

ardware

M32C/88 Group (M32C/88T) Hardware Manual

RENESAS 16/32-BIT SINGLE-CHIP MICROCOMPUTER M16C FAMILY / M32C/80 SERIES

Before using this material, please visit our website to verify that this is the most current document available.

Rev. 1.10 Revision Date: Oct. 18, 2005 RenesasTechnology www.renesas.com

Keep safety first in your circuit designs!

 Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

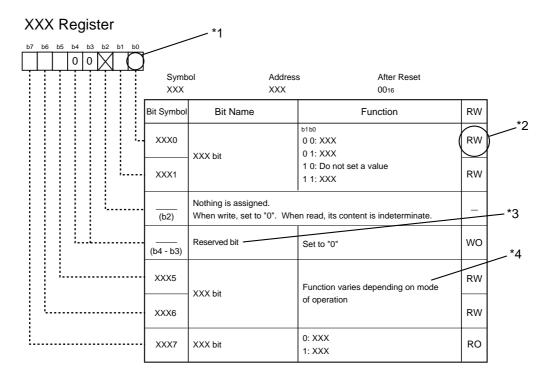
Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/ or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.


How to Use This Manual

1. Introduction

This hardware manual provides detailed information on the M32C/88 Group (M32C/88T) microcomputer. Users are expected to have basic knowledge of electric circuits, logical circuits and microcomputers.

2. Register Diagram

The symbols, and descriptions, used for bit function in each register are shown below.

*1

Blank: Set to "0" or "1" according to the application

- 0: Set to "0"
- 1: Set to "1"
- X: Nothing is assigned

*2

- RW: Read and write
- RO: Read only
- WO: Write only
- -: Nothing is assigned

*3

Reserved bit

Reserved bit. Set to specified value.

*4

Nothing is assigned

Nothing is assigned to the bit concerned. As the bit may be use for future functions, set to "0" when writing to this bit.

- Do not set a value
 - The operation is not guaranteed when a value is set.
- Function varies depending on mode of operation Bit function varies depending on peripheral function mode. Refer to respective register for each mode.

3. M16C Family Documents

The following documents were prepared for the M16C family. (1)

Document	Contents		
Short Sheet	Hardware overview		
Data Sheet	Hardware overview and electrical characteristics		
Hardware Manual	Hardware specifications (pin assignments, memory maps, peripheral		
	specifications, electrical characteristics, timing charts)		
Software Manual	Detailed description of assembly instructions and microcomputer perfor-		
	mance of each instruction		
Application Note	 Application examples of peripheral functions 		
	Sample programs		
	 Introduction to the basic functions in the M16C family 		
	 Programming method with Assembly and C languages 		
RENESAS TECHNICAL UPDATE	Preliminary report about the specification of a product, a document, etc.		

NOTES :

1. Before using this material, please visit the our website to verify that this is the most current document available.

Table of Contents

Q	uick Reference by Address	1
1.	Overview	1
	1.1 Applications	1
	1.2 Performance Overview	
	1.3 Block Diagram	4
	1.4 Product Information	
	1.5 Pin Assignment	7
	1.6 Pin Description	14
2.	Central Processing Unit (CPU)	_ 17
	2.1 General Registers	
	2.1.1 Data Registers (R0, R1, R2 and R3)	18
	2.1.2 Address Registers (A0 and A1)	18
	2.1.3 Static Base Register (SB)	18
	2.1.4 Frame Base Register (FB)	18
	2.1.5 Program Counter (PC)	18
	2.1.6 Interrupt Table Register (INTB)	18
	2.1.7 User Stack Pointer (USP), Interrupt Stack Pointer (ISP)	18
	2.1.8 Flag Register (FLG)	18
	2.2 High-Speed Interrupt Registers	19
	2.3 DMAC-Associated Registers	19
3.	Memory	20
4.	Special Function Registers (SFRs)	_ 21
5.	Reset	45
	5.1 Hardware Reset 1	45
	5.1.1 Reset on a Stable Supply Voltage	45
	5.1.2 Power-on Reset	
	5.2 Software Reset	47
	5.3 Watchdog Timer Reset	47
	5.4 Internal Space	47
6.	Cold Start-up/Warm Start-up Determine Function _	48
7.	Processor Mode	_ 50
	7.1 Types of Processor Mode	50
	7.2 Setting of Processor Mode	50

8. Clock Generation Circuit	54
8.1 Types of the Clock Generation Circuit	
8.1.1 Main Clock	
8.1.2 Sub Clock	64
8.1.3 On-Chip Oscillator Clock	
8.1.4 PLL Clock	
8.2 CPU Clock and BCLK	
8.3 Peripheral Function Clock	
8.3.1 f1, f8, f32 and f2n	
8.3.2 fad	
8.3.3 fC32	
8.3.4 fCAN	
8.4 Clock Output Function	
8.5 Power Consumption Control	70
8.5.1 Normal Operating Mode	70
8.5.2 Wait Mode	71
8.5.3 Stop Mode	73
8.6 System Clock Protect Function	77
9. Protection	78
10. Interrupts	
10.1 Types of Interrupts	
10.2 Software Interrupts	
10.2 Software Interrupts 10.2.1 Undefined Instruction Interrupt	
•	
10.2.1 Undefined Instruction Interrupt	80 80
10.2.1 Undefined Instruction Interrupt 10.2.2 Overflow Interrupt	80 80 80
10.2.1 Undefined Instruction Interrupt 10.2.2 Overflow Interrupt 10.2.3 BRK Interrupt	80 80
10.2.1 Undefined Instruction Interrupt 10.2.2 Overflow Interrupt 10.2.3 BRK Interrupt 10.2.4 BRK2 Interrupt	80 80 80 80 80 80 80
10.2.1 Undefined Instruction Interrupt 10.2.2 Overflow Interrupt 10.2.3 BRK Interrupt 10.2.4 BRK2 Interrupt 10.2.5 INT Instruction Interrupt	80 80 80 80 80 80 80 80 81
10.2.1 Undefined Instruction Interrupt 10.2.2 Overflow Interrupt 10.2.3 BRK Interrupt 10.2.4 BRK2 Interrupt 10.2.5 INT Instruction Interrupt 10.3 Hardware Interrupts	80 80 80 80 80 80 80 81 81
 10.2.1 Undefined Instruction Interrupt 10.2.2 Overflow Interrupt 10.2.3 BRK Interrupt 10.2.4 BRK2 Interrupt 10.2.5 INT Instruction Interrupt 10.3 Hardware Interrupts 10.3.1 Special Interrupts 	80 80 80 80 80 80 80 81 81 81 81
 10.2.1 Undefined Instruction Interrupt 10.2.2 Overflow Interrupt 10.2.3 BRK Interrupt 10.2.4 BRK2 Interrupt 10.2.5 INT Instruction Interrupt 10.3 Hardware Interrupts 10.3.1 Special Interrupts 10.3.2 Peripheral Function Interrupt 	80 80 80 80 80 80 80 81 81 81 81 82
 10.2.1 Undefined Instruction Interrupt 10.2.2 Overflow Interrupt 10.2.3 BRK Interrupt	80 80 80 80 80 80 81 81 81 81 81 82 82
 10.2.1 Undefined Instruction Interrupt 10.2.2 Overflow Interrupt 10.2.3 BRK Interrupt 10.2.4 BRK2 Interrupt 10.2.5 INT Instruction Interrupt 10.3 Hardware Interrupts 10.3.1 Special Interrupts 10.3.2 Peripheral Function Interrupt 10.4 High-Speed Interrupt 10.5 Interrupts and Interrupt Vectors	80 80 80 80 80 80 81 81 81 81 81 82 82 82 83
 10.2.1 Undefined Instruction Interrupt	80 80 80 80 80 80 81 81 81 81 81 82 82 82 82 83 83
 10.2.1 Undefined Instruction Interrupt 10.2.2 Overflow Interrupt 10.2.3 BRK Interrupt 10.2.4 BRK2 Interrupt 10.2.5 INT Instruction Interrupt 10.3 Hardware Interrupts 10.3.1 Special Interrupts 10.3.2 Peripheral Function Interrupt 10.4 High-Speed Interrupt 10.5 Interrupts and Interrupt Vectors 10.5.1 Fixed Vector Tables 10.5.2 Relocatable Vector Tables 	80 80 80 80 80 80 81 81 81 81 81 82 82 82 82 83 83 83 83 83
 10.2.1 Undefined Instruction Interrupt	80 80 80 80 80 80 80 81 81 81 81 81 82 82 82 82 83 83 83 83 83 83 83 83

10.6.4 Interrupt Response Time	91
10.6.5 IPL Change when Interrupt Request is Acknowledged	92
10.6.6 Saving a Register	
10.6.7 Restoration from Interrupt Routine	
10.6.8 Interrupt Priority	94
10.6.9 Interrupt Priority Level Select Circuit	94
10.7 INT Interrupt	96
10.8 NMI Interrupt	97
10.9 Key Input Interrupt	97
10.10 Address Match Interrupt	
10.11 Intelligent I/O Interrupt and CAN Interrupt	
11. Watchdog Timer	103
11.1 Count Source Protection Mode	
12. DMAC	107
12.1 Transfer Cycle	
12.1.1 Effect of Source and Destination Addresses	114
12.1.2 Effect of Software Wait State	114
12.2 DMAC Transfer Cycle	116
40.0 Objects of Driveling and DMA Transfer Timing	116
12.3 Channel Priority and DMA Transfer Timing	
13. DMAC II	118
13. DMAC II	118
13. DMAC II	118 118 118
13. DMAC II 13.1 DMAC II Settings 13.1.1 RLVL Register	118 118 118 120
13. DMAC II 13.1 DMAC II Settings 13.1.1 RLVL Register 13.1.2 DMAC II Index	118 118 118 120 122
13. DMAC II 13.1 DMAC II Settings 13.1.1 RLVL Register 13.1.2 DMAC II Index 13.1.3 Interrupt Control Register for the Peripheral Function	118 118 118 120 122 122
13. DMAC II 13.1 DMAC II Settings 13.1.1 RLVL Register 13.1.2 DMAC II Index 13.1.3 Interrupt Control Register for the Peripheral Function 13.1.4 Relocatable Vector Table for the Peripheral Function	118 118 118 120 122 122 122
13. DMAC II 13.1 DMAC II Settings 13.1.1 RLVL Register 13.1.2 DMAC II Index 13.1.3 Interrupt Control Register for the Peripheral Function 13.1.4 Relocatable Vector Table for the Peripheral Function 13.1.5 IRLT Bit in the IIOiIE Register (i=0 to 6, 8 to 11)	118 118 120 120 122 122 122 122
13. DMAC II 13.1 DMAC II Settings 13.1.1 RLVL Register 13.1.2 DMAC II Index 13.1.3 Interrupt Control Register for the Peripheral Function 13.1.4 Relocatable Vector Table for the Peripheral Function 13.1.5 IRLT Bit in the IIOiIE Register (i=0 to 6, 8 to 11) 13.2 DMAC II Performance	118 118 120 122 122 122 122 122
13. DMAC II 13.1 DMAC II Settings 13.1.1 RLVL Register 13.1.2 DMAC II Index 13.1.3 Interrupt Control Register for the Peripheral Function 13.1.4 Relocatable Vector Table for the Peripheral Function 13.1.5 IRLT Bit in the IIOIIE Register (i=0 to 6, 8 to 11) 13.2 DMAC II Performance 13.3 Transfer Data	118 118 120 122 122 122 122 122 122 122
13. DMAC II 13.1 DMAC II Settings 13.1.1 RLVL Register 13.1.2 DMAC II Index 13.1.3 Interrupt Control Register for the Peripheral Function 13.1.4 Relocatable Vector Table for the Peripheral Function 13.1.5 IRLT Bit in the IIOiIE Register (i=0 to 6, 8 to 11) 13.2 DMAC II Performance 13.3 Transfer Data 13.3.1 Memory-to-memory Transfer	118 118120122122122122122122122122122122122122123
13. DMAC II 13.1 DMAC II Settings 13.1.1 RLVL Register 13.1.2 DMAC II Index 13.1.3 Interrupt Control Register for the Peripheral Function 13.1.4 Relocatable Vector Table for the Peripheral Function 13.1.5 IRLT Bit in the IIOiIE Register (i=0 to 6, 8 to 11) 13.2 DMAC II Performance 13.3 Transfer Data 13.3.1 Memory-to-memory Transfer 13.3.2 Immediate Data Transfer	118 118 120 120 122 122 122 122 122 123 123
13. DMAC II 13.1 DMAC II Settings 13.1.1 RLVL Register 13.1.2 DMAC II Index 13.1.3 Interrupt Control Register for the Peripheral Function 13.1.4 Relocatable Vector Table for the Peripheral Function 13.1.5 IRLT Bit in the IIOIIE Register (i=0 to 6, 8 to 11) 13.2 DMAC II Performance 13.3 Transfer Data 13.3.1 Memory-to-memory Transfer 13.3.2 Immediate Data Transfer 13.3.3 Calculation Transfer	118 118120122122122122122122123123123
13. DMAC II 13.1 DMAC II Settings 13.1.1 RLVL Register 13.1.2 DMAC II Index 13.1.3 Interrupt Control Register for the Peripheral Function 13.1.4 Relocatable Vector Table for the Peripheral Function 13.1.5 IRLT Bit in the IIOiIE Register (i=0 to 6, 8 to 11) 13.2 DMAC II Performance 13.3 Transfer Data 13.3.1 Memory-to-memory Transfer 13.3.2 Immediate Data Transfer 13.3.3 Calculation Transfer 13.4 Transfer Modes	118 118120122122122122122122123123123123123
13. DMAC II 13.1 DMAC II Settings 13.1.1 RLVL Register 13.1.2 DMAC II Index 13.1.3 Interrupt Control Register for the Peripheral Function 13.1.4 Relocatable Vector Table for the Peripheral Function 13.1.5 IRLT Bit in the IIOIIE Register (i=0 to 6, 8 to 11) 13.2 DMAC II Performance 13.3 Transfer Data 13.3.1 Memory-to-memory Transfer 13.3.2 Immediate Data Transfer 13.3.3 Calculation Transfer 13.4 Transfer Modes 13.4.1 Single Transfer	118 118120122122122122122122123123123123123123
13. DMAC II 13.1 DMAC II Settings 13.1.1 RLVL Register 13.1.2 DMAC II Index 13.1.3 Interrupt Control Register for the Peripheral Function 13.1.4 Relocatable Vector Table for the Peripheral Function 13.1.5 IRLT Bit in the IIOiIE Register (i=0 to 6, 8 to 11) 13.2 DMAC II Performance 13.3 Transfer Data 13.3.1 Memory-to-memory Transfer 13.3.2 Immediate Data Transfer 13.3.3 Calculation Transfer 13.4.1 Single Transfer 13.4.2 Burst Transfer	118 118120122122122122122123123123123123123123123123
13. DMAC II 13.1 DMAC II Settings 13.1.1 RLVL Register 13.1.2 DMAC II Index 13.1.2 DMAC II Index 13.1.3 Interrupt Control Register for the Peripheral Function 13.1.4 Relocatable Vector Table for the Peripheral Function 13.1.5 IRLT Bit in the IIOiIE Register (i=0 to 6, 8 to 11) 13.2 DMAC II Performance 13.3 Transfer Data 13.3.1 Memory-to-memory Transfer 13.3.2 Immediate Data Transfer 13.3.3 Calculation Transfer 13.4.1 Single Transfer 13.4.2 Burst Transfer	118 118120122122122122122123123123123123123123124

14.	Timer	126
	4.1 Timer A	
	14.1.1 Timer Mode	
	14.1.2 Event Counter Mode	
	14.1.3 One-Shot Timer Mode	
	14.1.4 Pulse Width Modulation Mode	142
14	1.2 Timer B	145
	14.2.1 Timer Mode	
	14.2.2 Event Counter Mode	
	14.2.3 Pulse Period/Pulse Width Measurement Mode	
15.	Three-Phase Motor Control Timer Functions	154
16.	Serial I/O	165
16	6.1 Clock Synchronous Serial I/O Mode	175
	16.1.1 Selecting CLK Polarity Selecting	
	16.1.2 Selecting LSB First or MSB First	
	16.1.3 Continuous Receive Mode	
	16.1.4 Serial Data Logic Inverse	
10	6.2 Clock Asynchronous Serial I/O (UART) Mode	
	16.2.1 Bit Rate	
	16.2.2 Selecting LSB First or MSB First	
	16.2.3 Serial Data Logic Inverse	
	16.2.4 TxD and RxD I/O Polarity Inverse	
10	6.3 Special Mode 1 (I ² C Mode)	
	16.3.1 Detecting Start Condition and Stop Condition	
	16.3.2 Start Condition or Stop Condition Output	
	16.3.3 Arbitration	
	16.3.4 Transfer Clock	
	16.3.5 SDA Output	
	16.3.6 SDA Input	197
	16.3.7 ACK, NACK	
	16.3.8 Transmit and Receive Reset	
16	6.4 Special Mode 2	
	16.4.1 SSi Input Pin Function (i=0 to 4)	
	16.4.2 Clock Phase Setting Function	
	6.5 Special Mode 3 (GCI Mode)	
16	6.6 Special Mode 4 (IE Mode)	

1	6.7 Special Mode 5 (SIM Mode)	212
	16.7.1 Parity Error Signal	
	16.7.2 Format	217
17.	A/D Converter	218
	7.1 Mode Description	
	17.1.1 One-shot Mode	
	17.1.2 Repeat Mode	
	17.1.3 Single Sweep Mode	
	17.1.4 Repeat Sweep Mode 0	229
	17.1.5 Repeat Sweep Mode 1	230
	17.1.6 Multi-Port Single Sweep Mode	231
	17.1.7 Multi-Port Repeat Sweep Mode 0	232
1	7.2 Functions	233
	17.2.1 Resolution Select Function	233
	17.2.2 Sample and Hold Function	233
	17.2.3 Trigger Select Function	233
	17.2.4 DMAC Operating Mode	
	17.2.5 Extended Analog Input Pins	234
	17.2.6 External Operating Amplifier (Op-Amp) Connection Mode	234
	17.2.7 Power Consumption Reducing Function	235
	17.2.8 Output Impedance of Sensor Equivalent Circuit under A/D Conv	/ersion 235
18.	D/A Converter	237
19.	CRC Calculation	240
20.	X/Y Conversion	242
21.	Intelligent I/O	245
2	1.1 Base Timer	254
2	1.2 Time Measurement Function	259
2	1.3 Waveform Generating Function	
	21.3.1 Single-Phase Waveform Output Mode	
	21.3.2 Phase-Delayed Waveform Output Mode	
	21.3.3 Set/Reset Waveform Output (SR Waveform Output) Mode	
2	1.4 Communication Unit 0 and 1 Communication Function	272
	21.4.1 Clock Synchronous Serial I/O Mode (Communication Units 0 a	nd 1) 282
	21.4.2 Clock Asynchronous Serial I/O (UART) Mode (Communication	Unit 1) 286
	21.4.3 HDLC Data Processing Mode (Communication Units 0 and 1).	

22. CAN Module _____ 292

22.1 CAN-Associated Registers	296
22.1.1 CANi Control Register 0 (CiCTLR0 Register) (i=0 to 2)	296
22.1.2 CANi Control Register 1 (CiCTLR1 Register) (i=0 to 2)	299
22.1.3 CANi Sleep Control Register (CiSLPR Register) (i=0 to 2)	300
22.1.4 CANi Status Register (CiSTR Register) (i=0 to 2)	301
22.1.5 CANi Extended ID Register (CiIDR Register) (i=0 to 2)	304
22.1.6 CANi Configuration Register (CiCONR Register) (i=0 to 2)	305
22.1.7 CANi Baud Rate Prescaler (CiBRP Register) (i=0 to 2)	307
22.1.8 CANi Time Stamp Register (CiTSR Register) (i=0 to 2)	308
22.1.10 CANi Receive Error Count Register (CiREC Register) (i=0 to 2)	309
22.1.9 CANi Transmit Error Count Register (CiTEC Register) (i=0 to 2)	309
22.1.11 CANi Slot Interrupt Status Register (CiSISTR Register) (i=0 to 2)	310
22.1.12 CANi Slot Interrupt Mask Register (CiSIMKR Register) (i=0 to 2)	312
22.1.13 CANi Error Interrupt Mask Register (CiEIMKR Register) (i=0 to 2)	313
22.1.14 CANi Error Interrupt Status Register (CiEISTR Register) (i=0 to 2)	314
22.1.15 CANi Error Factor Register (CiEFR Register) (i=0 to 2)	315
22.1.16 CANi Mode Register (CiMDR Register) (i=0 to 2)	
22.1.17 CANi Single-Shot Control Register (CiSSCTLR Register) (i=0 to 2).	
22.1.18 CANi Single-Shot Status Register (CiSSSTR Register) (i=0 to 2)	
22.1.19 CANi Global Mask Register, CANi Local Mask Register A and CANi Local	
Register B (CiGMRk, CiLMARk and CiLMBRk Registers) (i=0 to 2, k=0 to 4	•
22.1.20 CANi Message Slot j Control Register (CiMCTLj Register) (i=0 to 2, j=0 to 1	
22.1.21 CANi Slot Buffer Select Register (CiSBS Register) (i=0 to 2)	
22.1.22 CANi Message Slot Buffer j (i=0 to 2, j=0,1)	
22.1.23 CANi Acceptance Filter Support Register (CiAFS Register) (i=0 to 2	
22.2 CAN Clock	
22.2.1 Main Clock Direct Mode	
22.3 Timing with CAN-Associated Registers	
22.3.1 CAN Module Reset Timing	
22.3.2 CAN Transmit Timing	
22.3.3 CAN Receive Timing	
22.3.4 CAN Bus Error Timing	
22.4 CAN Interrupts	
22.4.1 CANI wake-op interrupt	
22.5 CAN0/CAN2 Combination Mode	
22.5.1 Notes for CAN0/CAN2 Combination Mode	

23. Programmable I/O Ports	346
23.1 Port Pi Direction Register (PDi Register, i=0 to 15)	
23.2 Port Pi Register (Pi Register, i=0 to 15)	
23.3 Function Select Register Aj (PSj Register) (j=0 to 3, 5, 8, 9)	
23.4 Function Select Register B0 to B3 (PSL0 to PSL3 Registers)	
23.5 Function Select Register C, C2, C3 (PSC, PSC2, PSC3 Registers)	
23.6 Function Select Register D (PSD1 Register)	
23.7 Pull-up Control Register 0 to 4 (PUR0 to PUR4 Registers)	
23.8 Port Control Register (PCR Register)	
23.9 Input Function Select Register (IPS and IPSA Registers)	
23.10 Analog Input and Other Peripheral Function Input	
24. Flash Memory Version	369
24.1 Memory Map	
24.1.1 Boot Mode	
24.2 Functions to Prevent Rewriting of Flash Memory	
24.2.1 ROM Code Protect Function	
24.2.2 ID Code Verify Function	
24.3 CPU Rewrite Mode	
24.3.1 EW Mode 0	
24.3.2 EW Mode 1	
24.3.3 Flash Memory Control Register (FMR0 Register and FMR1 Re	egister) 374
24.3.4 Precautions in CPU Rewrite Mode	
24.3.5 Software Commands	
24.3.6 Data Protect Function	
24.3.7 Status Register (SRD Register)	
24.3.8 Full Status Check	390
24.4 Standard Serial I/O Mode	
24.4.1 ID Code Verify Function	
24.4.2 Circuit Application in Standard Serial I/O Mode	396
24.5 Parallel I/O Mode	
24.5.1 Boot ROM Area	
24.5.2 ROM Code Protect Function	398
25. Electrical Characteristics	399
26. Precautions	411
26.1 Special Function Registers (SFRs)	
26.1.1 100-Pin Package	411
26.1.2 Register Settings	411

Address	Register	Page	Address	Register	Page
000016			003016		
000116			003116		
000216			003216		
000316		+	003316		
000416	Processor Mode Register 0 (PM0)	51	003416		
000516	Processor Mode Register 1 (PM1)	52	003516		_
000616	System Clock Control Register 0 (CM0)	56	003616		-
000716	System Clock Control Register 1 (CM1)	57	003716		
000816			003816		
000916	Address Match Interrupt Enable Register (AIER)	98	003916	Address Match Interrupt Register 6 (RMAD6)	98
000A16	Protect Register (PRCR)	78	003A16		
000B16		10	003B16		
	Main Clock Division Register (MCD)	58	003D16		
000D16	Oscillation Stop Detection Register (MOD)	59	003D16	Address Match Interrupt Register 7 (RMAD7)	98
000D16	Watchdog Timer Start Register (WDTS)	- 59	003E16		90
		104			
000F16	Watchdog Timer Control Register (WDC)		003F16		_
001016			004016		_
001116	Address Match Interrupt Register 0 (RMAD0)	98	004116		_
001216			004216		_
001316	Processor Mode Register 2 (PM2)	62	004316		_
001416			004416		_
001516	Address Match Interrupt Register 1 (RMAD1)	98	004516		
001616			004616		
001716			004716		
001816			004816		
001916	Address Match Interrupt Register 2 (RMAD2)	98	004916		
001A16			004A16		
001B16			004B16		
001C16			004C16		
001D16	Address Match Interrupt Register 3 (RMAD3)	98	004D16		
001E16			004E16		-
001F16			004F16		-
002016		-	005016		_
002116		-	005116		_
002216		-	005216		_
002216		† I	005316		-
002316		† I	005416		_
002418			005516	Flash Memory Control Register 1 (FMR1)	375
002516	PLL Control Register 0 (PLC0)		005616		- 575
	PLL Control Register 1 (PLC1)	61	005616	Flash Memory Control Register 0 (FMR0)	374
002716					3/4
002816			005816		_
002916	Address Match Interrupt Register 4 (RMAD4)	98	005916		_
002A16			005A16		_
002B16			005B16		
002C16			005C16		
002D16	Address Match Interrupt Register 5 (RMAD5)	98	005D16		
002E16			005E16		
002F16			005F16		

