

Sirenza Microdevices' SGC-6389Z is a high performance SiGe HBT MMIC amplifier utilizing a Darlington configuration with a patented active-bias network. The active bias network provides stable current over temperature and process Beta variations. Designed to run directly from a 5V supply, the SGC-6389Z does not require a dropping resistor as compared to traditional Darlington amplifiers. The SGC-6389Z product is designed for high linearity 5V gain block applications that require small size and minimal external components. It is internally matched to 50 ohms.

SGC-6389Z

50-4000 MHz Active Bias Silicon Germanium Cascadable Gain Block

Product Features

- Single Fixed 5V Supply
- No Dropping Resistor Required
- Patented Self Bias Circuitry
- Gain = 12.8 dBm at 1950 MHz
- P1dB = 18.6 dBm at 1950 MHz
- OIP3 = 34.5 dBm at 1950 MHz
- Robust 1000V ESD, Class 1C HBM

Applications

- PA Driver Amplifier
- Cellular, PCS, GSM, UMTS, WCDMA
- IF Amplifier
- Wireless Data, Satellite

Symbol	Parameters	Units	Frequency	Min.	Тур.	Max.
			850 MHz	14.8	16.3	17.8
G	Small Signal Gain	dB	1950 MHz*	11.3	12.8	14.3
			2400 MHz		11.9	
	Output Power at 1dB Compression		850 MHz		19.5	
P_{1dB}		dBm	1950 MHz*	17.6	18.6	
			2400 MHz		18.2	
	Output Third Order Intercept Point		850 MHz		36.0	
OIP ₃		dBm	1950 MHz*	32.5	34.5	
			2400 MHz		33.5	
IRL	Input Return Loss	dB	1950 MHz*	9.0	12.5	
ORL	Output Return Loss	dB	1950 MHz*	8.5	11.5	
NF	Noise Figure	dB	1950 MHz*		3.7	4.5
V_D	Device Operating Voltage	V			5.0	
I _D	Device Operating Current	mA		74	84	94
Rth, j-l	Thermal Resistance (junction to lead)	°C/W			60	

Test Conditions: $V_D = 5.0V$ $I_D = 84mA$ $T_L = 25^{\circ}C$ OIP3 Tone Spacing = 1MHz, Pout per tone = 0 dBm Bias Tee Data $Z_S = Z_L = 50$ Ohms * Test results at 1950 MHz measured with Application Circuit

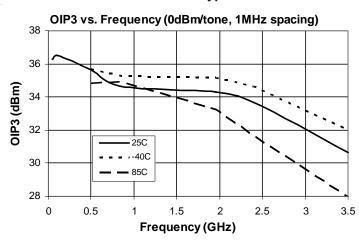
The information provided herein is believed to be reliable at press time. Sirenza Microdevices assumes no responsibility for inaccuracies or omissions. Sirenza Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Sirenza Microdevices does not authorize or warrant any Sirenza Microdevices product for use in life-support devices and/or systems. Copyright 2007 Sirenza Microdevices, Inc.. All worldwide rights reserved.

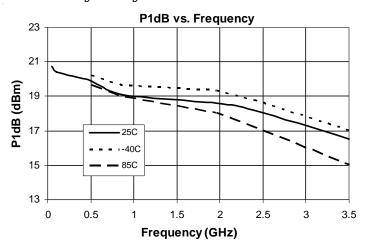
303 S. Technology Ct.

