrm{a} 6-\mathrm{ao}$			TW2A	$(\mathrm{W} 2) \leftarrow(\mathrm{A})$	118128
	BMLA p	$\begin{aligned} & (\mathrm{SP}) \leftarrow(\mathrm{SP})+1 \\ & (\mathrm{SK}(\mathrm{SP})) \leftarrow(\mathrm{PC}) \end{aligned}$	89126		TAW3	$(\mathrm{A}) \leftarrow(\mathrm{W} 3)$	109128
		$\begin{aligned} & (\mathrm{PCH}) \leftarrow \mathrm{p} \\ & (\mathrm{PCL}) \leftarrow\left(\mathrm{DR} 2-\mathrm{DR} 0, \mathrm{~A}_{3}-\mathrm{A} 0\right) \end{aligned}$			TW3A	$(\mathrm{W} 3) \leftarrow(\mathrm{A})$	119128
	RTI	$\begin{aligned} & (\mathrm{PC}) \leftarrow(\mathrm{SK}(\mathrm{SP})) \\ & (\mathrm{SP}) \leftarrow(\mathrm{SP})-1 \end{aligned}$	97126		TAW4	$(\mathrm{A}) \leftarrow(\mathrm{W} 4)$	109128
	RT	$(\mathrm{PC}) \leftarrow(\mathrm{SK}(\mathrm{SP}))$			TW4A	$(\mathrm{W} 4) \leftarrow(\mathrm{A})$	119128
		$(S P) \leftarrow(S P)-1$			TAW5	$(\mathrm{A}) \leftarrow(\mathrm{W} 5)$	119128
	RTS	$\begin{aligned} & (\mathrm{PC}) \leftarrow(\mathrm{SK}(\mathrm{SP})) \\ & (\mathrm{SP}) \leftarrow(\mathrm{SP})-1 \end{aligned}$	97126		TW5A	$(\mathrm{W} 5) \leftarrow(\mathrm{A})$	119128
	DI	$($ INTE) $\leftarrow 0$	90128		TABPS	(B) $\leftarrow\left(\right.$ TPS $\left._{7}-\mathrm{TPS}_{4}\right)$ $(\mathrm{A}) \leftarrow($ TPS3-TPS 0$)$	104130
	El	$($ INTE $) \leftarrow 1$	91128		TPSAB	$(\mathrm{RPS} 7-\mathrm{RPS} 4) \leftarrow(\mathrm{B})$	116130
	SNZO	$\begin{aligned} & V 10=0:(E X F 0)=1 ? \\ & (E X F 0) \leftarrow 0 \\ & V 10=1: S N Z 0=N O P \end{aligned}$	99128			$\begin{aligned} & (\text { TPS7-TPS } 4) \leftarrow(\mathrm{B}) \\ & (\text { RPS3-RPS } 0) \leftarrow(\mathrm{A}) \\ & (\text { TPS3-TPS }) \leftarrow(\mathrm{A}) \end{aligned}$	
	SNZIO	$\begin{aligned} & \mathrm{I} 12=0:(\text { INT })=\text { "L" ? } \\ & \mathrm{I} 12=1:(\text { INT })=\text { "H"? } \end{aligned}$	99128		TAB1	$\begin{aligned} & (\mathrm{B}) \leftarrow(\mathrm{T} 17-\mathrm{T} 14) \\ & (\mathrm{A}) \leftarrow(\mathrm{T} 13-\mathrm{T} 10) \end{aligned}$	103130
	TAV1	$(\mathrm{A}) \leftarrow(\mathrm{V} 1)$	108128		T1AB	$\begin{aligned} & (\mathrm{R} 17-\mathrm{R} 14) \leftarrow(\mathrm{B}) \\ & (\mathrm{T} 17-\mathrm{T} 14) \leftarrow(\mathrm{B}) \end{aligned}$	102130
	TV1A	$(\mathrm{V} 1) \leftarrow(\mathrm{A})$	118128			$\begin{aligned} & (\mathrm{R} 13-\mathrm{R} 10) \leftarrow(\mathrm{A}) \\ & (\mathrm{T} 13-\mathrm{T} 10) \leftarrow(\mathrm{A}) \end{aligned}$	
	TAV2	$(\mathrm{A}) \leftarrow(\mathrm{V} 2)$	108128		TR1AB	$\begin{aligned} & (\mathrm{R} 17-\mathrm{R} 14) \leftarrow(\mathrm{B}) \\ & (\mathrm{R} 13-\mathrm{R} 10) \leftarrow(\mathrm{A}) \end{aligned}$	117130
	TV2A	$(\mathrm{V} 2) \leftarrow(\mathrm{A})$	118128		TAB2	$(\mathrm{B}) \leftarrow(\mathrm{T} 27-\mathrm{T} 24)$	104130
	TAI1	$(\mathrm{A}) \leftarrow(\mathrm{l} 1$)	105128			$(\mathrm{A}) \leftarrow(\mathrm{T} 23-\mathrm{T} 20)$	
	TI1A	$(11) \leftarrow($ A $)$	113128		T2AB	$\begin{aligned} & (\text { R2L7-R2L4 }) \leftarrow(\mathrm{B}) \\ & (\mathrm{T} 27-\mathrm{T} 24) \leftarrow(\mathrm{B}) \\ & (\mathrm{R} 2 \mathrm{~L} 3-\mathrm{R} 2 \mathrm{~L} 0) \leftarrow(\mathrm{A}) \\ & (\mathrm{T} 23-\mathrm{T} 20) \leftarrow(\mathrm{A}) \end{aligned}$	102130
					T2R2L	$($ T27-T20) $\leftarrow($ R2L7-R2Lo)	103130
					T2HAB	$\begin{aligned} & \left(\mathrm{R}_{2} \mathrm{H}_{7}-\mathrm{R}_{2} \mathrm{H}_{4}\right) \leftarrow(\mathrm{B}) \\ & \left(\mathrm{R}_{3} \mathrm{H}_{3}-\mathrm{R}_{0}\right) \leftarrow(\mathrm{A}) \end{aligned}$	103130

Note 1. M3455AG8: $p=0$ to 63 and M3455AGC: $p=0$ to 95.

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Grouping	Mnemonic	Function	Page	Grouping	Mnemonic	Function	Page
	TLCA	$\begin{aligned} & (\text { RLC }) \leftarrow(A) \\ & (T L C) \leftarrow(A) \end{aligned}$	115130		TPU3A	$(\mathrm{PU3}) \leftarrow(\mathrm{A})$	$\begin{array}{ll}117 & 132 \\ 105 & 134\end{array}$
					TAKO	$(\mathrm{A}) \leftarrow(\mathrm{KO})$	105134
	SNZT1	$\begin{aligned} & \mathrm{V} 12=0:(\mathrm{T} 1 \mathrm{~F})=1 ? \\ & (\mathrm{~T} 1 \mathrm{~F}) \leftarrow 0 \end{aligned}$	100130		TK0A	$(\mathrm{K} 0) \leftarrow(\mathrm{A})$	113134
		V12 = $1:$ SNZT1 $=$ NOP			TAK1	$(\mathrm{A}) \leftarrow(\mathrm{K} 1)$	105134
	SNZT2	$\begin{aligned} & \mathrm{V} 13=0:(\mathrm{T} 2 \mathrm{~F})=1 ? \\ & (\mathrm{~T} 2 \mathrm{~F}) \leftarrow 0 \end{aligned}$	100130		TK1A	$(\mathrm{K} 1) \leftarrow(\mathrm{A})$	113134
		V13 = $1: S N Z T 2=N O P$			TAK2	$(\mathrm{A}) \leftarrow(\mathrm{K} 2)$	106134
	SNZT3	$\begin{aligned} & \mathrm{V} 20=0:(\mathrm{T} 3 \mathrm{~F})=1 ? \\ & (\mathrm{~T} 3 \mathrm{~F}) \leftarrow 0 \end{aligned}$	100130		TK2A	$(\mathrm{K} 2) \leftarrow(\mathrm{A})$	114134
		$\mathrm{V} 20=1:$ SNZT3 $=$ NOP			TAK3	$(\mathrm{A}) \leftarrow(\mathrm{K} 3)$	106134
	IAP0	$(\mathrm{A}) \leftarrow(\mathrm{P} 0)$	91132		TK3A	$(\mathrm{K} 3) \leftarrow(\mathrm{A})$	114134
	OPOA	$(\mathrm{P} 0) \leftarrow(\mathrm{A})$	93132	은응응00.	TAL1	$(\mathrm{A}) \leftarrow(\mathrm{L} 1)$	106134
					TL1A	$(\mathrm{L} 1) \leftarrow(\mathrm{A})$	114134
	IAP1				TL2A	$($ L2) \leftarrow (A$)$	114134
	OP1A	$(\mathrm{P} 1) \leftarrow(\mathrm{A})$	94132		TL3A	$(\mathrm{L} 3) \leftarrow(\mathrm{A})$	115134
	IAP2	$(\mathrm{A}) \leftarrow(\mathrm{P} 2)$	92132		TC1A	$(\mathrm{C} 1) \leftarrow(\mathrm{A})$	111134
	OP2A	$(\mathrm{P} 2) \leftarrow(\mathrm{A})$	94132		TC2A	$(\mathrm{C} 2) \leftarrow(\mathrm{A})$	111134
	IAP3	$(\mathrm{A}) \leftarrow(\mathrm{P} 3)$	92132		TC3A	$(\mathrm{C} 3) \leftarrow(\mathrm{A})$	111134
	OP3A	$(\mathrm{P} 3) \leftarrow(\mathrm{A})$	94132		TAMR	$(\mathrm{A}) \leftarrow(\mathrm{MR})$	107134
	CLD	(D) $\leftarrow 1$	89132		TMRA	$(\mathrm{MR}) \leftarrow(\mathrm{A})$	115134
	RD	$(\mathrm{D}(\mathrm{Y})) \leftarrow 0,(\mathrm{Y})=0$ to 4	96132		TRGA	$(\mathrm{RG} 2-\mathrm{RG} 0) \leftarrow\left(\mathrm{A}_{2}-\mathrm{A}_{0}\right.$	117134
	SD	$(\mathrm{D}(\mathrm{Y})) \leftarrow 1,(\mathrm{Y})=0$ to 4	$98 \quad 132$		NOP	$(\mathrm{PC}) \leftarrow(\mathrm{PC})+1$	93136
	SZD	$(\mathrm{D}(\mathrm{Y}) \mathrm{)}=0$?, $(\mathrm{Y})=0$ to 4	102132		POF	Transition to clock operating	95136
	R		$96 \quad 132$		POF2	Transition to RAM back-up	95136
	RC				EPOF	POF instruction valid	91136
	SCP	(C) $\leftarrow 1$	$98 \quad 132$		SNZP	$(P)=1 ?$	99136
	TFROA	$(\mathrm{FRO}) \leftarrow(\mathrm{A})$	112132		SNZVD	$(\mathrm{VDF})=1$?	100136
	TFR1A	$(\mathrm{FR} 1) \leftarrow(\mathrm{A})$	112132		WRST	$\begin{aligned} & (W D F 1)=1 ? \\ & (W D F 1) \leftarrow 0 \end{aligned}$	119136
	TFR2A	$(\mathrm{FR} 2) \leftarrow(\mathrm{A})$	112132		DWDT	Stop of watchdog timer function enabled	90136
	TFR3A	$(\mathrm{FR} 3) \leftarrow(\mathrm{A})$	113132		SRST	System reset	101136
	TAPU0	$(\mathrm{A}) \leftarrow(\mathrm{PU} 0)$	107132		RUPT	$($ UPTF) $\leftarrow 0$	97136
	TPU0A	$(\mathrm{PUO}) \leftarrow(\mathrm{A})$	116132		SUPT	$($ UPTF) $\leftarrow 1$	101136
	TAPU1	$(\mathrm{A}) \leftarrow(\mathrm{PU1})$ $(\mathrm{PU1}) \leftarrow(\mathrm{A})$	$\begin{aligned} & 107 \quad 132 \\ & 116 \quad 132 \end{aligned}$		SVDE	At power down mode, voltage drop detection circuit valid	101136
	TAPU2	$(\mathrm{A}) \leftarrow(\mathrm{PU} 2)$	107132		RBK (Note 1)	When TABPp instruction is executed, p6 $\leftarrow 0$	81117
	TPU2A	$(\mathrm{PU2}) \leftarrow(\mathrm{A})$	117132		SBK (Note 1)	When TABPp instruction is executed, $\mathrm{p}_{6} \leftarrow 1$	84117
	TAPU3	$(\mathrm{A}) \leftarrow(\mathrm{PU} 3)$	108132				

Note 1. (SBK, RBK) cannot be used in the M3455AG8.

MACHINE INSTRUCTIONS (INDEX BY ALPHABET)
A n (Add n and accumulator)

Instruc tion code	Ds Do												Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	1	1	0	n		n	0	6		1	1	-	Overflow = 0
$\begin{array}{ll} \hline \text { Opera- } & (A) \leftarrow(A)+n \\ \text { tion: } & n=0 \text { to } 15 \end{array}$													Grouping: Arithmetic operation			
													Description: Adds the value n in the immediate field to register A , and stores a result in register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation. Executes the next instruction when there is overflow as the result of operation.			

AM (Add accumulator and Memory)

Instruction code	D9												Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	0	1	0		020	0	A 16	1	1	-	-
$\begin{aligned} & \text { Opera- } \quad(\mathrm{A}) \leftarrow(\mathrm{A}) \hat{\mathrm{A}}\{(\mathrm{M}(\mathrm{DP})) \\ & \text { tion: } \end{aligned}$													Grouping: Arithmetic operation Description: Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.			
AMC (Add accumulator, Memory and Carry)																
Instruction code	D9												Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	0	1	0	1	$12 \bigcirc$	0		1	1	0/1	
Operation:		$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{M}(\mathrm{DP}))+(\mathrm{CY}) \\ & (\mathrm{CY}) \leftarrow \text { Carry } \end{aligned}$											Grouping: Arithmetic operation			
		Description:	dds the cont . Stores the	of M(DP) ult in regist	y flag CY to register carry flag CY.											

AND (logical AND between accumulator and memory)

Instruc tion code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	1	1	0	0		0	1	816	1	1	-	-
Opera- $\quad(\mathrm{A}) \leftarrow(\mathrm{A})$ AND (M(DP))tion:														Grouping: Arithmetic operation			
														Description: Takes the AND operation between the contents of register A and the contents of M(DP), and stores the result in register A.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

BM a (Branch and Mark to address a in page 2)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
BML p,a (Branch and Mark Long to address a in page p)

Instruction code	D9															Number of words	Number of cycles	Flag CY	Skip condition
	0	0	1	1	0	p4	p3	p2	p1	po	2	0	c $\begin{gathered}\text { c } \\ +\mathrm{p}\end{gathered}$	p	16	2	2	-	-
	1	p6	p5	a6	a5	a4	a3	a2	a1	a0	2	2	a	a	16	Grouping: Subroutine call operation			
Opera- $(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$ tion: $(\mathrm{SK}(\mathrm{SP})) \leftarrow(\mathrm{PC})$ $(\mathrm{PCH}) \leftarrow \mathrm{p}$ $(\mathrm{PCL}) \leftarrow \mathrm{a} 6-\mathrm{a} 0$																Description: Call the subroutine : Calls the subroutine at address a in page p . Note: M3455AG8: $p=0$ to $63 \quad p 6=0$ M3455AGC: $p=0$ to 95 Be careful not to over the stack because the maximum level of subroutine nesting is 8 .			

BMLA p (Branch and Mark Long to address (D)+(A) in page p)

Instruction code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	1	1	0	0	0	0	0	3	0	16	2	2	-	-
	1	p6	p5	p4	0	0	p3	p2	p1	po	2	p	p	16	Grouping:	ubroutine cal	eration	
$\begin{array}{ll} \hline \text { Opera- } & (\mathrm{SP}) \leftarrow(\mathrm{SP})+1 \\ \text { tion: } & (\mathrm{SK}(\mathrm{SP})) \leftarrow(\mathrm{PC}) \\ & (\mathrm{PCH}) \leftarrow \mathrm{p} \\ & (\mathrm{PCL}) \leftarrow\left(\mathrm{DR}_{2}-\mathrm{DR} 0, \mathrm{~A}_{3}-\mathrm{Ao}\right) \end{array}$															Description: Call the subroutine : Calls the subroutine at address (DR2 DR1 DRo $\left.A_{3} A_{2} A_{1} A_{0}\right) 2$ specified by registers D and A in page p. Note: $\text { M3455AG8: } p=0 \text { to } 63 \quad p 6=0$ $\text { M3455AGC: } p=0 \text { to } 95$ Be careful not to over the stack because the maximum level of subroutine nesting is 8 .			
CLD (CLear port D)																		
Instruction code															Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	1	0	0	0	1	0	1	1	16	1	1	-	-
$\text { Opera- } \quad(\mathrm{D}) \leftarrow 1$ tion:															Grouping: Input/Output operation			
															Description: Sets (1) to port D.			