Address	Register	Page	Address	Register	Page
006016			009016	UART0 Transmit /NACK Interrupt Control Register (S0TIC)	
006116				UART1 Bus Conflict Detect Interrupt Control Register (BCN1IC)/	
006216			009116	UART4 Bus Conflict Detect Interrupt Control Register (BCN4IC)	
006316			009216	UART1 Transmit/NACK Interrupt Control Register (S1TIC)	-
006416			009316	Key Input Interrupt Control Register (KUPIC)	
006516			009416	Timer B0 Interrupt Control Register (TB0IC)	1
006616				Intelligent I/O Interrupt Control Register 1 (IIO1IC)/	87
006716			009516	CAN Interrupt 4 Control Register (CAN4IC)	
006816	DMA0 Interrupt Control Register (DM0IC)		009616	Timer B2 Interrupt Control Register (TB2IC)	-
006916	Timer B5 Interrupt Control Register (TB5IC)			Intelligent I/O Interrupt Control Register 3 (IIO3IC)/	
006A16	DMA2 Interrupt Control Register (DM2IC)		009716	CAN Interrupt 7 Control Register (CAN7IC)	
006B16	UART2 Receive /ACK Interrupt Control Register (S2RIC)		009816	Timer B4 Interrupt Control Register (TB4IC)	-
006C16	Timer A0 Interrupt Control Register (TA0IC)		009916	CAN Interrupt 5 Control Register (CAN5IC)	-
006D16	UART3 Receive /ACK Interrupt Control Register (S3RIC)		009A16	INT4 Interrupt Control Register (INT4IC)	88
006E16	Timer A2 Interrupt Control Register (TA2IC)		009B16		
000E18	UART4 Receive /ACK Interrupt Control Register (14210)			INT2 Interrupt Control Register (INT2IC)	88
000118	Timer A4 Interrupt Control Register (TA4IC)		000010	Intelligent I/O Interrupt Control Register 9 (IIO9IC)/	00
007016	,		009D16	CAN Interrupt 0 Control Register (CAN0IC)	87
007116	UARTO Bus Conflict Detect Interrupt Control Register (BCN0IC)/	87	000E40	INTO Interrupt Control Register (INTOIC)	88
	UART3 Bus Conflict Detect Interrupt Control Register (BCN3IC)			· · · · ·	
007216	UARTO Receive/ACK Interrupt Control Register (SORIC)			Exit Priority Control Register (RLVL)	89
007316	A/D0 Conversion Interrupt Control Register (AD0IC)			Interrupt Request Register 0 (IIO0IR)	-
007416	UART1 Receive/ACK Interrupt Control Register (S1RIC)			Interrupt Request Register 1 (IIO1IR)	-
007516	Intelligent I/O Interrupt Control Register 0 (IIO0IC)/			Interrupt Request Register 2 (IIO2IR)	101
	CAN Interrupt 3 Control Register (CAN3IC)			Interrupt Request Register 3 (IIO3IR)	
007616	Timer B1 Interrupt Control Register (TB1IC)			Interrupt Request Register 4 (IIO4IR)	-
007716	Intelligent I/O Interrupt Control Register 2 (IIO2IC)			Interrupt Request Register 5 (IIO5IR)	-
007816	Timer B3 Interrupt Control Register (TB3IC)			Interrupt Request Register 6 (IIO6IR)	
007916	Intelligent I/O Interrupt Control Register 4 (IIO4IC)		00A716		
007A16	INT5 Interrupt Control Register (INT5IC)	88		Interrupt Request Register 8 (IIO8IR)	_
007B16	CAN Interrupt 8 Control Register (CAN8IC)	87		Interrupt Request Register 9 (IIO9IR)	101
007C16	INT3 Interrupt Control Register (INT3IC)	88	00AA16	Interrupt Request Register 10 (IIO10IR)	
007D16	Intelligent I/O Interrupt Control Register 8 (IIO8IC)	87	00AB16	Interrupt Request Register 11 (IIO11IR)	
007E16	INT1 Interrupt Control Register (INT1IC)	88	00AC16		
007E	Intelligent I/O Interrupt Control Register 10 (IIO10IC)/	07	00AD16		
007F16	CAN Interrupt 1 Control Register (CAN1IC)	87	00AE16		
008016			00AF16		
008116	CAN Interrupt 2 Control Register (CAN2IC)	87	00B016	Interrupt Enable Register 0 (IIO0IE)	
008216			00B116	Interrupt Enable Register 1 (IIO1IE)	
008316			00B216	Interrupt Enable Register 2 (IIO2IE)	
008416			00B316	Interrupt Enable Register 3 (IIO3IE)	102
008516				Interrupt Enable Register 4 (IIO4IE)	-
008616				Interrupt Enable Register 5 (IIO5IE)	-
008716				Interrupt Enable Register 6 (IIO6IE)	-
008816	DMA1 Interrupt Control Register (DM1IC)		00B716		
008916	UART2 Transmit /NACK Interrupt Control Register (S2TIC)			Interrupt Enable Register 8 (IIO8IE)	
000318 008A16	DMA3 Interrupt Control Register (DM3IC)			Interrupt Enable Register 9 (IIO9IE)	-
008A16	UART3 Transmit /NACK Interrupt Control Register (S3TIC)			Interrupt Enable Register 10 (IIO10IE)	102
		87	-	Interrupt Enable Register 10 (IIO10IE)	-
008C16	Timer A1 Interrupt Control Register (TA1IC)				
008D16	UART4 Transmit /NACK Interrupt Control Register (S4TIC) Timer A3 Interrupt Control Register (TA3IC)		00BC16		-
	LIMPLAS INTERLINT CONTROL REGISTER (1431(1)		00BD16		1
008E16 008F16	UART2 Bus Conflict Detect Interrupt Control Register (ICOIC)		00BE16		-

Address	Register	Page	Address	Register	Page
00C016				Data Compare Register 00 (G0CMP0)	
00C116			00F116	Data Compare Register 01 (G0CMP1)]
00C216			00F216	Data Compare Register 02 (G0CMP2)]
00C316			00F316	Data Compare Register 03 (G0CMP3)	280
00C416			00F416	Data Mask Register 00 (G0MSK0)	1
00C516			00F516	Data Mask Register 01 (G0MSK1)	1
00C616			00F616	Communication Clock Select Register (CCS)	281
00C716			00F716		
00C816			00F816		
00C916			00F916	Receive CRC Code Register 0 (G0RCRC)	000
00CA16			00FA16		280
00CB16			00FB16	Tramsmit CRC Code Register 0 (G0TCRC)	
00CC16			00FC16	SI/O Extended Mode Register 0 (G0EMR)	275
00CD16			00FD16	SI/O Extended Receive Control Register 0 (G0ERC)	272
00CE16			00FE16	SI/O Special Communication Interrupt Detect Register 0 (G0IRF)	278
00CF16			00FF16	SI/O Extended Transmit Control Register 0 (G0ETC)	276
00D016			010016	Time Measurement Register 10 (G1TM0)/	
00D116			010116	Waveform Generating Register 10 (G1PO0)	
00D216			010216	Time Measurement Register 11 (G1TM1)/	1
00D316			010316	Waveform Generating Register 11 (G1PO1)	
00D416	-		010416	Time Measurement Register 12 (G1TM2)/	1
00D516			010516	Waveform Generating Register 12 (G1PO2)	
00D616			010616	Time Measurement Register 13 (G1TM3)/	1
00D716			010716		251/
00D816			010816	Time Measurement Register 14 (G1TM4)/	252
00D916			010916		
00DA16			010A16	Time Measurement Register 15 (G1TM5)/	1
00DB16				Waveform Generating Register 16 (G1PO5)	
00DC16				Time Measurement Register 16 (G1TM6)/	1
00DD16				Waveform Generating Register 16 (G1PO6)	
00DE16				Time Measurement Register 17 (G1TM7)/	1
00DF16				Waveform Generating Register 17 (G1PO7)	
00E016			011016	Waveform Generating Control Register 10 (G1POCR0)	
00E116			011116	Waveform Generating Control Register 11 (G1POCR1)	
00E216			011216	Waveform Generating Control Register 12 (G1POCR2)	1
00E316				Waveform Generating Control Register 13 (G1POCR3)	-
00E416			011416	Waveform Generating Control Register 14 (G1POCR4)	251
00E516			011516	Waveform Generating Control Register 15 (G1POCR5)	-
00E616			011616	Waveform Generating Control Register 16 (G1POCR6)	1
00E716			011716	Waveform Generating Control Register 17 (G1POCR7)	-
00E716			011816	Time Measurement Control Register 10 (G1TMCR0)	
00E916	SI/O Receive Buffer Register0 (G0RB)	273	011916	Time Measurement Control Register 11 (G1TMCR1)	-
00E316	Transmit Buffer/Receive Data Register 0 (G0TB/G0DR)	279		Time Measurement Control Register 12 (G1TMCR2)	-
00EB16		215		Time Measurement Control Register 12 (C11MCR2)	-
	Receive Input Register 0 (G0RI)	272		Time Measurement Control Register 14 (G1TMCR4)	250
	SI/O Communication Mode Register 0 (G0MR)	272		Time Measurement Control Register 14 (C11MCR4)	-
			-	Time Measurement Control Register 16 (G1TMCR6)	-
	Transmit Output Register 0 (G0TO)	272	011E16	Time Measurement Control Register 17 (G1TMCR0)	-
002116	SI/O Communication Control Register 0 (G0CR)	273		Time measurement control register 17 (GTTMCR7)	

Address	Register	Page	Address	Register	Page
012016			017016	CAN2 Slot Buffer Select Register (C2SBS)	331
012116	Base Timer Register1 (G1BT)	248	017116	CAN2 Control Register 1 (C2CTLR1)	299
012216	Base Timer Control Register 10 (G1BCR0)		017216	CAN2 Sleep Control Register (C2SLPR)	300
012316	Base Timer Control Register 11 (G1BCR1)	249	017316		
012416	Time Measurement Prescaler Register 16 (G1TPR6)		017416		
012516	Time Measurement Prescaler Register 17 (G1TPR7)	250	017516	CAN2 Acceptance Filter Support Register (C2AFS)	336
012616	Function Enable Register 1 (G1FE)	253	017616		
012716	Function Select Register 1 (G1FS)	252	017716		-
012816			017816	Input Function Select Register (IPS)	363
012916	SI/O Receive Buffer Register 1 (G1RB)	273	017916	Input Function Select Register A (IPSA)	364
012A16	Transmit Buffer/Receive Data Register 1 (G1TB/G1DR)	279	017A16		
012B16			017B16		-
012C16	Receive Input Register 1 (G1RI)	272	017C16		-
012D16	SI/O Communication Mode Register 1 (G1MR)	274	017D16		-
012E16	Transmit Output Register 1 (G1TO)	272	017F16		1
012F16	SI/O Communication Control Register 1 (G1CR)	273	018016	CAN2 Message Slot Buffer 0 Standard ID0 (C2SLOT0_0)	
013016	Data Compare Register 10 (G1CMP0)		018116	CAN2 Message Slot Buffer 0 Standard ID1 (C2SLOT0_1)	332
013116	Data Compare Register 11 (G1CMP1)		018216	CAN2 Message Slot Buffer 0 Extended ID0 (C2SLOT0_2)	
013216	Data Compare Register 12 (G1CMP2)		018316	CAN2 Message Slot Buffer 0 Extended ID1 (C2SLOT0_3)	333
013316	Data Compare Register 13 (G1CMP3)	280	018416	CAN2 Message Slot Buffer 0 Extended ID2 (C2SLOT0_4)	
013416	Data Mask Register 10 (G1MSK0)		018516	CAN2 Message Slot Buffer 0 Data Length Code (C2SLOT0_5)	334
013516	Data Mask Register 11 (G1MSK1)		018616	CAN2 Message Slot Buffer 0 Data 0 (C2SLOT0_6)	
013616			018716	CAN2 Message Slot Buffer 0 Data 0 (025LOT0_0) CAN2 Message Slot Buffer 0 Data 1 (C2SLOT0_7)	-
013716			018816	CAN2 Message Clot Buffer 0 Data 1 (C2SLOTO_7) CAN2 Message Slot Buffer 0 Data 2 (C2SLOTO_8)	-
013816			018916	CAN2 Message Slot Buffer 0 Data 2 (C2SLOT0_0) CAN2 Message Slot Buffer 0 Data 3 (C2SLOT0_9)	-
013916	Receive CRC Code Register1 (G1RCRC)			CAN2 Message Slot Buffer 0 Data 3 (C2SLOTO_3) CAN2 Message Slot Buffer 0 Data 4 (C2SLOTO_10)	-
013A16		280		CAN2 Message Slot Buffer 0 Data 4 (C2SLOT0_10) CAN2 Message Slot Buffer 0 Data 5 (C2SLOT0_11)	335
013B16	Transmit CRC Code Register1 (G1TCRC)			CAN2 Message Slot Buller 0 Data 3 (C2SLOT0_11) CAN2 Message Slot Buffer 0 Data 6 (C2SLOT0_12)	-
	SI/O Extended Mode Register 1 (G1EMR)	275		CAN2 Message Slot Buller 0 Data 0 (C2SLOT0_12) CAN2 Message Slot Buffer 0 Data 7 (C2SLOT0_13)	-
013D16	SI/O Extended Receive Control Register 1 (G1ERC)	273	018D16		-
	SI/O Special Communication Interrupt Detect Register 1 (G1IRF)	279		CAN2 Message Slot Buffer 0 Time Stamp Low-Order (C2SLOT0_14)	-
013E16	SI/O Extended Transmit Control Register 1 (G1ETC)	279	019016	CAN2 Message Slot Buffer 1 Standard ID0 (C2SLOT_1)	
013116	Silo Extended Hansmit Control Register 1 (GTETC)	270	019018	CAN2 Message Slot Buller 1 Standard ID0 (C2SLOT1_0) CAN2 Message Slot Buffer 1 Standard ID1 (C2SLOT1_1)	332
014016			019116		
				CAN2 Message Slot Buffer 1 Extended ID0 (C2SLOT1_2)	333
014216			019316		
014316				CAN2 Message Slot Buffer 1 Extended ID2 (C2SLOT1_4)	334
014416			019516	CAN2 Message Slot Buffer 1 Data Length Code (C2SLOT1_5)	
014516			019616	CAN2 Message Slot Buffer 1 Data 0 (C2SLOT1_6)	-
014616			019716		
014716			019816	, , , , , , , , , , , , , , , , , , ,	_
014816			019916		4
014916				CAN2 Message Slot Buffer 1 Data 4 (C2SLOT1_10)	225
014A16				CAN2 Message Slot Buffer 1 Data 5 (C2SLOT1_11)	
014B16				CAN2 Message Slot Buffer 1 Data 6 (C2SLOT1_12)	-
014C16				CAN2 Message Slot Buffer 1 Data 7 (C2SLOT1_13)	-
014D16				CAN2 Message Slot Buffer 1 Time Stamp High-Order (C2SLOT1_14)	-
to			019F16	CAN2 Message Slot Buffer 1 Time Stamp Low-Order (C2SLOT1_15)	
016F16					

Address	Register	Page	Address	Register	Page
01A016		1 uge	/ (441000	CAN2 Message Slot 0 Control Register (C2MCTL0)/	327/
01A116	CAN2 Control Register0 (C2CTLR0)	296	01D016	CAN2 Local Mask Register A Standard ID0 (C2LMAR0)	320
01A216				CAN2 Message Slot 1 Control Register (C2MCTL1)/	327/
01A316	CAN2 Status Register (C2STR)	301	01D116	CAN2Local Mask Register A Standard ID1 (C2LMAR1)	321
01A416				CAN2 Message Slot 2 Control Register (C2MCTL2)/	327/
01A516	CAN2 Extended ID Register (C2IDR)	304	01D216	CAN2 Local Mask Register A Extended ID0 (C2LMAR2)	322
01A616				CAN2 Message Slot 3 Control Register (C2MCTL3)/	327/
01A716	CAN2 Configuration Register (C2CONR)	305	01D316	CAN2 Local Mask Register A Extended ID1 (C2LMAR3)	
01A816		200		CAN2 Message Slot 4 Control Register (C2MCTL4)/	327/
01A916	CAN2 Time Stamp Register (C2TSR)	308	01D416	CAN2 Local Mask Register A Extended ID2 (C2LMAR4)	324
	CAN2 Transmit Error Count Register (C2TEC)	309	01D516	CAN2 Message Slot 5 Control Register (C2MCTL5)	
	CAN2 Receive Error Count Register (C2REC)	333	01D616	CAN2 Message Sot 6 Control Register (C2MCTL6)	327
01AC16			01D716	CAN2 Message Slot 7 Control Register (C2MCTL7)	-
01AD16	CAN2 Slot Interrupt Status Register (C2SISTR)	310		CAN2 Message Slot 8 Control register (C2MCTL8)/	327/
01AE16			01D816	CAN2 Local Mask Register B Standard ID0 (C2LMBR0)	320
01AF16				CAN2 Message Slot 9 Control register (C2MCTL9)/	327/
01B016			01D916	CAN2 Local Mask Register B Standard ID1 (C2LMBR1)	321
01B116	CAN2 Slot Interrupt Mask Register (C2SIMKR)	312		CAN2 Message Slot 10 Control register (C2MCTI 10)/	
01B216			01DA16	CAN2 Local Mask Register B Standard ID2 (C2LMBR2)	322
01B316				CAN2 Message Slot 11 Control register (C2MCTL11)/	327/
01B416	CAN2 Error Interrupt Mask Register (C2EIMKR)	313	01DB16	CAN2 Local Mask Register B Standard ID3 (C2LMBR3)	323
	CAN2 Error Interrupt Status Register (C2EISTR)	314		CAN2 Message Slot 12 Control register (C2MCTL12)/	327/
01B616	CAN2 Error Cause Register (C2EFR)	315	01DC16	CAN2 Local Mask Register B Standard ID4 (C2LMBR4)	324
	CAN2 Baud Rate Prescaler (C2BRP)	307	01DD16	CAN2 Message Slot 13 Control Register (C2MCTL13)	
01B816			01DE16	CAN2 Message Sot 14 Control Register (C2MCTL14)	327
01B916	CAN2 Mode Register (C2MDR)	316	01DF16	CAN2 Message Slot 15 Control Register (C2MCTL15)	-
01BA16			01E016	CAN0 Message Slot Buffer 0 Standard ID0 (C0SLOT0_0)	
01BB16			01E116	CAN0 Message Slot Buffer 0 Standard ID1 (C0SLOT0_1)	332
01BC16			01E216	CAN0 Message Slot Buffer 0 Extended ID0 (C0SLOT0_2)	
01BD16			01E316	CAN0 Message Slot Buffer 0 Extended ID1 (C0SLOT0_3)	333
01BE16			01E416	CAN0 Message Slot Buffer 0 Extended ID2 (C0SLOT0_4)	004
01BF16			01E516	CAN0 Message Slot Buffer 0 Data Length Code (C0SLOT0_5)	334
01C016		040	01E616	CAN0 Message Slot Buffer 0 Data 0 (C0SLOT0_6)	
01C116	CAN2 Single Shot Control Register (C2SSCTLR)	318	01E716	CAN0 Message Slot Buffer 0 Data 1 (C0SLOT0_7)	
01C216			01E816	CAN0 Message Slot Buffer 0 Data 2 (C0SLOT0_8)	
01C316			01E916	CAN0 Message Slot Buffer 0 Data 3 (C0SLOT0_9)	
01C416	CAN2 Single Shot Status Desister (COSSETE)	210	01EA16	CAN0 Message Slot Buffer 0 Data 4 (C0SLOT0_10)	205
01C516	CAN2 Single Shot Status Register (C2SSSTR)	319	01EB16	CAN0 Message Slot Buffer 0 Data 5 (C0SLOT0_11)	335
01C616			01EC16	CAN0 Message Slot Buffer 0 Data 6 (C0SLOT0_12)	
01C716			01ED16	CAN0 Message Slot Buffer 0 Data 7 (C0SLOT0_13)	
	CAN2 Global Mask Register Standard ID0 (C2GMR0)	320		CAN0 Message Slot Buffer 0 Time Stamp High-Order (C0SLOT0_14)	_
01C916	CAN2 Global Mask Register Standard ID1 (C2GMR1)	321	01EF16	CAN0 Message Slot Buffer 0 Time Stamp Low-Order (C0SLOT0_15)	
	CAN2 Global Mask Register Extended ID0 (C2GMR2)	322			
01CB16	CAN2 Global Mask Register Extended ID1 (C2GMR3)	323			
01CC16	CAN2 Global Mask Register Extended ID2 (C2GMR4)	324			
01CC16 01CD16		324			
		324			

Address	Register	Page	Address	Register	Page
01F016	CAN0 Message Slot Buffer 1 Standard ID0 (C0SLOT1_0)		022016		Faye
01F116	CANO Message Slot Buffer 1 Standard ID1 (COSLOT 1_)	332	022016	CAN0 Single Shot Control Register (C0SSCTLR)	318
01F216	CAN0 Message Slot Buffer 1 Extended ID0 (C0SLOT1_2)		022116		
01F316	CAN0 Message Slot Buffer 1 Extended ID1 (C0SLOT1_3)	333	022216		
01F416	CAN0 Message Slot Buffer 1 Extended ID2 (C0SLOT1_4)		022316		
01F516	CAN0 Message Slot Buffer 1 Data Length Code (C0SLOT1_5)	334	022416	CAN0 Single Shot Status Register (C0SSSTR)	319
01F616	CAN0 Message Slot Buffer 1 Data 0 (C0SLOT1_6)		022516		
01F716	CAN0 Message Slot Buffer 1 Data 1 (C0SLOT1_7)		022016		
01F816	CAN0 Message Slot Buffer 1 Data 2 (C0SLOT1_8)		022716	CAN0 Global Mask Register Standard ID0 (C0GMR0)	320
01F916	CAN0 Message Slot Buffer 1 Data 3 (C0SLOT1_9)		022016	CANO Global Mask Register Standard ID0 (COGMRO)	320
01FA16	CAN0 Message Slot Buffer 1 Data 4 (C0SLOT1_10)		022916 022A16	CANO Global Mask Register Standard ID1 (COGMRT)	321
01FB16	CAN0 Message Slot Buffer 1 Data 5 (C0SLOT1_11)	335	022A16 022B16	CANO Global Mask Register Extended ID0 (COGMR2) CANO Global Mask Register Extended ID1 (COGMR3)	323
01FC16	CAN0 Message Slot Buffer 1 Data 6 (C0SLOT1_12)		022D16		323
01FD16	CAN0 Message Slot Buffer 1 Data 7 (C0SLOT1_13)		022C16 022D16	CAN0 Global Mask Register Extended ID2 (C0GMR4)	324
01FE16	CANO Message Slot Buffer 1 Time Stamp High-Order (COSLOT1_14)		022D16 022E16		
01FF16	CANO Message Slot Buffer 1 Time Stamp Low-Order (COSLOT1_17)				
020016	Orive message old build i finite stamp low older (oboles (1_13)		022F16	CANO Maaaa na Clat O Control De sister (COMOTI O)	
020016	CAN0 Control Register0 (C0CTLR0)	296	023016	CAN0 Message Slot 0 Control Register (C0MCTL0)/	327/
020216				CANO Local Mask Register A Standard ID0 (COLMAR0)	320
020216	CAN0 Status Register (C0STR)	301	023116	CAN0 Message Slot 1 Control Register (C0MCTL1)/	327/
020316				CANOLocal Mask Register A Standard ID1 (COLMAR1)	321
020416	CAN0 Extended ID Register (C0IDR)	304	023216	CANO Message Slot 2 Control Register (COMCTL2)/	327/
020516				CANO Local Mask Register A Extended ID0 (COLMAR2)	322
020018	CAN0 Configuration Register (C0CONR)	305	023316	CANO Message Slot 3 Control Register (COMCTL3)/	327/
020716				CANO Local Mask Register A Extended ID1 (COLMAR3)	323
020916	CAN0 Time Stamp Register (C0TSR)	308	023416	CANO Message Slot 4 Control Register (COMCTL4)/	327/
020918 020A16	CAN0 Transmit Error Count Register (C0TEC)			CANO Local Mask Register A Extended ID2 (COLMAR4)	324
020A16	CANO Receive Error Count Register (COREC)		023516	CANO Message Slot 5 Control Register (COMCTL5)	
020B18	CANO RECEIVE EITOI COUNT REGISTER (COREC)		023616	CANO Message Sot 6 Control Register (COMCTL6)	327
020C18	CAN0 Slot Interrupt Status Register (C0SISTR)	310	023716	CANO Message Slot 7 Control Register (COMCTL7)	0.07/
020E16			023816	CANO Message Slot 8 Control register (COMCTL8)/	327/
020E16				CANO Local Mask Register B Standard ID0 (C0LMBR0)	-
020116			023916	CANO Message Slot 9 Control Register (COMCTL9)/	327/
021018	CAN0 Slot Interrupt Mask Register (C0SIMKR)	312		CANO Local Mask Register B Standard ID1 (C0LMBR1)	321
021116			023A16	CAN0 Message Slot 10 Control Register (C0MCTL10)/	327/
021218				CANO Local Mask Register B Extended ID0 (C0LMBR2)	322
021316	CAN0 Error Interrupt Mask Register (C0EIMKR)	313	023B16	CAN0 Message Slot 11 Control Register (C0MCTL1)/	
				CANO Local Mask Register B Extended ID1 (C0LMBR3)	323
021516 021616	CANO Error Interrupt Status Register (COEISTR)	314	023C16	CAN0 Message Slot 12 Control Register (C0MCTL12)/	
	CAN0 Error Cause Register (C0EFR) CAN0 Baud Rate Prescaler (C0BRP)	315		CAN0 Local Mask Register B Extended ID2 (C0LMBR4)	324
021716 021816	CANO DAUG NALE FIESCAIEL (CUDRF)	307	023D16	CAN0 Message Slot 13 Control Register (C0MCTL13)	- 1
	CAN0 Mode Register (C0MDR)	216	023E16		327
021916	CANU WOULE REGISIER (CUMDR)	316	023F16	CAN0 Message Slot 15 Control Register(C0MCTL15)	
021A16					
021B16					
021C16					
021D16					
021E16					
021F16					

