

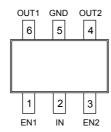
DUAL 150MA HIGH PERFORMANCE MOBILE LDO™ IN SOT23-6L

FSP2150

■ FEATURES

- 180mV Typical Dropout with 150mA Load
- ± 2.0% Voltage Accuracy
- High PSRR: 70dB@100Hz
- Low noise output
- Current Limit
- Thermal Shutdown Protection
- Short Circuit Protection
- Very small SOT23-6L Package

■ APPLICATIONS


- Cellular Handsets
- Portable Electronics, PDA
- Wireless Devices, LAN
- Computer Peripherals
- Camera Module
- GPS Receiver

■ PIN CONFIGURATION

GENERAL DESCRIPTION

The dual LDO FSP2150 series of positive voltage linear regulators feature high output voltage accuracy, low quiescent current and low dropout voltage, making them ideal for battery powered applications. The line transient response and load transient response are excellent. Their high PSRR make them useful in applications where AC noise on the input power supply must be suppressed. Space-saving SOT23-6L package for 2ch LDOs is attractive for portable and handheld applications. They have both thermal shutdown and a current limit feature to prevent device failure under extreme operating conditions. They are stable with an output capacitance of 2.2uF or greater.

(Top View)

■ PIN DESCRIPTION

Pin Number	Pin Name	Pin Function
1	EN1	Output 1 Enable
2	VIN	Input
3	EN2	Output 2 Enable
4	OUT2	Output 2
5	GND	Ground
6	OUT1	Output 1

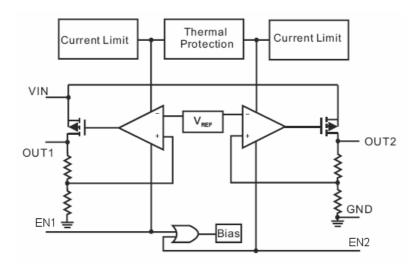
■ ABSOLUTE MAXIMUM RATINGS

Parameter	Rating	Unit
Input Voltage	6	V
Output Pin Voltage	GND-0.3 to VIN + 0.3	V
Output Current	150/150	mA
Internal Power Dissipation	400	mW
ESD Rating(HBM)	2000	V
Operating Junction Temperature	-40 to 125	°C
Operating Ambient Temperature	-40 to 85	°C
Storage Temperature	-40 to 125	°C
Lead Temperature (Soldering, 5 sec)	300	°C

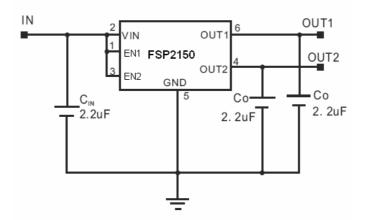
Note: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired

■ ELECTRICAL CHARACTERISTICS

 $(V_{IN} = V_{OUT} + 1V, EN1 = EN2 = IN, C_{IN} = 2.2F, C_{OUT} = 2.2F, T_A = 25^{\circ}C$ unless otherwise specified.)