CMA (CoMplement of Accumulator)

Instruction	D9														Number of words	Number of cycles	Flag CY	Skip condition
code	0	0	0				1	1	0		0	1	C		1	1	-	-
$\begin{aligned} & \text { Opera- } \quad(\mathrm{A}) \leftarrow(\overline{\mathrm{A}}) \\ & \text { tion: } \end{aligned}$															Grouping: Arithmetic operation			
															Description: Stores the one's complement for register A's contents in register A.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

DEY (DEcrement register Y)																		
Instruction code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	1	0	1	1		0	1	7		1	1	-	$(\mathrm{Y})=15$
Opera- $\quad(\mathrm{Y}) \leftarrow(\mathrm{Y})-1$ tion:															Grouping: RAM addresses Description: Subtracts 1 from the contents of register Y . As a result of subtraction, when the contents of register Y is 15 , the next instruction is skipped. When the contents of register Y is not 15 , the next instruction is executed.			
DI (Disable Interrupt)																		
Instruction code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	0	0	1	0	02	0	0	4		1	1	-	-
$\text { Opera- } \quad(\text { INTE }) \leftarrow 0$ tion:															Grouping: Interrupt control operation Description:Clears (0) to interrupt enable flag INTE, and disables the interrupt. Note: Interrupt is disabled by executing the DI instruction after executing 1 machine cycle.			
DWDT (Disable WatchDog Timer)																		
Instruction code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	1	0	1	0	0	1	1	1	0	02	2	9	C		1	1	-	-
Operation:	Stop of watchdog timer function enabled														Grouping: Other operation			
															Description: Stops the watchdog timer function by the WRST instruction after executing the DWDT instruction.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

El (Enable Interrupt)																
Instruc tion code	D9												Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	0	0	1	0	120	0		1	1	-	-
Opera- $\quad($ INTE $) \leftarrow 1$tion:													Grouping: Interrupt control operation Description: Sets (1) to interrupt enable flag INTE, and enables the interrupt. Note: Interrupt is enabled by executing the El instruction after executing 1 machine cycle.			
EPOF (Enable POF instruction)																
Instruc tion code	D9												Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	1	0	1	1	0	1	120	5	B 16	1	1	-	-
Opera- POF instruction or POF2 instruction valid tion:													Grouping: Other operation Description: Makes the immediate after POF instruction or POF2 instruction valid by executing the EPOF instruction.			
IAP0 (Input Accumulator from port P0)																
Instruction code	D9												Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	1	1	0	0	0	0	022	6		1	1	-	-
$\begin{aligned} & \text { Opera- } \quad(\mathrm{A}) \leftarrow(\mathrm{P} 0) \\ & \text { tion: } \end{aligned}$													Grouping: Input/Output operation Description: Transfers the input of port P0 to register A.			
IAP1 (Input Accumulator from port P1)																
Instruc tion code	D9												Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	1	1	0	0	0	0	122	6	116	1	1		-
$\begin{aligned} & \text { Opera- } \quad(\mathrm{A}) \leftarrow(\mathrm{P} 1) \\ & \text { tion: } \end{aligned}$													Grouping: Input/Output operation			
													Description: Transfers the input of port P1 to register A.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
IAP2 (Input Accumulator from port P2)

Instruction code	D9 Do														Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	1	1	0	0	0	1	02	2	6	2	16	1	1	-	-
Opera- $\quad(\mathrm{A}) \leftarrow(\mathrm{P} 2)$ tion:															Grouping: Input/Output operation			
															Description: Transfers the input of port P2 to the register A.			

IAP3 (Input Accumulator from port P3)

Instruc tion	D9 Do														Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	1	1	0	0	0	1	1	2	6	3	16	1	1	-	-
Opera- $\quad(\mathrm{A}) \leftarrow(\mathrm{P} 3)$tion:															Grouping: Input/Output operation			
															Description:	ransfers the in	t of port P	register A.

INY (INcrement register Y)																	
Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	1	0	0	1		0	1	316	1	1	-	$(\mathrm{Y})=0$
$\begin{aligned} & \text { Opera- } \quad(\mathrm{Y}) \leftarrow(\mathrm{Y})+1 \\ & \text { tion: } \end{aligned}$														Grouping: RAM addresses			
														Description: Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0 , the next instruction is skipped. When the contents of register Y is not 0 , the next instruction is executed.			

LA n (Load n in Accumulator)

Instruc tion	D9												Number of words	Number of cycles	Flag CY	Skip condition
code	0	0	0	1	1	1	n	n		0	7		1	1	-	Continuous description
Opera- (A) $\leftarrow \mathrm{n}$ tion: $\mathrm{n}=0$ to 15													Grouping: Arithmetic operation			
													Description: Loads the value n in the immediate field to register A . When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
OP1A (Output port P1 from Accumulator)

OP2A (Output port P2 from Accumulator)

Instruction	D9															Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	0	1	0	0	0	1	0	2	2	2	2	16	1	1	-	-
$\text { Opera- } \quad(\mathrm{P} 2) \leftarrow(\mathrm{A})$ tion:																Grouping: Input/Output operation			
																Description:	utputs the con	nts of the	A to port P2.

OP3A (Output port P3 from Accumulator)

Instruction	D9														Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	0	1	0	0	0	1	12	2	2	3	16	1	1	-	-
Opera- $\quad(\mathrm{P} 3) \leftarrow(\mathrm{A})$tion:															Grouping: Input/Output operation			
															Description:	utputs the co	nts of the	A to port P3.

OR (logical OR between accumulator and memory)

Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	1	1	0	0		0	1		1	1	-	-
Opera- $\quad(\mathrm{A}) \leftarrow(\mathrm{A}) \mathrm{OR}(\mathrm{M}(\mathrm{DP})$)tion:														Grouping: Arithmetic operation			
														Description: Takes the OR operation between the contents of register A and the contents of $M(D P)$, and stores the result in register A.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

POF (Power OFf)																		
Instruction code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	0	0	0	1	02	0	0	2	16	1	1	-	-
Opera- Transition to clock operating mode tion:															Grouping: Other operation Description: Puts the system in clock operating mode by executing the POF2 instruction after executing the EPOF instruction. Note: If the EPOF instruction is not executed just before this instruction, this instruction is equivalent to the NOP instruction.			
POF2 (Power OFf2)																		
Instruction code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	0	1	0	0	02	0	0	8	16	1	1	-	-
Opera- Transition to RAM back-up mode tion:															Grouping: Other operation			
															Description: Puts the system in RAM back-up state by executing the POF2 instruction after executing the EPOF instruction. Note: If the EPOF instruction is not executed before executing this instruction, this instruction is equivalent to the NOP instruction.			

RAR (Rotate Accumulator Right)

| Instruc-
 tion
 code | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 2 | 0 | 1 | D | 16 | Number of
 words | Number of
 cycles | Flag CY | Skip condition |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | tents of carry flag CY to the right.

RB j (Reset Bit)

Instruction	D9 ${ }^{\text {D }}$													Number of words	Number of cycles	Flag CY	Skip condition
code	0	0	0	1	0	0	1	1	j		0	4	16	1	1	-	-
Opera- $(\mathrm{Mj}(\mathrm{DP})) \leftarrow 0$ tion: $\mathrm{j}=0$ to 3														Grouping: Bit operation			
														Description: Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of $M(D P)$.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

RBK (Reset Bank flag)																		
Instruc tion code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	1	0	0	0	0	0	0	0	4	0		1	1		
Opera- When TABPp instruction is executed, $\mathrm{p} 6 \leftarrow 0$tion:															Grouping: Other operation			
															Description: Sets referring data area to pages 0 to 63 when the TABPpinstruction is executed. This instruction is valid only for theTABPp instruction.Note: \quad This instruction cannot be used in M3455AG8.			

RC (Reset Carry flag)

Instruc tion code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	0	0	1			0	0	616	1	1	0	-
$\begin{aligned} & \text { Opera- } \quad(\mathrm{CY}) \leftarrow 0 \\ & \text { tion: } \end{aligned}$														Grouping: Arithmetic operation Description: Clears (0) to carry flag CY.			
RCP (Reset Port C)																	
Instruction code	D9													Number of words	$\begin{array}{\|c} \hline \begin{array}{c} \text { Number of } \\ \text { cycles } \end{array} \\ \hline \end{array}$	Flag CY	Skip condition
	1	0	1	0	0	0	1	1	0	02	2	8	C 16	1	1	-	-
$\begin{aligned} & \text { Opera- } \quad(\mathrm{C}) \leftarrow 0 \\ & \text { tion: } \end{aligned}$														Grouping: Input/Output operation			

RD (Reset port D specified by register Y)

Instruction code	D9									Do				Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	1	0	1	0		0	1		1	1	-	-
Operation:	$\begin{aligned} & (\mathrm{D}(\mathrm{Y})) \leftarrow 0 \\ & (\mathrm{Y})=0 \text { to } 7 \end{aligned}$													Grouping: Input/Output operation			
														Description: Clears (0) to a bit of port D specified by register Y . Note: $\quad(\mathrm{Y})=0$ to 7 . Do not execute this instruction if values except above are set to register Y .			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

RT (ReTurn from subroutine)																		
Instruction code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	1	0	0	0	1	0		0	4	4	16	1	2	-	-
Opera- $(P C) \leftarrow(S K(S P))$ tion: $(S P) \leftarrow(S P)-1$															Grouping: Return operation Description: Returns from subroutine to the routine called the subroutine.			
RTI (ReTurn from Interrupt)																		
Instruction code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	1	0	0	0	1	1		0	4	6	16	1	1	-	
$\begin{array}{ll} \hline \text { Opera- } & (P C) \leftarrow(S K(S P)) \\ \text { tion: } & (S P) \leftarrow(S P)-1 \end{array}$															Grouping: Return operation Description: Returns from interrupt service routine to main routine. Returns each value of data pointer ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$), carry flag, skip status, NOP mode status by the continuous description of the LA/LXY instruction, register A and register B to the states just before interrupt.			
RTS (ReTurn from subroutine and Skip)																		
Instruction code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	1	0	0	0	1	0		0	4	5	16	1	2	-	Skip at uncondition
$\begin{aligned} & \text { Operation: } \\ & (\mathrm{PC}) \leftarrow(\mathrm{SK}(\mathrm{SP})) \\ & (\mathrm{SP}) \leftarrow(\mathrm{SP})-1 \end{aligned}$															Grouping: Return operation			
RUPT (Reset UPT flag)																		
Instruction code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	1	0	1	1	0	0	02	0	5	8	16	1	1	-	-
Opera- $\quad($ UPTF) $\leftarrow 0$tion:															Grouping: Other operation			
															Description: Clears (0) to the high-order bit reference enable flag UPTF. Note: Even when the table reference instruction (TABP p) is executed, the high-order 2 bits of ROM reference data is not transferred to register D.			

SB j (Set Bit)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
SBK (Set BanK flag)

Instruction code	D9 ${ }^{\text {D }}$														Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	1	0	0	0	0	0	12	0	4	1	16	1	1	-	-
Opera- When TABPp instruction is executed, $\mathrm{p} 6 \leftarrow 1$ tion:															Grouping: Arithmetic operation Description:Sets referring data area to pages 64 to 127 when the TABPp instruction is executed. This instruction is valid only for the TABPp instruction. Note: \quadThis instruction cannot be used in M3455AG8.			
SC (Set Carry flag)																		
Instruction code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	0	0	1	1		0	0	7	16	1	1	1	-
Opera- $\quad(\mathrm{CY}) \leftarrow 1$ tion:															Grouping: Arithmetic operation			
															Description: Sets (1) to carry flag CY.			

SCP (Set Port C)

Instruction code	D9															Number of words	Number of cycles	Flag CY	Skip condition
	1	0	1	0	0	0	1	1	0	1	2	2	8	D	16	1	1	-	-
Opera- (C) $\leftarrow 1$ tion:																Grouping: Input/Output operation			
																Description:	ets (1) to por		

SD (Set port D specified by register Y)

Instruction	D9													Number of words	Number of cycles	Flag CY	Skip condition
code	0	0	0	0	0	1	0	1	0		0	1	516	1	1	-	-
Operation:	$\begin{aligned} & (\mathrm{D}(\mathrm{Y})) \leftarrow 1 \\ & (\mathrm{Y})=0 \text { to } 7 \end{aligned}$													Grouping:	put/Output op	ation	
														Description: Note:	ets (1) to a b Y) $=0$ to 7 . o not execut et to register	port D sp is instructi	register Y. es except abo

SEA \mathbf{n} (Skip Equal, Accumulator with immediate data n)

Instruction	D9									Do					
code	0	0	0	0	1	0	0	1	0	1	2	0	2	5	16
	0	0	0	1	1	1	n	n	n	n	2	0	7	n	16
Operation:															

Number of words	Number of cycles	Flag CY	Skip condition
2	2	-	(A) $=n$ $n=0$ to 15
Grouping:	Comparison operation		
Description: Skips the next instruction when the contents of register A is			
equal to the value n in the immediate field.			
Executes the next instruction when the contents of register			
A is not equal to the value n in the immediate field.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
SEAM (Skip Equal, Accumulator with Memory)

Instruction	Ds Do													Number of words	Number of cycles	Flag CY	Skip condition
code	0	0	0	0	1	0	0	1	1		0	2		1	1	-	$(\mathrm{A})=(\mathrm{M}(\mathrm{DP}))^{\text {a }}$
Opera- $(\mathrm{A})=(\mathrm{M}(\mathrm{DP}))$?tion:														Grouping: Comparison operation			
														Description: Skips the next instruction when the contents of register A is equal to the contents of M(DP). Executes the next instruction when the contents of register A is not equal to the contents of $M(D P)$.			

SNZO (Skip if Non Zero condition of external interrupt 0 request flag)

SNZIO (Skip if Non Zero condition of external Interrupt 0 input pin)

Instruc tion code	D9												Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	1	1	1				3		1	1		$\begin{aligned} & 112=0:(\text { (INTO })=" \mathrm{L"} \\ & 112=1:(\text { INTO })=\text { "H" } \end{aligned}$
Operation:	$\begin{aligned} & 112=0:(\text { INT })=\text { "L" ? } \\ & 112=1:(\text { INT })=\text { "H" ? } \\ & (112: \text { bit } 2 \text { of the interrupt control register I1) } \end{aligned}$												Grouping: Interrupt operation			
													Description: When I12 $=0$: Skips the next instruction when the level of INT pin is " L ". Executes the next instruction when the level of INT pin is " H ". When $112=1$: Skips the next instruction when the level of INT pin is "H." Executes the next instruction when the level of INT pin is " L ".			

SNZP (Skip if Non Zero condition of Power down flag)

Instruction	D9 Do													Number of words	Number of cycles	Flag CY	Skip condition
code	0	0	0	0	0	0	0			2	0	0		1	1	-	$(\mathrm{P})=1$
Opera- $\quad(\mathrm{P})=1$?tion:														Grouping: Other operation			
														Description: Skips the next instruction when the P flag is " 1 ". After skipping, the P flag remains unchanged. Executes the next instruction when the P flag is " 0 ".			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

SNZT1 (Skip if Non Zero condition of Timer 1 interrupt request flag)																		
Instruction code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	1	0	1	0	0	0	0	0	0			8	0	16	1	1		$\mathrm{V} 12=0:(\mathrm{T} 1 \mathrm{~F})=1$
Opera- $\mathrm{V} 12=0:(\mathrm{T} 1 \mathrm{~F})=1 ?$ tion: $(\mathrm{T} 1 \mathrm{~F}) \leftarrow 0$ $\mathrm{~V} 12=1:$ SNZT1 $=$ NOP $(\mathrm{V} 12=$ bit 2 of interrupt control register V 1$)$															Grouping: Timer operation			
															Description: When V12 $=0$: Clears (0) to the T1F flag and skips the next instruction when timer 1 interrupt request flag T1F is " 1 ". When the T1F flag is " 0 ," executes the next instruction. When $\mathrm{V} 12=1$: This instruction is equivalent to the NOP instruction.			

