500W Compact High Power Amplifier

for Satellite Communications

The VZU-6995AY

500 Watt TWT High Power Amplifier high efficiency in a compact package.

Compact

Provides 500 watts of power in a 5 rack unit package, digital ready, for wideband, single- and multi-carrier satellite service in the 17.3-18.4 GHz frequency band. Ideal for transportable and fixed earth station applications where space and prime power are at a premium.

Efficient

Employs a high efficiency dual-depressed collector helix traveling wave tube backed by many years of field-proven experience in airborne and military applications.

Simple to Operate

User-friendly microprocessor-controlled logic with integrated computer interface. Digital metering, pin diode attenuation and optional integrated linearizer for improved intermodulation performance.

Global Applications

Meets International Safety Standard EN-60215, Electromagnetic Compatibility 89/336/EEC and Harmonic Standard EN-61000-3-2 to satisfy worldwide requirements.

Easy to Maintain

Modular design and built-in fault diagnostic capability with convenient and clearly visible indicators for easy maintainability in the field.

Worldwide Support

Backed by over three decades of satellite communications experience, and CPI's worldwide 24-hour customer support network that includes fifteen regional factory Service Centers.

811 Hansen Way P.O. Box 51625, Palo Alto, CA 94303

tel: +1 (650) 846-3803 **fax:** +1 (650) 424-1744

e-mail: marketing@satcom.cpii.com www.cpii.com/satcom

OPTIONS:

- Integral Linearizer
- · Remote Control Panel
- Redundant and Power Combined Subsystems

SPECIFICATIONS, VZU-6995AY Electrical

Frequency 17.3 to 18.4 GHz

Output Power

TWT 500 W min. (56.99 dBm min.) Flange 407 W min. (56.10 dBm min.)

Bandwidth 1100 MHz

Gain 75 dB min. at rated power, 88 dB max.

78 dB min. at small signal, 90 dB max.

RF Level Adjust Range 0 to 20 dB (via PIN diode attenuator)

Gain Stability

At constant drive & temp. $\pm 0.25 \text{ dB/24hr max}$.

(after 30 min. warmup)

Over temp., constant drive ± 1.0 dB over oper. temp. range (typical) ± 0.75 dB over $\pm 10^{\circ}$ C (typical)

Small Signal Gain Slope ±0.02 dB/MHz max.

Small Signal Gain Variation

Across any 80 MHz band Across the 1100 MHz band Across the 1100 MHz band, 1.0 dB pk-pk max. 4.0 dB pk-pk max.

with linearizer

6.0 dB pk-pk max.

Input VSWR 1.30:1 max.
Output VSWR 1.30:1 max.

Load VSWR

Continuous operation 2.0:1
Full spec compliance 1.2:1
Operation without damage Any value

Residual AM, max. -50 dBc below 10 kHz -20 [1.5 +log F(kHz)] dBc,

-20 [1.5 +10g F(KHZ)] dBC 10 kHz to 500 kHz -85 dBc above 500 kHz

Phase Noise

IESS-308/309

phase noise profile -6 dB AC fundamentals related -36 dBc Sum of spurs (370 Hz to 1 MHz) -47 dBc

AM/PM Conversion 2.5°/dB max. for a single-carrier at

8 dB below rated power

Harmonic Output -60 dBc max. at rated power,

second and third harmonics

Noise and Spurious <-120 dBW/4 kHz, below 16.5 GHz

<-65 dBW/4 kHz, 17.3 to 18.4 GHz <-60 dBW/4 kHz, in passband with

linearizer

<-105 dBW/4 kHz, 18.9 to 26.0 GHz <-125 dBW/4 kHz, 26.0 to 40.0 GHz

Noise Figure 10 dB max.; 15 dB max. with

optional integral linearizer

Intermodulation -21 dBc or better with two equal carriers

at total output power level 7 dB (4 dB with optional integral linearizer) below rated single-carrier output

Electrical (continued)

Group Delay 0.01 ns/MHz linear max.

(in any 80 MHz band) 0.001 ns/MHz sq. parabolic max.

0.5 ns pk-pk ripple max.

Primary Power

Voltage Single phase, 208-240 VAC ±10%

Frequency 47-63 Hz

Power Consumption 2.3 kVA typ. (small signal)

2.8 kVA max.

Power Factor 0.95 min.
Inrush Current 200% max.

Environmental (Operating)

Ambient Temperature -10° to +50°C operating

-40° to +70°C non-operating

Relative Humidity 95% non-condensing

Altitude 10,000 ft. with standard adiabatic

derating of 2°C/1000 ft., operating; 50,000 ft., non-operating

Shock and Vibration Designed for normal transportation

environment per Section 514.4 MIL-STD-810E. Designed to withstand 20G at 11 ms (1/2 sine pulse) in non-operating

condition.

Mechanical

Cooling (TWT) Forced air with integral blower

Rear air intake & exhaust

Maximum external pressure loss
allowable: 0.5 inches water column

RF Input Connection Type SMA female

RF Output Connection WR-62 waveguide flange,

grooved, threaded UNC 2B 6-32

RF Output Monitor Type SMA female

Dimensions (W x H x D) 19 x 8.75 x 24 in. (483 x 222 x 610 mm)

Weight 95 lbs (43 kg) max.

Heat and Acoustic

Heat Dissipation 2,000 Watts max.

Acoustic Noise 68 dBA (as measured at 3 ft.)

Please contact CPI before using this information for system design.

KEEPING YOU ON THE AIR not up in the air

For more detailed information, please refer to the corresponding CPI Technical Description.

Note: Specifications may change without notice as a result of additional data or product refinement.

MKT 54, ISSUE 9 08/06