Address	Register	Page	Address	Register	Page
024016	CAN0 Slot Buffer Select Register (C0SBS)	331	027016	CAN1 Message Slot Buffer 1 Standard ID0 (C1SLOT1_0)	
024116	CAN0 Control Register 1 (C0CTLR1)	299	027116	CAN1 Message Slot Buffer 1 Standard ID1 (C1SLOT1_1)	332
024216	CAN0 Sleep Control Register (C0SLPR)	300	027216	CAN1 Message Slot Buffer 1 Extended ID0 (C1SLOT1_2)	
024316			027316	CAN1 Message Slot Buffer 1 Extended ID1 (C1SLOT1_3)	333
024416			027416	CAN1 Message Slot Buffer 1 Extended ID2 (C1SLOT1_4)	
024516	CAN0 Acceptance Filter Support Register (C0AFS)	336	027516	CAN1 Message Slot Buffer 1 Data Length Code (C1SLOT1_5)	334
024616			027616	CAN1 Message Slot Buffer 1 Data 0 (C1SLOT1_6)	
024716			027716	CAN1 Message Slot Buffer 1 Data 1 (C1SLOT1_7)	
024816			027816	CAN1 Message Slot Buffer 1 Data 2 (C1SLOT1_8)	
024916			027916	CAN1 Message Slot Buffer 1 Data 3 (C1SLOT1_9)	
024A16			027A16	CAN1 Message Slot Buffer 1 Data 4 (C1SLOT1_10)	
024B16			027B16	CAN1 Message Slot Buffer 1 Data 5 (C1SLOT1_11)	335
024C16			027C16		
024D16			027D16		
024E16			027E16	CAN1 Message Slot Buffer 1 Time Stamp High-Order (C1SLOT1_14)	
024F16			027F16	CAN1 Message Slot Buffer 1 Time Stamp Low-Order (C1SLOT1_15)	
025016	CAN1 Slot Buffer Select Register (C1SBS)	331	028016		
025116	CAN1 Control Register 1 (C1CTLR1)	299	028116	CAN1 Control Register0 (C1CTLR0)	296
025216	CAN1 Sleep Control Register (C1SLPR)	300	028216		
025316			028316	CAN1 Status Register (C1STR)	301
025416			028416		
025516	CAN1 Acceptance Filter Support Register (C1AFS)	336	028516	CAN1 Extended ID Register (C1IDR)	304
025616			028616		
025716			028716	CAN1 Configuration Register (C1CONR)	305
025816			028816		
025916			028916	CAN1 Time Stamp Register (C1TSR)	308
025A16			028A16	CAN1 Transmit Error Count Register (C1TEC)	200
025B16			028B16	CAN1 Receive Error Count Register (C1REC)	309
025C16			028C16		
025D16			028D16	CAN1 Slot Interrupt Control Register (C1SISTR)	310
025E16			028E16		
025F16			028F16		
026016	CAN1 Message Slot Buffer 0 Standard ID0 (C1SLOT0_0)		029016		
026116	CAN1 Message Slot Buffer 0 Standard ID1 (C1SLOT0_1)	332	029116	CAN1 Slot Interrupt Mask Register (C1SIMKR)	312
026216	CAN1 Message Slot Buffer 0 Extended ID0 (C1SLOT0_2)		029216		
026316	CAN1 Message Slot Buffer 0 Extended ID1 (C1SLOT0_3)	333	029316		
026416	CAN1 Message Slot Buffer 0 Extended ID2 (C1SLOT0_4)		029416	CAN1 Error Interrupt Mask Register (C1EIMKR)	313
026516	CAN1 Message Slot Buffer 0 Data Length Code (C1SLOT0_5)	334	029516	CAN1 Error Interrupt Status Register (C1EISTR)	314
026616	CAN1 Message Slot Buffer 0 Data 0 (C1SLOT0_6)		029616	CAN1 Error Factor Register (C1EFR)	315
026716	CAN1 Message Slot Buffer 0 Data 1 (C1SLOT0_7)		029716	CAN1 Baud Rate Prescaler (C1BRP)	307
026816	CAN1 Message Slot Buffer 0 Data 2 (C1SLOT0_8)		029816		
026916	CAN1 Message Slot Buffer 0 Data 3 (C1SLOT0_9)		029916	CAN1 Mode Register (C1MDR)	316
026A16	CAN1 Message Slot Buffer 0 Data 4 (C1SLOT0_10)		029A16	,	
026B16	CAN1 Message Slot Buffer 0 Data 5 (C1SLOT0_11)	335	029B16		
026C16	CAN1 Message Slot Buffer 0 Data 6 (C1SLOT0_12)		029C16		
026D16	CAN1 message Slot Buffer 0 Data 7 (C1SLOT0_13)		029D16		
026E16	CAN1 Message Slot Buffer 0 Time Stamp High-Order (C1SLOT0_14)		029E16		
026F16	CAN1 Message Slot Buffer 0 Time Stamp Low-Order (C1SLOT0_15)		029F16		

Address	Register	Page	Address	Register	Page
02A016 02A116	CAN1 Single Shot Control Register (C1SSCTLR)	318	02C016 02C116	X0 Register Y0 Register (X0R,Y0R)	
02A216 02A316			02C216 02C316	X1 Register Y1 Register (X1R,Y1R)	
02A416 02A516	CAN1 Single Shot Status Register (C1SSSTR)	319	02C416 02C516	X2 Register Y2 Register (X2R,Y2R)	
02A616 02A716			02C616 02C716	X3 Register Y3 Register (X3R,Y3R)	
02A816	CAN1 Global Mask Register Standard ID0 (C1GMR0)	320	02C816		
02A916	CAN1 Global Mask Register Standard ID1 (C1GMR1)	321	02C916	X4 Register Y4 Register (X4R,Y4R)	
02AA16		322	02CA16		
02AB16		323	02CB16	X5 Register Y5 Register (X5R,Y5R)	
02AC16		324	02CC16		
02AD16		_	02CD16	X6 Register Y6 Register (X6R,Y6R)	
02AE16			02CE16		
02AF16			02CF16	X7 Register Y7 Register (X7R,Y7R)	
	CAN1 Message Slot 0 Control Register (C1MCTL0)/	327/	02D016		242
02B016	CAN1 Local Mask Register A Standard ID0 (C1LMAR0)	320	02D116	X8 Register Y8 Register (X8R,Y8R)	
02B116	CAN1 Message Slot 1 Control Register (C1MCTL1)/	327/	02D216 02D316	X9 Register Y9 Register (X9R,Y9R)	
	CAN1 Local Mask Register A Standard ID1 (C1LMAR1)	321	02D316 02D416		
02B216	CAN1 Message Slot 2 Control Register (C1MCTL2)/ CAN1 Local Mask Register A Extended ID0 (C1LMAR2)	327/ 322	02D416 02D516	X10 Register Y10 Register (X10R,Y10R)	
	CAN1 Message Slot 3 Control Register (C1MCTL3)/	327/	02D616		
02B316	CAN1 Local Mask Register A Extended ID1 (C1LMAR3)	323	02D716	X11 Register Y11 Register (X11R,Y11R)	
	CAN1 Message Slot 4 Control Register (C1MCTL4)/	327/	02D816		
02B416	CAN1 Local Mask Register A Extended ID2 (C1LMAR4)	324	02D916	X12 Register Y12 Register (X12R,Y12R)	
02B516	CAN1 Message Slot 5 Control Register (C1MCTL5)		02DA16	V42 Desister, V42 Desister (V42D V42D)	
02B616	CAN1 Message Slot 6 Control Register (C1MCTL6)	327	02DB16	X13 Register Y13 Register (X13R,Y13R)	
02B716	CAN1 Message Slot 7 Control Register (C1MCTL7)		02DC16	X14 Pagistor, X14 Pagistor (X14P X14P)	
000040	CAN1 Message Slot 8 Control Register (C1MCTL8)/	327/	02DD16	X14 Register Y14 Register (X14R,Y14R)	
02B816	CAN1 Local Mask Register B Standard ID0 (C1LMBR0)	320	02DE16	X15 Register Y15 Register (X15R,Y15R)	
000040	CAN1 Message Slot 9 Control Register (C1MCTL9)/	353/	02DF16		
02B916	CAN1 Local Mask Register B Standard ID1 (C1LMBR1)	321			
02BA16	CAN1 Message Slot 10 Control Register (C1MCTL10)/	327/			
UZDA16	CAN1 Local Mask Register B Extended ID0 (C1LMBR2)	322			
02BB16	CAN1 Message Slot 11 Control Register (C1MCTL11)/	327/			
020016	CAN1 Local Mask Register B Extended ID1 (C1LMBR3)	323			
02BC4c	CAN1 Message Slot 12 Control Register (C1MCTL12)/	327/			
02BC16	CAN1 Local Mask Register B Extended ID2 (C1LMBR4)	324			
02BD16	CAN1 Message Slot 13 Control Register (C1MCTL13)				
02BE16	o v v	327			
02BF16	CAN1 Message Slot 15 Control Register (C1MCTL15)				

Address	Register	Page	Address	Register	Page
02E016	X/Y Control Register (XYC)	242	031016	-	
02E116			031116	Timer B3 Register (TB3)	
02E216			031216		
02E316			031316	Timer B4 Register (TB4)	
02E416	UART1 Special Mode Register 4 (U1SMR4)	173	031416		
02E516	UART1 Special Mode Register 3 (U1SMR3)	172	031516	Timer B5 Register (TB5)	
02E616	UART1 Special Mode Register 2 (U1SMR2)	171	031616		
02E716	UART1 Special Mode Register (U1SMR)	170	031716		
02E816	UART1 Transmit/Receive Mode Register (U1MR)		031816		
02E016	UART1 Bit Rate Register (U1BRG)	168	031916		
02E010			031A16		
02EB16	UART1 Transmit Buffer Register (U1TB)	167	031B16	Timer B3 Mode Register (TB3MR)	
	UART1 Transmit/Receive Control Register 0 (U1C0)	169	031C16	Timer B4 Mode Register (TB4MR)	146
02ED16		170	031C16		140
	OARTT Transmit/Receive Control Register 1 (01C1)	170	031D16		
02EE16	UART1 Receive Buffer Register (U1RB)	167			
02EF16			031F16	External Interrupt Request Source Select Register (IFSR)	96
02F016			032016		
02F116			032116		
02F216			032216		
02F316			032316		
02F416	UART4 Special Mode Register 4 (U4SMR4)	173	032416	UART3 Special Mode Register 4 (U3SMR4)	173
02F516	UART4 Special Mode Register 3 (U4SMR3)	172	032516	UART3 Special Mode Register 3 (U3SMR3)	172
02F616	UART4 Special Mode Register 2 (U4SMR2)	171	032616	UART3 Special Mode Register 2 (U3SMR2)	171
02F716	UART4 Special Mode Register (U4SMR)	170	032716	UART3 Special Mode Register (U3SMR)	170
02F816	UART4 Transmit/Receive Mode Register (U4MR)		032816	UART3 Transmit/Receive Mode Register (U3MR)	
02F916	UART4 Bit Rate Register (U4BRG)	168	032916	UART3 Bit Rate Register (U3BRG)	168
02FA16			032A16		
02FB16	UART4 Transmit Buffer Register (U4TB)	167	032B16	UART3 Transmit Buffer Register (U3TB)	167
02FC16	UART4 Transmit/Receive Control Register 0 (U4C0)	169	032C16	UART3 Transmit/Receive Control Register 0 (U3C0)	169
02FD16	UART4 Transmit/Receive Control Register 1 (U4C1)	170	032D16	UART3 Transmit/Receive Control Register 1 (U3C1)	170
02FE16			032E16		
02FF16	UART4 Receive Buffer Register (U4RB)	167	032F16	UART3 Receive Buffer Register (U3RB)	167
030016	Timer B3,B4,B5 Count Start Flag (TBSR)	147	033016		
030116			033116		
030216			033216		
030316	Timer A1-1 Register (TA11)		033316		
030416			033416	UART2 Special Mode Register 4 (U2SMR4)	173
030516	Timer A2-1 Register (TA21)	160	033516	UART2 Special Mode Register 3 (U2SMR3)	172
030616			033616	UART2 Special Mode Register 2 (U2SMR2)	172
030018	Timer A4-1 Register (TA41)		033716	UART2 Special Mode Register 2 (02SMR2)	170
	Three-Phase PWM Control Register 0 (INVC0)	157	033816	UART2 Special Mode Register (U2SMR) UART2 Transmit/Receive Mode Register (U2MR)	170
030816	Three-Phase PWM Control Register 0 (INVC0) Three-Phase PWM Control Register 1 (INVC1)				168
030916	<u> </u>	158	033916	UART2 Bit Rate Register (U2BRG)	
030A16	Three-Phase Output Buffer Register 0 (IDB0)		033A16	UART2 Transmit Buffer Register (U2TB)	167
030B16	Three-Phase Output Buffer Register 1 (IDB1)	159	033B16		
030C16	Dead Time Timer (DTT)		033C16		169
030D16	Timer B2 Interrupt Generating Frequency Set Counter (ICTB2)	160	033D16		170
030E16			033E16	UART2 Receive Buffer Register (U2RB)	167
030F16			033F16		

Address	Register	Page	Address	Register	Page
034016	Count Start Flag (TABSR)	130	037016		
034116	Clock Prescaler Reset Flag (CPSRF)	60	037116		-
034216	One-Shot Start Flag (ONSF)	131	037216		-
034316	Trigger Select Register (TRGSR)	132	037316		-
034416	Up/Down Flag (UDF)	131	037416		-
034516			037516		-
034616			037616		-
034716	Timer A0 Register (TA0)		037716		-
034816			037816	DMA0 Request Source Select Register (DM0SL)	
034916	Timer A1 Register (TA1)		037916	DMA1 Request Source Select Register (DMISL)	-
034A16			037A16		109
034B16	Timer A2 Register (TA2)	129	037B16		-
034C16			037C16		
034D16	Timer A3 Register (TA3)		037D16	CRC Data Register (CRCD)	240
034D16			037E16	CRC Input Register (CRCIN)	- 240
034E16	Timer A4 Register (TA4)		037E16		
035016			037116		
035016	Timer B0 Register (TB0)		038016	A/D0 Register0 (AD00)	
035216			038216		_
035216	Timer B1 Register (TB1)	145		A/D0 Register1 (AD01)	
			038316		_
035416	Timer B2 Register (TB2)		038416	A/D0 Register2 (AD02)	
035516 035616			038516 038616		_
035616	Timer A0 Mode Register (TA0MR)			A/D0 Register3 (AD03)	
035716	Timer A1 Mode Register (TA1MR)	100	038716 038816		225
	Timer A2 Mode Register (TA2MR)	130		A/D0 Register4 (AD04)	
035916	Timer A3 Mode Register (TA3MR)		038916		_
035A16	Timer A4 Mode Register (TA4MR)		038A16	A/D0 Register5 (AD05)	
035B16	Timer B0 Mode Register (TB0MR)	140	038B16		_
035C16	Timer B1 Mode Register (TB1MR)	146	038C16	A/D0 Register6 (AD06)	
035D16	Timer B2 Mode Register (TB2MR)	400	038D16		_
035E16	Timer B2 Special Mode Register (TB2SC)	160	038E16	A/D0 Register7 (AD07)	
035F16	Count Source Prescaler Register (TCSPR)	60	038F16		
036016			039016		_
036116			039116		
036216			039216	A/D0 Control Register 4 (AD0CON4)	225
036316		1=0	039316		-
036416	UART0 Special Mode Register 4 (U0SMR4)	173	039416	A/D0 Control Register 2 (AD0CON2)	224
036516	UART0 Special Mode Register 3 (U0SMR3)	172	039516	A/D0 Control Register 3 (AD0CON3)	223
036616	UART0 Special Mode Register 2 (U0SMR2)	171	039616	A/D0 Control Register 0 (AD0CON0)	222
036716	UART0 Special Mode Register (U0SMR)	170	039716	A/D0 Control Register 1 (AD0CON1)	221
036816	UART0 Transmit/Receive Mode Register (U0MR)	168	039816	D/A Register 0 (DA0)	239
036916	UART0 Bit Rate Register (U0BRG)		039916		
036A16	UART0 Transmit Buffer Register (U0TB)	167	039A16	D/A Register 1 (DA1)	239
036B16			039B16		
036C16	UART0 Transmit/Receive Control Register 0 (U0C0)	169	039C16	D/A Control Register (DACON)	239
036D16	UART0 Transmit/Receive Control Register 1 (U0C1)	170	039D16		
036E16	LIAPTO Popoino Buffor Possistor (LIOPP)	167	039E16		
036F16	UART0 Receive Buffer Register (U0RB)	167	039F16		

Address	Register	Page	Address	,	Page
03A016	Function Select Register A8 (PS8)	355	03D016	Port P14 Register (P14)	352
03A116	Function Select Register A9 (PS9)	356		Port P15 Register (P15)	552
03A216			03D216	Port P14 Direction Register (PD14)	351
03A316			03D316	Port P15 Direction Register (PD15)	
03A416			03D416		
03A516			03D516		
03A616			03D616		
03A716	Function Select Register D1 (PSD1)	360	03D716		
03A816			03D816		
03A916			03D916		
03AA16			03DA16	Pull-Up Control Register 2 (PUR2)	361
03AB16			03DB16	Pull-Up Control Register 3 (PUR3)	
03AC16	Function Select Register C2 (PSC2)	359	03DC16	Pull-Up Control Register 4 (PUR4)	362
03AD16	Function Select Register C3 (PSC3)	360	03DD16		
03AE16			03DE16		
03AF16	Function Select Register C (PSC)	359	03DF16		
03B016	Function Select Register A0 (PS0)		03E016	Port P0 Register (P0)	
03B116	Function Select Register A1 (PS1)	353	03E116	Port P1 Register (P1)	352
03B216	Function Select Register B0 (PSL0)		03E216	Port P0 Direction Register (PD0)	
03B316	Function Select Register B1 (PSL1)	357	03E316	Port P1 Direction Register (PD1)	351
03B416	Function Select Register A2 (PS2)		03E416	Port P2 Register (P2)	
03B516	Function Select Register A3 (PS3)	354	03E516	Port P3 Register (P3)	352
03B616	Function Select Register B2 (PSL2)		03E616	Port P2 Direction Register (PD2)	
03B716	Function Select Register B3 (PSL3)	358	03E716	Port P3 Direction Register (PD3)	351
03B816			03E816	Port P4 Register (P4)	
03B916	Function Select Register A5 (PS5)	355	03E916		352
03BA16			03EA16		
03BB16			03EB16	Port P5 Direction Register (PD5)	351
03BC16			03EC16		
03BD16			03ED16		
03BE16			03EE16		
03BF16			03EF16		
03C016	Port P6 Register (P6)		03F016	Pull-up Control Register 0 (PUR0)	
	Port P7 Register (P7)	352	03F116		361
	Port P6 Direction Register (PD6)		03F216		
	Port P7 Direction Register (PD7)	351	03F316		
	Port P8 Register (P8)		03F416		
	Port P9 Register (P9)	352	03F516		
	Port P8 Direction Register (PD8)		03F616		
	Port P9 Direction Register (PD9)	351	03F716		
	Port P10 Register (P10)	<u> </u>	03F816		
	Port P11 Register (P11)	352	03F916		
	Port P10 Direction Register (PD10)	<u> </u>	03FA16		———————————————————————————————————————
	Port P11 Direction Register (PD11)	351	03FB16		—
	Port P12 Register (P12)	<u> </u>	03FC16		———————————————————————————————————————
	Port P13 Register (P13)	352	03FC18		———————————————————————————————————————
	Port P12 Direction Register (PD12)		03FD16 03FE16		
	Port P13 Direction Register (PD13)	351		Port Control Register (PCR)	363
030F16			036616	I OIL CUILLUI REGISIEL (FCR)	303

RENESAS

M32C/88 Group (M32C/88T) SINGLE-CHIP 16/32-BIT CMOS MICROCOMPUTER

1. Overview

The M32C/88 Group (M32C/88T) microcomputer is a single-chip control unit that utilizes high-performance silicon gate CMOS technology with the M32C/80 Series CPU core. The M32C/88 Group (M32C/88T) is available in 144-pin and 100-pin plastic molded LQFP packages.

With a 16-Mbyte address space, this microcomputer combines advanced instruction manipulation capabilities to process complex instructions by less bytes and execute instructions at higher speed.

It includes a multiplier and DMAC adequate for office automation, communication devices and industrial equipments, and other high-speed processing applications.

1.1 Applications

Automobiles, audio, cameras, office equipment, communications equipment, portable equipment, etc.

1.2 Performance Overview

Tables 1.1 and 1.2 list performance overview of the M32C/88 Group (M32C/88T).

Table 1.1	M32C/88 Gro	up (M32C/88T) Performance	(144-Pin Package)
-----------	-------------	--------------	---------------	-------------------

	<u> </u>					
	Characteristic	Performance				
CPU	Basic Instructions	108 instructions				
	Minimum Instruction Execution Time	31.3 ns (f(BCLK)=32 MHz, Vcc=4.2 V to 5.5 V)				
	Operating Mode	Single-chip mode				
	Address Space	16 Mbytes				
	Memory Capacity	See Table 1.3				
Peripheral		123 I/O pins and 1 input pin				
Function	Multifunction Timer	Timer A: 16 bits x 5 channels, Timer B: 16 bits x 6 channels				
	latelline at 1/0	Three-phase motor control circuit				
	Intelligent I/O	Time measurement function or Waveform generating function: 16 bits x 8 channels				
		Communication function (Clock synchronous serial I/O, Clock asyn-				
		chronous serial I/O, HDLC data processing)				
	Serial I/O	5 Channels				
		Clock synchronous serial I/O, Clock asynchronous serial I/O,				
		IEBus ⁽¹⁾ , I ² C bus ⁽²⁾				
	CAN Module	3 channels Supporting CAN 2.0B specification				
	A/D Converter	10-bit A/D converter: 1 circuit, 34 channels				
	D/A Converter	8 bits x 2 channels				
	DMAC	4 channels				
	DMAC II	Can be activated by all peripheral function interrupt sources				
		Immediate transfer, Calculation transfer and Chain transfer functions				
	CRC Calculation Circuit	CRC-CCITT				
	X/Y Converter	16 bits x 16 bits				
	Watchdog Timer	15 bits x 1 channel (with prescaler)				
	Interrupt	40 internal and 8 external sources, 5 software sources				
		Interrupt priority level: 7				
	Clock Generation Circuit	4 circuits				
		Main clock oscillation circuit(*), Sub clock oscillation circuit(*), On-chip				
		oscillator, PLL frequency synthesizer				
		(*)Equipped with a built-in feedback resistor. Ceramic resonator or				
		crystal oscillator must be connected externally				
	Oscillation Stop Detect Function	Main clock oscillation stop detect function				
	Cold Start-up/Warm Start-up	On-chip (option)				
	Determine Function					
Electrical	Supply Voltage	Vcc=4.2 V to 5.5 V, (f(BCLK)=32 MHz)				
	Power Consumption	28 mA (Vcc=5 V, f(BCLK)=32 MHz)				
eristics		10μ A (Vcc=5 V, f(BCLK)=32 kHz, in wait mode)				
Flash	Program/Erase Supply Voltage	$5.0 V \pm 0.5 V$				
	Program and Erase Endurance	100 times (all space)				
	Ambient Temperature	-40 to 85°C (T version)				
	g Ambient Temperature					
Dealier		-40 to 105°C (U version)				
Package		144-pin plastic molded LQFP				

RENESAS

NOTES:

1. IEBus is a trademark of NEC Electronics Corporation.

2. I²C bus is a trademark of Koninklijke Philips Electronics N. V.

All options are on a request basis.

Intelligent I/O

Serial I/O

CAN Module

A/D Converter

D/A Converter DMAC

X/Y Converter Watchdog Timer

CRC Calculation Circuit

Clock Generation Circuit

Oscillation Stop Detect Function

Program/Erase Supply Voltage

Program and Erase Endurance

Cold Start-up/Warm Start-up

Determine Function

Power Consumption

DMAC II

Interrupt

Electrical Supply Voltage

	Characteristic	Performance			
CPU	Basic Instructions	108 instructions			
	Minimum Instruction Execution Time	31.3 ns (f(BCLK)=32 MHz, Vcc=4.2 V to 5.5 V)			
	Operating Mode	Single-chip mode			
	Address Space	16 Mbytes			
1	Memory Capacity	See Table 1.3			
Peripheral	I/O Port	87 I/O pins and 1 input pin			
Function	Multifunction Timer	Timer A: 16 bits x 5 channels, Timer B: 16 bits x 6 channels			
		Three-phase motor control circuit			

5 Channels

4 channels

CRC-CCITT 16 bits x 16 bits

4 circuits

On-chip (option)

5.0 V ± 0.5 V 100 times (all space)

-40 to 85°C (T version) -40 to 105°C (U version)

100-pin plastic molded LQFP

16 bits x 8 channels

IEBus⁽¹⁾, I²C bus⁽²⁾

8 bits x 2 channels

Time measurement function or Waveform generating function:

Clock synchronous serial I/O, Clock asynchronous serial I/O,

Can be activated by all peripheral function interrupt sources

40 internal and 8 external sources, 5 software sources

Immediate transfer, Calculation transfer and Chain transfer functions

Main clock oscillation circuit(*), Sub clock oscillation circuit(*), On-chip

(*)Equipped with a built-in feedback resistor. Ceramic resonator or

chronous serial I/O, HDLC data processing)

10-bit A/D converter: 1 circuit, 34 channels

15 bits x 1 channel (with prescaler)

oscillator, PLL frequency synthesizer

crystal oscillator must be connected externally

10µA (Vcc=5 V, f(BCLK)=32 kHz, in wait mode)

Main clock oscillation stop detect function

Vcc=4.2 V to 5.5 V, (f(BCLK)=32 MHz)

28 mA (Vcc=5 V, f(BCLK)=32 MHz)

Interrupt priority level: 7

3 channels Supporting CAN 2.0B specification

Communication function (Clock synchronous serial I/O, Clock asyn-

Table 1.2 M32C/88 Group (M32C/88T) Performance (100-Pin Package)

NOTES:

Package

Charact-

eristics

Memory

Flash

1. IEBus is a trademark of NEC Electronics Corporation.

2. I²C bus is a trademark of Koninklijke Philips Electronics N. V.

All options are on a request basis.

Operating Ambient Temperature

1.3 Block Diagram

Figure 1.1 shows a block diagram of the M32C/88 Group (M32C/88T) microcomputer.

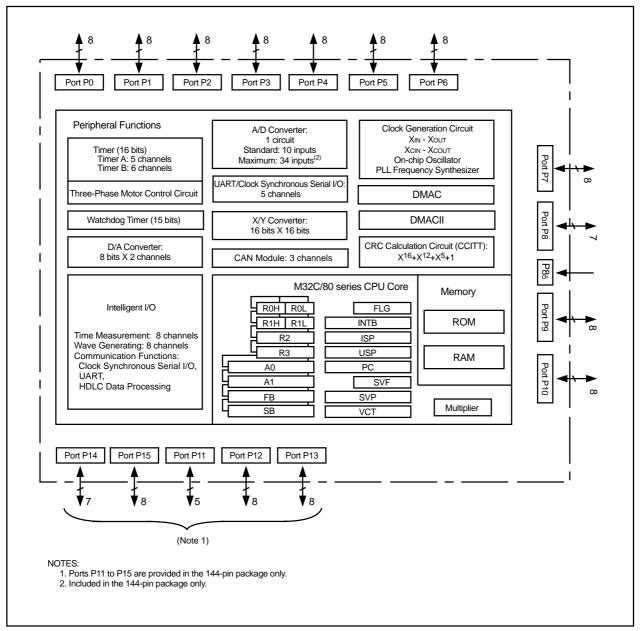


Figure 1.1 M32C/88 Group (M32C/88T) Block Diagram

1.4 Product Information

Table 1.3 lists the product information. Figure 1.2 shows the product numbering system.

Table 1.3 M32C/88 Group (1) (T version, M32C/88T)

As of October, 2005

Type Number		Package Type	ROM Capacity	RAM Capacity	Remarks
M30882FJTGP	(D)	PLQP0144KA-A (144P6Q-A)	512K+4K		
M30880FJTGP	(D)	PLQP0100KB-A (100P6Q-A)	512N+4N		
M30882FHTGP	(D)	PLQP0144KA-A (144P6Q-A)	384K+4K	18K	Flash Memory T version
M30880FHTGP	(D)	PLQP0100KB-A (100P6Q-A)	304N+4N	ION	(High-reliability 85° C)
M30882FWTGP	(D)	PLQP0144KA-A (144P6Q-A)	320K+4K		<i>cc c)</i>
M30880FWTGP	(D)	PLQP0100KB-A (100P6Q-A)	5201(+ 41)		

(D): Under development

Table 1.3 M32C/88 Group (2) (U version, M32C/88T)

As of October, 2005

Type Number		Package Type	ROM Capacity	RAM Capacity	Remarks	
M30882FJUGP	(D)	PLQP0144KA-A (144P6Q-A)	512K+4K			
M30880FJUGP	(D)	PLQP0100KB-A (100P6Q-A)	512N+4N		_, , , , ,	
M30882FHUGP	(D)	PLQP0144KA-A (144P6Q-A)	384K+4K	18K	Flash Memory U version	
M30880FHUGP	(D)	PLQP0100KB-A (100P6Q-A)	304N74N	TOR	(High-reliability 105° C)	
M30882FWUGP	(D)	PLQP0144KA-A (144P6Q-A)	320K+4K		,	
M30880FWUGP	(D)	PLQP0100KB-A (100P6Q-A)	5201 7 41			

(D): Under development

NOTE:

Contact our sales office if you are interested in the V version.