SNZT2 (Skip if Non Zero condition of Timer 2 interrupt request flag)

SNZT3 (Skip if Non Zero condition of Timer 3 interrupt request flag)

Instruction code	D9									Do					Number of words	Number of cycles	Flag CY	Skip condition
	1	0	1	0	0	0	0	0	1	0	2	8	2	16	1	1	-	$\mathrm{V} 20=0:(\mathrm{T} 3 \mathrm{~F})=1$
Operation:	$\begin{aligned} & \mathrm{V} 20=0:(\mathrm{T} 3 \mathrm{~F})=1 ? \\ & (\mathrm{~T} 3 \mathrm{~F}) \leftarrow 0 \\ & \mathrm{~V} 20=1: \mathrm{SNZT3}=\mathrm{NOP} \end{aligned}$														Grouping: Timer operation			
															Description: When V20 $=0$: Clears (0) to the T3F flag and skips the next instruction when timer 3 interrupt request flag T3F is " 1 ". When the T3F flag is " 0 ", executes the next instruction. When $\mathrm{V} 20=1$: This instruction is equivalent to the NOP instruction.			

SNZVD (Skip if Non Zero condition of Voltage Detector flag)

Instruction	D9														Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	1	0	0	0	1	0	1	02	2	8	A	16	1	1	-	$\mathrm{V} 23=0:(\mathrm{VDF})=1$
Opera- (VDF) $=1$? tion:															Grouping: Other operation			
															Description: Skips the next instruction when voltage drop detection circuit flag VDF is " 1 ". Execute instruction when VDF is " 0 ". After skipping, the contents of VDF remains unchanged.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

SRST (System ReSet)																	
Instruction code	Do													Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	0	0	0	0	12	0	0	116	1	1	-	-
Opera- System reset tion:														Grouping: Other operation Description: System reset occurs.			
SUPT (Set UPT flag)																	
Instruc tion	Ds ${ }^{\text {Do }}$													Number of words	Number of cycles	Flag CY	Skip condition
code	0	0	0	1	0	1	1	0	0	12	0	5		1	1	-	-
Opera- $\quad($ UPTF $) \leftarrow 1$tion:														Grouping: Other operation			
														Description: Sets (1) to the high-order bit reference enable flag UPTF. When the table reference instruction (TABP p) is executed, the high-order 2 bits of ROM reference data is transferred to the low-order 2 bits of register D .			

SVDE (Set Voltage Detector Enable flag)

Instruction code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	1	0	1	0	0	1	0	0	1	12	2	9	3	16	1	1	-	-
Operation:	Voltage drop detection circuit valid at powerdown mode.														Grouping: Other operation			
															Description: Voltage drop detection circuit is valid at powerdown mode (clock operating mode, RAM back-up mode) Note: This instruction can be used only for H version.			

SZB j (Skip if Zero, Bit)

Instruction	D9													Number of words	Number of cycles	Flag CY	Skip condition
code	0	0	0	0	1	0								1	1	-	$\begin{gathered} (\mathrm{Mj}(\mathrm{DP}))=0 \\ \mathrm{j}=0 \text { to } 3 \end{gathered}$
$\begin{array}{ll} \text { Opera- } & (\text { Mj }(\mathrm{DP}))=0 ? \\ \text { tion: } & \mathrm{j}=0 \text { to } 3 \end{array}$														Grouping: Bit operation			
														Description: Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of $M(D P)$ is "0". Executes the next instruction when the contents of bit j of $\mathrm{M}(\mathrm{DP})$ is " 1 ".			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

SZC (Skip if Zero, Carry flag)																
Instruction code	D9												Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	1	0	1	1	1	120	2		1	1	-	$(\mathrm{CY})=0$
$\text { Opera- } \quad(C Y)=0 ?$tion:													Grouping: Arithmetic operation Description: Skips the next instruction when the contents of carry flag CY is " 0 ". After skipping, the CY flag remains unchanged. Executes the next instruction when the contents of the CY flag is " 1 ".			
SZD (Skip if Zero, port D specified by register Y)																
Instruction code	D9												Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	1	0	0	1	0	020	2		2	2	-	$(\mathrm{D}(\mathrm{Y}) \mathrm{)}=0$
	0	0	0	0	1	0	1	0	1	120	2		Grouping:	put/Output op	ation	
$\begin{array}{ll} \hline \text { Opera- } & (\mathrm{D}(\mathrm{Y}))=0 \text { ? } \\ \text { tion: } & (\mathrm{Y})=0 \text { to } 5 \end{array}$													Description: Skips the next instruction when a bit of port D specified by register Y is " 0 ". Executes the next instruction when the bit is " 1 ". Note: $\quad(\mathrm{Y})=0$ to 5 . Do not execute this instruction if values except above are set to register Y .			

T1AB (Transfer data to timer 1 and register R1 from Accumulator and register B)

T2AB (Transfer data to timer 2 and register R2L from Accumulator and register B)

Instruction code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	0	1	1	0	0	0		2	3			1	1		
Operation:	$\begin{aligned} & (\text { T27-T24) } \leftarrow(\mathrm{B}) \\ & (\text { R2L7-R2L4) } \leftarrow(\mathrm{B}) \\ & (\mathrm{T} 23-\mathrm{T} 20) \leftarrow(\mathrm{A}) \\ & (\text { R2L3-R2Lo }) \leftarrow(\mathrm{A}) \end{aligned}$														Grouping: Timer operation			
															Description: Transfers the contents of register B to the high-order 4 bits (T27-T24) of timer 2 and the high-order 4 bits (R2L7-R2L4) of timer 2 reload register R2L. Transfers the contents of register A to the low-order 4 bits (T23-T20) of timer 2 and the low-order 4 bits (R2L3-R2Lo) of timer 2 reload register R2.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
T2HAB (Transfer data to register R2H from Accumulator and register B)

T2R2L (Transfer data to timer 2 from register R2L)

Instruc tion	D9														Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	1	0	0	1	0	1	0	12	2	9	5	16	1	1	-	-
Opera- $\quad($ T27-T20) $\leftarrow($ R2L7-R2L0)tion:															Grouping: Timer operation Description: Transfers the contents of reload register R2L to time			

TAB (Transfer data to Accumulator from register B)

Instruc tion code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	1	1	1		2	0	1	E		1	1	-	-
Opera- $\quad(\mathrm{A}) \leftarrow(\mathrm{B})$tion:															Grouping: Register to register transfer			
															Description:	sfers the	nts of	register A .

TAB1 (Transfer data to Accumulator and register B from timer 1)

Instruction code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	1	1	1	0	0	0		2	7	0		1	1	-	
Opera- $(\mathrm{B}) \leftarrow(\mathrm{T} 17-\mathrm{T} 14)$ tion: $(\mathrm{A}) \leftarrow(\mathrm{T} 13-\mathrm{T} 10)$															Grouping: Timer operation			
															Description: Transfers the high-order 4 bits (T17-T14) of timer 1 to register B. Transfers the low-order 4 bits (T13-T10) of timer 1 to register A.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
TAB2 (Transfer data to Accumulator and register B from timer 2)

Instruction	D9 Do															Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	1	1	1	0	0	0	12	2	2	7	1	16	1	1	-	-
Opera- $(B) \leftarrow(T 27-T 24)$ tion: $(A) \leftarrow(T 23-T 20)$																Grouping: Timer operation			
																Description: Transfers the high-order 4 bits (T27-T24) of timer 2 to register B. Transfers the low-order 4 bits (T23-T20) of timer 2 to register A.			

TABE (Transfer data to Accumulator and register B from register E)

Instruction	D9															Number of words	Number of cycles	Flag CY	Skip condition
code	0	0	0	0	1	0	1	0	1	0	2	0	2	A	16	1	1	-	-
Operation:	$\begin{aligned} & (\mathrm{B}) \leftarrow\left(\mathrm{E}_{7}-\mathrm{E}_{4}\right) \\ & (\mathrm{A}) \leftarrow\left(\mathrm{E}_{3}-\mathrm{E}_{0}\right) \end{aligned}$															Grouping: Register to register transfer			
																Description:	ansfers the h er B, and low	-order 4 rder 4 bits	4) of register E er to register

TABP p (Transfer data to Accumulator and register B from Program memory in page p)

TABPS (Transfer data to Accumulator and register B from Pre-Scaler)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
TAD (Transfer data to Accumulator from register D)

Instruction code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	1	0	1	0	0	0		0	5	1		1	1	-	-
Opera- $($ A $2-A 0) \leftarrow\left(\mathrm{DR}_{2}-\mathrm{DR} 0\right)$ tion: $\left(\mathrm{A}_{3}\right) \leftarrow 0$															Grouping: Register to register transfer			
															Description: Transfers the contents of register D to the low-order 3 bits ($\mathrm{A}_{2}-\mathrm{A}_{0}$) of register A. " 0 " is stored to the bit 3 (A_{3}) of register A .			

TAl1 (Transfer data to Accumulator from register I1)

Instruction	D9 Do														Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	1	0	1	0	0	1	1	2	5	3	16	1	1	-	-
Opera- $\quad(\mathrm{A}) \leftarrow(\mathrm{IL})$tion:															Grouping: Interrupt operation			
															Description: Transfers the contents of interrupt control register I1 to reg-ister A.			

TAK0 (Transfer data to Accumulator from register K0)

Opera- $\quad(\mathrm{A}) \leftarrow(\mathrm{KO})$
tion:

Number of words 1Number of cycles
Flag CY
Grouping: Input/Output operation
Description: Transfers the contents of key-on wakeup control register K0 to register A.

TAK1 (Transfer data to Accumulator from register K1)

Instruc tion code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	1	0	1	1	0	0		2	5	9		1	1	-	-
Opera- $\quad(\mathrm{A}) \leftarrow(\mathrm{K} 1)$tion:															Grouping: Input/Output operation			
															Description: Transfers the contents of key-on wakeup control register K1 to register A.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TAL1 (Transfer data to Accumulator from register L1)

TAM \mathbf{j} (Transfer data to Accumulator from Memory)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TAMR (Transfer data to Accumulator from register MR)																		
Instruc tion code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	1	0	1	0	0	1		2	5	2		1	1	-	-
Opera- $\quad(\mathrm{A}) \leftarrow(\mathrm{MR})$tion:															Grouping: Clock operation			
															Description: Transfers the contents of clock control register MR to register A .			

TAPU0 (Transfer data to Accumulator from register PU0)

Instruction	D9														Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	1	0	1	0	1	1	1	2	5	7	16	1	1	-	-
Opera- $\quad(\mathrm{A}) \leftarrow(\mathrm{PUO})$tion:															Grouping: Input/Output operation			
															Description: Transfers the contents of pull-up control register PUregister A.			

TAPU1 (Transfer data to Accumulator from register PU1)

Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	1	0	1	1	1	1		2	5	E 16	1	1	-	-
Opera- $\quad(\mathrm{A}) \leftarrow(\mathrm{PU1})$tion:														Grouping: Input/Output operation			
														Description: Transfers the contents of pull-up control register PU1 to register A .			

TAPU2 (Transfer data to Accumulator from register PU2)

Instruction	D9														Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	1	0	1	1	1	1		2	5	F	6	1	1	-	-
Opera- $\quad(\mathrm{A}) \leftarrow(\mathrm{PU2})$tion:															Grouping: Input/Output operation			
															Description: Transfers the contents of pull-up control register PU2 toregister A.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
TAPU3 (Transfer data to Accumulator from register PU3)

TASP (Transfer data to Accumulator from Stack Pointer)																
code	0	0	0		1	0	1	0	0	0				0		
Operation:	$\begin{aligned} & \left(\mathrm{A}_{2}-\mathrm{A}_{0}\right) \leftarrow\left(\mathrm{SP}_{2}-\mathrm{SP} 0\right) \\ & \left(\mathrm{A}_{3}\right) \leftarrow 0 \end{aligned}$															

Number of words	Number of cycles	Flag CY	Skip condition
1	1	-	-
Grouping: Register to register transfer			
Description: Transfers the contents of stack pointer (SP) to the low-			
order 3 bits (A2-A0) of register A.			
"0" is stored to the bit 3 (A3) of register A.			

TAV1 (Transfer data to Accumulator from register V1)

TAV2 (Transfer data to Accumulator from register V2)

Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	1	0	1	0	1	0			5		1	1	-	-
$\begin{aligned} & \text { Opera- } \quad(\mathrm{A}) \leftarrow(\mathrm{V} 2) \\ & \text { tion: } \end{aligned}$														Grouping: Interrupt operation			
														Description: Transfers the contents of interrupt control register V2 toregister A.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TAW1 (Transfer data to Accumulator from register W1)																	
Instruc tion code	D9 ${ }^{\text {a }}$													Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	1	0	0	1	0	1	12	2	4	B 16	1	1	-	-
$\begin{aligned} & \text { Opera- } \quad(\mathrm{A}) \leftarrow(\mathrm{W} 1) \\ & \text { tion: } \end{aligned}$														Grouping: Timer operation Description: Transfers the contents of timer control register W1 to register A .			
TAW2 (Transfer data to Accumulator from register W2)																	
Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	1	0	0	1	1	0	02		4	C 16	1	1	-	-
$\begin{aligned} & \text { Opera- } \quad(\mathrm{A}) \leftarrow(\mathrm{W} 2) \\ & \text { tion: } \end{aligned}$														Grouping: Timer operation			
														Description: Transfers the contents of timer control register W2 to regis ter A .			
TAW3 (Transfer data to Accumulator from register W3)																	
Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	1	0	0	1	1	0	12	2	4	D 16	1	1	-	-
$\begin{aligned} & \text { Opera- } \quad(\mathrm{A}) \leftarrow(\mathrm{W} 3) \\ & \text { tion: } \end{aligned}$														Grouping: Timer operation			
														Description: Transfers the contents of timer control register W3 to regis ter A .			
TAW4 (Transfer data to Accumulator from register W4)																	
Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	1	0	0	1	1	1	02	2	4	E 16	1	1	-	-
$\begin{aligned} & \text { Opera- } \quad(\mathrm{A}) \leftarrow(\mathrm{W} 4) \\ & \text { tion: } \end{aligned}$														Grouping: Timer operation			
														Description: Transfers the contents of timer control register W4 to regis ter A .			
TAW5 (Transfer data to Accumulator from register W5)																	
Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	1	0	0	1	1	1	12	2	4	F 16	1	1	-	-
$\begin{aligned} & \text { Opera- } \quad(\mathrm{A}) \leftarrow(\mathrm{W} 5) \\ & \text { tion: } \end{aligned}$														Grouping: Timer operation			
														Description: Transfers the contents of timer control register W5 to regis ter A.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TAX (Transfer data to Accumulator from register X)																	
Instruction code	D9 ${ }^{\text {a }}$													Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	1	0			0	1		0	5	216	1	1	-	-
$\begin{aligned} & \text { Opera- } \quad(\mathrm{A}) \leftarrow(\mathrm{X}) \\ & \text { tion: } \end{aligned}$														Grouping: Register to register transfer Description: Transfers the contents of register X to register A .			
TAY (Transfer data to Accumulator from register Y)																	
Instruction code	Do													Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0			1	1		0	1	F 16	1	1	-	-
$\begin{aligned} & \text { Opera- } \quad(\mathrm{A}) \leftarrow(\mathrm{Y}) \\ & \text { tion: } \end{aligned}$														Grouping: Register to register transfer			
														Description: Transfers the contents of register Y to register A .			