Parameter	arameter Test Conditions		Min	Тур	Max	Unit
Input Supply Range			Note 1		5.5	V
EN Input Voltage			0		VIN	V
Output Voltage Accuracy	I _O =1mA		-2.0		+2.0	%
Output Current			150		Note 2	mA
Quiescent Current	I _O =0mA			175	250	μA
Shutdown Supply Current	Both outputs disabled			0.1	1	μA
Short Circuit Current	V _O = 0V			150		mA
Ground Pin Current	Ground Pin Current I _O =1mA to 150mA			200	250	μΑ
	$I_{\rm O}$ =50mA $V_{\rm IN}$ = 3.0V to 4.0V	V _O = 1.8V				
Line Regulation	$I_{\rm O}$ =50mA $V_{\rm IN}$ = 3.5V to 4.5V	V _O = 2.5	-0.15 0.1	0.1	0.15	%/V
	$I_{\rm O}$ =50mA $V_{\rm IN}$ = 3.8V to 4.8V	V _O = 2.8V				
Load Regulation	I_{OUT} = 1mA to 150mA V_{IN} =	I_{OUT} = 1mA to 150mA V_{IN} = 3.3V		1.0	2	%/mA
5 0 1 5: 1	I _O =50mA V _O = 1.8V	f= 100Hz		70		
Power Supply Ripple Rejection		f= 1KHz		63		dB
i tojootion		f= 10KHz		45		
	V _{OUT} = 1.8V, I _{OUT} = 150mA			950		
Dropout Voltage	V _{OUT} = 2.5V, I _{OUT} = 150mA			350		mV
	V _{OUT} = 2.8V, I _{OUT} = 150mA			180		
Current Limit	V _{OUT} ≥1.2V	V _{OUT} ≥1.2V		200		mA
Output Noise	f= 10Hz to 100KHz			35		uVrms
Over Temperature Hystersis	I _O =1mA			40		°C
Over Temperature Shutdown	I _O =1mA			155		°C
EN_ Logic Low Threshold					0.3	V
EN_ Logic High Threshold			1.5			V
EN Pull-up Resistance			1.7	5	15	mΩ
Temperature Coefficient				40		ppm/°C

Note 1: The minimum input voltage of the FSP2150 is determined by output voltage and dropout voltage. The minimum input voltage is defined as:


 $V_{IN(MIN)} = V_O + V_{DROP}$

Note 2: Output current is limited by P_D , maximum $I_O = P_D / (V_{IN(MAX)} - V_O)$

■ FUNCTIONAL BLOCK DIAGRAM

TYPICAL APPLICATION CIRCUIT

■ APPLICATION INFORMATION

Capacitor Selection and Regulator Stability

Similar to any low dropout regulator, the external capacitors used with the FSP2150 must be carefully selected for regulator stability and performance.

Using a capacitor, C_{IN} , whose value is $> 2.2\,\mu$ F at the FSP2150 input pin, the amount of the capacitance can be increased without limit. Please note that the distance between C_{IN} and the input pin of the FSP2150 should not exceed 0.5 inch. Ceramic capacitors are suitable for the FSP2150. Capacitors with larger values and lower ESR provide better PSRR and line-transient response.

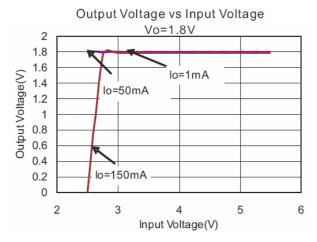
The FSP2150 is designed specifically to work with low ESR ceramic output capacitors in order to save space and improve performance. Using an output ceramic capacitor whose value is $> 2.2 \,\mu$ F with ESR $> 5 m\Omega$ ensure stability.

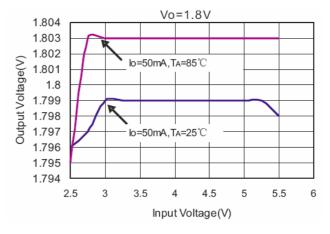
Shutdown Input Operation

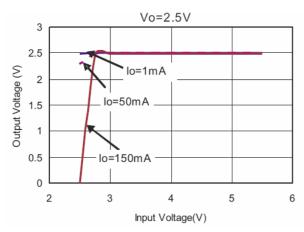
The FSP2150 is shutdown by pulling the EN input low, and is turned on by tying the EN input to VIN or leaving the EN input floating.

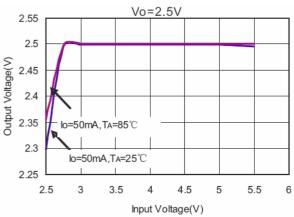
Dropout Voltage

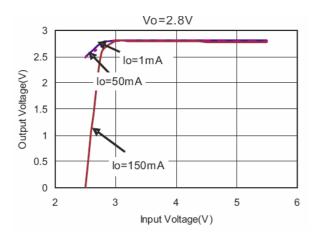
A regulator's minimum dropout voltage determines the lowest usable supply voltage. The FSP2150 has a typical 180mV dropout voltage. In battery powered systems, this will determine the useful end-of-life battery voltage.