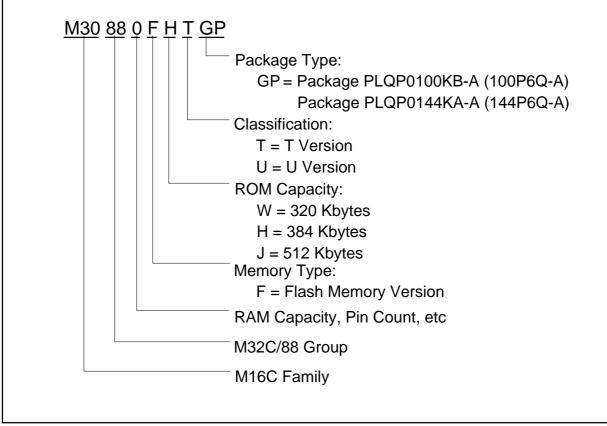


Figure 1.2 Product Numbering System

1.5 Pin Assignment

Figures 1.3 and 1.4 show pin assignments (top view).

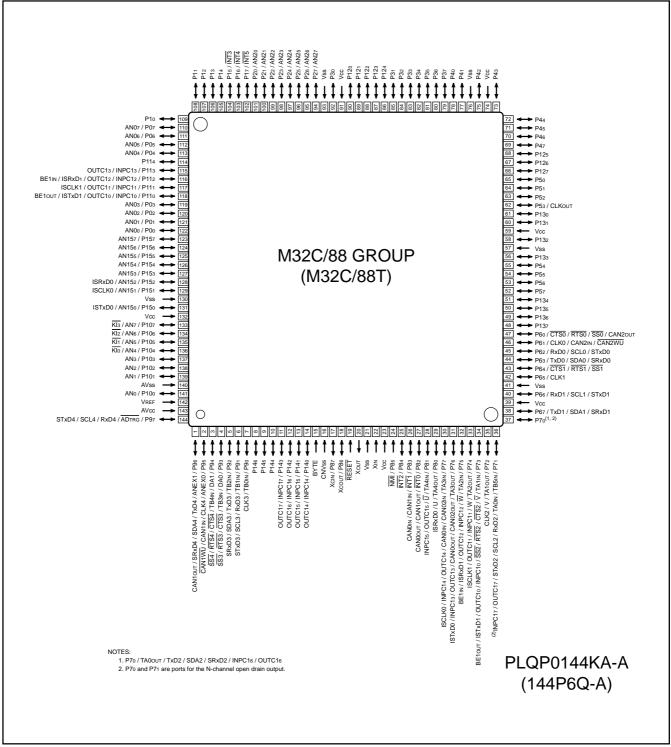


Figure 1.3 Pin Assignment for 144-Pin Package

Table 1.4	Pin Characteristics for 144-Pin Package
-----------	---

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Pin	Intelligent I/O Pin	Analog Pin
1		P96			TxD4/SDA4/SRxD4/CAN1out		ANEX1
2		P95			CLK4/CAN1IN/CAN1WU		ANEX0
3		P94		TB4IN	CTS4/RTS4/SS4		DA1
4		P93		TB3IN	CTS3/RTS3/SS3		DA0
5		P92		TB2IN	TxD3/SDA3/SRxD3		
6		P91		TB1IN	RxD3/SCL3/STxD3		
7		P90		TB0IN	CLK3		
8		P146					
9		P145					
10		P144					
11		P143				INPC17/OUTC17	
12		P142				INPC16/OUTC16	
13		P141				INPC15/OUTC15	
14		P140				INPC14/OUTC14	
15	BYTE						
16	CNVss						
17	Xcin	P87					
18	Хсоит	P86					
19	RESET						
20	Хоит						
21	Vss						
22	Xin						
23	Vcc						
24		P85	NMI				
25		P84	INT2				
26		P83	INT1		CAN0IN/CAN1IN		
27		P82	INTO		CAN0out/CAN1out		
28		P81		TA4IN/Ū		INPC15/OUTC15	
29		P80		TA4out/U		ISRxD0	
30		P77		TA3IN	CAN0IN/CAN02IN	INPC14/OUTC14/ISCLK0	
31		P76		TA3out	CAN0out/CAN02out	INPC13/OUTC13/ISTxD0	
32		P75		TA2IN/W		INPC12/OUTC12/ISRxD1/BE1IN	
33		P74		TA2out/W		INPC11/OUTC11/ISCLK1	
34		P73		TA1ıN/∇	CTS2/RTS2/SS2	INPC10/OUTC10/ISTxD1/BE1OUT	
35		P72		TA1out/V	CLK2		
36		P71		TB5IN/TA0IN	RxD2/SCL2/STxD2	INPC17/OUTC17	
37		P70		TA0out	TxD2/SDA2/SRxD2	INPC16/OUTC16	
38	Vcc	P67			TxD1/SDA1/SRxD1		
39	Vss						
40		P66			RxD1/SCL1/STxD1		
41							
42		P65			CLK1		
43		P64			CTS1/RTS1/SS1		
44		P63			TxD0/SDA0/SRxD0		
45		P62			RxD0/SCL0/STxD0		
46		P61			CLK0/CAN2IN/CAN2WU		
47		P60			CTS0/RTS0/SS0/CAN2out		
48		P137					

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Pin	Intelligent I/O Pin	Analog Pin
49		P136					
50		P135					
51		P134					
52		P57					
53		P56					
54		P55					
55		P54					
56		P133					
57	Vss						
58		P132					
59	Vcc						
60		P131					
61		P130					
62		P53					
63		P52					
64		P51					
65		P50					
66		P127					
67		P126					
68		P125					
69		P47					
70		P46					
71		P45					
72		P44					
73	Vcc	P43					
74							
75	Vss	P42					
76							
77		P41					
78		P40					
79		P37					
80		P36					
81		P35					
82		P34					
83		P33					
84		P32					
85		P31					
86		P124					
87		P123					
88		P122					
89		P121					
90	Vcc	P120					
91	Vss						
92		P30					
93							
94		P27					AN27
95		P26					AN26
96		P25					AN25

Table 1.4 Pin Characteristics for 144-Pin Package (Continued)

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Pin	Intelligent I/O Pin	Analog Pin
97		P24					AN24
98		P23					AN23
99		P22					AN22
100		P21					AN21
101		P20					AN20
102		P17	INT5				
103		P16	INT4				
104		P15	INT3				
105		P14					
106		P13					
107		P12					
108		P11					
109		P10					
110		P07					AN07
111		P06					AN06
112		P05					AN05
113		P04					AN04
114		P114					
115		P113				INPC13/OUTC13	
116		P112				INPC12/OUTC12/ISRxD1/BE1IN	
117		P111				INPC11/OUTC11/ISCLK1	
118		P110				INPC10/OUTC10/ISTxD1/BE1out	
119		P03					AN03
120		P02					AN02
121		P01					AN01
122		P00					AN00
123		P157					AN157
124		P156					AN156
125		P155					AN155
126		P154					AN154
127		P153					AN153
128		P152				ISRxD0	AN152
129		P151				ISCLK0	AN151
130	Vss						
131		P150				ISTxD0	AN150
132	Vcc						
133		P107	KI3				AN7
134		P106	Kl ₂				AN6
135		P105	KI1				AN5
136		P104	Klo				AN4
137		P103					AN3
138		P102					AN ₂
139		P101					AN1
140	AVss						
141		P100					AN ₀
142	Vref						
143	AVcc						
144		P97			RxD4/SCL4/STxD4		ADTRG

Table 1.4 Pin Characteristics for 144-Pin Package (Continued)

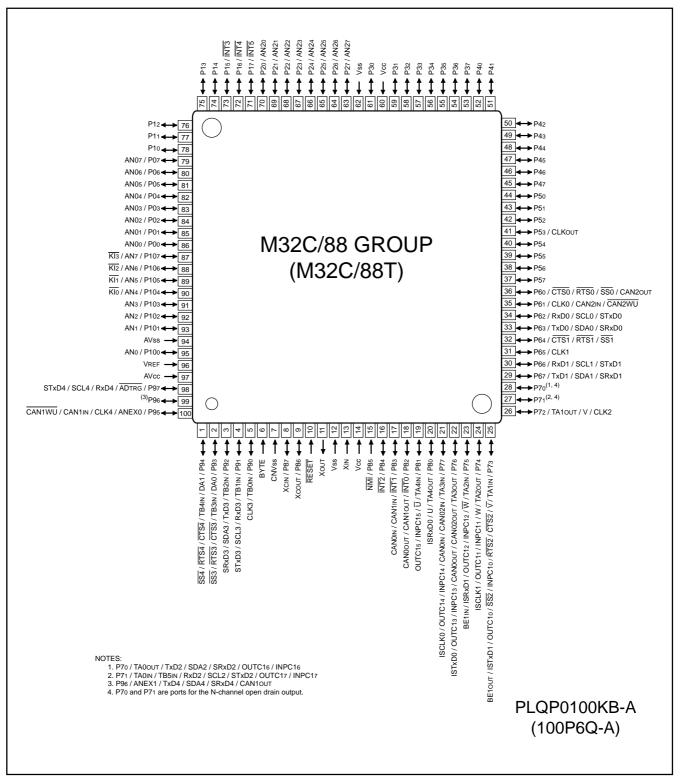


Figure 1.4 Pin Assignment for 100-Pin Package

Table 1.5	Pin Characteristics for 100-Pin Package	

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Pin	Intelligent I/O Pin	Analog Pin
1		P94		TB4IN	CTS4/RTS4/SS4		DA1
2		P93		TB3IN	CTS3/RTS3/SS3		DA0
3		P92		TB2IN	TxD3/SDA3/SRxD3		
4		P91		TB1IN	RxD3/SCL3/STxD3		
5		P90		TB0IN	CLK3		
6	BYTE						
7	CNVss						
8	XCIN	P87					
9	Хсоит	P86					
10	RESET						
11	Хоит						
12	Vss						
13	XIN						
14	Vcc						
15		P85	NMI				
16		P84	INT2				
17		P83	INT1		CAN0IN/CAN1IN		
18		P82	INTO		CAN0out/CAN1out		
19		P81		TA4IN/Ū		INPC15/OUTC15	
20		P80		TA4out/U		ISRxD0	
21		P77		ΤΑ3ιΝ	CAN0IN/CAN02IN	INPC14/OUTC14/ISCLK0	
22		P76		ТАЗоит	CAN0out/CAN02out	INPC13/OUTC13/ISTxD0	
23		P75		TA2IN/W		INPC12/OUTC12/ISRxD1/BE1IN	
24		P74		TA2out/W		INPC11/OUTC11/ISCLK1	
25		P73		TA1IN/V	CTS2/RTS2/SS2	INPC10/OUTC10/ISTxD1/BE1out	
26		P72		TA1out/V	CLK2		
27		P71		TB5IN/TA0IN	RxD2/SCL2/STxD2	INPC17/OUTC17	
28		P70		TA0out	TxD2/SDA2/SRxD2	INPC16/OUTC16	
29		P67			TxD1/SDA1/SRxD1		
30		P66			RxD1/SCL1/STxD1		
31		P65			CLK1		
32		P64			CTS1/RTS1/SS1		
33		P63			TxD0/SDA0/SRxD0		
34		P62			RxD0/SCL0/STxD0		
35		P61			CLK0/CAN2IN/CAN2WU		
36		P60			CTS0/RTS0/SS0/CAN2out		
37		P57					
38		P56					
<u>30</u> 39		P55					
40		P54					
40 41		P53					
41		P52					
42		P51					
43 44		P50					
		P30					
45		P47 P46					
46		P46 P45					
47		P45 P44					
48 49							
	1	P43					

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Pin	Intelligent I/O Pin	Analog Pin
51		P41					
52		P40					
53		P37					
54		P36					
55		P35					
56		P34					
57		P33					
58		P32					
59		P31					
60	Vcc						
61	100	P30					
62	Vss	1.00					
63		P27					AN27
64		P26					AN26
65		P25					AN25
66		P24					AN25 AN24
67		P23					AN24 AN23
68		P23					AN23 AN22
69		P21					AN22 AN21
70		P21					AN21 AN20
70		P20 P17	INT5				AINZO
72		P16	INT4				
73		P15	ĪNT3				
74		P14					
75		P13					
76		P12					
77		P11					
78		P10					
79		P07					AN07
80		P06					AN06
81		P05					AN05
82		P04					AN04
83		P03					AN03
84		P02					AN02
85		P01					AN01
86		P00	<u> </u>				AN00
87		P107	KI3				AN7
88		P106	Kl2				AN6
89		P105	KI1				AN5
90		P104	Klo				AN4
91		P103					AN3
92		P102					AN2
93		P101					AN1
94	AVss						
95		P100					AN ₀
96	Vref						
97	AVcc						
98		P97			RxD4/SCL4/STxD4		ADTRG
99		P96			TxD4/SDA4/SRxD4/CAN1out		ANEX1
100		P95			CLK4/CAN1IN/CAN1WU		ANEX0

Table 1.5 Pin Characteristics for 100-Pin Package (Continued)

1.6 Pin Description

 Table 1.6
 Pin Description (100-Pin and 144-Pin Packages)

Classsfication	Symbol	I/О Туре	Function
Power Supply	Vcc	I	Apply 4.2 to 5.5 V to both Vcc pins.
	Vss		Apply 0 V to the Vss pin
Analog Power	AVcc	Ι	Supplies power to the A/D converter. Connect the AVcc pin to Vcc and the
Supply	AVss		AVss pin to Vss
Reset Input	RESET	I	The microcomputer is in a reset state when "L" is applied to the RESET pin
CNVss	CNVss	I	Switches processor mode. Connect the CNVss pin to Vss
Input to Switch	BYTE	I	Connect the BYTE pin to Vss
External Data Bus			
Width			
Main Clock Input	Xin	I	I/O pins for the main clock oscillation circuit. Connect a ceramic resonator
Main Clock Output	Χουτ	0	or crystal oscillator between XIN and XOUT. To apply external clock, apply it
Main Clock Culput	1001	Ŭ	to XIN and leave XOUT open.
Sub Clock Input	XCIN	I	I/O pins for the sub clock oscillation circuit. Connect a crystal oscillator
Sub Clock output	Voout	0	between XCIN and XCOUT. To apply external clock, apply it to XCIN and
	ACOUT	0	leave Xcout open
Clock Output	CLKOUT	0	Outputs the clock having the same frequency as fC, f8 or f32
INT Interrupt	INT0 to	I	Input pins for the INT interrupt
Input	INT5		
NMI Interrupt Input	NMI	I	Input pin for the NMI interrupt
Key Input Interrupt	KI0 to KI3	I	Input pins for the key input interrupt
Timer A	TA0OUT to	I/O	I/O pins for the timer A0 to A4
	TA40UT		(TA0out is a pin for the N-channel open drain output.)
	TA0IN to	I	Input pins for Timer A0 to A4
	TA4IN		
Timer B	TB0IN to	I	Input pins for Timer B0 to B5
	TB5IN		
Three-phase Motor	$U, \overline{U}, V, \overline{V},$	0	Output pins for the three-phase motor control timer
Control Timer Output	W, W		
Serial I/O	CTS0 to CTS4	I	Input pins for data transmission control
	RTS0 to RTS4	0	Output pins for data reception control
	CLK0 to	I/O	Inputs and outputs the transfer clock
	CLK4		
	RxD0 to	I	Inputs serial data
	RxD4		
	TxD0 to	0	Outputs serial data
	TxD4		(TxD2 is a pin for the N-channel open drain output.)
I ² C Mode	SDA0 to	I/O	Inputs and outputs serial data
	SDA4		(SDA2 is a pin for the N-channel open drain output.)
	SCL0 to		Inputs and outputs the transfer clock
	SCL4		(SCL2 is a pin for the N-channel open drain output.)
Serial I/O	STxD0 to	0	Outputs serial data when slave mode is selected
Special Function	STxD4		(STxD2 is a pin for the N-channel open drain output.)
	SRxD0 to	I	Inputs serial data when slave mode is selected
	SRxD4		
	SS0 to SS4	I	Input pins to control serial I/O special function

I : Input O : Output I/O : Input and output

Table 1.6 Pin Description (100-Pin and 144-Pin Packages) (Continued)

Classsfication	Symbol	I/О Туре	Function
Reference	Vref	I	Applies reference voltage to the A/D converter and D/A converter
Voltage Input			
A/D Converter	AN0 to AN7	I	Analog input pins for the A/D converter
	AN00 to AN07		
	AN20 to AN27		
	ADTRG	1	Input pin for an external A/D trigger
	ANEX0	I/O	Extended analog input pin for the A/D converter and output pin in external
			op-amp connection mode
	ANEX1	1	Extended analog input pin for the A/D converter
D/A Converter	DA0, DA1	0	Output pin for the D/A converter
Intelligent I/O	INPC10 to	1	Input pins for the time measurement function
U	INPC17		
	OUTC10 to	0	Output pins for the waveform generating function
	OUTC17		(OUTC16 and OUTC17 assigned to P70 and P71 are pins for the N-channel open drain output.)
	ISCLK0	I/O	Inputs and outputs the clock for the intelligent I/O communication function
	ISCLK1		
	ISRXD0	1	Inputs data for the intelligent I/O communication function
	ISRXD1	-	
	ISTXD0	0	Outputs data for the intelligent I/O communication function
	ISTXD1	Ū	
	BE1IN	1	Inputs data for the intelligent I/O communication function
	BE1OUT	0	Outputs data for the intelligent I/O communication function
CAN	CAN0IN		Input pin for the CAN communication function
OAN	CAN01N CAN02IN	- '	
		-	
	CAN1IN CAN2IN	-	
	CAN2IN CAN0OUT	0	Output pin for the CAN communication function
	CAN020UT		
	CAN02001 CAN1OUT	-	
	CAN1001	-	
	CAN2001	1	Input nin for the CANi woke up interrupt (i. 1. 2)
	CAN1WU CAN2WU		Input pin for the CANi wake-up interrupt (i=1, 2)
1/O Dorto		1/0	9 bit 1/0 parts for CMOS. Each part can be programmed for input or output
I/O Ports	P00 to P07	I/O	8-bit I/O ports for CMOS. Each port can be programmed for input or output
	P10 to P17		under the control of the direction register. An input port can be set, by
	P20 to P27		program, for a pull-up resistor available or for no pull-up resister available in
	P30 to P37		4-bit units
	P40 to P47		
	P50 to P57	1/0	
	P60 to P67	I/O	I/O ports having equivalent functions to P0
	P70 to P77		(P70 and P71 are ports for the N-channel open drain output.)
	P90 to P97		
	P100 to P107		
	P80 to P84	I/O	I/O ports having equivalent functions to P0
-	P86, P87		
Input Port	P85		Shares a pin with NMI. NMI input state can be got by reading P85

I : Input O : Output I/O : Input and output

Classsfication	Symbol	I/O Туре	Function
A/D Converter	AN150 to	I	Analog input pins for the A/D converter
	AN157		
I/O Ports	P110 to	I/O	I/O ports having equivalent functions to P0
	P114		
	P120 to		
	P127		
	P130 to		
	P137		
	P140 to		
	P146		
	P150 to		
	P157		

Table 1.6 Pin Description (144-Pin Package Only) (Continued)

I : Input O : Output I/O : Input and output

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU registers.

The register bank is comprised of 8 registers (R0, R1, R2, R3, A0, A1, SB and FB) out of 28 CPU registers. Two sets of register banks are provided.

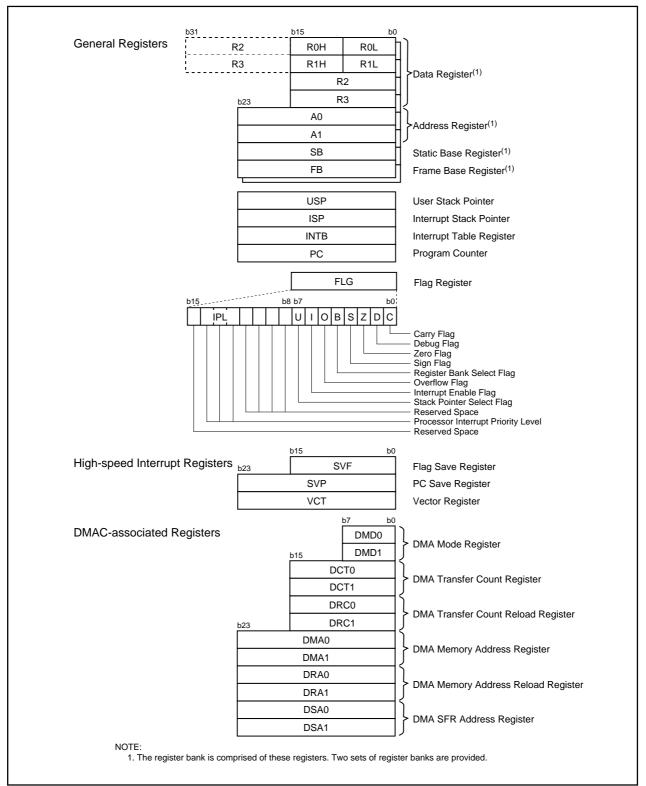


Figure 2.1 CPU Register

2.1 General Registers

2.1.1 Data Registers (R0, R1, R2 and R3)

R0, R1, R2 and R3 are 16-bit registers for transfer, arithmetic and logic operations. R0 and R1 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R0 can be combined with R2 to be used as a 32-bit data register (R2R0). The same applies to R1 and R3.

2.1.2 Address Registers (A0 and A1)

A0 and A1 are 24-bit registers for A0-/A1-indirect addressing, A0-/A1-relative addressing, transfer, arithmetic and logic operations.

2.1.3 Static Base Register (SB)

SB is a 24-bit register for SB-relative addressing.

2.1.4 Frame Base Register (FB)

FB is a 24-bit register for FB-relative addressing.

2.1.5 Program Counter (PC)

PC, 24 bits wide, indicates the address of an instruction to be executed.

2.1.6 Interrupt Table Register (INTB)

INTB is a 24-bit register indicating the starting address of an relocatable interrupt vector table.

2.1.7 User Stack Pointer (USP), Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are 24 bits wide each. The U flag is used to switch between USP and ISP. Refer to **2.1.8 Flag Register (FLG)** for details on the U flag. Set USP and ISP to even addresses to execute an interrupt sequence efficiently.

2.1.8 Flag Register (FLG)

FLG is a 16-bit register indicating a CPU state.

2.1.8.1 Carry Flag (C)

The C flag indicates whether carry or borrow has occurred after executing an instruction.

2.1.8.2 Debug Flag (D)

The D flag is for debug only. Set to "0".

2.1.8.3 Zero Flag (Z)

The Z flag is set to "1" when the value of zero is obtained from an arithmetic operation; otherwise "0".

2.1.8.4 Sign Flag (S)

The S flag is set to "1" when a negative value is obtained from an arithmetic operation; otherwise "0".

2.1.8.5 Register Bank Select Flag (B)

The register bank 0 is selected when the B flag is set to "0". The register bank 1 is selected when this flag is set to "1".

2.1.8.6 Overflow Flag (O)

The O flag is set to "1" when the result of an arithmetic operation overflows; otherwise "0".

2.1.8.7 Interrupt Enable Flag (I)

The I flag enables a maskable interrupt.

Interrupt is disabled when the I flag is set to "0" and enabled when the I flag is set to "1". The I flag is set to "0" when an interrupt is acknowledged.

2.1.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to "0". USP is selected when this flag is set to "1". The U flag is set to "0" when a hardware interrupt is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.1.8.9 Processor Interrupt Priority Level (IPL)

IPL, 3 bits wide, assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has greater priority than IPL, the interrupt is enabled.

2.1.8.10 Reserved Space

When writing to a reserved space, set to "0". When reading, its content is indeterminate.

2.2 High-Speed Interrupt Registers

Registers associated with the high-speed interrupt are as follows:

- Flag save register (SVF)
- PC save register (SVP)
- Vector register (VCT)

Refer to **10.4 High-Speed Interrupt** for details.

2.3 DMAC-Associated Registers

Registers associated with DMAC are as follows:

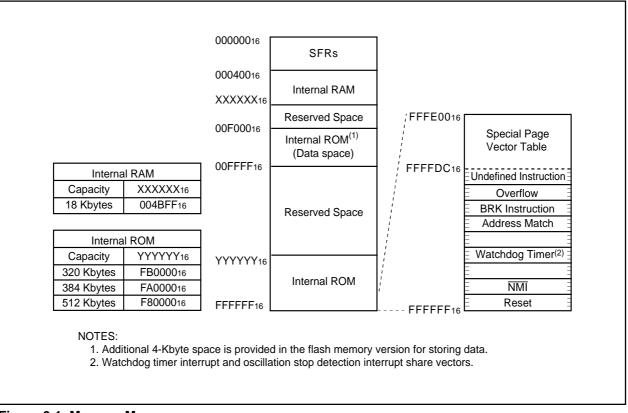
- DMA mode register (DMD0, DMD1)
- DMA transfer count register (DCT0, DCT1)
- DMA transfer count reload register (DRC0, DRC1)
- DMA memory address register (DMA0, DMA1)
- DMA SFR address register (DSA0, DSA1)
- DMA memory address reload register (DRA0, DRA1)

Refer to **12. DMAC** for details.

3. Memory

Figure 3.1 shows a memory map of the M32C/88 Group (M32C/88T).

The M32C/88 Group (M32C/88T) provides 16-Mbyte address space addressed from 00000016 to FFFFF16.


The internal ROM is allocated from address FFFFF16 to lower. For example, a 64-Kbyte internal ROM is addressed from FF000016 to FFFFF16.

The fixed interrupt vectors are allocated from address FFFFDC16 to FFFFF16. It stores the starting address of each interrupt routine.

The internal RAM is allocated from address 00040016 to higher. For example, a 10-Kbyte internal RAM is allocated from address 00040016 to 002BFF16. Besides storing data, it becomes stacks when the subroutine is called or an interrupt is acknowledged.

SFRs, consisting of control registers for peripheral functions such as I/O port, A/D converter, serial I/O, timers, is allocated from address 00000016 to 0003FF16. All blank spaces within SFRs are reserved and cannot be accessed by users.

The special page vectors are addressed from FFFE0016 to FFFFDB16. It is used for the JMPS instruction and JSRS instruction. Refer to the Renesas publication **M32C/80 Series Software Manual** for details.