TAZ (Transfer data to Accumulator from register Z)

Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	1	0	1	0	0			0	5	316	1	1	-	-
Operation:	$\begin{aligned} & \left(A_{1}, A_{0}\right) \leftarrow\left(Z_{1}, Z_{0}\right) \\ & \left(A_{3}, A_{2}\right) \leftarrow 0 \end{aligned}$													Grouping: Register to register transfer Description: Transfers the contents of register Z to the low-order 2 bits $\left(A_{1}, A_{0}\right)$ of register A . "0" is stored to the high-order 2 bits $\left(\mathrm{A}_{3}, \mathrm{~A}_{2}\right)$ of register A.			
TBA (Transfer data to register B from Accumulator)																	
Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	0	1	1	1	02	0	0	E 16	1	1		-
$\begin{aligned} & \text { Opera- } \quad(\mathrm{B}) \leftarrow(\mathrm{A}) \\ & \text { tion: } \end{aligned}$														Grouping: Register to register transfer			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
TC1A (Transfer data to register C1 from Accumulator)

Instruction	D9 Do														Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	1	0	1	0	1	0	0		2	A	8	16	1	1	-	-
Opera- $\quad(\mathrm{C} 1) \leftarrow(\mathrm{A})$tion:															Grouping: LCD control operation			
															Description: Transfers the contents of register A to the LCD control register C1.			

TC2A (Transfer data to register C2 from Accumulator)

Instruc tion code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	1	0	1	0	1	0	1	0	0	2	2	A	9		1	1	-	-
Opera- $\quad(\mathrm{C} 2) \leftarrow(\mathrm{A})$tion:															Grouping: LCD control operation			
															Description: Transfers the contents of register A to the LCD control register C2.			

TC3A (Transfer data to register C3 from Accumulator)

Instruc tion	D9													Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	0	1	0	0	1	1	2	2	2		1	1		
Opera-)												Grouping:	CD control op	ation	
														Description:	ransfers the ter C3.	tents of re	o the LCD contr

TDA (Transfer data to register D from Accumulator)

Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	1	0	1	0	0		0	2		1	1	-	-
Opera- $\quad\left(\mathrm{DR}_{2}-\mathrm{DR} 0\right) \leftarrow\left(\mathrm{A}_{2}-\mathrm{A}_{0}\right)$tion:														Grouping: Register to register transfer			
														Description: Transfers the contents of the low-order 3 bits (A2-A0) of register A to register D.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
TEAB (Transfer data to register E from Accumulator and register B)

Instruc tion	D9														Number of words	Number of cycles	Flag CY	Skip condition
code	0	0	0	0	0	1	1	0	1	0	0	1	A		1	1	-	-
Operation:	$\begin{aligned} & \left(\mathrm{E}_{\left.7-\mathrm{E}_{4}\right)} \leftarrow(\mathrm{B})\right. \\ & \left(\mathrm{E}_{3}-\mathrm{E}_{0}\right) \leftarrow(\mathrm{A}) \end{aligned}$														Grouping: Register to register transfer			
															Description:	Tansfers the (E3-E0) of reg w-order 4 bit	ents of re E, and th ${ }_{3}-\mathrm{E}_{0}$) of	the high-order ts of register A

TFROA (Transfer data to register FR0 from Accumulator)

Instruc tion	D9														Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	0	1	0	1	0	0	0	2	2	8	16	1	1	-	-
Opera- $\quad($ FR0 $) \leftarrow($ A $)$tion:															Grouping: Input/Output operation			
															Description: Transfers the contents of register A to port output structure control register FRO.			

TFR1A (Transfer data to register FR1 from Accumulator)

TFR2A (Transfer data to register FR2 from Accumulator)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
TFR3A (Transfer data to register FR3 from Accumulator)

Instruction	D9 Do														Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	0	1	0	1	0		2	2	2	B		1	1	-	-
Opera- $\quad(\mathrm{FR} 3) \leftarrow(\mathrm{A})$															Grouping: Input/Output operation			
	$(\mathrm{FR} 3) \leftarrow(\mathrm{A})$														Description: Transfers the contents of register A to port output structure control register FR3.			

TI1A (Transfer data to register I1 from Accumulator)

Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	0	0	1	0	1	1		2	1		1	1	-	-
Opera- $\quad(11) \leftarrow($ A)tion:														Grouping: Interrupt operation			
														Description: Transfers the contents of register A to interrupt control reg-ister I1.			
TK0A (Transfer data to register K0 from Accumulator)																	
Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	0	0	1	1	0	1		2	1		1	1	-	-
Opera- $\quad(\mathrm{K} 0) \leftarrow(\mathrm{A})$tion:														Grouping: Input/Output operation			
														Description:	ransfers the ol register K0	tents of re	o key-on wakeup con-

lin

TK1A (Transfer data to register K1 from Accumulator)

Instruc tion code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	0	0	1	0	1	0		2	1	4		1	1	-	-
Opera- $\quad(\mathrm{K} 1) \leftarrow(\mathrm{A})$tion:															Grouping: Input/Output operation			
															Description: Transfers the contents of register A to key-on wakeup control register K1.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TK2A (Transfer data to register K2 from Accumulator)																			
Instruction code	D9															Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	0	0	1	0	1	0			2	1	5	16	1	1	-	-
Opera- $\quad(\mathrm{K} 2) \leftarrow(\mathrm{A})$ tion:																Grouping: Description: Transfel register K2.			
TK3A (Transfer data to register K3 from Accumulator)																			
Instruction code	D9															Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	0	1	0	1	1	0			2	2	C	16	1	1	-	-
Opera- $\quad(\mathrm{K} 3) \leftarrow(\mathrm{A})$ tion:																Grouping: \quad Input/Output operation Description:Transfers the contents of register A to key-on wakeup con- trol register K3.			

TL1A (Transfer data to register L1 from Accumulator)

Instruc tion	D9								Do					Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	0				1	0	2	0	A		1	1		
Opera-)												Grouping:	CD control op	ation	
														Description:	ransfers the Ler 1.	ents of r	the LCD contr

TL2A (Transfer data to register L2 from Accumulator)

Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	0	0	0	1	0	1		2	0		1	1	-	-
Opera- $\quad(\mathrm{L} 2) \leftarrow(\mathrm{A})$tion:														Grouping: LCD control operation			
														Description: Transfers the contents of register A to the LCD control reg-ister L2.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TL3A (Transfer data to register L3 from Accumulator)
Instruc- tion code
1

TLCA (Transfer data to timer LC and register RLC from Accumulator)

Instruction	D9															Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	0	0	0	1	1	0	1	2	2	0	D	16	1	1	-	-
Operation:	$\begin{aligned} & (\mathrm{LC}) \leftarrow(A) \\ & (\mathrm{RLC}) \leftarrow(A) \end{aligned}$															Grouping: Timer control operation			
																Description:	ansfers the gister RLC.	ents of re	timer LC and

TMA j (Transfer data to Memory from Accumulator)

Number of words	Number of cycles	Flag CY	Skip condition
1	1	-	-
Grouping: RAM to register transfer			
Description: After transferring the contents of register A to M(DP), an			
exclusive OR operation is performed between register X			
and the value j in the immediate field, and stores the result			
in register X.			

TMRA (Transfer data to register MR from Accumulator)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TPAA (Transfer data to register PA from Accumulator)																		
Instruc tion code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	1	0	1	0	1	0	1	0	1	02	2	A	A		1	1	-	-
$\text { Opera- } \quad(\mathrm{PA} 0) \leftarrow(\mathrm{A} 0)$tion:															Grouping: Timer operation Description: Transfers the least significant bit of register A (Ao) to timer control register PA.			
TPSAB (Transfer data to Pre-Scaler and register RPS from Accumulator and register B)																		
Instruc tion code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	0	1	1	0	1	0		2	3	5		1	1	-	-
															Grouping: Timer operation			
															Description: Transfers the contents of register B to the high-order 4 bits of prescaler and prescaler reload register RPS. Transfers the contents of register A to the low-order 4 bits of prescaler and prescaler reload register RPS.			

TPUOA (Transfer data to register PU0 from Accumulator)

Instruction	D9												Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	0			1	0	2	2	2		1	1	-	-
Opera- $\quad(\mathrm{PUO}) \leftarrow(\mathrm{A})$tion:													Grouping: Input/Output operation			
													Description: Transfers the contents of register A to pull-up control register PUO.			

TPU1A (Transfer data to register PU1 from Accumulator)

Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	0	1	0	1	1			2	2	E 16	1	1	-	-
Opera- $\quad(\mathrm{PU1}) \leftarrow(\mathrm{A})$tion:														Grouping: Input/Output operation			
														Description: Transfers the contents of register A to pull-up control regis-ter PU1.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TPU2A (Transfer data to register PU2 from Accumulator)																		
Instruc tion code	Ds ${ }^{\text {do }}$														Number of words	Number o cycles	Flag CY	Skip condition
	1	0	0	0	1	0	1	1				2	F		1	1	-	-
$\begin{aligned} & \text { Opera- } \quad(\mathrm{PU} 2) \leftarrow(\mathrm{A}) \\ & \text { tion: } \end{aligned}$															Grouping: Input/Output operation Description: Transfers the contents of register A to pull-up control regis ter PU2.			
TPU3A (Transfer data to register PU3 from Accumulator)																		
Instruction code	D9														Number of words	Number o cycles	Flag CY	Skip condition
	1	0	0	0	0	0	1	0	0	2		0	8		1	1	-	-
Opera- $\quad(\mathrm{PU3}) \leftarrow(\mathrm{A})$tion:															Grouping: Input/Output operation Description: Transfers the contents of register A to pull-up control register PU3.			

TR1AB (Transfer data to register R1 from Accumulator and register B)

Instruction code	D9													Number of words	Number of cycles	Flag CY	Skip conditio
	1	0	0	0	1	1	1	1	1	2	2	3		1	1	-	-
Operation:	$\begin{aligned} & (\mathrm{R} 17-\mathrm{R} 14) \leftarrow(\mathrm{B}) \\ & (\mathrm{R} 13-\mathrm{R} 10) \leftarrow(\mathrm{A}) \end{aligned}$													Grouping: Timer control operation			
														Description: Transfers the contents of register B to the high-order 4 bits (R17-R14) of timer 1 reload register R1, and the contents of register A to the low-order 4 bits (R13-R10) of timer 1 reload register R1.			

TRGA (Transfer data to register RG from Accumulator)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TV1A (Transfer data to register V1 from Accumulator)																		
Instruction code	D9														Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	1	1	1	1	1		0	3	F	16	1	1	-	-
$\text { Opera- } \quad(\mathrm{V} 1) \leftarrow(\mathrm{A})$ tion:															Grouping: Interrupt operation			
															Description:	ransfers the ter V1.	tents of re	o interrupt contr

TV2A (Transfer data to register V2 from Accumulator)

TW1A (Transfer data to register W1 from Accumulator)

Instruction code	D9												Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	0	0		1	1		2	0	E 16	1	1	-	-
Opera- $\quad(\mathrm{W} 1) \leftarrow(\mathrm{A})$tion:													Grouping: Timer operation			

TW2A (Transfer data to register W2 from Accumulator)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
TW3A (Transfer data to register W3 from Accumulator)
Instruc-

TW4A (Transfer data to register W4 from Accumulator)

Instruc tion	D9														Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	0	0	1	0	0	0		2	1	1		1	1	-	-
Opera- $\quad(\mathrm{W} 4) \leftarrow(\mathrm{A})$tion:															Grouping: Timer operation			
															Description: Transfers the contents of register A to timer control register W4.			

TW5A (Transfer data to register W5 from Accumulator)

Instruc tion	D9													Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	0	0	1	0	0		0	2	1	216	1	1	-	-
Opera- $\quad(\mathrm{W} 5) \leftarrow(\mathrm{A})$tion:														Grouping: Timer operation			
														Description:	Transfers the c W5.	tents of reg	timer control register

TYA (Transfer data to register Y from Accumulator)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
XAM j (eXchange Accumulator and Memory data)

Instruction	D9													Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	1	1	0	1	j	j			2	D		1	1	-	-
Opera- $(A) \leftarrow \rightarrow(M(D P))$ tion: $(X) \leftarrow(X) \operatorname{EXOR}(\mathrm{j})$ $\mathrm{j}=0$ to 15														Grouping: RAM to register transfer			
															fter exchang register A, tween regis and stores th	the conten exclusive X and the sult in regi	P) with the contents tion is performed the immediate field,

XAMD j (eXchange Accumulator and Memory data and Decrement register Y and skip)

XAMI j (eXchange Accumulator and Memory data and Increment register Y and skip)

MACHINE INSTRUCTIONS (INDEX BY TYPES)

\begin{tabular}{|c|c|c|}
\hline Skip condition \& \& Detailed description \\
\hline -
-
-
-
-
-
-
-
-
-
-
- \& -
-
-
-
-
-
-
-
-
-
-
-
-
- \& \begin{tabular}{l}
Transfers the contents of register B to register A. \\
Transfers the contents of register A to register B. \\
Transfers the contents of register Y to register A . \\
Transfers the contents of register A to register Y . \\
Transfers the contents of register \(B\) to the high-order 4 bits (\(\mathrm{E}_{3}-\mathrm{E}_{0}\)) of register E , and the contents of register A to the low-order 4 bits (\(\mathrm{E}_{3}-\mathrm{E}_{0}\)) of register E . \\
Transfers the high-order 4 bits (E7-E4) of register E to register B, and low-order 4 bits of register E to register A. \\
Transfers the contents of the low-order 3 bits (\(\mathrm{A}_{2}-\mathrm{A} 0\)) of register A to register D . \\
Transfers the contents of register \(D\) to the low-order 3 bits (\(\mathrm{A}_{2}-\mathrm{A}_{0}\)) of register A . " 0 " is stored to the bit 3 (Аз) of register A. \\
Transfers the contents of register \(Z\) to the low-order 2 bits (\(A_{1}, A_{0}\)) of register \(A\). " 0 " is stored to the high-order 2 bits (\(\mathrm{A}_{3}, \mathrm{~A}_{2}\)) of register A . \\
Transfers the contents of register X to register A . \\
Transfers the contents of stack pointer (SP) to the low-order 3 bits (A2-Ao) of register A. \\
" 0 " is stored to the bit 3 (Аз) of register A.
\end{tabular} \\
\hline \begin{tabular}{l}
Continuous description \\
-
\[
(Y)=0
\]
\[
(Y)=15
\]
\end{tabular} \& - \& \begin{tabular}{l}
Loads the value x in the immediate field to register X , and the value y in the immediate field to register Y . When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped. \\
Loads the value z in the immediate field to register Z . \\
Adds 1 to the contents of register Y . As a result of addition, when the contents of register Y is 0 , the next instruction is skipped. When the contents of register Y is not 0 , the next instruction is executed. \\
Subtracts 1 from the contents of register Y . As a result of subtraction, when the contents of register Y is 15 , the next instruction is skipped. When the contents of register \(Y\) is not 15 , the next instruction is executed.
\end{tabular} \\
\hline -
-
\((Y)=15\)
\((Y)=0\) \& -
-
-
-
-
-

-
- \& | After transferring the contents of $M(D P)$ to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X . |
| :--- |
| After exchanging the contents of $M(D P)$ with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X . |
| After exchanging the contents of $M(D P)$ with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X . Subtracts 1 from the contents of register Y . As a result of subtraction, when the contents of register Y is 15 , the next instruction is skipped. When the contents of register Y is not 15 , the next instruction is executed. |
| After exchanging the contents of $M(D P)$ with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X . Adds 1 to the contents of register Y . As a result of addition, when the contents of register Y is 0 , the next instruction is skipped. when the contents of register Y is not 0 , the next instruction is executed. |
| After transferring the contents of register A to M(DP), an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X . |

\hline
\end{tabular}

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Note 1. M3455AG8: $p=0$ to 63 and M3455AGC: $p=0$ to 95.

Skip condition		Detailed description
Continuous description	-	Loads the value n in the immediate field to register A . When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped. Transfers bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in address (DR2 DR1 DR $1 A_{3} A_{2} A_{1} A_{0}$)2 specified by registers A and D in page p. When UPTF is 1 , Transfers bits 9 , 8 to the low-order 2 bits (DR1, DRo) of register D, and " 0 " is stored to the least significant bit (DR2) of register D. When this instruction is executed, 1 stage of stack register (SK) is used.
-	-	Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.
-	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow = 0	-	Adds the value n in the immediate field to register A , and stores a result in register A . The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation. Executes the next instruction when there is overflow as the result of operation.
-	-	Takes the AND operation between the contents of register A and the contents of $M(D P)$, and stores the result in register A.
-	-	Takes the OR operation between the contents of register A and the contents of $M(D P)$, and stores the result in register A.
-	1	Sets (1) to carry flag CY.
-	0	Clears (0) to carry flag CY.
$(C Y)=0$	-	Skips the next instruction when the contents of carry flag CY is " 0 ". Executes the next instruction when the contents of carry flag CY is " 1 ". The contents of carry flag CY remains unchanged.
-	-	Stores the one's complement for register A's contents in register A.
-	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
-	-	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
-	-	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
$\begin{gathered} (M j(D P))=0 \\ j=0 \text { to } 3 \end{gathered}$	-	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of $M(D P)$ is " 0 ". Executes the next instruction when the contents of bit j of $\mathrm{M}(\mathrm{DP})$ is " 1 ".