Current Limit and Short Circuit Protection

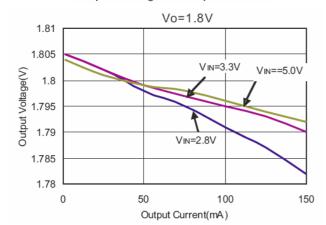

The FSP2150 features a current limit, which monitors and controls the gate voltage of the pass transistor. The output current can be limited to 300mA by regulating the gate voltage. The FSP2150 also has a built-in short circuit current limit.

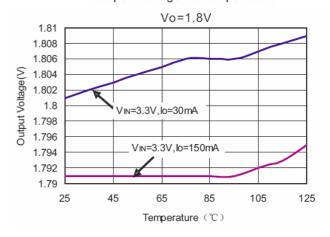


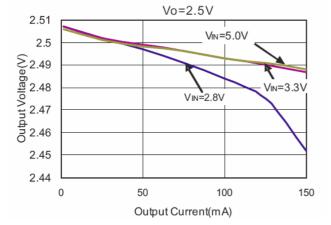

■ TYPICAL PERFORMANCE CHARACTERISTICS

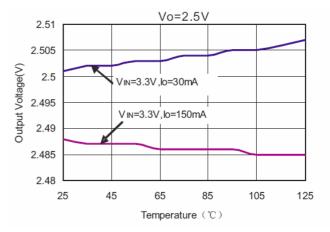

 $(C_{IN} = 2.2 \text{uF}, C_{O} = 2.2 \text{uF}, T_{A} = 25^{\circ}\text{C} \text{ unless otherwise specified.})$



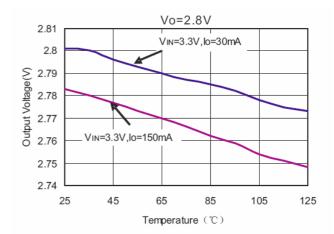


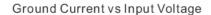

■ TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)

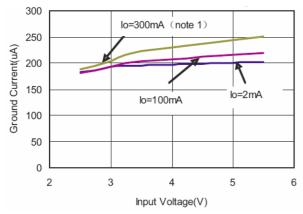

(C_{IN} = 2.2uF, C_{O} = 2.2uF, T_{A} = 25°C unless otherwise specified.)

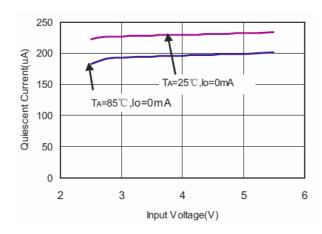




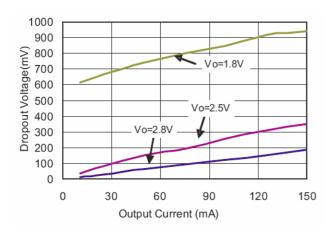

Output Voltage vs Temperature

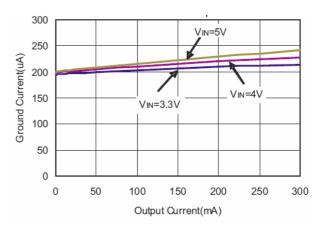


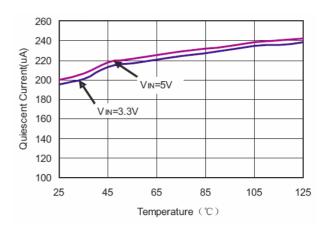


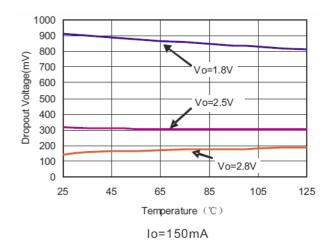

■ TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)