Phone: (800) SMI-MMIC http://www.sirenza.com

Broomfield, CO 80021 1 EDS-104747 Rev B

Typical RF Performance at Key Operating Frequencies (Bias Tee Data)									
Symbol	Parameter	Unit	Frequency (MHz)						
Symbol			50	100	500	850	1950*	2400	3500
G	Small Signal Gain	dB	18.4	18.0	17.6	16.3	12.8	11.9	9.4
OIP ₃	Output Third Order Intercept Point	dBm	36.0	36.5	35.5	36.0	34.5	33.5	30.5
P _{1dB}	Output Power at 1dB Compression	dBm	20.7	20.4	19.9	19.5	18.6	18.2	16.5
IRL	Input Return Loss	dB	17.5	23.0	21.5	15.5	12.5	12.0	10.5
ORL	Output Return Loss	dB	15.5	21.0	22.0	15.5	11.5	12.0	10.0
S ₁₂	Reverse Isolation	dB	20.5	20.0	21.0	21.5	19.5	19.0	18.5
NF	Noise Figure	dB	2.8	2.6	2.9	3.3	3.7	4.0	4.7


Test Conditions: $V_D = 5V$


 $I_D = 84mA$ $Z_S = Z_L = 50 \text{ Ohms}$ OIP₃ Tone Spacing = 1MHz, Pout per tone = 0 dBm

 $T_L = 25$ °C $Z_S = Z_L = 50$ Oh

* Test results at 1950 MHz measured with Application Circuit

Typical Performance with Bias Tees, $V_D = 5V$, $I_D = 84mA$

Absolute Maximum Ratings				
Parameter	Absolute Limit			
Max Device Current (I _{CE})	120 mA			
Max Device Voltage (V _{CE})	6.5 V			
Max. RF Input Power* (See Note)	+18 dBm			
Max. Junction Temp. (T _J)	+150°C			
Operating Temp. Range (T _L)	-40°C to +85°C			
Max. Storage Temp.	+150°C			

*Note: Load condition, $Z_L = 50$ Ohms

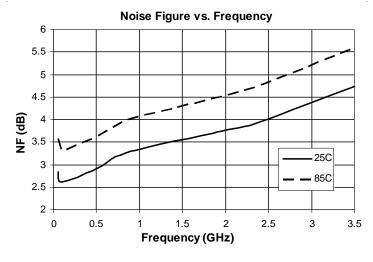
Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

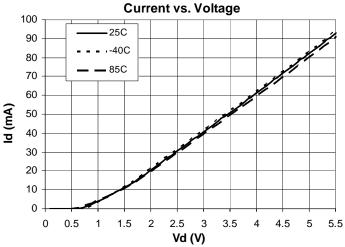
Bias Conditions should also satisfy the following expression: $I_DV_D<(T_J-T_L)\:/\:R_{TH},\:j\text{--}I \qquad T_L=T_{LEAD}$

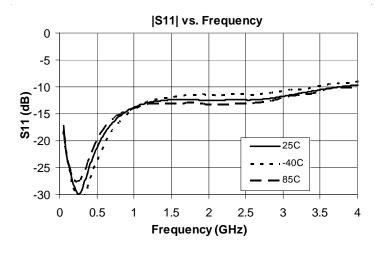
Reliability & Qualification Informa	ualification Information		
Parameter	Rating		
ESD Rating - Human Body Model (HBM)	Class 1C		
Moisture Sensitivity Level	MSL 1		

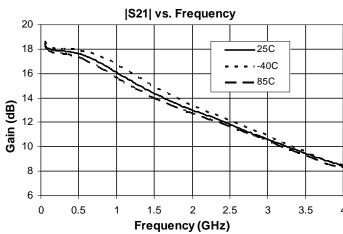
This product qualification report can be downloaded at www.sirenza.com

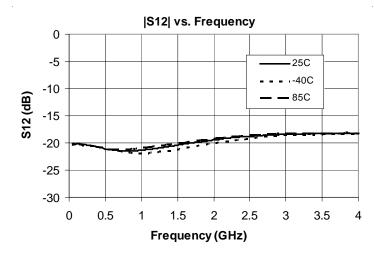
Caution: ESD sensitive

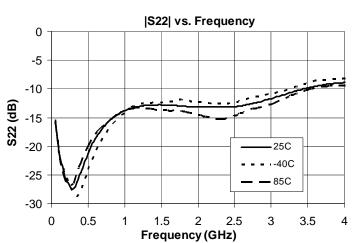

Appropriate precautions in handling, packaging and testing devices must be observed.