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Note 1. M3455AG8: $\mathrm{p}=0$ to 63 and $\mathrm{p} 6=0$, and M3455AGC: $\mathrm{p}=0$ to 95.

\begin{tabular}{|c|c|c|}
\hline Skip condition \& \& Detailed description \\
\hline \[
(\mathrm{A})=(\mathrm{M}(\mathrm{DP}))
\]
\[
\begin{gathered}
(\mathrm{A})=\mathrm{n} \\
\mathrm{n}=0 \text { to } 15
\end{gathered}
\] \& - \& \begin{tabular}{l}
Skips the next instruction when the contents of register \(A\) is equal to the contents of \(M(D P)\). Executes the next instruction when the contents of register \(A\) is not equal to the contents of \(M(D P)\). \\
Skips the next instruction when the contents of register \(A\) is equal to the value \(n\) in the immediate field. Executes the next instruction when the contents of register \(A\) is not equal to the value \(n\) in the immediate field.
\end{tabular} \\
\hline \& -

-
- \& | Branch within a page : Branches to address a in the identical page. |
| :--- |
| Branch out of a page : Branches to address a in page p . |
| Branch out of a page : Branches to address (DR2 DR1 DRo $\left.A_{3} A_{2} A_{1} A_{0}\right)_{2}$ specified by registers D and A in page p. |

\hline $\begin{array}{r}- \\ \\ - \\ \\ \hline\end{array}$ \& -

-
-
- \& | Call the subroutine in page 2 : Calls the subroutine at address a in page 2. |
| :--- |
| Call the subroutine : Calls the subroutine at address a in page p. |
| Call the subroutine : Calls the subroutine at address (DR2 DR1 DRo $\left.A_{3} A_{2} A_{1} A 0\right) 2$ specified by registers D and A in page p. |

\hline Skip at uncondition \& -

-
-
- \& | Returns from interrupt service routine to main routine. |
| :--- |
| Returns each value of data pointer (X, Y, Z), carry flag, skip status, NOP mode status by the continuous description of the LA/LXY instruction, register A and register B to the states just before interrupt. |
| Returns from subroutine to the routine called the subroutine. |
| Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition. |

\hline
\end{tabular}

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Skip condition		Detailed description
-	-	Clears (0) to interrupt enable flag INTE, and disables the interrupt.
-	-	Sets (1) to interrupt enable flag INTE, and enables the interrupt.
$\mathrm{V} 10=0:(E X F 0)=1$	-	When $\mathrm{V} 10=0$: Clears (0) to the EXF0 flag and skips the next instruction when external 0 interrupt request flag EXF0 is " 1 ". When the EXF0 flag is " 0 ", executes the next instruction. When $\mathrm{V} 10=1$: This instruction is equivalent to the NOP instruction. (V10: bit 0 of interrupt control register V1)
$\begin{gathered} (\mathrm{INT})=\text { "L" } \\ \text { However, } 112=0 \end{gathered}$	-	When $112=0$: Skips the next instruction when the level of INT pin is "L". Executes the next instruction when the level of INTO pin is " H ".
$\begin{gathered} (\text { INT })=\text { "H" } \\ \text { However, } 112=1 \end{gathered}$		When I_{2} = 1 : Skips the next instruction when the level of INT pin is " H ". Executes the next instruction when the level of INTO pin is "L". (I12: bit 2 of interrupt control register I1)
-	-	Transfers the contents of interrupt control register V1 to register A .
-	-	Transfers the contents of register A to interrupt control register V1.
-	-	Transfers the contents of interrupt control register V2 to register A .
-	-	Transfers the contents of register A to interrupt control register V2.
-	-	Transfers the contents of interrupt control register I1 to register A.
-	-	Transfers the contents of register A to interrupt control register I1.
-	-	Transfers the contents of register A (A0) to timer control register PA.
-	-	Transfers the contents of timer control register W1 to register A.
-	-	Transfers the contents of register A to timer control register W1.
-	-	Transfers the contents of timer control register W2 to register A.
-	-	Transfers the contents of register A to timer control register W2.
-	-	Transfers the contents of timer control register W3 to register A.
-	-	Transfers the contents of register A to timer control register W3.
-	-	Transfers the contents of timer control register W4 to register A.
-	-	Transfers the contents of register A to timer control register W4.
-	-	Transfers the contents of timer control register W5 to register A.
-	-	Transfers the contents of register A to timer control register W5.

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Para meter Type of instructi ons	Mnemonic	Instruction code															Function
			D8 D	D7	D6	D5	D4	D	3 D	D2	D1 Do	Hexadecim al notation					
	TABPS	1	0	0	1	1	1	0		1	01		7	5	1	1	$\begin{aligned} & (\mathrm{B}) \leftarrow\left(\text { TPS }_{7}-\mathrm{TPS}_{4}\right) \\ & (\mathrm{A}) \leftarrow\left(\mathrm{TPS}_{3-\mathrm{TPS}}\right) \end{aligned}$
	TPSAB	1	0	0	0	1	1	0	-	1	01		3	5	1	1	$\begin{aligned} & (\text { RPS7-RPS } 4) \leftarrow(B) \\ & (\text { TPS7-TPS4 }) \leftarrow(\mathrm{B}) \\ & (\text { RPS3-RPS } 0) \leftarrow(\mathrm{A}) \\ & \left(\mathrm{TPS}_{3}-\mathrm{TPS} 0\right) \leftarrow(\mathrm{A}) \end{aligned}$
	TAB1	1	0	0	1	1	1	0	-	0	00		7	0	1	1	$\begin{aligned} & (\mathrm{B}) \leftarrow(\mathrm{T} 17-\mathrm{T} 14) \\ & (\mathrm{A}) \leftarrow(\mathrm{T} 13-\mathrm{T} 10) \end{aligned}$
	T1AB	1	0	0	0	1	1	0		0	00		3	0	1	1	$\begin{aligned} & (\mathrm{R} 17-\mathrm{R} 14) \leftarrow(\mathrm{B}) \\ & (\mathrm{T} 17-\mathrm{T} 14) \leftarrow(\mathrm{B}) \\ & (\mathrm{R} 13-\mathrm{R} 10) \leftarrow(\mathrm{A}) \\ & (\mathrm{T} 13-\mathrm{T} 10) \leftarrow(\mathrm{A}) \end{aligned}$
	TR1AB	1	0	0	0	1	1	1		1	11		3	F	1	1	$\begin{aligned} & (\mathrm{R} 17-\mathrm{R} 14) \leftarrow(\mathrm{B}) \\ & (\mathrm{R} 13-\mathrm{R} 10) \leftarrow(\mathrm{A}) \end{aligned}$
	TAB2	1	0	0	1	1	1	0		0	$0 \quad 1$		7	1	1	1	$\begin{aligned} & (\mathrm{B}) \leftarrow(\mathrm{T} 27-\mathrm{T} 24) \\ & (\mathrm{A}) \leftarrow(\mathrm{T} 23-\mathrm{T} 20) \end{aligned}$
	T2AB	1	0	0	0	1	1	0		0	$0 \quad 1$		3	1	1	1	$\begin{aligned} & (\text { R2L7-R2L4) } \leftarrow(\mathrm{B}) \\ & (\mathrm{T} 27-\mathrm{T} 24) \leftarrow(\mathrm{B}) \\ & (\mathrm{R} 2 \mathrm{~L} 3-\mathrm{R} 2 L 0) \leftarrow(\mathrm{A}) \\ & (\mathrm{T} 23-\mathrm{T} 20) \leftarrow(\mathrm{A}) \end{aligned}$
	T2HAB	1	0	1	0	0	1	0		1	00		9	4	1	1	$\begin{aligned} & \left(\mathrm{R}_{2} \mathrm{H}_{7}-\mathrm{R}_{2} \mathrm{H}_{4}\right) \leftarrow(\mathrm{B}) \\ & \left(\mathrm{R}_{3} \mathrm{H}_{3}-\mathrm{R}_{0}\right) \leftarrow(\mathrm{A}) \end{aligned}$
	T2R2L	1	0	1	0	0	1	0	-	1	01		9	5	1	1	$(\mathrm{T} 27) \leftarrow(\mathrm{R} 2 \mathrm{~L})$
	TLCA	1	0	0	0	0	0	1		1	01		0	D	1	1	$\begin{aligned} & (\text { RLC }) \leftarrow(A) \\ & (T L C) \leftarrow(A) \end{aligned}$
	SNZT1	1	0	1	0	0	0	0		0	00		8	0	1	1	$\begin{aligned} & \mathrm{V} 12=0:(\mathrm{T} 1 \mathrm{~F})=1 ? \\ & \text { After skipping, (T1F) } \leftarrow 0 \\ & \mathrm{~V} 12=1: \text { SNZT1 }=\text { NOP } \end{aligned}$
	SNZT2	1	0	1	0	0	0	0		0	01		8	1	1	1	$\begin{aligned} & \mathrm{V} 13=0:(\mathrm{T} 2 \mathrm{~F})=1 ? \\ & \text { After skipping, (T2F) } \leftarrow 0 \\ & \mathrm{~V} 13=1: \text { SNZT2=NOP } \end{aligned}$
	SNZT3		0	1	0	0	0			0	10		8		1	1	$\mathrm{V} 20=0:(\mathrm{T} 3 \mathrm{~F})=1 ?$ After skipping, (T3F) $\leftarrow 0$ $\mathrm{V} 20=1: \mathrm{SNZT3}=\mathrm{NOP}$

Skip condition		Detailed description
-	-	Transfers the high-order 4 bits of prescaler to register B. Transfers the low-order 4 bits of prescaler to register A.
-	-	Transfers the contents of register B to the high-order 4 bits of prescaler and prescaler reload register RPS. Transfers the contents of register A to the low-order 4 bits of prescaler and prescaler reload register RPS.
-	-	Transfers the high-order 4 bits (T17-T14) of timer 1 to register B. Transfers the low-order 4 bits (T13-T10) of timer 1 to register A.
-	-	Transfers the contents of register B to the high-order 4 bits of timer 1 and timer 1 reload register R1L. Transfers the contents of register A to the low-order 4 bits of timer 1 and timer 1 reload register R1L.
-	-	Transfers the contents of register B to the high-order 4 bits (R17-R14) of reload register R1, and the contents of register A to the low-order 4 bits (R13-R10) of reload register R1.
-	-	Transfers the high-order 4 bits (T27-T24) of timer 2 to register B. Transfers the low-order 4 bits (T23-T20) of timer 2 to register A.
-	-	Transfers the contents of register B to the high-order 4 bits (R2L7-R2L4) of timer 2 and timer 2 reload register R2L. Transfers the contents of register A to the low-order 4 bits (R2L3-R2Lo) of timer 2 and timer 2 reload register R2L.
-	-	Transfers the contents of register B to the high-order 4 bits (R2H7-R2H4) of timer 2 and timer 2 reload register R2H. Transfers the contents of register A to the low-order 4 bits (R2H3-R2H0) of timer 2 and timer 2 reload register R2H.
-	-	Transfers the contents of timer 2 reload register R2L to timer 2.
-	-	Transfers the contents of register A to timer LC and reload register RLC.
$\mathrm{V} 12=0:(\mathrm{T} 1 \mathrm{~F})=1$	-	When $\mathrm{V} 12=0$: Clears (0) to the T1F flag and skips the next instruction when timer 1 interrupt request flag T1F is " 1 ". When the T1F flag is " 0 ", executes the next instruction. When $V 12=1$: This instruction is equivalent to the NOP instruction. (V12: bit 2 of interrupt control register V1)
$\mathrm{V} 13=0:(\mathrm{T} 2 \mathrm{~F})=1$	-	When $\mathrm{V} 13=0$: Clears (0) to the T2F flag and skips the next instruction when timer 2 interrupt request flag T2F is " 1 ". When the T2F flag is " 0 ", executes the next instruction. When $\mathrm{V} 13=1$: This instruction is equivalent to the NOP instruction. (V13: bit 3 of interrupt control register V1)
$\mathrm{V} 20=0:(\mathrm{T} 3 \mathrm{~F})=1$	-	When $\mathrm{V} 20=0$: Clears (0) to the T3F flag and skips the next instruction when timer 3 interrupt request flag T3F is " 1 ". When the T3F flag is " 0 ", executes the next instruction. When $\mathrm{V} 20=1$: This instruction is equivalent to the NOP instruction. (V20: bit 0 of interrupt control register V2)

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Skip condition		Detailed description
-	-	Transfers the input of port P0 to register A.
-	-	Outputs the contents of register A to port P0.
-	-	Transfers the input of port P1 to register A .
-	-	Outputs the contents of register A to port P1.
-	-	Transfers the input of port P2 to the register A.
-	-	Outputs the contents of the register A to port P2.
-	-	Transfers the input of port P3 to the register A.
-	-	Outputs the contents of the register A to port P3.
-	-	Sets (1) to port D.
-	-	Clears (0) to a bit of port D specified by register Y.
-	-	Sets (1) to a bit of port D specified by register Y.
$\begin{aligned} & (D(Y))=0 \\ & Y=0 \text { to } 4 \end{aligned}$	-	Skips the next instruction when a bit of port D specified by register Y is " 0 ". Executes the next instruction when a bit of port D specified by register Y is " 1 ".
-	-	Clears (0) to port C.
-	-	Sets (1) to port C.
-	-	Transfers the contents of register A to port output structure control register FR0.
-	-	Transfers the contents of register A to port output structure control register FR1.
-	-	Transfers the contents of register A to port output structure control register FR2.
-	-	Transfers the contents of register A to port output structure control register FR3.
-	-	Transfers the contents of pull-up control register PU0 to register A.
-	-	Transfers the contents of register A to pull-up control register PU0.
-	-	Transfers the contents of pull-up control register PU1 to register A.
-	-	Transfers the contents of register A to pull-up control register PU1.
-	-	Transfers the contents of pull-up control register PU2 to register A.
-	-	Transfers the contents of register A to pull-up control register PU2.
-	-	Transfers the contents of pull-up control register PU3 to register A.
-	-	Transfers the contents of register A to pull-up control register PU3.

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Skip condition		Detailed description
	- - -	Transfers the contents of key-on wakeup control register K0 to register A. Transfers the contents of register A to key-on wakeup control register KO. Transfers the contents of key-on wakeup control register K1 to register A. Transfers the contents of register A to key-on wakeup control register K1. Transfers the contents of key-on wakeup control register K2 to register A. Transfers the contents of register A to key-on wakeup control register K2. Transfers the contents of key-on wakeup control register K3 to register A. Transfers the contents of register A to key-on wakeup control register K3.
		Transfers the contents of the LCD control register L1 to register A. Transfers the contents of register A to the LCD control register L1. Transfers the contents of register A to the LCD control register L2. Transfers the contents of register A to the LCD control register L3. Transfers the contents of register A to the LCD control register C1. Transfers the contents of register A to the LCD control register C2. Transfers the contents of register A to the LCD control register C3.
-	- - -	Transfers the contents of clock control regiser MR to register A. Transfers the contents of register A to clock control register MR. Transfers the contents of register A to clock control register RG.