4. Special Function Registers (SFRs)

Address	Register	Symbol	Value after RESET
000016			
000116			
000216			
000316			
000416	Processor Mode Register ⁽¹⁾	PM0	1000 00002(CNVss pin ="L")
000516	Processor Mode Register 1	PM1	0016
000616	System Clock Control Register 0	CM0	0000 10002
000716	System Clock Control Register 1	CM1	0010 00002
000816			
000916	Address Match Interrupt Enable Register	AIER	0016
000A16	Protect Register	PRCR	XXXX 00002
000B16	, , , , , , , , , , , , , , , , , , ,		
000C16	Main Clock Division Register	MCD	XXX0 10002
000D16	Oscillation Stop Detection Register	CM2	0016
000E16	Watchdog Timer Start Register	WDTS	XX16
000F16	Watchdog Timer Control Register	WDC	000X XXXX2
001016	5 5		
001116	Address Match Interrupt Register 0	RMAD0	0000016
001216			
001316	Processor Mode Register 2	PM2	0016
001416	·····		
001516	Address Match Interrupt Register 1	RMAD1	0000016
001616			
001716			
001816			
001916	Address Match Interrupt Register 2	RMAD2	0000016
001A16			
001B16			
001C16			
001D16	Address Match Interrupt Register 3	RMAD3	0000016
001E16			
001F16			
002016			
002116			
002216			
002316			
002416			
002516			
002616	PLL Control Register 0	PLC0	0001 X0102
002716	PLL Control Register 1	PLC1	000X 00002
002816			
002916	Address Match Interrupt Register 4	RMAD4	0000016
002016			
002A16			
002D10			
002016	Address Match Interrupt Register 5	RMAD5	0000016
002E16			
002E16			
5021 10			

X: Indeterminate

Blank spaces are reserved. No access is allowed.

NOTE:

1. The PM01 and PM00 bits in the PM0 register maintain values set before reset, even after software reset or watchdog timer reset has been performed.

Address	Register	Symbol	Value after RESET
006016	<u> </u>		
003016			
003116			
003216			
003316			
003416			
003516			
003616			
003716			
003816			
003916	Address Match Interrupt Register 6	RMAD6	0000016
003A16			
003B16			
003C16			
003D16	Address Match Interrupt Register 7	RMAD7	0000016
003E16			
003F16			
004016			
004116			
004216			
004316			
004416			
004516			
004616			
004716			
004816			
004916			
004A16			
004B16			
004C16			
004D16			
004E16			
004F16			
005016			
005116			
005216			
005316			
005416			
005516	Flash Memory Control Register 1	FMR1	0000 01012
005616			
005716	Flash Memory Control Register 0	FMR0	0000 00012
005816			
005916			
005A16			
005B16			
005C16			
005D16			
005E16			
005F16			

Address	Register	Symbol	Value after RESET
006016	Register	Cymbol	
006116			
006216			
006316			
006416			
006516			
006616			
006716			
006816	DMA0 Interrupt Control Register	DM0IC	XXXX X0002
006916	Timer B5 Interrupt Control Register	TB5IC	XXXX X0002
006A16	DMA2 Interrupt Control Register	DM2IC	XXXX X0002
006B16	UART2 Receive /ACK Interrupt Control Register	S2RIC	XXXX X0002
006C16	Timer A0 Interrupt Control Register	TAOIC	XXXX X0002 XXXX X0002
006D16	UART3 Receive /ACK Interrupt Control Register	S3RIC	XXXX X0002 XXXX X0002
006E16	Timer A2 Interrupt Control Register	TA2IC	XXXX X0002 XXXX X0002
000E16	UART4 Receive /ACK Interrupt Control Register	S4RIC	XXXX X0002 XXXX X0002
007016	Timer A4 Interrupt Control Register	TA4IC	XXXX X0002 XXXX X0002
007018	UART0/UART3 Bus Conflict Detect Interrupt Control Register	BCN0IC/BCN3IC	XXXX X0002 XXXX X0002
007116	UARTO Receive/ACK Interrupt Control Register	SORIC	XXXX X0002 XXXX X0002
007216	A/D0 Conversion Interrupt Control Register	ADOIC	XXXX X0002
007316	UART1 Receive/ACK Interrupt Control Register	S1RIC	XXXX X0002 XXXX X0002
007416	Intelligent I/O Interrupt Control Register 0/		
007516	CAN Interrupt 3 Control Register	CAN3IC	XXXX X0002
007616	Timer B1 Interrupt Control Register	TB1IC	XXXX X0002
007018	Intelligent I/O Interrupt Control Register 2/	IIO2IC/	
007716	CAN Interrupt 6 Control Register	CAN6IC	XXXX X0002
007816	Timer B3 Interrupt Control Register	TB3IC	XXXX X0002
007816	Intelligent I/O Interrupt Control Register 4	IIO4IC	XXXX X0002
007916 007A16	INT5 Interrupt Control Register	INT5IC	
007A16	CAN Interrupt 8 Control Register	CAN8IC	XX00 X0002 XXXX X0002
007B16	INT3 Interrupt Control Register	INT3IC	XX00 X0002
007C16	Intelligent I/O Interrupt Control Register 8	IIO8IC	XXXX X0002
007D16	INT1 Interrupt Control Register	INT1IC	XX00 X0002
007E16	Intelligent I/O Interrupt Control Register 10/	IIO10IC/	7700 70002
007F16		CAN1IC	XXXX X0002
000010	CAN Interrupt 1 Control Register	CANTIC	
008016	CAN Interrupt 2 Control Register	CANDIC	
008116		CAN2IC	XXXX X0002
008216			
008316			
008416			
008516			
008616			
008716	DMA1 Interrupt Control Register	DM1IC	
008816	DMA1 Interrupt Control Register	DM1IC	XXXX X0002
008916	UART2 Transmit /NACK Interrupt Control Register	S2TIC	XXXX X0002
008A16	DMA3 Interrupt Control Register	DM3IC	XXXX X0002
008B16	UART3 Transmit /NACK Interrupt Control Register	S3TIC	XXXX X0002
008C16	Timer A1 Interrupt Control Register	TA1IC	XXXX X0002
008D16	UART4 Transmit /NACK Interrupt Control Register	S4TIC	XXXX X0002
008E16	Timer A3 Interrupt Control Register	TA3IC	XXXX X0002
008F16	UART2 Bus Conflict Detect Interrupt Control Register	BCN2IC	XXXX X0002

Address	Register	Symbol	Value after RESET
009016	UART0 Transmit /NACK Interrupt Control Register	SOTIC	XXXX X0002
009116	UART1/UART4 Bus Conflict Detect Interrupt Control Register	BCN1IC/BCN4IC	XXXX X0002
009216	UART1 Transmit/NACK Interrupt Control Register	S1TIC	XXXX X0002
009316	Key Input Interrupt Control Register	KUPIC	XXXX X0002
009416	Timer B0 Interrupt Control Register	TB0IC	XXXX X0002
009516	Intelligent I/O Interrupt Control Register 1/ CAN Interrupt 4 Control Register	IIO1IC/ CAN4IC	XXXX X0002
009616	Timer B2 Interrupt Control Register	TB2IC	XXXX X0002
000010	Intelligent I/O Interrupt Control Register 3/	IIO3IC/	7000070002
009716	CAN Interrupt 7 Control Register	CAN7IC	XXXX X0002
009816	Timer B4 Interrupt Control Register	TB4IC	XXXX X0002
009916	CAN Interrupt 5 Control Register	CAN5IC	XXXX X0002
009A16	INT4 Interrupt Control Register	INT4IC	XX00 X0002
009B16	intra interrupt control register		77700 70002
009D16	INT2 Interrupt Control Register	INT2IC	XX00 X0002
003010	Intelligent I/O Interrupt Control Register 9/	IIO9IC/	
009D16	CAN Interrupt 0 Control Register	CANOIC	XXXX X0002
009E16	INTO Interrupt Control Register	INTOIC	XX00 X0002
009E16	Exit Priority Control Register	RLVL	XXXX 00002
009F16	Interrupt Request Register 0	IIO0IR	0000 000X2
00A016	Interrupt Request Register 1	IIO1IR	0000 000X2
00A116 00A216	Interrupt Request Register 2	IIO1R	0000 000X2
00A216	Interrupt Request Register 3	IIO3IR	0000 000X2
	· · · ·		
00A416	Interrupt Request Register 4	IIO4IR	0000 000X2
00A516	Interrupt Request Register 5	IIO5IR	0000 000X2
00A616	Interrupt Request Register 6	IIO6IR	0000 000X2
00A716	Intervent Descuent Descieter 0		0000 000¥a
00A816	Interrupt Request Register 8	IIO8IR	0000 000X2
00A916	Interrupt Request Register 9 Interrupt Request Register 10	IIO9IR	0000 000X2
00AA16		IIO10IR	0000 000X2
00AB16 00AC16	Interrupt Request Register 11	IIO11IR	0000 000X2
00AC16			
00AE16			
00AF16	later wet Frankla Davistan 0	110015	00.15
00B016	Interrupt Enable Register 0	IIO0IE	0016
00B116	Interrupt Enable Register 1	IIO1IE	0016
00B216	Interrupt Enable Register 2	IIO2IE	0016
00B316	Interrupt Enable Register 3	IIO3IE	0016
00B416	Interrupt Enable Register 4	IIO4IE	0016
00B516	Interrupt Enable Register 5	IIO5IE	0016
00B616	Interrupt Enable Register 6	IIO6IE	0016
00B716			
00B816	Interrupt Enable Register 8	IIO8IE	0016
00B916	Interrupt Enable Register 9	IIO9IE	0016
00BA16	Interrupt Enable Register 10	IIO10IE	0016
00BB16	Interrupt Enable Register 11	IIO11IE	0016
00BC16			
00BD16			
00BE16			
00BF16			

00C016 00C116 00C216 00C316 00C316 00C316 00C516 00C516 00C516 00C716 00C716 00C716 00C316 00C416 00C16 00C16 00C16 00C16 00D116 00D116 00D216 00D116 00D16 00D16 </th <th></th>	
00C216	
00C316 00C416 00C516 00C616 00C716 00C316 00C716 00C316 00C316 00C416 00C416 00C116 00C216 00C516 00C416 00C416 00C116 00C516 00D116 00D116 00D16 00D316 00D516 00D516 00D516 00D516 00D316 00D516 00D516 00D416 00D416 00D416 00D516 00D516	
00C416 00C516 00C716 00C716 00C816 00C816 00C916 00C816 00C116 00C116 00C116 00C116 00C116 00C116 00C116 00C116 00C116 00D116 00D116 <td></td>	
00C516 00C616 00C716 00C816 00C916 00C416 00C516 00D16 00D516 00D16 00D316 00D416 00D516 00D516 00D516 00D516 00D416 00D516 00D416 00D516 00D416 00D416 00D516 00D416	
00C616	
00C716 00C816 00C916 00CA16 00CC16 00CD16 00CF16 00CF16 00CF16 00CF16 00CF16 00CF16 00D116 00D116 <td></td>	
00C816 00C916 00C816 00CB16 00CC16 00C116 00CF16 00CF16 00CF16 00CF16 00D116 00D116 00D116 00D116 00D116 00D116 00D116 00D116 00D16 00D16 </td <td></td>	
00C916 00CA16 00CB16 00CC16 00CD16 00CE16 00CF16 00D16 00D516 00D716 00D16 00D16 00D16 00D176 00D16 00D16 00D16 00D16	
00CA16 00CB16 00CC16 00CD16 00CE16 00CF16 00D016 00D16 00D18 00D19 00D16 00D17 00D18 00D19 00D16 00D17 00D18 00D19 00D10 00D116 00D216 00D516 00D516 00D516 00D516 00D116 00D516 00D116 00D216 00D216 00D516 00D516 00D116 00D216 </td <td></td>	
00CB16 00CC16 00CD16 00CE16 00CF16 00D16 00D17 00D18 00D19 00D116 00D116 00D116 00D116 00D216 00D116 00D116 00D116 00D116 00D516	
00CC16	
00CC16	
00CD16	
00CE16 00CF16 00D16 00D16 00D16 00D16 00D16 00D16 00D16 00D16 00D16 00D316 00D416 00D516 00D516 00D716 00D716 00D416 00D416 00D416 00D416 00D416 00D416 00D416 00D516	
00CF16 00D016 00D116 00D216 00D316 00D416 00D416 00D516 00D516 <td></td>	
00D016 00D16 00D216 00D316 00D416 00D416 00D516 00D616 00D716 00D416 00D416 00D516 00D616 00D716 00D416 00D416 00D516	
00D116 00D216 00D316 00D416 <t< td=""><td></td></t<>	
00D316 00D416 00D516 00D616 00D716 00D816 00D816 00D416 00D416 00D816 00D816 00D416 00D516 005016	
00D316 00D416 00D516 00D616 00D716	
00D416 00D516 00D616 00D716 00D816	
00D516 00D616 00D716 00D816 <t< td=""><td></td></t<>	
00D616 00D716 00D816 00D916 00DA16 00DB16 00DC16 00DE16 00DE16 00DF16 00DF16 00DF16 00DF16	
00D716 00D816 00D916 00DA16 00DB16 00DC16 00DE16 00DE16 00DF16 00DF16 00DF16 00DF16	
00D816 00D916 00DA16 00DB16 00DC16 00DD16 00DE16 00DF16 00DF16 00DF16 00DF16 00DF16	
00D916 00DA16 00DB16 00DC16 00DD16 00DE16 00DF16 00DF16 00DF16 00DF16 00E016	
00DA16 00DB16 00DC16 00DD16 00DE16 00DF16 00DF16 00DF16 00DF16	
00DB16 00DC16 00DD16 00DE16 00DF16 00DF16 00E016	
00DD16	
00DD16	
00DF16 00E016 00E016	
00E016	
00E216	
00E316	
00E416	
00E516	
00E616	
00E716	
00E816 XXXX XXX2	
00E916 SI/O Receive Buffer Register 0 G0RB XXX0 XXX2	
00EA16 Transmit Buffer/Receive Data Register 0 G0TB/G0DR XX16	
00EB16	
00EC16 Receive Input Register 0 G0RI XX16	
00ED16 SI/O Communication Mode Register 0 G0MR 0016	
00EE16 Transmit Output Register 0 G0TO XX16	
00EF16 SI/O Communication Control Register 0 G0CR 0000 X0112	

Address	Register	Symbol	Value after RESET
00F016	Data Compare Register 00	G0CMP0	XX16
00F116	Data Compare Register 01	G0CMP1	XX16
00F216	Data Compare Register 02	G0CMP2	XX16
00F316	Data Compare Register 03	G0CMP3	XX16
00F416	Data Mask Register 00	G0MSK0	XX16
00F516	Data Mask Register 01	G0MSK1	XX16
00F616	Communication Clock Select Register	CCS	XXXX 00002
00F716			
00F816		000000	XX16
00F916	Receive CRC Code Register 0	GORCRC	XX16
00FA16		007000	0016
00FB16	Transmit CRC Code Register 0	GOTCRC	0016
00FC16	SI/O Extended Mode Register 0	G0EMR	0016
00FD16	SI/O Extended Receive Control Register 0	G0ERC	0016
00FE16	SI/O Special Communication Interrupt Detect Register 0	G0IRF	0016
00FF16	SI/O Extended Transmit Control Register 0	G0ETC	0000 0XXX2
010016		047140/04000	XX16
010116	Time Measurement/Waveform Generating Register 10	G1TM0/G1PO0	XX16
010216		04704/04004	XX16
010316	Time Measurement/Waveform Generating Register 11	G1TM1/G1PO1	XX16
010416		047140/04000	XX16
010516	Time Measurement/Waveform Generating Register 12	G1TM2/G1PO2	XX16
010616		047140/04000	XX16
010716	Time Measurement/Waveform Generating Register 13	G1TM3/G1PO3	XX16
010816	Time Management (Manafarm Concerting Deviator 44		XX16
010916	Time Measurement/Waveform Generating Register 14	G1TM4/G1PO4	XX16
010A16	Time Management/Manafarm Concerting Deviator 45		XX16
010B16	Time Measurement/Waveform Generating Register 15	G1TM5/G1PO5	XX16
010C16	Time Measurement/Mayoform Concreting Register 16		XX16
010D16	Time Measurement/Waveform Generating Register 16	G1TM6/G1PO6	XX16
010E16	Time Measurement/Moveform Concreting Register 17	G1TM7/G1PO7	XX16
010F16	Time Measurement/Waveform Generating Register 17	GTTM//GTPO/	XX16
011016	Waveform Generating Control Register 10	G1POCR0	0000 X0002
011116	Waveform Generating Control Register 11	G1POCR1	0X00 X0002
011216	Waveform Generating Control Register 12	G1POCR2	0X00 X0002
011316	Waveform Generating Control Register 13	G1POCR3	0X00 X0002
011416	Waveform Generating Control Register 14	G1POCR4	0X00 X0002
011516	Waveform Generating Control Register 15	G1POCR5	0X00 X0002
011616	Waveform Generating Control Register 16	G1POCR6	0X00 X0002
011716	Waveform Generating Control Register 17	G1POCR7	0X00 X0002
011816	Time Measurement Control Register 10	G1TMCR0	0016
011916	Time Measurement Control Register 11	G1TMCR1	0016
011A16	Time Measurement Control Register 12	G1TMCR2	0016
011B16	Time Measurement Control Register 13	G1TMCR3	0016
011C16	Time Measurement Control Register 14	G1TMCR4	0016
011D16	Time Measurement Control Register 15	G1TMCR5	0016
011E16	Time Measurement Control Register 16	G1TMCR6	0016
011F16	Time Measurement Control Register 17	G1TMCR7	0016

Address	Register	Symbol	Value after RESET
012016		0.157	XX16
012116	Base Timer Register 1	G1BT	XX16
012216	Base Timer Control Register 10	G1BCR0	0016
012316	Base Timer Control Register 11	G1BCR1	X000 000X2
012416	Time Measurement Prescaler Register 16	G1TPR6	0016
012516	Time Measurement Prescaler Register 17	G1TPR7	0016
012616	Function Enable Register 1	G1FE	0016
012716	Function Select Register 1	G1FS	0016
012816		0400	XXXX XXXX2
012916	SI/O Receive Buffer Register 1	G1RB	X000 XXXX2
012A16	Transmit Buffer/Receive Data Register 1	G1TB/G1DR	XX16
012B16			
012C16	Receive Input Register 1	G1RI	XX16
012D16	SI/O Communication Mode Register 1	G1MR	0016
012E16	Transmit Output Register 1	G1TO	XX16
012F16	SI/O Communication Control Register 1	G1CR	0000 X0112
013016	Data Compare Register 10	G1CMP0	XX16
013116	Data Compare Register 11	G1CMP1	XX16
013216	Data Compare Register 12	G1CMP2	XX16
013316	Data Compare Register 13	G1CMP3	XX16
013416	Data Mask Register 10	G1MSK0	XX16
013516	Data Mask Register 11	G1MSK1	XX16
013616			
013716			
013816	Descise ODO Osta Descistar A	040000	XX16
013916	Receive CRC Code Register 1	G1RCRC	XX16
013A16	Transmit ODO Os de Desister 1	047000	0016
013B16	Transmit CRC Code Register 1	G1TCRC	0016
013C16	SI/O Extended Mode Register 1	G1EMR	0016
013D16	SI/O Extended Receive Control Register 1	G1ERC	0016
013E16	SI/O Special Communication Interrupt Detection Register 1	G1IRF	0016
013F16	SI/O Extended Transmit Control Register 1	G1ETC	0000 0XXX2
014016			
014116			
014216			
014316			
014416			
014516			
014616			
014716			
014816			
014916			
014A16			
014B16			
014C16			
014D16			
to			
016F16			

Address	Register	Symbol	Value after RESET
017016	CAN2 Slot Buffer Select Register	C2SBS	0016 ⁽¹⁾
017116	CAN2 Control Register 1	C2CTLR1	X000 00XX2 ⁽¹⁾
017216	CAN2 Sleep Control Register	C2SLPR	XXXX XXX02
017316			
017416		00170	0016 ⁽¹⁾
017516	CAN2 Acceptance Filter Support Register	C2AFS	0116 ⁽¹⁾
017616			
017716			
017816	Input Function Select Register	IPS	0016
017916	Input Function Select Register A	IPSA	0016
017A16			
017B16			
017C16			
017D16			
017E16			
017F16			
018016	CAN2 Message Slot Buffer 0 Standard ID0	C2SLOT0_0	XX16
018116	CAN2 Message Slot Buffer 0 Standard ID1	C2SLOT0_1	XX16
018216	CAN2 Message Slot Buffer 0 Extended ID0	C2SLOT0_2	XX16
018316	CAN2 Message Slot Buffer 0 Extended ID1	C2SLOT0_3	XX16
018416	CAN2 Message Slot Buffer 0 Extended ID2	C2SLOT0_4	XX16
018516	CAN2 Message Slot Buffer 0 Data Length Code	C2SLOT0_5	XX16
018616	CAN2 Message Slot Buffer 0 Data 0	C2SLOT0_6	XX16
018716	CAN2 Message Slot Buffer 0 Data 1	C2SLOT0_7	XX16
018816	CAN2 Message Slot Buffer 0 Data 2	C2SLOT0_8	XX16
018916	CAN2 Message Slot Buffer 0 Data 3	C2SLOT0_9	XX16
018A16	CAN2 Message Slot Buffer 0 Data 4	C2SLOT0_10	XX16
018B16	CAN2 Message Slot Buffer 0 Data 5	C2SLOT0_11	XX16
018C16	CAN2 Message Slot Buffer 0 Data 6	C2SLOT0_12	XX16
018D16	CAN2 Message Slot Buffer 0 Data 7	C2SLOT0_13	XX16
018E16	CAN2 Message Slot Buffer 0 Time Stamp High-Order	C2SLOT0_14	XX16
018F16	CAN2 Message Slot Buffer 0 Time Stamp Low-Order	C2SLOT0_15	XX16
019016	CAN2 Message Slot Buffer 1 Standard ID0	C2SLOT1_0	XX16
019116	CAN2 Message Slot Buffer 1 Standard ID1	C2SLOT1_1	XX16
019216	CAN2 Message Slot Buffer 1 Extended ID0	C2SLOT1_2	XX16
019316	CAN2 Message Slot Buffer 1 Extended ID1	C2SLOT1_3	XX16
019416	CAN2 Message Slot Buffer 1 Extended ID2	C2SLOT1_4	XX16
019516	CAN2 Message Slot Buffer 1 Data Length Code	C2SLOT1_5	XX16
019616	CAN2 Message Slot Buffer 1 Data 0	C2SLOT1_6	XX16
019716	CAN2 Message Slot Buffer 1 Data 1	C2SLOT1_7	XX16
019816	CAN2 Message Slot Buffer 1 Data 2	C2SLOT1_8	XX16
019916	CAN2 Message Slot Buffer 1 Data 3	C2SLOT1_9	XX16
019A16	CAN2 Message Slot Buffer 1 Data 4	C2SLOT1_10	XX16
019B16	CAN2 Message Slot Buffer 1 Data 5	C2SLOT1_11	XX16
019C16	CAN2 Message Slot Buffer 1 Data 6	C2SLOT1_12	XX16
019D16	CAN2 Message Slot Buffer 1 Data 7	C2SLOT1_13	XX16
019E16	CAN2 Message Slot Buffer 1 Time Stamp High-Order	C2SLOT1_14	XX16
019F16	CAN2 Message Slot Buffer 1 Time Stamp Low-Order	C2SLOT1_15	XX16

Blank spaces are reserved. No access is allowed.

NOTE:

1. Values are obtained by setting the SLEEP bit in the C2SLPR register to "1" (sleep mode exited) after reset and supplying a clock to the CAN module.

RENESAS

Address	Register	Symbol	Value after RESET	
01A016		0007100	XX01 0X012 ⁽²⁾	1
01A116	CAN2 Control Register 0	C2CTLR0	XXXX 00002 ⁽²⁾	
01A216		00075	0000 00002 ⁽²⁾	1
01A316	CAN2 Status Register	C2STR	X000 0X012 ⁽²⁾	
01A416		00100	0016 ⁽²⁾	1
01A516	CAN2 Extended ID Register	C2IDR	0016 ⁽²⁾	
01A616		0000010	0000 XXXX ₂ ⁽²⁾	1
01A716	CAN2 Configuration Register	C2CONR	0000 00002 ⁽²⁾	
01A816		0.705	0016 ⁽²⁾	1
01A916	CAN2 Time Stamp Register	C2TSR	0016 ⁽²⁾	
01AA16	CAN2 Transmit Error Count Register	C2TEC	0016 ⁽²⁾	1
01AB16	CAN2 Receive Error Count Register	C2REC	0016 ⁽²⁾	1
01AC16		0001075	0016 ⁽²⁾	1
01AD16	CAN2 Slot Interrupt Status Register	C2SISTR	0016 ⁽²⁾	
01AE16				1
01AF16				1
01B016			0016 ⁽²⁾	1
01B116	CAN2 Slot Interrupt Mask Register	C2SIMKR	0016 ⁽²⁾	
01B216				1
01B316				
01B416	CAN2 Error Interrupt Mask Register	C2EIMKR	XXXX X0002 ⁽²⁾	
01B516	CAN2 Error Interrupt Status Register	C2EISTR	XXXX X0002 ⁽²⁾	
01B616	CAN2 Error Cause Register	C2EFR	0016 ⁽²⁾	
01B716	CAN2 Baud Rate Prescaler	C2BRP	0000 00012 ⁽²⁾	1
01B816				
01B916	CAN2 Mode Register	C2MDR	XXXX XX002 ⁽²⁾	
01BA16				
01BB16				
01BC16				
01BD16				-
01BE16				-
01BF16				
01C016			0016 ⁽²⁾	
01C116	CAN2 Single Shot Control Register	C2SSCTLR	0016 ⁽²⁾	
01C216				1
01C316				1
01C416			0016 ⁽²⁾	1
01C516	CAN2 Single Shot Status Register	C2SSSTR	0016 ⁽²⁾	
01C616				-1
01C716				(Note 1)
01C816	CAN2 Global Mask Register Standard ID0	C2GMR0	XXX0 00002 ⁽²⁾	1
01C916	CAN2 Global Mask Register Standard ID1	C2GMR1	XX00 00002 ⁽²⁾	1
01CA16	CAN2 Global Mask Register Extended ID0	C2GMR2	XXXX 00002 ⁽²⁾	1
01CB16	CAN2 Global Mask Register Extended ID1	C2GMR3	0016 ⁽²⁾	1
01CC16	CAN2 Global Mask Register Extended ID2	C2GMR4	XX00 00002 ⁽²⁾	1
01CD16	-			1
01CE16				1 ⊥
01CF16				╡ ▮
			1	

Blank spaces are reserved. No access is allowed.

NOTES:

- 1. The BANKSEL bit in the C2CTLR1 register switches functions for addresses 01C016 to 01DF16.
- 2. Values are obtained by setting the SLEEP bit in the C2SLPR register to "1" (sleep mode exited) after reset and supplying a clock to the CAN module.