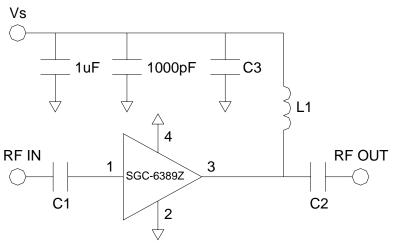

Phone: (800) SMI-MMIC 2

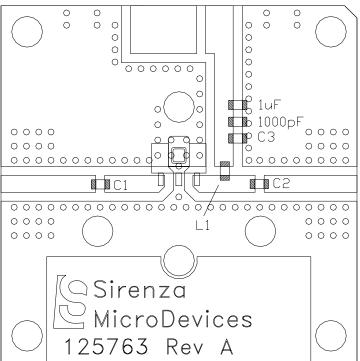

http://www.sirenza.com EDS-104747 Rev B

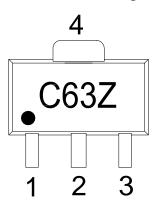



Typical Performance with Bias Tees, $V_D = 5V$, $I_D = 84mA$



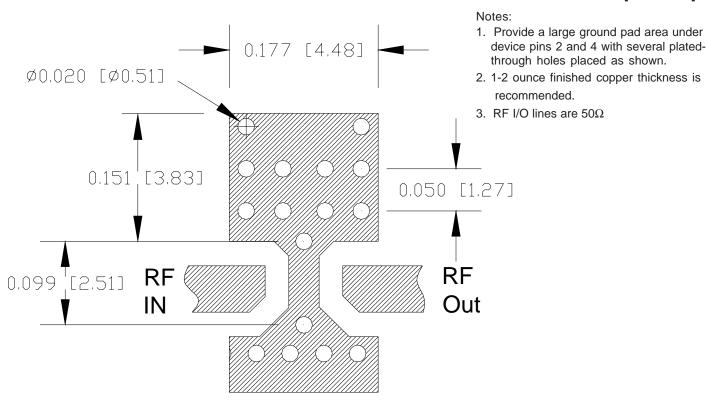






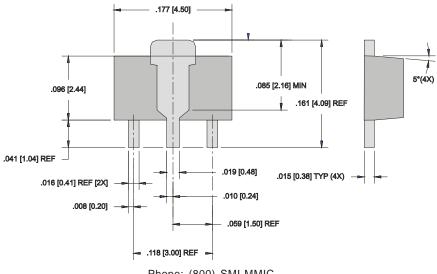
Applicat	Application Circuit Element Values			
Reference Designator	100-1000MHz	1000-2200MHz		
C1	1000pF	6.8pF		
C2	100pF	6.8pF		
C3	100pF	6.8pF		
L1	100nH	39nH		

Part Identification Marking & Pinout


Pin #	Function	Description	
1	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation	
2,4 GND		Connection to ground. Use via holes as close to the device ground leads as possible to reduce ground inductance and achieve optimum RF performance	
3	RF OUT / DCBIAS	RF output and bias pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.	

Part / Evaluation Board Ordering Information						
Part Number Description		Reel Size	Devices / Reel			
SGC-6389Z	Lead Free, RoHs Compliant	13"	3000			
SGC-6389Z-EVB1	100-1000 MHz Evaluation Board	N/A	N/A			
SGC-6389Z-EVB2	1000-2200 MHz Evaluation Board	N/A	N/A			

SOT-89 PCB Pad Layout


Dimensions in inches [millimeters]

SOT-89 Nominal Package Dimensions

Dimensions in inches [millimeters]

A link to the SOT-89 package outline drawing with full dimensions and tolerances may be found on the product web page at www.sirenza.com.