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Para meter Type of instructi ons	Mnemonic	Instruction code													Function
			D8	D7	D6	D5	4 D	3 D	D2	D1	Do	Hexadecim al notation			
	NOP	0	0	0	0	0	0	0	0	0	0	000	1	1	$(\mathrm{PC}) \leftarrow(\mathrm{PC})+1$
	POF	0	0	0	0	0	0	0	0	1	0	$0 \quad 0$	1	1	Transition to clock operating mode
	POF2	0	0	0	0	0	0	1	0	0	0	$0 \quad 0 \quad 8$	1	1	Transition to RAM back-up mode
	EPOF	0	0	0	1	0	1	1	0	1	1	05 B	1	1	POF or POF2 instruction valid
	SNZP	0	0	0	0	0	0	0	0	1	1	$0 \quad 0$	1	1	$(P)=1 ?$
	WRST	1	0	1	0	1	0	0	0	0	0	2 A 0	1	1	$\begin{aligned} & (W D F 1)=1 ? \\ & (W D F 1) \leftarrow 0 \end{aligned}$
	DWDT	1	0	1	0	0	1	1	1	0	0	29 C	1	1	Stop of watchdog timer function enabled
	SRST	0	0	0	0	0	0	0	0	0	1	$0 \quad 0 \quad 1$	1	1	System reset
	RUPT	0	0	0	1	0	1	1	0	0	0	$0 \quad 5 \quad 8$	1	1	$($ UPTF) $\leftarrow 0$
	SUPT	0	0	0	1	0	1	1	0	0	1	$0 \quad 5 \quad 9$	1	1	$($ UPTF) $\leftarrow 1$
	SVDE	1	0	1	0	0	1	0	0	1	1	293	1	1	At power down mode, voltage drop detection circuit valid
	SNZVD	1	0	1	0	0	0	1	0	1	0	28 A	1	1	$(\mathrm{VDF})=1$?
	RBK (Note 1)	0	0	0	1		0	0		0	0	$0 \quad 40$	1	1	When TABPp instruction is executed, p6 ¢0
	SBK (Note 1)	0	0	0	1	0	0	0	0	0	1	$0 \quad 41$	1	1	When TABPp instruction is executed, $\mathrm{p}_{6} \leftarrow 1$

Note 1. (SBK, RBK) cannot be used int the M3455AG8. The pages which can be referred by the TABP instruction after the SBK instruction is executed are 64 to 95 in the M3455AGC.

Skip condition		Detailed description
-	-	No operation; Adds 1 to program counter value, and others remain unchanged.
-	-	Puts the system in clock operating mode by executing the POF instruction after executing the EPOF instruction.
-	-	Puts the system in RAM back-up state by executing the POF2 instruction after executing the EPOF instruction.
-	-	Makes the immediate after POF or POF2 instruction valid by executing the EPOF instruction.
$(P)=1$	-	Skips the next instruction when the P flag is " 1 ". After skipping, the P flag remains unchanged. Executes the next instruction when the P flag is " 0 ".
$($ WDF1 $)=1$		Clears (0) to the WDF1 flag and skips the next instruction when watchdog timer flag WDF1 is " 1 ". When the WDF1 flag is " 0 ", executes the next instruction. Also, stops the watchdog timer function when executing the WRST instruction immediately after the DWDT instruction.
-	-	Stops the watchdog timer function by the WRST instruction after executing the DWDT instruction.
-	-	System reset occurs.
-	-	Clears (0) to the high-order bit reference enable flag UPTF.
-	-	Sets (1) to the high-order bit reference enable flag UPTF.
$(\mathrm{VDF})=1$	-	Skips the next instruction when voltage drop detection circuit flag VDF is " 1 ". Execute instruction when VPF is " 0 ". After skipping, the contents of VDF remains unchanged.
-	-	Validates the voltage drop detection circuit at power down (clock operating mode and RAM back-up mode).
-	-	Sets referring data area to pages 0 to 63 when the TABP p instruction is executed. This instruction is valid only for the TABP p instruction.
-	-	Sets referring data area to pages 64 to 127 when the TABP p instruction is executed. This instruction is valid only for the TABP p instruction.

INSTRUCTION CODE TABLE

	D9-	000000	000001	000010	000011	000100	000101	000110	000111	001000	001001	001010	001011	001100	001101	001110	001111	$\left\|\begin{array}{c} 010000 \\ \text { to } \\ 010111 \end{array}\right\|$	$\left\|\begin{array}{c} 011000 \\ \text { to } \\ 011111 \end{array}\right\|$
Do	Hex, notation	00	01	02	03	04	05	06	07	08	09	OA	OB	OC	OD	OE	OF	10-17	18-F
0000	0	NOP	BLA	$\begin{gathered} \hline \text { SZB } \\ 0 \end{gathered}$	BMLA	RBK**	TASP	$\begin{aligned} & \hline \text { A } \\ & 0 \end{aligned}$	$\begin{gathered} \mathrm{LA} \\ 0 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 0 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 16 \end{gathered}$	TABP 32^{*}	$\begin{gathered} \mathrm{TABP} \\ 48^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
0001	1	SRST	CLD	$\begin{gathered} \hline \text { SZB } \\ 1 \end{gathered}$	-	SBK**	TAD	$\begin{gathered} \hline \mathrm{A} \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{LA} \\ 1 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 1 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 17 \end{array}$	TABP 33^{*}	$\begin{gathered} \mathrm{TABP} \\ 49^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
0010	2	POF	-	$\begin{gathered} \text { SZB } \\ 2 \end{gathered}$	-	-	TAX	$\begin{aligned} & \text { A } \\ & 2 \end{aligned}$	$\begin{gathered} \mathrm{LA} \\ 2 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 2 \end{array}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 18 \end{array}$	$\begin{gathered} \mathrm{TABP} \\ 34^{*} \end{gathered}$	$\begin{aligned} & \text { TABP } \\ & 50^{*} \end{aligned}$	BML	BML	BL	BL	BM	B
0011	3	SNZP	INY	$\begin{gathered} \hline \text { SZB } \\ 3 \end{gathered}$	-	-	TAZ	$\begin{aligned} & \hline \text { A } \\ & 3 \end{aligned}$	$\begin{gathered} \mathrm{LA} \\ 3 \end{gathered}$	$\begin{gathered} \mathrm{TABP} \\ 3 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 19 \end{array}$	TABP 35^{*}	$\begin{gathered} \text { TABP } \\ 51^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
0100	4	DI	RD	SZD	-	RT	TAV1	$\begin{aligned} & \hline \text { A } \\ & 4 \end{aligned}$	$\begin{gathered} \mathrm{LA} \\ 4 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 4 \end{array}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 20 \end{array}$	TABP 36^{*}	$\begin{gathered} \mathrm{TABP} \\ 52^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
0101	5	EI	SD	SEAn	-	RTS	TAV2	$\begin{gathered} \hline \text { A } \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{LA} \\ 5 \end{gathered}$	$\begin{array}{\|c} \hline \text { TABP } \\ 5 \end{array}$	$\begin{array}{\|c} \text { TABP } \\ 21 \end{array}$	$\begin{gathered} \text { TABP } \\ 37^{*} \end{gathered}$	$\begin{gathered} \text { TABP } \\ 53^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
0110	6	RC	-	SEAM	-	RTI	-	$\begin{gathered} \hline \text { A } \\ 6 \end{gathered}$	$\begin{gathered} \hline \text { LA } \\ 6 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 6 \end{array}$	$\begin{array}{\|c} \text { TABP } \\ 22 \end{array}$	TABP 38^{*}	$\begin{gathered} \mathrm{TABP} \\ 54^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
0111	7	SC	DEY	-	-	-	-	$\begin{aligned} & \text { A } \\ & 7 \end{aligned}$	$\begin{gathered} \text { LA } \\ 7 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 7 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 23 \end{gathered}$	TABP 39^{*}	$\begin{gathered} \mathrm{TABP} \\ 55^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
1000	8	POF2	AND	-	SNZO	$\begin{gathered} \mathrm{LZ} \\ 0 \end{gathered}$	RUPT	$\begin{aligned} & \text { A } \\ & 8 \end{aligned}$	$\begin{gathered} \hline \text { LA } \\ 8 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 8 \end{array}$	$\begin{array}{\|c} \hline \text { TABP } \\ 24 \end{array}$	TABP 40^{*}	$\begin{gathered} \text { TABP } \\ 56^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
1001	9	-	OR	TDA	-	$\begin{gathered} \mathrm{LZ} \\ 1 \end{gathered}$	SUPT	$\begin{gathered} \hline \text { A } \\ 9 \end{gathered}$	$\begin{gathered} \mathrm{LA} \\ 9 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 9 \end{array}$	$\begin{gathered} \mathrm{TABP} \\ 25 \end{gathered}$	TABP 41^{*}	$\begin{gathered} \text { TABP } \\ 57^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
1010	A	AM	TEAB	TABE	$\begin{array}{\|c\|} \hline \text { SNZI } \\ 0 \end{array}$	$\begin{gathered} \mathrm{LZ} \\ 2 \end{gathered}$	-	$\begin{gathered} \hline \mathrm{A} \\ 10 \end{gathered}$	$\begin{aligned} & \hline \mathrm{LA} \\ & 10 \end{aligned}$	$\begin{array}{\|c} \hline \text { TABP } \\ 10 \end{array}$	$\begin{array}{\|c} \mathrm{TABP} \\ 26 \end{array}$	TABP 42^{*}	$\begin{gathered} \mathrm{TABP} \\ 58^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
1011	B	AMC	-	-	-	$\begin{gathered} \mathrm{LZ} \\ 3 \end{gathered}$	EPOF	$\begin{gathered} \text { A } \\ 11 \end{gathered}$	$\begin{aligned} & \text { LA } \\ & 11 \end{aligned}$	$\begin{array}{\|c} \hline \text { TABP } \\ 11 \end{array}$	$\begin{array}{\|c} \text { TABP } \\ 27 \end{array}$	$\begin{gathered} \mathrm{TABP} \\ 43^{*} \end{gathered}$	$\begin{gathered} \text { TABP } \\ 59^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
1100	C	TYA	CMA	-	-	$\begin{gathered} \text { RB } \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{SB} \\ 0 \end{gathered}$	$\begin{gathered} \hline \mathrm{A} \\ 12 \end{gathered}$	$\begin{gathered} \hline \text { LA } \\ 12 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 12 \end{gathered}$	$\begin{array}{\|c} \hline \text { TABP } \\ 28 \end{array}$	$\begin{gathered} \mathrm{TABP} \\ 44^{*} \end{gathered}$	$\begin{gathered} \text { TABP } \\ 60^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
1101	D	-	RAR	-	-	$\begin{gathered} \hline \mathrm{RB} \\ 1 \end{gathered}$	SB	$\begin{gathered} \hline \text { A } \\ 13 \end{gathered}$	$\begin{gathered} \text { LA } \\ 13 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 13 \end{array}$	$\begin{array}{\|c} \mathrm{TABP} \\ 29 \end{array}$	TABP 45^{*}	$\begin{gathered} \mathrm{TABP} \\ 61^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
1110	E	TBA	TAB	-	TV2A	$\begin{gathered} \mathrm{RB} \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{SB} \\ 2 \end{gathered}$	$\begin{gathered} \text { A } \\ 14 \end{gathered}$	$\begin{gathered} \text { LA } \\ 14 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 14 \end{array}$	$\begin{array}{\|c} \text { TABP } \\ 30 \end{array}$	TABP 46^{*}	$\begin{gathered} \text { TABP } \\ 62^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
1111	F	-	TAY	SZC	TV1A	$\begin{gathered} \hline \text { RB } \\ 3 \end{gathered}$	$\begin{gathered} \mathrm{SB} \\ 3 \end{gathered}$	$\begin{gathered} \hline \text { A } \\ 15 \end{gathered}$	$\begin{gathered} \hline \text { LA } \\ 15 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 15 \end{array}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 31 \end{array}$	TABP 47^{*}	$\begin{gathered} \mathrm{TABP} \\ 63^{*} \end{gathered}$	BML	BML	BL	BL	BM	B

The above table shows the relationship between machine language codes and machine language instructions. D3-Do show the low-order 4 bits of the machine language code, and D9-D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "-."

The codes for the second word of a two-word instruction are described below.

	The second word
BL	10 paaa aaaa
BML	10 paaa aaaa
BLA	10 pp00 pppp
BMLA	10 pp00 pppp
SEA	00
SZA	00

- **(SBK and RBK instructions) cannot be used in the M3455AG8.
- * cannot be used after the SBK instruction executed in the M3455AGC.
- A page referred by the TABP instruction can be switched by the SBK and RBK instructions in the M3455AGC.
- The pages which can be referred by the TABP instruction after the SBK instruction is executed are 64 to 95 in the M3455AGC.
- The pages which can be referred by the TABP instruction after the RBK instruction is executed are 0 to 63 .
- When the SBK instruction is not used, the pages which can be referred by the TABP instruction are 0 to 63 .

INSTRUCTION CODE TABLE

	$\begin{gathered} \hline \mathrm{D}_{4}- \\ \mathrm{D}_{4} \end{gathered}$	100000	100001	100010	100011	100100	100101	100110	100111	101000	101001	101010	101011	101100	101101	101110	101111	$\begin{gathered} 110000 \\ \text { to } \\ 111111 \end{gathered}$
$\left\lvert\, \begin{aligned} & \mathrm{D} 3- \\ & \mathrm{D} 0 \end{aligned}\right.$	Hex, notation	20	21	22	23	24	25	26	27	28	29	2A	2B	2 C	2D	2E	2 F	30-3F
0000	0	-	TW3A	OPOA	T1AB	-	-	IAPO	TAB1	$\begin{gathered} \text { SNZT } \\ 1 \end{gathered}$	-	WRST	$\begin{gathered} \text { TMA } \\ 0 \end{gathered}$	$\begin{gathered} \text { TAM } \\ 0 \end{gathered}$	$\begin{gathered} \text { XAM } \\ 0 \end{gathered}$	$\begin{gathered} \text { XAMI } \\ 0 \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 0 \end{gathered}$	LXY
0001	1	-	TW4A	OP1A	T2AB	-	-	IAP1	TAB2	$\begin{gathered} \hline \text { SNZT } \\ 2 \end{gathered}$	-	-	$\begin{gathered} \hline \text { TMA } \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { TAM } \\ 1 \end{gathered}$	$\begin{gathered} \text { XAM } \\ 1 \end{gathered}$	$\begin{gathered} \text { XAMI } \\ 1 \end{gathered}$	$\begin{array}{\|c} \hline \text { XAMD } \\ 1 \end{array}$	LXY
0010	2	-	TW5A	OP2A	-	-	TAMR	IAP2	-	$\begin{gathered} \hline \text { SNZT } \\ 3 \end{gathered}$	-	-	$\begin{gathered} \hline \text { TMA } \\ 2 \end{gathered}$	$\begin{gathered} \hline \text { TAM } \\ 2 \end{gathered}$	$\begin{gathered} \hline \text { XAM } \\ 2 \end{gathered}$	$\begin{gathered} \hline \text { XAMI } \\ 2 \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 2 \end{gathered}$	LXY
0011	3	-	-	OP3A	-	-	TAI1	IAP3	-	-	SVDE	-	$\begin{gathered} \text { TMA } \\ 3 \end{gathered}$	$\begin{gathered} \text { TAM } \\ 3 \end{gathered}$	$\begin{gathered} \text { XAM } \\ 3 \end{gathered}$	$\begin{gathered} \text { XAMI } \\ 3 \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 3 \end{gathered}$	LXY
0100	4	-	TK1A	-	-	-	-	-	-	-	$\begin{gathered} \mathrm{T} 2 \mathrm{HA} \\ \mathrm{~B} \end{gathered}$	-	$\begin{gathered} \hline \text { TMA } \\ 4 \end{gathered}$	$\begin{gathered} \hline \text { TAM } \\ 4 \end{gathered}$	$\begin{gathered} \text { XAM } \\ 4 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { XAMI } \\ 4 \end{array}$	$\begin{gathered} \text { XAMD } \\ 4 \end{gathered}$	LXY
0101	5	-	TK2A	-	TPSAB	-	-	-	TABPS	-	$\begin{gathered} \text { T2R2 } \\ \mathrm{L} \end{gathered}$	-	$\begin{gathered} \hline \text { TMA } \\ 5 \end{gathered}$	$\begin{gathered} \hline \text { TAM } \\ 5 \end{gathered}$	$\begin{gathered} \text { XAM } \\ 5 \end{gathered}$	$\begin{gathered} \text { XAMI } \\ 5 \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 5 \end{gathered}$	LXY
0110	6	-	TMRA	TC3A	-	-	TAKO	-	-	-	-	-	$\begin{gathered} \text { TMA } \\ 6 \end{gathered}$	$\begin{gathered} \text { TAM } \\ 6 \end{gathered}$	$\begin{gathered} \text { XAM } \\ 6 \end{gathered}$	$\begin{gathered} \text { XAMI } \\ 6 \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 6 \end{gathered}$	LXY
0111	7	-	TI1A	-	-	-	TAPU0	-	-	-	-	-	$\begin{gathered} \hline \text { TMA } \\ 7 \end{gathered}$	$\begin{gathered} \hline \text { TAM } \\ 7 \end{gathered}$	$\begin{gathered} \text { XAM } \\ 7 \end{gathered}$	$\begin{gathered} \text { XAMI } \\ 7 \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 7 \end{gathered}$	LXY
1000	8	TPU3A	-	TFROA	-	-	-	-	-	-	-	TC1A	$\begin{gathered} \hline \text { TMA } \\ 8 \end{gathered}$	$\begin{gathered} \text { TAM } \\ 8 \end{gathered}$	$\begin{gathered} \text { XAM } \\ 8 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { XAMI } \\ 8 \end{array}$	$\begin{gathered} \text { XAMD } \\ 8 \end{gathered}$	LXY
1001	9	TRGA	-	TFR1A	-	-	TAK1	-	-	-	-	TC2A	$\begin{gathered} \text { TMA } \\ 9 \end{gathered}$	$\begin{gathered} \text { TAM } \\ 9 \end{gathered}$	$\begin{gathered} \text { XAM } \\ 9 \end{gathered}$	$\begin{gathered} \text { XAMI } \\ 9 \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 9 \end{gathered}$	LXY
1010	A	TL1A	-	TFR2A	-	TAL1	TAK2	-	-	$\begin{gathered} \mathrm{SNZV} \\ \mathrm{D} \end{gathered}$	-	TPAA	$\begin{gathered} \hline \text { TMA } \\ 10 \end{gathered}$	$\begin{gathered} \hline \text { TAM } \\ 10 \end{gathered}$	$\begin{gathered} \text { XAM } \\ 10 \end{gathered}$	$\begin{gathered} \hline \text { XAMI } \\ 10 \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 10 \end{gathered}$	LXY
1011	B	TL2A	TKOA	TFR3A	-	TAW1	TAK3	-	-	-	-	-	$\begin{gathered} \hline \text { TMA } \\ 11 \end{gathered}$	$\begin{gathered} \hline \text { TAM } \\ 11 \end{gathered}$	$\begin{gathered} \text { XAM } \\ 11 \end{gathered}$	$\begin{array}{\|c} \hline \text { XAMI } \\ 11 \end{array}$	$\begin{gathered} \text { XAMD } \\ 11 \end{gathered}$	LXY
1100	C	TL3A	-	TK3A	-	TAW2	-	-	-	RCP	DWDT	-	$\begin{gathered} \text { TMA } \\ 12 \end{gathered}$	$\begin{gathered} \hline \text { TAM } \\ 12 \end{gathered}$	$\begin{gathered} \text { XAM } \\ 12 \end{gathered}$	$\begin{array}{\|c} \hline \text { XAMI } \\ 12 \end{array}$	$\begin{gathered} \text { XAMD } \\ 12 \end{gathered}$	LXY
1101	D	TLCA	-	TPU0A	-	TAW3	TAPU3	-	-	SCP	-	-	$\begin{gathered} \hline \text { TMA } \\ 13 \end{gathered}$	$\begin{gathered} \hline \text { TAM } \\ 13 \end{gathered}$	$\begin{gathered} \hline \text { XAM } \\ 13 \end{gathered}$	$\begin{array}{\|c} \hline \text { XAMI } \\ 13 \end{array}$	$\begin{gathered} \text { XAMD } \\ 13 \end{gathered}$	LXY
1110	E	TW1A	-	TPU1A	-	TAW4	TAPU1	-	-	-	-	-	$\begin{gathered} \hline \text { TMA } \\ 14 \end{gathered}$	$\begin{gathered} \text { TAM } \\ 14 \end{gathered}$	$\begin{gathered} \text { XAM } \\ 14 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { XAMI } \\ 14 \end{array}$	$\begin{gathered} \text { XAMD } \\ 14 \end{gathered}$	LXY
1111	F	TW2A	-	TPU2A	TR1AB	TAW5	TAPU2	-	-	-	-	-	$\begin{gathered} \text { TMA } \\ 15 \end{gathered}$	$\begin{gathered} \text { TAM } \\ 15 \end{gathered}$	$\begin{gathered} \text { XAM } \\ 15 \end{gathered}$	$\begin{gathered} \text { XAMI } \\ 15 \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 15 \end{gathered}$	LXY