 $(C_{IN} = 2.2 \text{uF}, C_{O} = 2.2 \text{uF}, T_{A} = 25^{\circ}\text{C} \text{ unless otherwise specified.})$

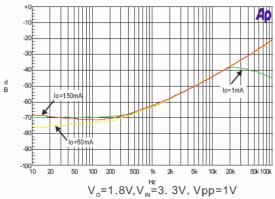


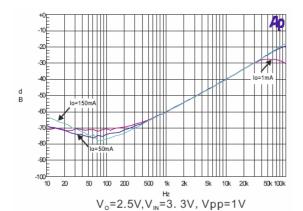

note 1: 2 channels total output current
Quiescent Current vs Input Voltage


Dropout Voltage vs Output Current


Ground Current vs Output Current

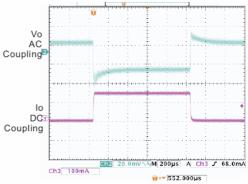
Quiescent Current vs Temperature

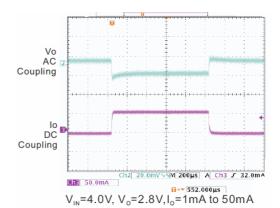

Dropout Voltage vs Temperature

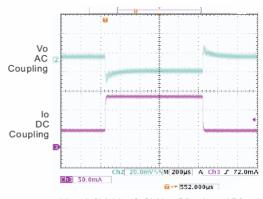


■ TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)

 $(C_{IN} = 2.2uF, C_O = 2.2uF, T_A = 25^{\circ}C \text{ unless otherwise specified.})$

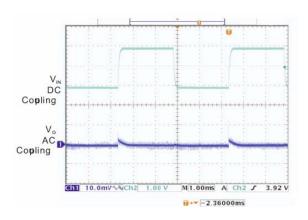


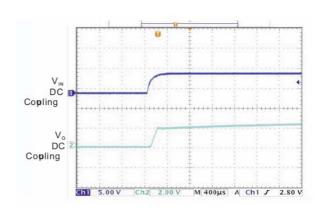

30 40 B 30 Io=150mA


 $V_0 = 2.8 \text{V}, V_{IN} = 3.3 \text{V}, \text{Vpp} = 1 \text{V}$

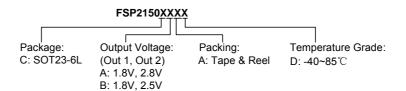
Load Transient Response

 V_{IN} =4.0V, V_{O} =2.8V, I_{O} =1mA to 150mA

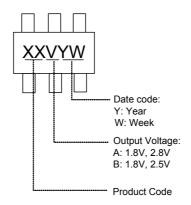

 V_{IN} =4.0V, V_{o} =2.8V, I_{o} =50mA to 150mA


■ TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)

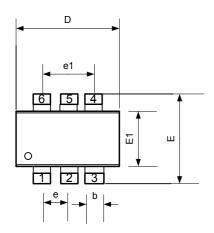
(C_{IN} = 2.2uF, C_{O} = 2.2uF, T_{A} = 25°C unless otherwise specified.)

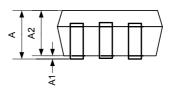

Line Transient Response

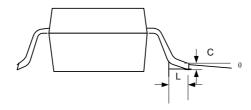
Turn-on Response



ORDERING INFORMATION




MARKING INFORMATION



■ PACKAGE INFORMATION

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min.	Max.	Min.	Max.	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.400	0.012	0.016	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	2.650	2.950	0.104	0.116	
E1	1.500	1.700	0.060	0.068	
L	0.300	0.600	0.012	0.024	
L1	0.700REF		0.028REF		
e1	0.95 Bsc.		0.038 Bsc.		
е	1.90 Bsc.		0.076 Bsc.		
θ	0°	8°	0°	8°	