Address	Register	Symbol	Value after RESET	
01 - 01 - 0	CAN2 Message Slot 0 Control Register /	C2MCTL0/	0000 00002 ⁽²⁾	
01D016	CAN2 Local Mask Register A Standard ID0	C2LMAR0	XXX0 00002 ⁽²⁾	₽
04.04.1	CAN2 Message Slot 1 Control Register /	C2MCTL1/	0000 00002 ⁽²⁾	
01D116	CAN2 Local Mask Register A Standard ID1	C2LMAR1	XX00 00002 ⁽²⁾	
	CAN2 Message Slot 2 Control Register /	C2MCTL2/	0000 00002 ⁽²⁾	
01D216	CAN2 Local Mask Register A Extended ID0	C2LMAR2	XXXX 00002 ⁽²⁾	
	CAN2 Message Slot 3 Control Register /	C2MCTL3/	0016 ⁽²⁾	
01D316	CAN2 local Mask Register A Extended ID1	C2LMAR3	0016 ⁽²⁾	
	CAN2 Message Slot 4 Control Register /	C2MCTL4/	0000 00002 ⁽²⁾	
01D416	CAN2 Local Mask Register A Extended ID2	C2LMAR4	XX00 00002 ⁽²⁾	
01D516	CAN2 Message Slot 5 Control Register	C2MCTL5	0016 ⁽²⁾	
01D616	CAN2 Message Slot 6 Control Register	C2MCTL6	0016 ⁽²⁾	
01D716	CAN2 Message Slot 7 Control Register	C2MCTL7	0016 ⁽²⁾	(Note 1)
	CAN2 Message Slot 8 Control Register /	C2MCTL8/	0000 00002 ⁽²⁾	
01D816	CAN2 Local Mask Register B Standard ID0	C2LMBR0	XXX0 00002 ⁽²⁾	
	CAN2 Message Slot 9 Control Register /	C2MCTL9/	0000 00002 ⁽²⁾	
01D916	CAN2 Local Mask Register B Standard ID1	C2LMBR1	XX00 00002 ⁽²⁾	
	CAN2 Message Slot 10 Control Register /	C2MCTL10/	0000 00002 ⁽²⁾	
01DA16	CAN2 Local Mask Register B Extended ID2	C2LMBR2	XXXX 00002 ⁽²⁾	
	CAN2 Message Slot 11 Control Register /	C2MCTL11/	0016 ⁽²⁾	
01DB16	CAN2 Local Mask Register B Extended ID3	C2LMBR3	0016 ⁽²⁾	
	CAN2 Message Slot 12 Control Register /	C2MCTL12/	0000 00002 ⁽²⁾	1
01DC16	CAN2 Local Mask Register B Extended ID4	C2LMBR4	XX00 00002 ⁽²⁾	
01DD16	CAN2 Message Slot 13 Control Register	C2MCTL13	0016 ⁽²⁾	1
01DE16	CAN2 Message Slot 14 Control Register	C2MCTL14	0016 ⁽²⁾	-1 ↓
01DF16	CAN2 Message Slot 15 Control Register	C2MCTL15	0016 ⁽²⁾	

Blank spaces are reserved. No access is allowed. NOTES:

1. The BANKSEL bit in the C2CTLR1 register switches functions for addresses 01C016 to 01DF16.

2. Values are obtained by setting the SLEEP bit in the C2SLPR register to "1" (sleep mode exited) after reset and supplying a clock to the CAN module.

Address	Register	Symbol	Value after RESET
01E016	CAN0 Message Slot Buffer 0 Standard ID0	COSLOT0_0	XX16
01E116	CAN0 Message Slot Buffer 0 Standard ID1	C0SLOT0_1	XX16
01E216	CAN0 Message Slot Buffer 0 Extended ID0	C0SLOT0_2	XX16
01E316	CAN0 Message Slot Buffer 0 Extended ID1	COSLOT0_3	XX16
01E416	CAN0 Message Slot Buffer 0 Extended ID2	C0SLOT0_4	XX16
01E516	CAN0 Message Slot Buffer 0 Data Length Code	COSLOT0_5	XX16
01E616	CANO Message Slot Buffer 0 Data 0	COSLOT0_6	XX16
01E716	CAN0 Message Slot Buffer 0 Data 1	COSLOT0_7	XX16
01E816	CANO Message Slot Buffer 0 Data 2	C0SLOT0_8	XX16
01E916	CANO Message Slot Buffer 0 Data 3	C0SLOT0_9	XX16
01EA16	CANO Message Slot Buffer 0 Data 4	C0SLOT0_10	XX16
01EB16	CANO Message Slot Buffer 0 Data 5	C0SLOT0_11	XX16
01EC16	CANO Message Slot Buffer 0 Data 5	C0SLOT0_12	XX16
01ED16			XX16
	CANO Message Slot Buffer 0 Data 7	COSLOTO_13	
01EE16	CANO Message Slot Buffer 0 Time Stamp High-Order	COSLOTO_14	XX16
01EF16	CANO Message Slot Buffer 0 Time Stamp Low-Order	COSLOT0_15	XX16
01F016	CAN0 Message Slot Buffer 1 Standard ID0	C0SLOT1_0	XX16
01F116	CAN0 Message Slot Buffer 1 Standard ID1	C0SLOT1_1	XX16
01F216	CAN0 Message Slot Buffer 1 Extended ID0	C0SLOT1_2	XX16
01F316	CAN0 Message Slot Buffer 1 Extended ID1	C0SLOT1_3	XX16
01F416	CAN0 Message Slot Buffer 1 Extended ID2	C0SLOT1_4	XX16
01F516	CAN0 Message Slot Buffer 1 Data Length Code	C0SLOT1_5	XX16
01F616	CAN0 Message Slot Buffer 1 Data 0	C0SLOT1_6	XX16
01F716	CAN0 Message Slot Buffer 1 Data 1	C0SLOT1_7	XX16
01F816	CAN0 Message Slot Buffer 1 Data 2	C0SLOT1_8	XX16
01F916	CAN0 Message Slot Buffer 1 Data 3	C0SLOT1_9	XX16
01FA16	CAN0 Message Slot Buffer 1 Data 4	C0SLOT1_10	XX16
01FB16	CAN0 Message Slot Buffer 1 Data 5	C0SLOT1_11	XX16
01FC16	CAN0 Message Slot Buffer 1 Data 6	C0SLOT1_12	XX16
01FD16	CAN0 Message Slot Buffer 1 Data 7	C0SLOT1_13	XX16
01FE16	CAN0 Message Slot Buffer 1 Time Stamp High-Order	C0SLOT1_14	XX16
01FF16	CANO Message Slot Buffer 1 Time Stamp Low-Order	C0SLOT1_15	XX16
020016			XX01 0X012 ⁽¹⁾
020116	CAN0 Control Register 0	C0CTLR0	XXXX 00002 ⁽¹⁾
020216			0000 00002 ⁽¹⁾
020316	CAN0 Status Register	COSTR	X000 0X012 ⁽¹⁾
020316			0016 ⁽¹⁾
020516	CAN0 Extended ID Register	COIDR	0016 ⁽¹⁾
020516			0000 XXXX2 ⁽¹⁾
	CAN0 Configuration Register	COCONR	
020716			0000 00002 ⁽¹⁾ 0016 ⁽¹⁾
020816	CAN0 Time Stamp Register	COTSR	
020916			0016 ⁽¹⁾
020A16	CAN0 Transmit Error Count Register	COTEC	0016 ⁽¹⁾
020B16	CAN0 Receive Error Count Register	COREC	0016 ⁽¹⁾
020C16	CAN0 Slot Interrupt Status Register	COSISTR	0016 ⁽¹⁾
020D16			0016 ⁽¹⁾
020E16			
020F16			

Blank spaces are reserved. No access is allowed.

NOTE:

1. Values are obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) after reset and supplying a clock to the CAN module.

RENESAS

Address	Register	Symbol	Value after RESET	
021016			0016 ⁽²⁾	
021116	CAN0 Slot Interrupt Mask Register	COSIMKR	0016 ⁽²⁾	
021216				_
021316				_
021416	CAN0 Error Interrupt Mask Register	COEIMKR	XXXX X0002 ⁽²⁾	
021516	CAN0 Error Interrupt Status Register	COEISTR	XXXX X0002 ⁽²⁾	_
021616	CAN0 Error Cause Register	COEFR	0016 ⁽²⁾	_
021716	CAN0 Baud Rate Prescaler	COBRP	0000 00012 ⁽²⁾	_
021816				_
021916	CAN0 Mode Register	COMDR	XXXX XX002 ⁽²⁾	_
021A16				
021B16				
021C16				
021D16				
021E16				
021F16				
022016			0016 ⁽²⁾	
022116	CAN0 Single Shot Control Register	COSSCTLR	0016 ⁽²⁾	
022216				
022316				
022416			0016 ⁽²⁾	
022516	CAN0 Single Shot Status Register	COSSSTR	0016 ⁽²⁾	
022616				
022716				
022816	CAN0 Global Mask Register Standard ID0	C0GMR0	XXX0 00002 ⁽²⁾	
022916	CAN0 Global Mask Register Standard ID1	C0GMR1	XX00 00002 ⁽²⁾	
022A16	CAN0 Global Mask Register Extended ID0	C0GMR2	XXXX 00002 ⁽²⁾	
022B16	CAN0 Global Mask Register Extended ID1	C0GMR3	0016 ⁽²⁾	
022C16	CAN0 Global Mask Register Extended ID2	C0GMR4	XX00 00002 ⁽²⁾	
022D16				
022E16				
022F16				
	CAN0 Message Slot 0 Control Register /	C0MCTL0/	0000 00002 ⁽²⁾	(Note 1)
023016	CAN0 Local Mask Register A Standard ID0	COLMARO	XXX0 00002 ⁽²⁾	
	CAN0 Message Slot 1 Control Register /	C0MCTL1/	0000 00002 ⁽²⁾	
023116	CAN0 Local Mask Register A Standard ID1	C0LMAR1	XX00 00002 ⁽²⁾	
	CAN0 Message Slot 2 Control Register /	C0MCTL2/	0000 00002 ⁽²⁾	
023216	CAN0 Local Mask Register A Extended ID0	C0LMAR2	XXXX 00002 ⁽²⁾	
	CAN0 Message Slot 3 Control Register /	C0MCTL3/	0016 ⁽²⁾	
023316	CAN0 local Mask Register A Extended ID1	C0LMAR3	0016 ⁽²⁾	
	CAN0 Message Slot 4 Control Register /	C0MCTL4/	0000 00002 ⁽²⁾	
023416	CAN0 Local Mask Register A Extended ID2	C0LMAR4	XX00 00002 ⁽²⁾	
023516	CAN0 Message Slot 5 Control Register	C0MCTL5	0016 ⁽²⁾	
023616	CAN0 Message Slot 6 Control Register	C0MCTL6	0016 ⁽²⁾	
023716	CAN0 Message Slot 7 Control Register	C0MCTL7	0016 ⁽²⁾	-
	CAN0 Message Slot 8 Control Register /	COMCTL8/	0000 00002 ⁽²⁾	-1
023816	CAN0 Local Mask Register B Standard ID0	C0LMBR0	XXX0 00002 ⁽²⁾	
	CAN0 Message Slot 9 Control Register /	COMCTL9/	0000 00002 ⁽²⁾	
023916	CAN0 Local Mask Register B Standard ID1	C0LMBR1	XX00 00002 ⁽²⁾	

Blank spaces are reserved. No access is allowed.

NOTES:

- 1. The BANKSEL bit in the COCTLR1 register switches functions for addresses 022016 to 023F16.
- 2. Values are obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) after reset and supplying a clock to the CAN module.

Address	Register	Symbol	Value after RESET	
	CAN0 Message Slot 10 Control Register /	COMCTL10/	0000 00002 ⁽²⁾	
023A16	CAN0 Local Mask Register B Extended ID0	C0LMBR2	XXXX 00002 ⁽²⁾	I T
	CAN0 Message Slot 11 Control Register /	C0MCTL11/	0016 ⁽²⁾	
023B16	CAN0 Local Mask Register B Extended ID1	C0LMBR3	0016 ⁽²⁾	
	CAN0 Message Slot 12 Control Register /	C0MCTL12/	0000 00002 ⁽²⁾	
023C16	CAN0 Local Mask Register B Extended ID2	C0LMBR4	XX00 00002 ⁽²⁾	(Note 1)
023D16	CAN0 Message Slot 13 Control Register	C0MCTL13	0016 ⁽²⁾	
023E16	CAN0 Message Slot 14 Control Register	C0MCTL14	0016 ⁽²⁾	
023F16	CAN0 Message Slot 15 Control Register	C0MCTL15	0016 ⁽²⁾	
024016	CAN0 Slot Buffer Select Register	COSBS	0016 ⁽²⁾	
024116	CAN0 Control Register 1	C0CTLR1	X000 00XX2 ⁽²⁾	
024216	CAN0 Sleep Control Register	COSLPR	XXXX XXX02	
024316				
024416		00170	0016 ⁽²⁾	
024516	CAN0 Acceptance Filter Support Register	COAFS	0116 ⁽²⁾	
024616				
024716				
024816				
024916				
024A16				
024B16				
024C16				
024D16				
024E16				
024F16				
025016	CAN1 Slot Buffer Select Register	C1SBS	0016 ⁽³⁾	
025116	CAN1 Control Register 1	C1CTLR1	X000 00XX2 ⁽³⁾	
025216	CAN1 Sleep Control Register	C1SLPR	XXXX XXX02 ⁽³⁾	
025316				
025416		01450	0016 ⁽³⁾	
025516	CAN1 Acceptance Filter Support Register	C1AFS	0116 ⁽³⁾	
025616				
025716				
025816				
025916				
025A16				
025B16				
025C16				
025D16				1
025E16				
025F16				1

Blank spaces are reserved. No access is allowed.

NOTES:

- 1. The BANKSEL bit in the C0CTLR1 register switches functions for addresses 022016 to 023F16.
- 2. Values are obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) after reset and supplying a clock to the CAN module.
- 3. Values are obtained by setting the SLEEP bit in the C1SLPR register to "1" (sleep mode exited) after reset and supplying a clock to the CAN module.

Address	Register	Symbol	Value after RESET
026016	CAN1 Message Slot Buffer 0 Standard ID0	C1SLOT0_0	XX16
026116	CAN1 Message Slot Buffer 0 Standard ID1	C1SLOT0_1	XX16
026216	CAN1 Message Slot Buffer 0 Extended ID0	C1SLOT0_2	XX16
026316	CAN1 Message Slot Buffer 0 Extended ID1	C1SLOT0_3	XX16
026416	CAN1 Message Slot Buffer 0 Extended ID2	C1SLOT0_4	XX16
026516	CAN1 Message Slot Buffer 0 Data Length Code	C1SLOT0_5	XX16
026616	CAN1 Message Slot Buffer 0 Data 0	C1SLOT0_6	XX16
026716	CAN1 Message Slot Buffer 0 Data 1	C1SLOT0_7	XX16
026816	CAN1 Message Slot Buffer 0 Data 2	C1SLOT0_8	XX16
026916	CAN1 Message Slot Buffer 0 Data 3	C1SLOT0_9	XX16
026A16	CAN1 Message Slot Buffer 0 Data 4	C1SLOT0_10	XX16
026B16	CAN1 Message Slot Buffer 0 Data 5	C1SLOT0_11	XX16
026C16	CAN1 Message Slot Buffer 0 Data 6	C1SLOT0_12	XX16
026D16	CAN1 Message Slot Buffer 0 Data 7	C1SLOT0_13	XX16
026E16	CAN1 Message Slot Buffer 0 Time Stamp High-Order	C1SLOT0_14	XX16
026F16	CAN1 Message Slot Buffer 0 Time Stamp Low-Order	C1SLOT0_15	XX16
027016	CAN1 Message Slot Buffer 1 Standard ID0	 C1SLOT1_0	XX16
027116	CAN1 Message Slot Buffer 1 Standard ID1	 C1SLOT1_1	XX16
027216	CAN1 Message Slot Buffer 1 Extended ID0	C1SLOT1 2	XX16
027316	CAN1 Message Slot Buffer 1 Extended ID1	C1SLOT1_3	XX16
027416	CAN1 Message Slot Buffer 1 Extended ID2	C1SLOT1_4	XX16
027516	CAN1 Message Slot Buffer 1 Data Length Code	C1SLOT1_5	XX16
027616	CAN1 Message Slot Buffer 1 Data 0	C1SLOT1_6	XX16
027716	CAN1 Message Slot Buffer 1 Data 1	C1SLOT1_7	XX16
027816	CAN1 Message Slot Buffer 1 Data 2	C1SLOT1_8	XX16
027916	CAN1 Message Slot Buffer 1 Data 3	C1SLOT1_9	XX16
027A16	CAN1 Message Slot Buffer 1 Data 4	C1SLOT1_10	XX16
027B16	CAN1 Message Slot Buffer 1 Data 5	C1SLOT1_11	XX16
027C16	CAN1 Message Slot Buffer 1 Data 6	C1SLOT1_12	XX16
027D16	CAN1 Message Slot Buffer 1 Data 7	C1SLOT1_13	XX16
027E16	CAN1 Message Slot Buffer 1 Time Stamp High-Order	C1SLOT1_14	XX16
027F16	CAN1 Message Slot Buffer 1 Time Stamp Low-Order	C1SLOT1_15	XX16
028016			XX01 0X012 ⁽¹⁾
028116	CAN1 Control Register 0	C1CTLR0	XXXX 00002 ⁽¹⁾
028216			0000 00002 ⁽¹⁾
028316	CAN1 Status Register	C1STR	X000 0X012 ⁽¹⁾
028416			0016 ⁽¹⁾
028516	CAN1 Extended ID Register	C1IDR	0016 ⁽¹⁾
028616			0000 XXXX2 ⁽¹⁾
028716	CAN1 Configuration Register	C1CONR	0000 00002 ⁽¹⁾
028816			0016 ⁽¹⁾
028916	CAN1 Time Stamp Register	C1TSR	0016 ⁽¹⁾
028916 028A16	CAN1 Transmit Error Count Register	C1TEC	0016 ⁽¹⁾
028B16	CAN'T Hanshill End Count Register	C1REC	0016 ⁽¹⁾
028C16			0016 ⁽¹⁾
028D16	CAN1 Slot Interrupt Status Register	C1SISTR	0016 ⁽¹⁾
028D16			
VZOFID			

Blank spaces are reserved. No access is allowed.

NOTE:

1. Values are obtained by setting the SLEEP bit in the C1SLPR register to "1" (sleep mode exited) after reset and supplying the clock to the CAN module.

RENESAS

Address	Register	Symbol	Value after RESET	
029016	CAN1 Slot Interrupt Mask Register	C1SIMKR	0016 ⁽²⁾	
029116	CANT Slot Interrupt Mask Register	CISIWIKR	0016 ⁽²⁾	
029216				
029316				
029416	CAN1 Error Interrupt Mask Register	C1EIMKR	XXXX X0002 ⁽²⁾	
029516	CAN1 Error Interrupt Status Register	C1EISTR	XXXX X0002 ⁽²⁾	
029616	CAN1 Error Factor Register	C1EFR	0016 ⁽²⁾	
029716	CAN1 Baud Rate Prescaler	C1BRP	0000 00012 ⁽²⁾	
029816				
029916	CAN1 Mode Register	C1MDR	XXXX XX002 ⁽²⁾	
029A16				
029B16				
029C16				
029D16				_
029E16				
029F16				
02A016			0016 ⁽²⁾	
02A116	CAN1 Single Shot Control Register	C1SSCTLR	0016 ⁽²⁾	
02A216	1			$\dashv \uparrow$
02A316				
02A416			0016 ⁽²⁾	
02A516	CAN1 Single Shot Status Register	C1SSSTR	0016 ⁽²⁾	
02A616				
02A716				
02A710	CAN1 Global Mask Register Standard ID0	C1GMR0	XXX0 00002 ⁽²⁾	
02A016	CAN1 Global Mask Register Standard ID0	C1GMR0	XX00 00002 ⁽²⁾	
	-		XXXX 00002 ⁽²⁾	
02AA16	CAN1 Global Mask Register Extended ID0	C1GMR2	0016 ⁽²⁾	_
02AB16	CAN1 Global Mask Register Extended ID1	C1GMR3	XX00 00002 ⁽²⁾	_
02AC16	CAN1 Global Mask Register Extended ID2	C1GMR4	XXUU UUUU2(-/	_
02AD16				_
02AE16				_
02AF16	CANIA Magagaga Slat 0 Control Dominium /		0000.0000-(2)	(Note 1
02B016	CAN1 Message Slot 0 Control Register /	C1MCTL0/	0000 00002 ⁽²⁾	
	CAN1 Local Mask Register A Standard ID0	C1LMAR0	XXX0 00002 ⁽²⁾	
02B116	CAN1 Message Slot 1 Control Register /	C1MCTL1/	0000 00002 ⁽²⁾	
	CAN1 Local Mask Register A Standard ID1	C1LMAR1	XX00 00002 ⁽²⁾	
02B216	CAN1 Message Slot 2 Control Register /	C1MCTL2/	0000 00002 ⁽²⁾	
	CAN1 Local Mask Register A Extended ID0	C1LMAR2	XXXX 00002 ⁽²⁾	
02B316	CAN1 Message Slot 3 Control Register /	C1MCTL3/	0016 ⁽²⁾	
020010	CAN1 Local Mask Register A Extended ID1	C1LMAR3	0016 ⁽²⁾	
02B416	CAN1 Message Slot 4 Control Register /	C1MCTL4/	0000 00002 ⁽²⁾	
020410	CAN1 Local Mask Register A Extended ID2	C1LMAR4	XX00 00002 ⁽²⁾	
02B516	CAN1 Message Slot 5 Control Register	C1MCTL5	0016 ⁽²⁾	
02B616	CAN1 Message Slot 6 Control Register	C1MCTL6	0016 ⁽²⁾	
02 B7 16	CAN1 Message Slot 7 Control Register	C1MCTL7	0016 ⁽²⁾	
0000	CAN1 Message Slot 8 Control Register /	C1MCTL8/	0000 00002 ⁽²⁾	
02B816	CAN1 Local Mask Register B Standard ID0	C1LMBR0	XXX0 00002 ⁽²⁾	
	CAN1 Message Slot 9 Control Register /	C1MCTL9/	0000 00002 ⁽²⁾	
02B916	CAN1 Local Mask Register B Standard ID1	C1LMBR1	XX00 00002 ⁽²⁾	

Blank spaces are reserved. No access is allowed.

NOTES:

- 1. The BANKSEL bit in the C1CTLR1 register switches functions for addresses 02A016 to 02BF16.
- 2. Values are obtained by setting the SLEEP bit in the C1SLPR register to "1" (sleep mode exited) after reset and supplying a clock to the CAN module.

Address	Register	Symbol	Value after RESET	7
	CAN1 Message Slot 10 Control Register /	C1MCTL10/	0000 00002 ⁽²⁾	
02BA16	CAN1 Local Mask Register B Extended ID0	C1LMBR2	XXXX 00002 ⁽²⁾	I T
	CAN1 Message Slot 11 Control Register /	C1MCTL11/	0016 ⁽²⁾	-
02BB16	CAN1 Local Mask Register B Extended ID1	C1LMBR3	0016 ⁽²⁾	
	CAN1 Message Slot 12 Control Register /	C1MCTL12/	0000 00002 ⁽²⁾	
02BC16	CAN1 Local Mask Register B Extended ID2	C1LMBR4	XX00 00002 ⁽²⁾	(Note 1)
02BD16	CAN1 Message Slot 13 Control Register	C1MCTL13	0016 ⁽²⁾	
02BE16	CAN1 Message Slot 14 Control Register	C1MCTL14	0016 ⁽²⁾	-
02BF16	CAN1 Message Slot 15 Control Register	C1MCTL15	0016 ⁽²⁾	-
02C016			XX16	
02C116	X0 Register Y0 Register	X0R,Y0R	XX16	
02C216			XX16	
02C316	X1 Register Y1 Register	X1R,Y1R	XX16	
02C416			XX16	-
02C516	X2 Register Y2 Register	X2R,Y2R	XX16	
02C616			XX16	-
02C716	X3 Register Y3 Register	X3R,Y3R	XX16	
02C816			XX16	
02C916	X4 Register Y4 Register	X4R,Y4R	XX16	
02CA16			XX16	
02CB16	X5 Register Y5 Register	X5R,Y5R	XX16	
02CC16			XX16	
02CD16	X6 Register Y6 Register	X6R,Y6R	XX16	
02CE16			XX16	
02CF16	X7 Register Y7 Register	X7R,Y7R	XX16	
02D016			XX16	
02D116	X8 Register Y8 Register	X8R,Y8R	XX16	
02D216			XX16	
02D316	X9 Register Y9 Register	X9R,Y9R	XX16	
02D416			XX16	
02D516	X10 Register Y10 Register	X10R,Y10R	XX16	
02D616			XX16	
02D716	X11 Register Y11 Register	X11R,Y11R	XX16	
02D816			XX16	
02D916	X12 Register Y12 Register	X12R,Y12R	XX16	
02DA16			XX16	
02DB16	X13 Register Y13 Register	X13R,Y13R	XX16	
02DC16			XX16	1
02DD16	X14 Register Y14 Register	X14R,Y14R	XX16	
02DE16			XX16	1
02DF16	X15 Register Y15 Register	X15R,Y15R	XX16	

Blank spaces are reserved. No access is allowed.

NOTES:

- 1. The BANKSEL bit in the C1CTLR1 register switches functions for addresses 02A016 to 02BF16.
- 2. Values are obtained by setting the SLEEP bit in the C1SLPR register to "1" (sleep mode exited) after reset and supplying a clock to the CAN module.