The above table shows the relationship between machine language codes and machine language instructions. D3-Do show the low-order 4 bits of the machine language code, and D9-D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "-."

The codes for the second word of a two-word instruction are described below.

	The second word
BL	10 paaa aaaa
BML	10 paaa aaaa
BLA	10 pp00 pppp
BMLA	10 pp00 pppp
SEA	000111 nnnn
SZD	000010 1011

Electrical characteristics

Absolute maximum ratings

Table 30 Absolute maximum ratings

Symbol	Parameter	Conditions	Ratings	Unit
Vdd	Supply voltage	-	-0.3 to 6.5	V
V	Input voltage P0, P1, P2, P3, Do-D7, $\overline{\mathrm{RESET}}, \mathrm{XIN}$, XCIN, INT, CNTR	-	-0.3 to VdD+0.3	V
Vo	Output voltage P0, P1, P2, P3, D0-D7, $\overline{\text { RESET }}$	Output transistors in cut-off state	-0.3 to VDD+0.3	V
Vo	Output voltage C/CNTR, Xout, Xcout	-	-0.3 to VdD +0.3	V
Vo	Output voltage SEGo to SEG31, COM 0 to COM3	-	-0.3 to VDD +0.3	V
Pd	Power dissipation	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	300	mW
Topr	Operating temperature range	-	-20 to 85	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature range	-	-40 to 125	${ }^{\circ} \mathrm{C}$

Recommended operating conditions

Table 31 Recommended operating conditions $1\left(\mathrm{Ta}=-20^{\circ} \mathrm{C}\right.$ to $85^{\circ} \mathrm{C}$, $\mathrm{VDD}=1.8$ to 5.5 V , unless otherwise noted)

Symbol	Parameter	Conditions			Limits		Unit
				Min.	Typ.	Max.	
VdD	Supply voltage (with a ceramic resonator)	$\mathrm{f}($ STCK $) \leq 6 \mathrm{MHz}$		4		5.5	V
		$\mathrm{f}(\mathrm{STCK}) \leq 4.4 \mathrm{MHz}$		2.7		5.5	
		$\mathrm{f}(\mathrm{STCK}) \leq 2.2 \mathrm{MHz}$		2		5.5	
		$\mathrm{f}(\mathrm{STCK}) \leq 1.1 \mathrm{MHz}$		1.8		5.5	
VDD	Supply voltage (when an external clock is used)	$\mathrm{f}(\mathrm{STCK}) \leq 4.8 \mathrm{MHz}$		4		5.5	V
		$\begin{array}{\|l} \mathrm{f}(\mathrm{STCK}) \leq 4.8 \mathrm{MHz} \\ \hline \mathrm{f}(\mathrm{STCK}) \leq 3.2 \mathrm{MHz} \\ \hline \end{array}$		2.7		5.5	
		$\mathrm{f}(\mathrm{STCK}) \leq 1.6 \mathrm{MHz}$		2		5.5	
		$\mathrm{f}($ STCK) $\leq 0.8 \mathrm{MHz}$		1.8		5.5	
VdD	Supply voltage (when quartz-crystal oscillation is used)	$\mathrm{f}($ STCK $) \leq 50 \mathrm{kHz}$		1.8		5.5	V
VDD	Supply voltage (Low-speed/High-speed onchip oscillator is used)			1.8		5.5	V
Vram	RAM back-up voltage	(at RAM back-up)		1.6		5.5	V
Vss	Supply voltage				0		V
VLC3	LCD power supply (Note 1)			1.8		VDD	V
VIH	"H" level input voltage	P0, P1, P2, P3, D0-D7		0.8 VDD		VDD	V
		Xin, XCIn		0.7 VDD		VDD	
		$\overline{\text { RESET }}$		0.85VDD		VDD	
		INT		0.85 VDD		VDD	
		CNTR		0.8 VDD		VDD	
VIL	"L" level input voltage	P0, P1, P2, P3, D0-D7		0		0.2 VdD	V
		Xin, Xcin		0		0.3 VDD	
		$\overline{\text { RESET }}$		0		0.3 VDD	
		INT		0		0.15 VDD	
		CNTR		0		0.15 VDD	
IOH (peak)	"H" level peak output current	P0, P1, P2, P3, D0-D5	VDD $=5 \mathrm{~V}$			-20	mA
			Vdd $=3 \mathrm{~V}$			-10	
		C/CNTR	$V D D=5 \mathrm{~V}$			-30	
			Vdd $=3 \mathrm{~V}$			-15	
$\mathrm{IOH}(\mathrm{avg})$	"H" level average output current (Note 2)	P0, P1, P2, P3, D0-D5	$\mathrm{VDD}=5 \mathrm{~V}$			-10	mA
			$\mathrm{VdD}=3 \mathrm{~V}$			-5	
		C/CNTR	$\mathrm{VDD}=5 \mathrm{~V}$			-20	
			VDD $=3 \mathrm{~V}$			-10	
IOL(peak)	"L" level peak output current	P0, P1, P2, P3, D0-D7, C/CNTR	$\mathrm{VdD}=5 \mathrm{~V}$			24	mA
			$\mathrm{V} D \mathrm{D}=3 \mathrm{~V}$			12	
		$\overline{\text { RESET }}$	$V \mathrm{VD}=5 \mathrm{~V}$			10	
			VDD $=3 \mathrm{~V}$			4	
IOL(avg)	"L" level average output current (Note 2)	P0, P1, P2, P3, D0-D7, C/CNTR	$\mathrm{VdD}=5 \mathrm{~V}$			15	mA
			$V D D=3 V$			7	
		$\overline{\text { RESET }}$	$\mathrm{VDD}=5 \mathrm{~V}$			5	
			$\mathrm{VDD}=3 \mathrm{~V}$			2	
Eloh(avg)	"H" level total average current	P0, C/CNTR				-40	mA
		P1, P2, P3, D0-D5				-40	
EloL(avg)	"L" level total average current	P0, C/CNTR				40	mA
		P1, P2, P3, D0-D7, $\overline{\mathrm{RESET}}$				40	

Note 1. At $1 / 2$ bias: VLC1 $=$ VLC2 $=(1 / 2) \cdot$ VLC3
At $1 / 3$ bias: VLC1 $=(1 / 3) \cdot$ VLC3, $\operatorname{VLC} 2=(2 / 3) \cdot$ VLC3
Note 2. The average output current is the average value during 100 ms .

Table 32 Recommended operating conditions $2\left(\mathrm{Ta}=-20^{\circ} \mathrm{C}\right.$ to $85^{\circ} \mathrm{C}$, $\mathrm{VDD}=1.8$ to 5.5 V , unless otherwise noted)

Symbol	Parameter	Conditions		Limits			Unit
				Min.	Typ.	Max.	
f (Xin)	Oscillation frequency (with a ceramic resonator)	$\mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{XIN})$	$\mathrm{VDD}=4.0 \mathrm{~V}$ to 5.5 V			6	MHz
			$\mathrm{VDD}=2.7 \mathrm{~V}$ to 5.5 V			4.4	
			$\mathrm{V} D \mathrm{~L}=2 \mathrm{~V}$ to 5.5 V			2.2	
			$\mathrm{VDD}=1.8 \mathrm{~V}$ to 5.5 V			1.1	
		$f($ STCK $)=\mathrm{f}($ XIN $) / 2$	$\mathrm{VDD}=2.7 \mathrm{~V}$ to 5.5 V			6	
			V DD $=2 \mathrm{~V}$ to 5.5 V			4.4	
			$\mathrm{VDD}=1.8 \mathrm{~V}$ to 5.5 V			2.2	
		$f($ STCK $)=f(X I N) / 4, f(X I N) / 8$	$\mathrm{V} D \mathrm{LD}=2 \mathrm{~V}$ to 5.5 V			6	
			$\mathrm{VDD}=1.8 \mathrm{~V}$ to 5.5 V			4.4	
f (Xin)	Oscillation frequency (with an external clock input)	$\mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{XIN})$	VDD $=4 \mathrm{~V}$ to 5.5 V			4.8	MHz
			$\mathrm{VDD}=2.7 \mathrm{~V}$ to 5.5 V			3.2	
			$\mathrm{VDD}=2 \mathrm{~V}$ to 5.5 V			1.6	
			$\mathrm{VDD}=1.8 \mathrm{~V}$ to 5.5 V			0.8	
		$f($ STCK $)=\mathrm{f}($ XIN $) / 2$	$\mathrm{VDD}=2.7 \mathrm{~V}$ to 5.5 V			4.8	
			$\mathrm{VDD}=2 \mathrm{~V}$ to 5.5 V			3.2	
			$\mathrm{VDD}=1.8 \mathrm{~V}$ to 5.5 V			1.6	
		$f(\text { STCK })=f(X I N) / 4, f(X I N) / 8$	$\mathrm{V} D \mathrm{~L}=2 \mathrm{~V}$ to 5.5 V			4.8	
			VDD $=1.8 \mathrm{~V}$ to 5.5 V			3.2	
f(XCIN)	Oscillation frequency (at quarts-crystal oscillation)	Quartz-crystal oscillator				50	kHz
f(CNTR)	Timer external input frequency	CNTR				f(STCK)/6	Hz
tw(CNTR)	Timer external input period ("H" and "L" pulse width)	CNTR		3/f(STCK)			S
TPON	Power-on reset circuit valid supply voltage rising time (Note 1)	$\mathrm{VDD}=0 \rightarrow 1.8 \mathrm{~V}$				100	$\mu \mathrm{s}$

Note 1. If the rising time exceeds the maximum rating value, connect a capacitor between the RESET pin and Vss at the shortest distance, and input " L " level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

Fig 80. System clock (STCK) operating condition map

Electrical characteristics

Table 33 Electrical characteristics $1\left(\mathrm{Ta}=-20^{\circ} \mathrm{C}\right.$ to $85^{\circ} \mathrm{C}$, VDD $=1.8$ to 5.5 V , unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			Unit
				Min.	Typ.	Max.	
VOH	"H" level output voltage P0, P1, P2, P3, D0-D5	$\mathrm{V} D \mathrm{D}=5 \mathrm{~V}$	$\mathrm{IOH}=-10 \mathrm{~mA}$	3			V
			$\mathrm{IOH}=-3 \mathrm{~mA}$	4.1			
		VDD $=3 \mathrm{~V}$	$\mathrm{IOH}=-5 \mathrm{~mA}$	2.1			
			$\mathrm{IOH}=-1 \mathrm{~mA}$	2.4			
VOH	"H" level output voltage C/CNTR	$\mathrm{VDD}=5 \mathrm{~V}$	$\mathrm{IOH}=-20 \mathrm{~mA}$	3			V
			$\mathrm{IOH}=-6 \mathrm{~mA}$	4.1			
		$\mathrm{VDD}=3 \mathrm{~V}$	$\mathrm{IOH}=-10 \mathrm{~mA}$	2.1			
			$\mathrm{IOH}=-3 \mathrm{~mA}$	2.4			
VoL	"L" level output voltage P0, P1, P2, P3, D0-D7 C/CNTR	$\mathrm{VDD}=5 \mathrm{~V}$	$\mathrm{IOL}=15 \mathrm{~mA}$			2	V
			$\mathrm{IOL}=5 \mathrm{~mA}$			0.9	
		$\mathrm{VDD}=3 \mathrm{~V}$	$\mathrm{IOL}=9 \mathrm{~mA}$			1.4	
			$\mathrm{IOL}=3 \mathrm{~mA}$			0.9	
VoL	"L" level output voltage $\overline{R E S E T}$	$\mathrm{V} D \mathrm{D}=5 \mathrm{~V}$	$\mathrm{IOL}=5 \mathrm{~mA}$			2	V
			$\mathrm{IOL}=1 \mathrm{~mA}$			0.6	
		VDD $=3 \mathrm{~V}$	$\mathrm{IOL}=2 \mathrm{~mA}$			0.9	
IIH	" H " level input current P0, P1, P2, P3, D0-D7 RESET, XIN, XCIN, INT CNTR	$\mathrm{VI}=\mathrm{V}$ DD				2	$\mu \mathrm{A}$
IIL	"L" level input current P0, P1, P2, P3, D0-D7 RESET, XIN, XCIN, INT CNTR	$\begin{aligned} & \mathrm{VI}=0 \mathrm{~V} \\ & \mathrm{P} 0, \mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3, \mathrm{D} 0 \text { to D7 } \\ & \text { No pull-up } \end{aligned}$				-2	$\mu \mathrm{A}$
RPU	Pull-up resistor value	$\mathrm{VI}=0 \mathrm{~V}$	$\mathrm{VDD}=5 \mathrm{~V}$	30	60	125	k Ω
			$\mathrm{VDD}=3 \mathrm{~V}$	50	120	250	
$\mathrm{V}^{+}+\mathrm{V}^{-}$	Hysteresis $\overline{\text { RESET }}$	$\mathrm{VDD}=5 \mathrm{~V}$			1		V
		Vdd $=3 \mathrm{~V}$			0.4		
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}}-$	Hysteresis INT	$\mathrm{VDD}=5 \mathrm{~V}$			0.6		V
		VDD $=3 \mathrm{~V}$			0.3		
	Hysteresis CNTR	$\mathrm{VDD}=5 \mathrm{~V}$			0.2		V
		VDD $=3 \mathrm{~V}$			0.2		
f(HSOCO)	High-speed on-chip oscillator clock frequency			400	1000	1600	kHz
		$V D D=3 V$		200	500	700	
f(LSOCO)	Low-speed on-chip oscillator clock frequency	VDD $=5 \mathrm{~V}$		40	100	160	kHz
		VDD $=3 \mathrm{~V}$		20	50	70	
Rcom	COM output impedance (Note 1)	$\mathrm{VDD}=5 \mathrm{~V}$			1.5	7.5	$\mathrm{k} \Omega$
		VDD $=3 \mathrm{~V}$			2	10	
Rseg	SEG output impedance (Note 1)	$\mathrm{VDD}=5 \mathrm{~V}$			1.5	7.5	$\mathrm{k} \Omega$
		VDD $=3 \mathrm{~V}$			2	10	
Rvic	Internal resistor for LCD power supply	When dividing resistor $2 r \times 3$ selected		300	600	1200	k Ω
		When dividing resistor $2 r \times 2$ selected		200	400	800	
		When dividing resistor $r \times 3$ selected		150	300	600	
		When dividing resistor $\mathrm{r} \times 2$ selected		100	200	400	