Address	Register	Symbol	Value after RESET
02E016	X/Y Control Register	XYC	XXXX XX002
02E116			
02E216			
02E316			
02E416	UART1 Special Mode Register 4	U1SMR4	0016
02E516	UART1 Special Mode Register 3	U1SMR3	0016
02E616	UART1 Special Mode Register 2	U1SMR2	0016
02E716	UART1 Special Mode Register	U1SMR	0016
02E816	UART1 Transmit/Receive Mode Register	U1MR	0016
02E916	UART1 Bit Rate Register	U1BRG	XX16
02EA16			XX16
02EB16	UART1 Transmit Buffer Register	U1TB	XX16
02EC16	UART1 Transmit/Receive Control Register 0	U1C0	0000 10002
02ED16	UART1 Transmit/Receive Control Register 1	U1C1	0000 00102
02EE16			XX16
02EF16	UART1 Receive Buffer Register	U1RB	XX16
02E016			
02F116			
02F216			
02F316			
02F416	UART4 Special Mode Register 4	U4SMR4	0016
02F516	UART4 Special Mode Register 3	U4SMR3	0016
02F616	UART4 Special Mode Register 3	U4SMR2	0016
02F716	UART4 Special Mode Register	U4SMR	0016
02F816	UART4 Transmit/Receive Mode Register	U4MR	0016
02F916	UART4 Bit Rate Register	U4BRG	XX16
02F916	OART4 DIL Rale Register	046KG	XX16
02FB16	UART4 Transmit Buffer Register	U4TB	XX16
02FD16	UART4 Transmit/Receive Control Register 0	U4C0	0000 10002
02FC16	UART4 Transmit/Receive Control Register 0	U4C1	0000 10002
02FD16 02FE16		0401	XX16
02FE16	UART4 Receive Buffer Register	U4RB	XX16
		TDOD	
030016	Timer B3, B4, B5 Count Start Flag	TBSR	000X XXXX2
030116			XX16
030216	Timer A1-1 Register	TA11	-
030316			XX16
030416	Timer A2-1 Register	TA21	XX16
030516			XX16
030616	Timer A4-1 Register	TA41	XX16
030716			XX16
030816	Three-Phase PWM Control Register 0	INVC0	0016
030916	Three-Phase PWM Control Register 1	INVC1	0016
030A16	Three-Phase Output Buffer Register 0	IDB0	XX11 11112
030B16	Three-Phase Output Buffer Register 1	IDB1	XX11 11112
030C16	Dead Time Timer	DTT	XX16
030D16	Timer B2 Interrupt Generation Frequency Set Counter	ICTB2	XX16
030E16			
030F16			

Address	Register	Symbol	Value after RESET
031016	The set Do Da sister	TDO	XX16
031116	Timer B3 Register	TB3	XX16
031216	Times D4 De sietes	TD4	XX16
031316	Timer B4 Register	TB4	XX16
031416		TDE	XX16
031516	Timer B5 Register	TB5	XX16
031616			
031716			
031816			
031916			
031A16			
031B16	Timer B3 Mode Register	TB3MR	00XX 00002
031C16	Timer B4 Mode Register	TB4MR	00XX 00002
031D16	Timer B5 Mode Register	TB5MR	00XX 00002
031E16			
031F16	External Interrupt Request Source Select Register	IFSR	0016
032016			
032116			
032216			
032316			
032416	UART3 Special Mode Register 4	U3SMR4	0016
032516	UART3 Special Mode Register 3	U3SMR3	0016
032616	UART3 Special Mode Register 2	U3SMR2	0016
032716	UART3 Special Mode Register	U3SMR	0016
032816	UART3 Transmit/Receive Mode Register	U3MR	0016
032916	UART3 Bit Rate Register	U3BRG	XX16
032A16		LIOTO	XX16
032B16	UART3 Transmit Buffer Register	U3TB	XX16
032C16	UART3 Transmit/Receive Control Register 0	U3C0	0000 10002
032D16	UART3 Transmit/Receive Control Register 1	U3C1	0000 00102
032E16		LIODD	XX16
032F16	UART3 Receive Buffer Register	U3RB	XX16
033016			
033116			
033216			
033316			
033416	UART2 Special Mode Register 4	U2SMR4	0016
033516	UART2 Special Mode Register 3	U2SMR3	0016
033616	UART2 Special Mode Register 2	U2SMR2	0016
033716	UART2 Special Mode Register	U2SMR	0016
033816	UART2 Transmit/Receive Mode Register	U2MR	0016
033916	UART2 Bit Rate Register	U2BRG	XX16
033A16	UART2 Transmit Buffer Register	U2TB	XX16
033B16		0210	XX16
033C16	UART2 Transmit/Receive Control Register 0	U2C0	0000 10002
033D16	UART2 Transmit/Receive Control Register 1	U2C1	0000 00102
033E16	UART2 Receive Buffer Register	U2RB	XX16
033F16	UNITZ NECEVE DUITE NEGISIEI		XX16

Address	Register	Symbol	Value after RESET
034016	Count Start Flag	TABSR	0016
034116	Clock Prescaler Reset Flag	CPSRF	0XXX XXXX2
034216	One-Shot Start Flag	ONSF	0016
034316	Trigger Select Register	TRGSR	0016
034416	Up/Down Flag	UDF	0016
034516			
034616			XX16
034716	Timer A0 Register	TAO	XX16
034816			XX16
034916	Timer A1 Register	TA1	XX16
034A16			XX16
034B16	Timer A2 Register	TA2	XX16
034C16			XX16
034D16	Timer A3 Register	TA3	XX16
034E16			XX16
034F16	Timer A4 Register	TA4	XX16
035016			XX16
035116	Timer B0 Register	TB0	XX16
035216			XX16
035316	Timer B1 Register	TB1	XX16
035416			XX16
035516	Timer B2 Register	TB2	XX16
035616	Timer A0 Mode Register	TAOMR	0016
035716	Timer A1 Mode Register	TA1MR	0016
035816	Timer A2 Mode Register	TA2MR	0016
035916	Timer A3 Mode Register	TA3MR	0016
035A16	Timer A4 Mode Register	TA4MR	0016
035B16	Timer B0 Mode Register	TBOMR	00XX 00002
035C16	Timer B1 Mode Register	TB1MR	00XX 00002
035D16	Timer B2 Mode Register	TB1MR	00XX 00002
035E16	Timer B2 Special Mode Register	TB2SC	XXXX XXX02
035F16	Count Source Prescaler Register ⁽¹⁾	TCSPR	0XXX 00002
036016			
036116			
036216			
036316			
036416	UART0 Special Mode Register 4	U0SMR4	0016
036516	UARTO Special Mode Register 3	U0SMR4	0016
036516	UARTO Special Mode Register 2	U0SMR3	0016
036616	UARTO Special Mode Register	U0SMR2	
036716	UARTO Transmit/Receive Mode Register	U0MR	0016
036916	UART0 Bit Rate Register	U0BRG	XX16
036A16	UART0 Transmit Buffer Register	U0TB	XX16
036B16			XX16
036C16	UARTO Transmit/Receive Control Register 0	U0C0	0000 10002
036D16	UART0 Transmit/Receive Control Register 1	U0C1	0000 00102
036E16	UART0 Receive Buffer Register	UORB	XX16
036F16			XX16

Blank spaces are reserved. No access is allowed.

NOTE:

1. The TCSPR register maintains values set before reset, even after software reset or watchdog timer reset has been performed.

Address	Register	Symbol	Value after RESET
037016			
037116			
037216			
037316			
037416			
037516			
037616			
037716			
037816	DMA0 Request Source Select Register	DM0SL	0X00 00002
037916	DMA1 Request Source Select Register	DM1SL	0X00 00002
037A16	DMA2 Request Source Select Register	DM2SL	0X00 00002
037B16	DMA3 Request Source Select Register	DM3SL	0X00 00002
037C16			XX16
037D16	CRC Data Register	CRCD	XX16
037E16	CRC Input Register	CRCIN	XX16
037F16	· · · ·		
038016			XXXX XXXX2
038116	A/D0 Register 0	AD00	0000 00002
038216			XX16
038316	A/D0 Register 1	AD01	XX16
038416			XX16
038516	A/D0 Register 2	AD02	XX16
038616			XX16
038716	A/D0 Register 3	AD03	XX16
038816			XX16
038916	A/D0 Register 4	AD04	XX16
038A16			XX16
038B16	A/D0 Register 5	AD05	XX16
038C16			XX16
038D16	A/D0 Register 6	AD06	XX16
038E16			XX16
038F16	A/D0 Register 7	AD07	XX16
039016			
039116			
039216	A/D0 Control Register 4	AD0CON4	XXXX 00XX2
039316			
039416	A/D0 Control Register 2	AD0CON2	XX0X X0002
039516	A/D0 Control Register 3	AD0CON3	XXXX X0002
039616	A/D0 Control Register 0	AD0CON0	0016
039716	A/D0 Control Register 1	AD0CON1	0016
039816	D/A Register 0	DA0	XX16
039916			
039A16	D/A Register 1	DA1	XX16
039B16			
039C16	D/A Control Register	DACON	XXXX XX002
039D16	-		
039E16			
039F16			

<144-pin package>

Address	Register	Symbol	Value after RESET
03A016	Function Select Register A8	PS8	X000 00002
03A116	Function Select Register A9	PS9	0016
03A216			
03A316			
03A416			
03A516			
03A616			
03A716	Function Select Register D1	PSD1	X0XX XX002
03A816			
03A916			
03AA16			
03AB16			
03AC16	Function Select Register C2	PSC2	XXXX X00X2
03AD16	Function Select Register C3	PSC3	X0XX XXXX2
03AE16			
03AF16	Function Select Register C	PSC	00X0 00002
03B016	Function Select Register A0	PS0	0016
03B116	Function Select Register A1	PS1	0016
03B216	Function Select Register B0	PSL0	0016
03B316	Function Select Register B1	PSL1	0016
03B416	Function Select Register A2	PS2	00X0 00002
03B516	Function Select Register A3	PS3	0016
03B616	Function Select Register B2	PSL2	00X0 00002
03B716	Function Select Register B3	PSL3	0016
03B816			
03B916	Function Select Register A5	PS5	XXX0 00002
03BA16			
03BB16			
03BC16			
03BD16			
03BE16			
03BF16			
03C016	Port P6 Register	P6	XX16
03C116	Port P7 Register	P7	XX16
03C216	Port P6 Direction Register	PD6	0016
03C316	Port P7 Direction Register	PD7	0016
03C416	Port P8 Register	P8	XX16
03C516	Port P9 Register	P9	XX16
03C616	Port P8 Direction Register	PD8	00X0 00002
03C018	Port P9 Direction Register	PD9	0016
03C816	Port P10 Register	P10	XX16
03C916	Port P11 Register	P11	XX16
03C916	Port P10 Direction Register	PD10	0016
03CA16	Port P11 Direction Register	PD10 PD11	XXX0 00002
03CD16	Port P12 Register	PD11 P12	XX16
03CC16	Port P13 Register	P12 P13	XX16
03CD16 03CE16	Port P13 Register Port P12 Direction Register		
UJUE16	FUILFIZ DIRECTURE REGISTER	PD12	0016

X: Indeterminate

<144-pin package>

Address	Register	Symbol	Value after RESET
03D016	Port P14 Register	P14	XX16
03D116	Port P15 Register	P15	XX16
03D216	Port P14 Direction Register	PD14	X000 00002
03D316	Port P15 Direction Register	PD15	0016
03D416			
03D516			
03D616			
03D716			
03D816			
03D916			
03DA16	Pull-Up Control Register 2	PUR2	0016
03DB16	Pull-Up Control Register 3	PUR3	0016
03DC16	Pull-Up Control Register 4	PUR4	XXXX 00002
03DD16	· ·		
03DE16			
03DF16			
03E016	Port P0 Register	P0	XX16
03E116	Port P1 Register	P1	XX16
03E216	Port P0 Direction Register	PD0	0016
03E316	Port P1 Direction Register	PD1	0016
03E416	Port P2 Register	P2	XX16
03E516	Port P3 Register	P3	XX16
03E616	Port P2 Direction Register	PD2	0016
03E716	Port P3 Direction Register	PD3	0016
03E816	Port P4 Register	P4	XX16
03E916	Port P5 Register	P5	XX16
03EA16	Port P4 Direction Register	PD4	0016
03EB16	Port P5 Direction Register	PD5	0016
03EC16	Torr 5 Direction Register	1 03	0010
03ED16			
03ED16			
03EE16			
	Dull Un Constral Desister 0	DUDO	00.0
03F016	Pull-Up Control Register 0	PUR0	0016
03F116	Pull-Up Control Register 1	PUR1	XXXX 00002
03F216			
03F316			
03F416			
03F516			
03F616			
03F716			
03F816			
03F916			
03FA16			
03FB16			
03FC16			
03FD16			
03FE16			
03FF16	Port Control Register	PCR	XXXX XXX02

X: Indeterminate

<100-pin package>

Address	Register	Symbol	Value after RESET
03A016			
03A116			
03A216			
03A316			
03A416			
03A516			
03A616			
03A716	Function Select Register D1	PSD1	X0XX XX002
03A816			
03A916			
03AA16			
03AB16			
03AC16	Function Select Register C2	PSC2	XXXX X00X2
03AD16	Function Select Register C3	PSC3	X0XX XXXX2
03AE16	ů		
03AF16	Function Select Register C	PSC	00X0 00002
03B016	Function Select Register A0	PS0	0016
03B116	Function Select Register A1	PS1	0016
03B216	Function Select Register B0	PSL0	0016
03B316	Function Select Register B1	PSL1	0016
03B416	Function Select Register A2	PS2	00X0 00002
03B516	Function Select Register A3	PS3	0016
03B616	Function Select Register B2	PSL2	00X0 00002
03B716	Function Select Register B3	PSL3	0016
03B816	ů		
03B916			
03BA16			
03BB16			
03BC16			
03BD16			
03BE16			
03BF16			
03C016	Port P6 Register	P6	XX16
03C116	Port P7 Register	P7	XX16
03C216	Port P6 Direction Register	PD6	0016
03C316	Port P7 Direction Register	PD7	0016
03C416	Port P8 Register	P8	XX16
03C516	Port P9 Register	P9	XX16
03C616	Port P8 Direction Register	PD8	00X0 00002
03C716	Port P9 Direction Register	PD9	0016
03C816	Port P10 Register	P10	XX16
03C916	~		
03CA16	Port P10 Direction Register	PD10	0016
03CB16	Set default value to "FF16"		
03CC16			
03CD16			
03CE16	Set default value to "FF16"		
03CF16	Set default value to "FF16"		

X: Indeterminate

<100-pin package>

Address	Register	Symbol	Value after RESET
03D016			
03D116			
03D216	Set default value to "FF16"		
03D316	Set default value to "FF16"		
03D416			
03D516			
03D616			
03D716			
03D816			
03D916			
03DA16	Pull-Up Control Register 2	PUR2	0016
03DB16	Pull-Up Control Register 3	PUR3	0016
03DC16	Set default value to "0016"		
03DD16			
03DE16			
03DF16			
03E016	Port P0 Register	P0	XX16
03E116	Port P1 Register	P1	XX16
03E216	Port P0 Direction Register	PD0	0016
03E316	Port P1 Direction Register	PD1	0016
03E416	Port P2 Register	P2	XX16
03E516	Port P3 Register	P3	XX16
03E616	Port P2 Direction Register	PD2	0016
03E716	Port P3 Direction Register	PD3	0016
03E816	Port P4 Register	P4	XX16
03E916	Port P5 Register	P5	XX16
03EA16	Port P4 Direction Register	PD4	0016
03EB16	Port P5 Direction Register	PD5	0016
03EC16			
03ED16			
03EE16			
03EF16			
03F016	Pull-up Control Register 0	PUR0	0016
03F116	Pull-up Control Register 1	PUR1	XXXX 00002
03F216			
03F316			
03F416			
03F516			
03F616			
03F716			
03F816			
03F916			
03FA16			
03FB16			
03FC16			
03FD16			
03FE16			
03FF16	Port Control Register	PCR	XXXX XXX02

X: Indeterminate

5. Reset

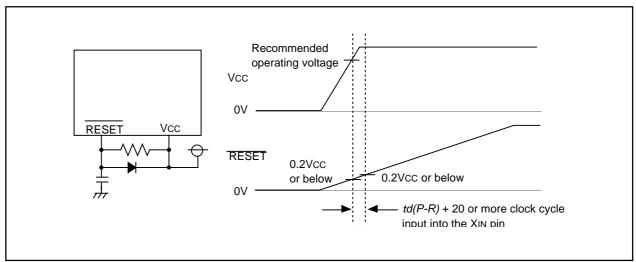
Hardware reset 1, software reset, and watchdog timer reset are available to reset the microcomputer.

5.1 Hardware Reset 1

Pins, the CPU and SFRs are reset by setting the RESET pin. If the supply voltage meets the recommended operating conditions, all pins are reset and become input ports⁽¹⁾ when a low-level ("L") signal is applied to the RESET pin. The oscillation circuit is also reset and the main clock starts oscillating. The CPU and SFRs are reset when a signal applied to the RESET pin changes "L" to high ("H"). The microcomputer executes the program in an address indicated by the reset vector. The internal RAM is not reset. When an "L" signal is applied to the RESET pin while writing data to the internal RAM, the internal RAM is in an indeterminate state.

Figure 5.1 shows an example of the reset circuit. Figure 5.2 shows a reset sequence.

NOTE:


1. Whether ports are pulled up or not is indeterminate until intenal supply voltage stabilizes.

5.1.1 Reset on a Stable Supply Voltage

- (1) Apply an "L" signal to the $\overline{\text{RESET}}$ pin
- (2) Provide 20 or more clock cycle inputs into the XIN pin
- (3) Apply an "H" signal to the $\overline{\text{RESET}}$ pin

5.1.2 Power-on Reset

- (1) Apply an "L" signal to the RESET pin
- (2) Raise the supply voltage to the recommended operating level
- (3) Wait for td(P-R) ms to allow the internal voltage to stabilize
- (4) Provide 20 or more clock cycle inputs into the XIN pin
- (5) Apply an "H" signal to the $\overline{\text{RESET}}$ pin

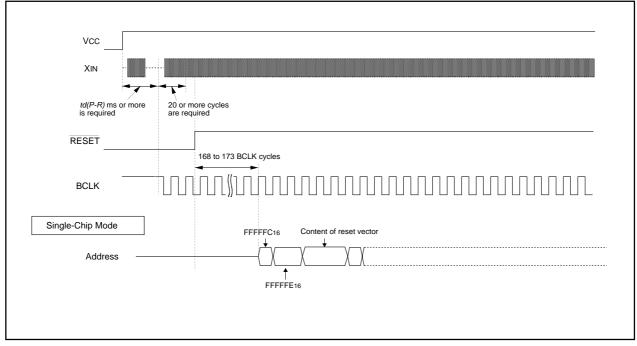


Figure 5.2 Reset Sequence

5.2 Software Reset

Pins, the CPU and SFRs are reset when the PM03 bit in the PM0 register is set to "1" (microcomputer reset). Then the microcomputer executes the program in an address determined by the reset vector.

Set the PM03 bit to "1" while the main clock is selected as the CPU clock and the main clock oscillation is stable.

In the software reset, the microcomputer does not reset a part of SFRs. Refer to **4. Special Function Registers (SFRs)** for details. Processor mode remains unchanged since the PM01 and PM00 bits in the PM0 register are not reset.

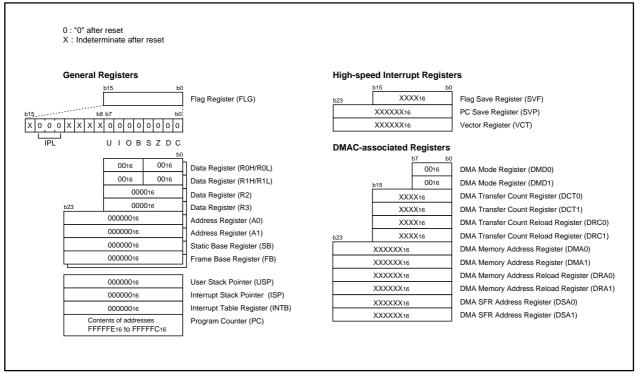
5.3 Watchdog Timer Reset

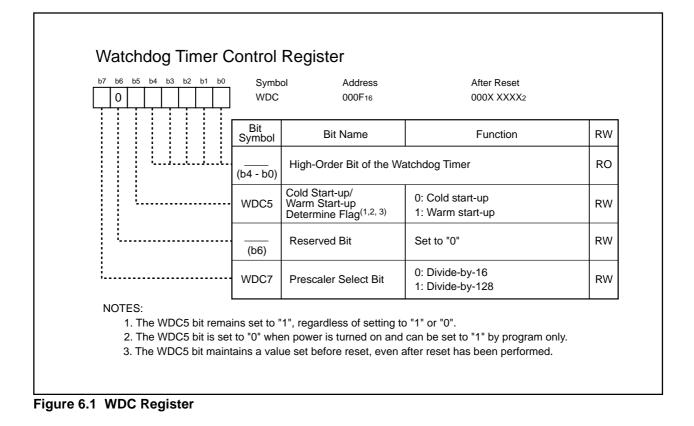
Pins, the CPU and SFRs are reset when the CM06 bit in the CM0 register is set to "1" (reset) and the watchdog timer underflows. Then the microcomputer executes the program in an address determined by the reset vector.

In the watchdog timer reset, the microcomputer does not reset a part of SFRs. Refer to **4. Special Function Registers (SFRs)** for details. Processor mode remains unchanged since the PM01 and PM00 bits in the PM0 register are not reset.

5.4 Internal Space

Figure 5.3 shows CPU register states after reset. Refer to **4. Special Function Registers (SFRs)** for SFR states after reset.




Figure 5.3 CPU Register States after Reset

6. Cold Start-up/Warm Start-up Determine Function

The WDC5 bit in the WDC register determines either cold start-up, power-on reset, or warm start-up, reset during the microcomputer running. Default value of the WDC5 bit is "0" (cold start-up) when power-on. It is set to "1" (warm start-up) by writing desired values to the WDC register. The WDC5 bit is not reset, regardless of a software reset or reset signal input.

Figure 6.1 shows the WDC registser. Figure 6.2 shows a block diagram of the cold start-up/warm start-up determine function. Figure 6.3 shows its operation exmaple.

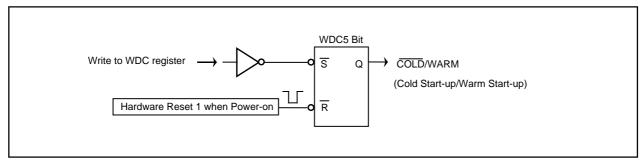


Figure 6.2 Cold Start-up/Warm Start-up Determine Function Block Diagram

Figure 6.3 Cold Start-up/Warm Start-up Determine Function Operation

7. Processor Mode

NOTE

Use M32C/88T in single-chip mode only.

M32C/88T cannot be used in memory expansion mode and microprocessor mode.

7.1 Types of Processor Mode

Only single-chip mode can be selected as a processor mode. SFRs, internal RAM, and internal ROM can be accessed. All pins are assigned to input/output ports or peripheral function input/output ports.

7.2 Setting of Processor Mode

The CNVss pin and the PM01 and PM00 bits in the PM0 register determine which processor mode is selected. Apply an low-level ("L") signal to the CNVss pin. Set the PM01 and PM00 bits to "002" (single-chip mode).

Figures 7.1 and 7.2 show the PM0 register and PM1 register. Figure 7.3 shows a memory map in singlechip mode.

0 b6 b5 b4 b3 b2 b	D1 b0 Syn PM0		After Reset 1000 00002 (CNVss = "L") 0000 00112 (CNVss = "H")	
	Bit Symbo	Bit Name	Function	RW
	PM00		0 0: Single-chip mode 0 1: Memory expansion mode ⁽⁸⁾	RW
	PM01	Processor Mode Bit ^(2, 3)	1 0: Do not set to this value 1 1: Microprocessor mode ⁽⁸⁾	RW
	PM02	R/W Mode Select Bit	0: RD / BHE / WR 1: RD / WRH / WRL	RW
	PM03	Software Reset Bit	The microcomputer is reset when this bit is set to "1". When read, its content is "0".	RW
	PM04	Multiplexed Bus Space	0 0: Multiplexed bus is not used 0 1: Access the CS2 area using the bus	RW
	PM05	Select Bit ⁽⁴⁾	0 1: Access the $\overline{CS1}$ area using the bus 1 1: Access all \overline{CS} areas using the bus ⁽⁵⁾	RW
	(b6)	Reserved Bit	Set to "0"	RW
	PM07	BCLK Output Disable Bit ⁽⁶⁾	0: BCLK is output ⁽⁷⁾ 1: BCLK is not output The CM01 and CM00 bits in the CM0 register determine pin functions	RW
 2. The PM01 and timer reset has 3. Set the PM01 PM01 and PM 4. The PM04 and • Set the P • Do not set 	I PM00 bits ma s performed. and PM00 bits 00 bits. I PM05 bits are M05 and PM04 it the PM05 and	intain values set before rese to "012" or "112" separately. e available in memory expar bits to "002" in mode 0. d PM04 bits to "012" in mod		
	l PM04 bits car the separate b	us after reset.	processor mode since the microcompu	

- 7. When the PM07 bit is set to "0" (BCLK output), set the CM01 and CM00 bits to "002".
- 8. M32C/88T cannot be used in memory expansion mode and microprocessor mode.

Figure 7.1 PM0 Register

b7 b6 b5 b	4 b3 b2 b1 b0	Sy PN	mbol Addres: 11 000516	s After Reset 0016	
		Bit Symbol	Bit Name	Function	RW
		PM10	External Memory Space	^{b1 b0} 0 0: Mode 0 (A ₂₀ to A ₂₃ for P44 to P47) 0 1: Mode 1 (A ₂₀ for P44, CS2 to CS0 for P45 to P47)	RW
		PM11	Mode Bit ^(2, 4)	1 0: Mode 2 (A20, A21 for P44, P45, <u>CS1</u> , <u>CS0</u> for P46, P47) 1 1: Mode 3 (CS3 to <u>CS0</u> for P44 to P47)	RW
		PM12	Internal Memory Wait Bit	0: No wait state 1: Wait state	RW
		PM13	SFR Area Wait Bit	0: 1 wait state 1: 2 Wait states	RW
		PM14		^{b5 b4} 0 0: No ALE 0 1: P53/BCLK ⁽³⁾	RW
		PM15	ALE Pin Select Bit ^(2, 4)	1 0: P56 1 1: P54/HLDA	RW
		(b7-b6)	Reserved Bit	Set to "0"	RW

3. Set the CM01 and CM00 bits in the CM0 register to "002" (I/O port P53) when the PM15 and PM14 bits are set to "012" (P53/BCLK select).