Note 1. The impedance state is the resistor value of the output voltage.
at VLC3 level output: Vo $=0.8$ VLC3
at VLC2 level output: $\mathrm{Vo}=0.8 \mathrm{~V}$ LC2
at VLC1 level output: $\mathrm{Vo}=0.2 \mathrm{~V}$ LC2 $+\mathrm{VLC1}$
at Vss level output: $\mathrm{Vo}=0.2 \mathrm{~V}$ LC1

Table 34 Electrical characteristics $2\left(\mathrm{Ta}=-20^{\circ} \mathrm{C}\right.$ to $85^{\circ} \mathrm{C}$, $\mathrm{VDD}=1.8$ to 5.5 V , unless otherwise noted)

Symbol	Parameter		Test conditions		Limits			Unit		
			Min.	Typ.	Max.					
IDD	Supply current	at active mode (with a ceramic oscillator) $(1,2)$			$\begin{aligned} & \text { VDD }=5 \mathrm{~V} \\ & \mathrm{f}(\mathrm{XIN})=6 \mathrm{MHz} \\ & \mathrm{f}(\mathrm{HSOCO})=\text { stop } \\ & \mathrm{f}(\mathrm{XCIN})=\text { stop } \\ & \mathrm{f}(\mathrm{LSOCO})=\text { stop } \end{aligned}$	$\mathrm{f}($ STCK $)=\mathrm{f}($ XIN $) / 8$		1.2	2.4	mA
			$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 4$			1.3	2.6			
			$f($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 2$			1.6	3.2			
			$\mathrm{f}(\mathrm{STCK})=\mathrm{f}$ (XIN)			2.2	4.4			
			$\begin{aligned} & \hline \mathrm{VDD}=5 \mathrm{~V} \\ & \mathrm{f}(\mathrm{XIN})=4 \mathrm{MHz} \\ & \mathrm{f}(\mathrm{HSOCO})=\text { stop } \\ & \mathrm{f}(\mathrm{XCIN})=\text { stop } \\ & \mathrm{f}(\mathrm{LSOCO})=\text { stop } \\ & \hline \end{aligned}$	$\mathrm{f}($ STCK $)=\mathrm{f}($ XIN $) / 8$		0.9	1.8	mA		
				$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 4$		1	2			
				$\mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{XIN}) / 2$		1.2	2.4			
				$\mathrm{f}(\mathrm{STCK})=\mathrm{f}$ (XIN)		1.6	3.2			
			$\begin{aligned} & \mathrm{VDD}=3 \mathrm{~V} \\ & \mathrm{f}(\mathrm{XIN})=4 \mathrm{MHz} \\ & \mathrm{f}(\mathrm{HSOCO})=\text { stop } \\ & \mathrm{f}(\mathrm{XCIN})=\text { stop } \\ & \mathrm{f}(\mathrm{LSOCO})=\text { stop } \\ & \hline \end{aligned}$	$\mathrm{f}($ STCK $)=\mathrm{f}($ XIN $) / 8$		0.3	0.6	mA		
				$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 4$		0.4	0.8			
				$f($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 2$		0.5	1			
				$f($ STCK $)=f(X I N)$		0.7	1.4			
		at active mode (with a quartz-crystal oscillator) ${ }^{(1,2)}$	$\begin{aligned} & \mathrm{VDD}=5 \mathrm{~V} \\ & \mathrm{f}(\mathrm{XIN})=\text { stop } \\ & \mathrm{f}(\mathrm{HSOCO})=\text { stop } \\ & \mathrm{f}(\mathrm{XCIN})=32 \mathrm{kHz} \\ & \mathrm{f}(\mathrm{LSOCO})=\text { stop } \\ & \hline \end{aligned}$	$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XCIN}) / 8$		7	14	$\mu \mathrm{A}$		
				$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XCIN}) / 4$		8	16			
				$f($ STCK $)=f($ XCIN $) / 2$		10	20			
				$f($ STCK $)=f($ XCIN $)$		14	28			
			$\begin{aligned} & \hline \mathrm{VDD}=3 \mathrm{~V} \\ & \mathrm{f}(\mathrm{XIN})=\text { stop } \\ & \mathrm{f}(\mathrm{HSOCO})=\text { stop } \\ & \mathrm{f}(\mathrm{XCIN})=32 \mathrm{kHz} \\ & \mathrm{f}(\mathrm{LSOCO})=\text { stop } \end{aligned}$	$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XCIN}) / 8$		5	10	$\mu \mathrm{A}$		
				$f($ STCK $)=f($ XCIN $) / 4$		6	12			
				$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XCIN}) / 2$		7	14			
				$f($ STCK $)=f($ XCIN $)$		8	16			
		at active mode (with a high-speed on-chip oscillator $\mathrm{f}(\mathrm{HSOCO}))^{(1,2)}$	$\begin{aligned} & \text { VDD }=5 \mathrm{~V} \\ & f(\text { XIN })=\text { stop } \\ & f(\mathrm{HSOCO})=\text { active } \\ & f(\text { XCIN })=\text { stop } \\ & f(\text { LSOCO })=\text { stop } \end{aligned}$	$\mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{HSOCO}) / 8$		50	100	$\mu \mathrm{A}$		
				$\mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{HSOCO}) / 4$		70	140			
				$\mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{HSOCO}) / 2$		110	220			
				$\mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{HSOCO})$		190	380			
			$\begin{aligned} & \hline \text { VDD }=3 \mathrm{~V} \\ & \mathrm{f}(\mathrm{XIN})=\text { stop } \\ & \mathrm{f}(\mathrm{HSOCO})=\text { active } \\ & \mathrm{f}(\mathrm{XCIN})=\text { stop } \\ & \mathrm{f}(\mathrm{LSOCO})=\text { stop } \end{aligned}$	$\mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{HSOCO}) / 8$		12	24	$\mu \mathrm{A}$		
				$\mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{HSOCO}) / 4$		18	36			
				$\mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{HSOCO}) / 2$		30	60			
				$\mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{HSOCO})$		54	108			
		at active mode (with a low-speed on-chip oscillator f(LSOCO) (1, 2)	$\begin{aligned} & \text { VDD }=5 \mathrm{~V} \\ & \mathrm{f}(\mathrm{XIN})=\text { stop } \\ & \mathrm{f}(\mathrm{HSOCO})=\text { stop } \\ & \mathrm{f}(\mathrm{XCIN})=\text { stop } \\ & \mathrm{f}(\mathrm{LSOCO})=\text { active } \\ & \hline \end{aligned}$	$\mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{LSOCO}) / 8$		10	20	$\mu \mathrm{A}$		
				$\mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{LSOCO}) / 4$		12	24			
				$\mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{LSOCO} / 2$		16	32			
				$\mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{LSOCO})$		24	48			
			$\begin{aligned} & \text { VDD = 3V } \\ & f(X I N)=\text { stop } \\ & f(H S O C O)=\text { stop } \\ & f(X C I N)=\text { stop } \\ & f(\text { LSOCO })=\text { active } \end{aligned}$	$\mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{LSOCO}) / 8$		3	6	$\mu \mathrm{A}$		
				$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{LSOCO}) / 4$		4	8			
				$\mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{LSOCO}) / 2$		5	10			
				$\mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{LSOCO})$		7	14			
		at clock operation mode (POF instruction execution)$(1,2)$	$f(\mathrm{XCIN})=32 \mathrm{kHz}$	$\mathrm{V} D \mathrm{~L}=5 \mathrm{~V}$		6	12	$\mu \mathrm{A}$		
				VDD $=3 \mathrm{~V}$		5	10			
			$f($ LSOCO $)=$ active	$\mathrm{V} D \mathrm{D}=5 \mathrm{~V}$		20	40			
				VDD $=3 \mathrm{~V}$		5	10			
		at RAM back-up mode (POF2 instruction execution) ${ }^{(1)}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$			0.1	3	$\mu \mathrm{A}$		
			VDD $=5 \mathrm{~V}$				10			
			$\mathrm{VDD}=3 \mathrm{~V}$				6			

Note 1. The voltage drop detection circuit operation current (IRST) is added.
Note 2. When the internal dividing resistors for LCD power are used, the current values according to using resistor values are added.

Voltage drop detection circuit characteristics

Table 35 Voltage drop detection circuit characteristics ($\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
VRST-	Detection voltage (reset occurs) (Note 1)	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		1.7		V
		$-20^{\circ} \mathrm{C} \leq \mathrm{Ta}<0^{\circ} \mathrm{C}$	1.6		2.2	
		$0^{\circ} \mathrm{C} \leq \mathrm{Ta}<50^{\circ} \mathrm{C}$	1.3		2.1	
		$50^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 85^{\circ} \mathrm{C}$	1.1		1.8	
VRST+	Detection voltage (reset release) (Note 2)	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		1.8		V
		$-20^{\circ} \mathrm{C} \leq \mathrm{Ta}<0^{\circ} \mathrm{C}$	1.7		2.3	
		$0^{\circ} \mathrm{C} \leq \mathrm{Ta}<50^{\circ} \mathrm{C}$	1.4		2.2	
		$50^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 85^{\circ} \mathrm{C}$	1.2		1.9	
VSKIP	Detection voltage (skip occurs) (Note 3)	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		2		V
		$-20^{\circ} \mathrm{C} \leq \mathrm{Ta}<0^{\circ} \mathrm{C}$	1.9		2.5	
		$0^{\circ} \mathrm{C} \leq \mathrm{Ta}<50^{\circ} \mathrm{C}$	1.6		2.4	
		$50^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 85^{\circ} \mathrm{C}$	1.4		2.1	
VRST+ - VRST-	Detection voltage hysteresis			0.1		V
IRST	Operation current (Note 4)	$\mathrm{VDD}=5 \mathrm{~V}$		30	60	$\mu \mathrm{A}$
		$\mathrm{VDD}=3 \mathrm{~V}$		15	30	
		VDD $=1.8 \mathrm{~V}$		6	12	
TRST	Detection time (Note 5)	VDD \rightarrow (VRST- -0.1V)		0.2	1.2	ms

Note 1. The detection voltage (VRST-) is defined as the voltage when reset occurs when the supply voltage (VDD) is falling.
Note 2. The detection voltage (VRST+) is defined as the voltage when reset is released when the supply voltage (VDD) is rising from reset occurs.
Note 3. When the supply voltage goes lower than the detection voltage (VSKIP), the voltage drop detection circuit interrupt request flag (VDF) is set to " 1 "
Note 4. Voltage drop detection circuit operation current (IRST) is added to IDD (power current) when voltage drop detection circuit is used.
Note 5. The detection time (TRST) is defined as the time until reset occurs when the supply voltage (VDD) is falling to [VRST- -0.1 V].
Basic timing diagram

PACKAGE OUTLINE

REVISION HISTORY ${ }^{+}$			455A Group Datasheet
Rev.	Date		Description
		Page	Summary
1.00	Oct 18, 2007		First edition issued
1.01	Feb 15, 2008		Delete the "PRELIMINARY" note Table 6: "The key-on wakeup function is invalid." is added to "Usage Condition" column of "Xcout/D7"- "Open", "Do-D4"-"Open", and "D5/INT"-"Open". Table 15: Revised Figure 48: Revised Figure 56: Revised whole Interrupt control register 11: At the "INT pin timer 1 count start synchronous circuit selection bit" value is " 0 " "Timer 1 disabled" \rightarrow "Timer 1 count start synchronous circuit not selected" At the "INT pin timer 1 count start synchronous circuit selection bit" value is " 1 " "Timer 1 enabled" \rightarrow "Timer 1 count start synchronous circuit selected" The second word "D8" value of "BL p, a" instruction: " 0 " \rightarrow " $p 6$ " Note: " $p=0$ to 47 " \rightarrow "M3455AG8: $p=0$ to $63 \mathrm{p} 6=0$ M3455AGC: $\mathrm{p}=0$ to 95 " The second word "D8" value of "BLA p" instruction: "0" \rightarrow " p " Note: " $p=0$ to 47 " \rightarrow "M3455AG8: $p=0$ to $63 \mathrm{p} 6=0$ M3455AGC: $\mathrm{p}=0$ to 95 " The second word "D8" value of "BML p, a" instruction: "0" \rightarrow "pg" Note: " $p=0$ to 47 " \rightarrow "M3455AG8: $p=0$ to $63 p 6=0$ M3455AGC: $\mathrm{p}=0$ to 95 The second word " D 8 " value of "BMLA p " instruction: "0" \rightarrow " p " Note: "p=0 to 47" \rightarrow "M3455AG8: $p=0$ to $63 \mathrm{p} 6=0$ M3455AGC: $p=0$ to $95 "$ The "RBK" instruction order is changed to next of the "RBj" instruction The second word "D8" value of "BL p, a " instruction: " 0 " \rightarrow " p " The second word "D8" value of "BLA p" instruction: " 0 " \rightarrow "p6" The second word "D8" value of "BML p, a " instruction: " 0 " \rightarrow " "p6" The second word "D8" value of "BMLA p " instruction: " " \rightarrow " "p6" Note: "M3455AG8: $\mathrm{p} 6=0$ " is added Table 34: All "(STCK)=f(XIN)" are changed to "f(STCK)=f(LSOCO)" at active mode (with a low-speed on-chip oscillator f(LSOCO))"
		7	
		28	
		50	
		58	
		76	
		89	
		90	
		98	
		126	
		144	

RenesasTechnology Corp. Sales strategic Planning Div. Nippon Bldg., 2-6-2, Onte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Notes:

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property warranties or representations with respect to the accuracy or completeness of the information contained
rights or any other rights of Renesas or any third party with respect to the information in this document.
Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
2. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
3. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products
7 . With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
4. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
(1) artificial life support devices or systems
2) surgical implantations
(3) healthcare intervention (e.g., excision, administration of medication, etc.)
(4) any other purposes that pose a direct threat to human life

Renesas sha shall indemnify and hor damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage malfunction prevention appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.

Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No. 1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd

7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd

10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.

Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145
Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

[^0]: Note1.Shipped in blank

[^1]: Note 1. The $\mathrm{f}(\mathrm{HSOCO}) / 8$ is selected after system is released from reset