4. M32C/88T cannot be used in memory expansion mode and microprocessor mode.

Figure 7.2 PM1 Register

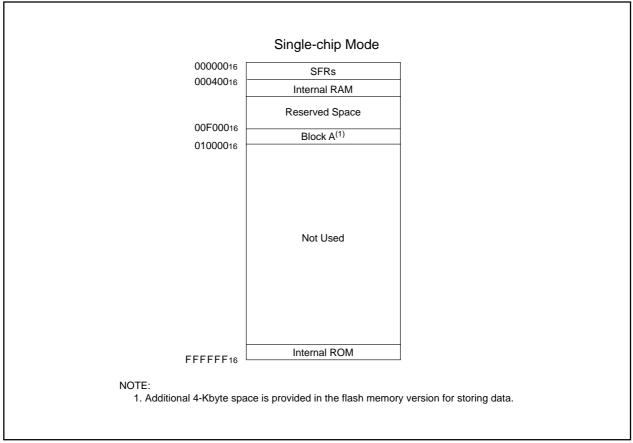


Figure 7.3 Memory Map in Single-chip Mode

8. Clock Generation Circuit

8.1 Types of the Clock Generation Circuit

Four circuits are included to generate the system clock signal:

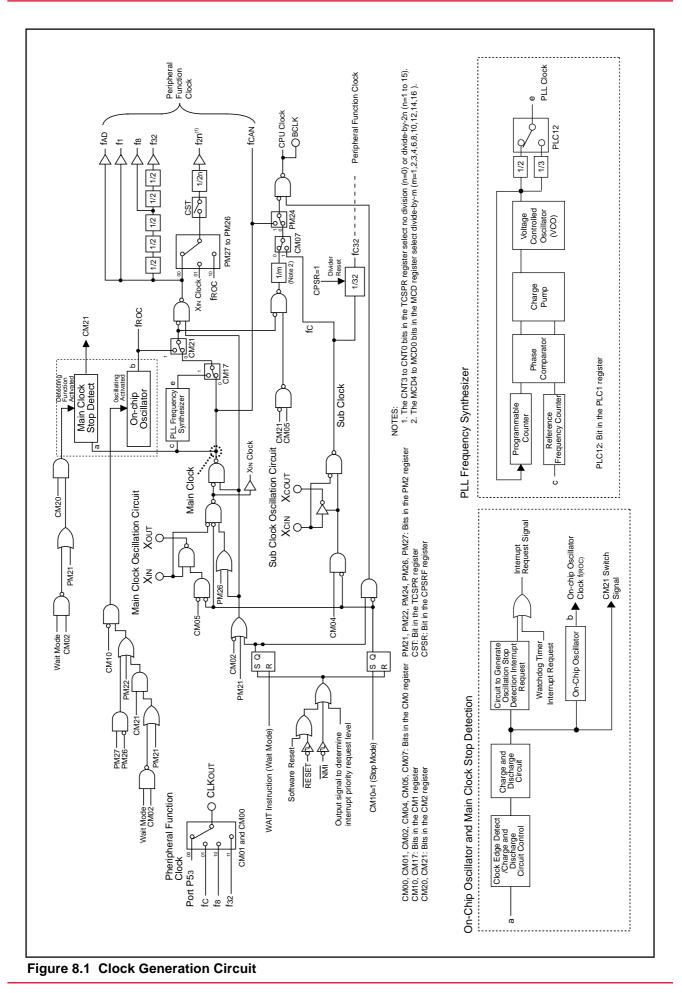
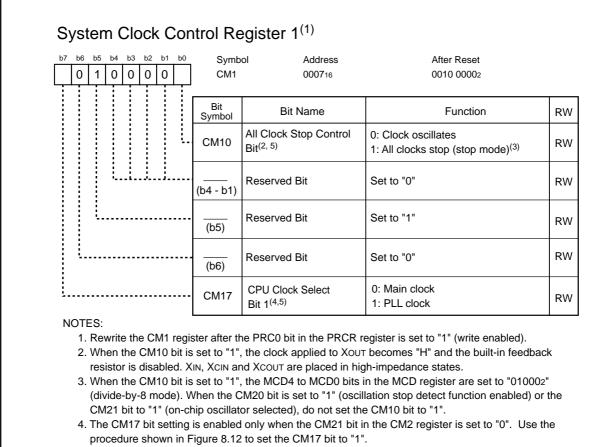

- Main clock oscillation circuit
- Sub clock oscillation circuit
- On-chip oscillator
- PLL frequency synthesizer

Table 8.1 lists specifications of the clock generation circuit. Figure 8.1 shows a block diagram of the clock generation circuit. Figures 8.2 to 8.8 show registers controlling the clock.

Item	Main Clock Oscillation Circuit	Sub Clock Oscillation Circuit	On-chip Oscillator	PLL Frequency Synthesizer	
Use	CPU clock source, Peripheral function clock source	CPU clock source, Timer A and B clock source	CPU clock source, Peripheral function clock source	CPU clock source, Peripheral function clock source	
Clock Frequency	Up to 32 MHz	32.768 kHz	Approx. 1 MHz	Up to 32 MHz (See Table 8.3)	
Connectable Osillator or Additional Circuit	Ceramic resonator Crystal oscillator	Crystal oscillator			
Pins for Oscillator or for Additional Circuit	Xin, Xout	Xcin, Xcout			
Oscillation Stop/ Restart Function	Available	Available	Available	Available	
Oscillator State after Reset	Oscillating	Stopped	Stopped	Stopped	
Other	Externally generated clock can be applied.	Externally generated clock can be applied.	When the main clock stops oscillating, the on-chip oscillator starts oscillating auto- matically and becomes clock source for the CPU and peripheral function.		

Table 8.1 Clock Generation Circuit Specification

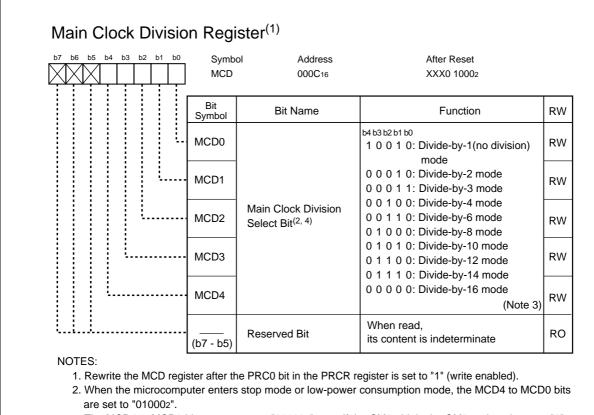
RENESAS


b7 b6 b5	5 b4	b3	b2	b1	ь0	Symb CM0	ol Address 000616	After Reset 0000 10002	
						Bit Symbol	Bit Name	Function	RV
					CM00	Clock Output Function	b1 b0 0 0: I/O port P53 0 1: Outputs fc	RV	
						CM01	Select Bit ⁽²⁾	1 0: Outputs f8 1 1: Outputs f32	RV
						CM02	In Wait Mode, Peripheral Function Clock Stop Bit ⁽⁹⁾	 0: Peripheral clock does not stop in wait mode 1: Peripheral clock stops in wait mode⁽³⁾ 	RV
			CM03	XCIN-XCOUT Drive Capacity Select Bit ⁽¹¹⁾	0: Low 1: High	RV			
			CM04	Port Xc Switch Bit	0: I/O port function 1: XCIN-XCOUT oscillation function ⁽⁴⁾	RV			
			СМ05		CM05	Main Clock (XIN-XOUT) Stop Bit ^(5, 9)	0: Main clock oscillates 1: Main clock stops ⁽⁶⁾	RV	
			CM06	Watchdog Timer Function Select Bit	0: Watchdog timer interrupt 1: Reset ⁽⁷⁾	RV			
						CM07	CPU Clock Select Bit 0 ^(8, 9, 10)	0: Clock selected by the CM21 bit divided by MCD register setting 1: Sub clock	RV

NOTES:

- 1. Rewrite the CM0 register after the PRC0 bit in the PRCR register is set to "1" (write enabled).
- 2. When the PM07 bit in the PM0 register is set to "0" (BCLK output), set the CM01 and CM00 bits to "002". When the PM15 and PM14 bits in the PM1 register are set to "012" (ALE output to P53), set the CM01 and CM00 bits to "002". When the PM07 bit is set to "1" (function selected in the CM01 and CM00 bits) in microprocessor or memory expansion mode, and the CM01 and CM00 bits are set to "002", an "L" signal is output from port P53 (port P53 does not function as an I/O port).
- 3. fc32 does not stop running. When the CM02 bit is set to "1", the PLL clock cannot be used in wait mode.
- 4. When setting the CM04 bit is set to "1", set the PD8_7 and PD8_6 bits in the PD8 register to "002" (port P87 and P86 in input mode) and the PU25 bit in the PUR2 register to "0" (no pull-up).
- 5. When entering low-power consumption mode or on-chip oscillator low-power consumption mode, the CM05 bit stops running the main clock. The CM05 bit cannot detect whether the main clock stops or not. To stop running the main clock, set the CM05 bit to "1" after the CM07 bit is set to "1" with a stable sub clock oscillation or after the CM21 bit in the CM2 register is set to "1" (on-chip oscillator clock). When the CM05 bit is set to "1", the clock applied to XOUT becomes "H". The built-in feedback resistor remains ON. XIN is pulled up to XOUT ("H" level) via the feedback resistor.
- 6. When the CM05 bit is set to "1", the MCD4 to MCD0 bits in the MCD register are set to "010002" (divide-by-8 mode). In on-chip oscillation mode, the MCD4 to MCD0 bits are not set to "010002" even if the CM05 bit terminates XIN-XOUT.
- 7. Once the CM06 bit is set to "1", it cannot be set to "0" by program.
- 8. After the CM04 bit is set to "1" with a stable sub clock oscillation, set the CM07 bit to "1" from "0". After the CM05 bit is set to "0" with a stable main clock oscillation, set the CM07 bit to "0" from "1". Do not set the CM07 bit and CM04 or CM05 bit simultaneously.
- 9. When the PM21 bit in the PM2 register is set to "1" (clock change disable), the CM02, CM05 and CM07 bits do not change even when written.
- 10. After the CM07 bit is set to "0", set the PM21 bit to "1".
- 11. When stop mode is entered, the CM03 bit is set to "1".

Figure 8.2 CM0 Register



5. If the PM21 bit in the PM2 register is set to "1" (clock change disable), the CM10 and CM17 bits do not change when written.

If the PM22 bit in the PM2 register is set to "1" (on-chip oscillator clock as watchdog timer count source), the CM10 bit setting does not change when written.

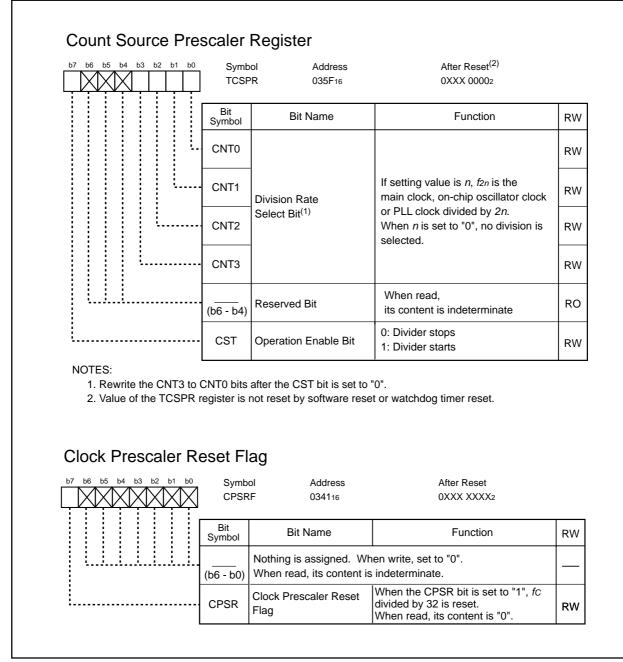
Figure 8.3 CM1 Register

The MCD4 to MCD0 bits are not set to "010002" even if the CM05 bit in the CM0 register is set to "1" (XIN-XOUT stopped) in on-chip oscillator mode.

- 3. Bit combinations cannot be set not listed above.
- 4. Access CAN-associated register addresses after setting the MCD4 to MCD0 bits are set to "100102", when the PM24 bit in the PM2 register is set to "0" (clock selected by the CM07 bit).

Figure 8.4 MCD Register

b7 b6 b5 b4 b 0 0 0 0	b3 b2 b1 b0	Symb CM2	ol Address 000D16	After Reset 0016	
		Bit Symbol	Bit Name	Function	RW
	· · ·	CM20	Oscillation Stop Detection Enable Bit ⁽²⁾	0: Disables oscillation stop detect function 1: Enables oscillation stop detect function	RW
		CM21	CPU Clock Select Bit 2 ^(3, 4)	0: Clock selected by the CM17 bit 1: On-chip oscillator clock	RW
		CM22	Oscillation Stop Detection Flag ⁽⁵⁾	0: Main clock does not stop 1: Detects a main clock stop	RW
		CM23	Main Clock Monitor Flag ⁽⁶⁾	0: Main clock oscillates 1: Main clock stops	RO
		(b7 - b4)	Reserved Bit	Set to "0"	RW
2. If the PM	0		0	ister is set to "1" (write enabled). Je disable), the CM20 bit setting does r	not


- CPU clock source after the main clock resumes oscillating, set the CM21 bit to "0" by program.
- 4. When the CM20 bit is set to "1" and the CM22 bit is set to "1", do not set the CM21 bit to "0".
- 5. When a main clock stop is detected, the CM22 bit is set to "1". The CM22 bit can only be set to "0", not "1", by program.

If the CM22 bit is set to "0" by program while the main clock stops, the CM22 bit cannot be set to "1" until the next main clock stop is detected.

6. Determine the main clock state by reading the CM23 bit several times after the oscillation stop detection interrupt is generated.

Figure 8.5 CM2 Register

b7 b6 b5 b4 b 1 0 1		Symb PLC0		After Reset 0001 X0102	
		Bit Symbol	Bit Name	Function	RW
		PLC00		b2 b1 b0	RW
		PLC01	Programmable Counter Select Bit ⁽³⁾	0 1 1: Multiply-by-6 1 0 0: Multiply-by-8 Do not set to values except the	RW
		PLC02		above	RW
		(b3)	Reserved Bit	When read, its content is indeterminate	RO
		(b4)	Reserved Bit	Set to "1"	RW
·	l	(b5)	Reserved Bit	Set to "0"	RW
		(b6)	Reserved Bit	Set to "1"	RW
		PLC07	Operation Enable Bit ⁽⁴⁾	0: PLL is Off 1: PLL is On	RW

NOTES:

1. Rewrite the PLC0 register after the PRC0 bit in the PRCR register is set to "1" (write enabled).

2. If the PM21 bit in the PM2 register is set to "1" (clock change disabled), the PLC0 register setting does not change when written.

3. Set the PLC02 to PLC00 bits when the PLC07 bit is set to "0". Once these bits are set, they cannot be changed.

4. Set the CM17 bit in the CM1 register to "0" (main clock as CPU clock source) and the PLC07 bit to "0" before entering wait or stop mode.

5. Set the PLC0 and PLC1 registers simultaneously in 16-bit units.

PLL Control Register 1^(1, 2, 3, 4)

b7 b6 b5 b4 b3 b2 b1 b0 0 0 0 0 1 0 1 0	Symb PLC1	ol Address 002716	After Reset 000X 00002	
	Bit Symbol	Bit Name	Function	RW
	(b0)	Reserved Bit	Set to "0"	RW
	(b1)	Reserved Bit	Set to "1"	RW
	PLC12	PLL Clock Division Switch Bit	0: Divide-by-2 1: Divide-by-3	RW
	. (b3)	Reserved Bit	Set to "0"	RW
	(b4)	Reserved Bit	When read, its content is indeterminate	RO
	(b7 - b5)	Reserved Bit	Set to "0"	RW

NOTES:

1. Rewrite the PLC1 register after the PRC0 bit in the PRCR register is set to "1" (write enabled).

2. If the PM21 bit in the PM2 register is set to "1" (clock change disabled), the PLC1 register does not change when written.

3. Set the PLC1 register when the PLC07 bit is set to "0" (PLL off).

4. Set the PLC0 and PLC1 registers simultaneously in 16-bit units.

Figure 8.7 PLC0 and PLC1 Registers

7 b6 b5 b4 b3 b2 b1 b0	Symbo PM2	ol Address 0013 ₁₆	After Reset 0016	
[Bit Symbol	Bit Name	Function	RW
	(b0)	Reserved Bit	Set to "0"	RW
	PM21	System Clock Protect Bit ^(2, 3)	0: Protects the clock by a PRCR register setting 1: Disables a clock change	RW
	PM22	WDT Count Source Protect Bit ^(2, 4)	0: Selects BCLK as count source of the watchdog timer1: Selects the on-chip oscillator clock as count source of the watchdog timer	RW
	(b3)	Reserved Bit	Set to "0"	RW
	PM24	CPU Clock Select Bit 3	0: Clock selected by the CM07 bit 1: Main Clock	RW
	PM25	CAN Clock Select Bit	0: f1 1: Main Clock	RW
	PM26 f2n Count source		b7b6 0 0: Peripheral function clock 0 1: XIN clock	RW
	PM27	Select Bit	1 0: On-chip oscillator clock 1 1: Do not set to this value	RW
 2. Once the PM22 and PM 3. When the PM21 bit is set the CPU clock keeps runothing is changed even the CM02 bit in the C the CM05 bit in the C the CM07 bit in the C the CM10 bit in the C the CM17 bit in the C the CM20 bit in the C all bits in the PLC0 ar 4. When the PM22 bit is set 	21 bits ar et to "1", nning whe n if followi M0 registe M0 registe M1 registe M1 registe M2 registe nd PLC1 r et to "1",	e set to "1", they can not be en the WAIT instruction is e ng bits are set to either "0" er (the peripheral function c er (the main clock is not sto er (a CPU clock source is n er (the microcomputer does er (a CPU clock source is n er (oscillation stop detect fu egisters (PLL frequency sy	xecuted; or "1". lock is not stopped in wait mode.) pped.) ot changed.) a not enter stop mode.)	

Figure 8.8 PM2 Register

8.1.1 Main Clock

Main clock oscillation circuit generates the main clock. The main clock becomes clock source of the CPU clock and peripheral function clock.

The main clock oscillation circuit is configured by connecting an oscillator or resonator between the XIN and XOUT pins. The circuit has a built-in feedback resistor. The feedback resistor is separated from the oscillation circuit in stop mode to reduce power consumption. An external clock can be applied to the XIN pin in the main clock oscillation circuit. Figure 8.9 shows an example of a main clock circuit connection. Circuit constants vary depending on each oscillator. Use the circuit constant recommended by each oscillator manufacturer.

The main clock divided-by-eight becomes a CPU clock source after reset.

To reduce power consumption, set the CM05 bit in the CM0 register to "1" (main clock stopped) after switching the CPU clock source to the sub clock or on-chip oscillator clock. In this case, the clock applied to XOUT becomes high ("H"). XIN is pulled up by XOUT via the feedback resistor which remains on. When an external clock is applied to the XIN pin, do not set the CM05 bit to "1".

All clocks, including the main clock, stop in stop mode. Refer to **8.5 Power Consumption Control** for details.

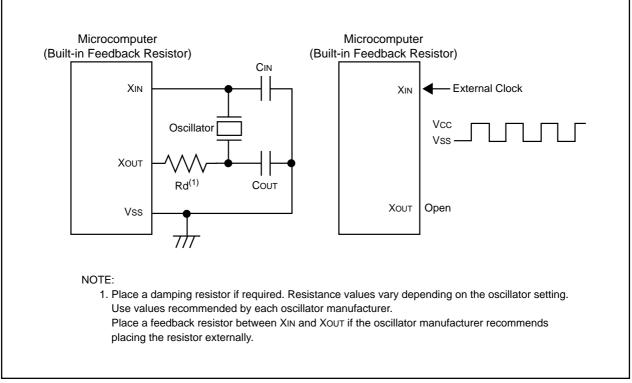
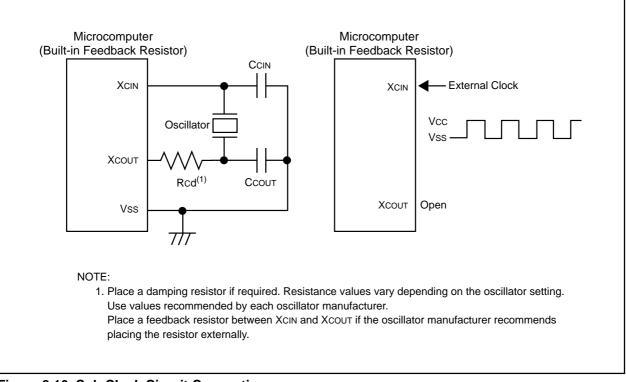


Figure 8.9 Main Clock Circuit Connection

8.1.2 Sub Clock


Sub clock oscillation circuit generates the sub clock. The sub clock becomes clock source of the CPU clock and for the timers A and B. The same frequency, fc, as the sub clock can be output from the CLKOUT pin.

The sub clock oscillation circuit is configured by connecting a crystal oscillator between the XCIN and XCOUT pins. The circuit has a built-in feedback resistor. The feedback resistor is separated from the oscillation circuit in stop mode to reduce power consumption. An external clock can be applied to the XCIN pin. Figure 8.10 shows an example of a sub clock circuit connection. Circuit constants vary depending on each oscillator. Use the circuit constant recommended by each oscillator manufacturer.

The sub clock stops after reset. The feedback resistor is separated from the oscillation circuit. When the PD8_6 and PD8_7 bits in the PD8 register are set to "0" (input mode) and the PU25 bit in the PUR2 register is set to "0" (no pull-up), set the CM04 bit in the CM0 register to "1" (XCIN-XCOUT oscillation function). The sub clock oscillation circuit starts oscillating. To apply an external clock to the XCIN pin, set the CM04 bit to "1" when the PD8_7 bit is set to "0" and the PU25 bit to "0". The clock applied to the XCIN pin becomes a clock source of the sub clock.

When the CM07 bit in the CM0 register is set to "1" (sub clock) after the sub clock oscillation has stabilized, the sub clock becomes a CPU clock source.

All clocks, including the sub clock, stop in stop mode. Refer to **8.5 Power Consumption Control** for details.

8.1.3 On-Chip Oscillator Clock

On-chip oscillator generates the on-chip oscillator clock. The 1-MHz on-chip oscillator clock becomes a clock source of the CPU clock and peripheral function clock.

The on-chip oscillator clock stops after reset. When the CM21 bit in the CM2 register is set to "1" (on-chip oscillator clock), the on-chip oscillator starts oscillating. Instead of the main clock, the on-chip oscillator clock becomes clock source of the CPU clock and peripheral function clock.

Table 8.2 shows bit settings for on-chip oscillator start condition.

Table 8.2 Bit	Settings for On-Chip (Jscillator	Start Condition	

CM2 Register	PM	2 Register	Used as
CM21 Bit	PM22 Bit	PM27 and PM26 Bits	Used as
1	0 00		CPU clock source or peripheral function clock source
0	1	0 0	Watchdog timer operating clock source (The clock keeps running when entering stop mode.)
0	0 01		f _{2n} count source

8.1.3.1 Oscillation Stop Detect Function

When the main clock is terminated by external source, the on-chip oscillator automatically starts oscillating to generate another clock.

When the CM 20 bit in the CM2 registser is set to "1" (oscillation stop detect function enabled), an oscillation stop detection interrupt request is generated as soon as the main clock stops. Simultaneously, the onchip oscillator starts oscillating. Instead of the main clock, the on-chip oscillator clock becomes clock source for the CPU clock and peripheral function clock. Associated bits are set as follows:

- The CM21 bit is set to "1" (on-chip oscillator clock becomes a clock source of the CPU clock.)
- The CM22 bit is set to "1" (main clock stop is detected.)
- The CM23 bit is set to "1" (main clock stops.) (See Figure 8.14)

8.1.3.2 How to Use Oscillation Stop Detect Function

- The oscillation stop detection interrupt shares vectors with the watchdog timer interrupt. When these interrupts are used simultaneously, read the CM22 bit with an interrupt routine to determine if an oscillation stop detection interrupt request has been generated.
- When the main clock resumes running after an oscillation stop is detected, set the main clock as clock source of the CPU clock and peripheral function clock. Figure 8.11 shows the procedure to switch the on-chip oscillator clock to the main clock.
- In low-speed mode, when the main clock is stopped by setting the CM20 bit to "1", the oscillation stop detection interrupt request is generated. Simultaneously, the on-chip oscillator starts oscillating. The sub clock remains the CPU clock source. The on-chip oscillator clock becomes a clock source for the peripheral function clock.
- When the peripheral function clock stops running, the oscillation stop detect function is also disabled. To enter wait mode while the oscillation stop detect function is in use, set the CM02 bit in the CM0 register to "0" (peripheral clock does not stop in wait mode).
- The oscillation stop detect function is provided to handle main clock stop caused by external source. Set the CM20 bit to "0" (oscillation stop detect function disabled) when the main clock is terminated by program, i.e., entering stop mode or setting the CM05 bit to "1" (main clock oscillation stop).
- When the main clock frequency is 2MHz or less, the oscillation stop detect function is not available. Set the CM20 bit to "0".

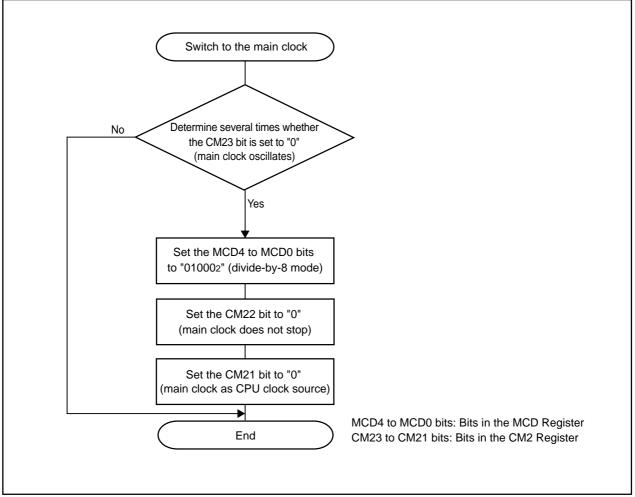


Figure 8.11 Switching Procedure from On-chip Oscillator Clock to Main Clock

8.1.4 PLL Clock

The PLL frequency synthesizer generates the PLL clock based on the main clock. The PLL clock can be used as clock source for the CPU clock and peripheral function clock.

The PLL frequency synthesizer stops after reset. When the PLC07 bit is set to "1" (PLL on), the PLL frequency synthesizer starts operating. Wait *tsu(PLL)* ms for the PLL clock to stabilize.

The PLL clock can either be the clock output from the voltage controlled oscillator (VCO) divided-by-2 or divided-by-3. When the PLL clock is used as a clock source for the CPU clock or peripheral function clock, set each bit as is shown in Table 8.3. Figure 8.12 shows the procedure to use the PLL clock as the CPU clock source.

To enter wait or stop mode, set the CM17 bit to "0" (main clock as CPU clock source), set the PLC07 bit in the PLC0 register to "0" (PLL off) and then enter wait or stop mode.

	f(XIN)		PLC0 Register	PLC1 Register	PLL Clock	
		PLC02 Bit	PLC01 Bit	PLC00 Bit	PLC12 Bit	I LE Olock
ſ	10 MHz	0	1	1	0	30 MHz
		0	I	I	1	20 MHz
	8 MHz			0	0	32 MHz
	O IVII IZ			0	1	21.3 MHz

Table 8.3 Bit Settings to Use PLL Clock as CPU Clock Source

Figure 8.12 Procedure to Use PLL Clock as CPU Clock Source

8.2 CPU Clock and BCLK

The CPU operating clock is referred to as the CPU clock. The CPU clock is also a count source for the watchdog timer. After reset, the CPU clock is the main clock divided-by-8. In memory expansion or microprocessor mode, the clock having the same frequency as the CPU clock can be output from the BCLK pin as BCLK. Refer to **8.4 Clock Output Function** for details.

The main clock, sub clock, on-chip oscillator clock or PLL clock can be selected as a clock source for the CPU clock. Table 8.4 shows CPU clock source and bit settings.

When the main clock, on-chip oscillator clock or PLL clock is selected as a clock source of the CPU clock, the selected clock divided-by-1 (no division), -2, -3, -4, -6, -8, -10, -12, -14 or -16 becomes the CPU clock. The MCD4 to MCD0 bits in the MCD register select the clock division.

When the microcomputer enters stop mode or low-power consumption mode (except when the on-chip oscillator clock is the CPU clock), the MCD4 to MCD0 bits are set to "010002" (divide-by-8 mode). Therefore, when the main clock starts running, the CPU clock enters medium-speed mode (divide-by-8).

Table 8.4 CPU Clock Source and Bit Settings

CPU Clock Source	CM0 Register	CM1 Register	CM2 Register	PM2 Register
CFU Clock Source	CM07 Bit	CM17 Bit	CM21 Bit	PM24 Bit
Main Clock	0	0	0	0
Main Clock (Main Clock Direct Mode) ⁽¹⁾	0	0	0	1
Sub Clock	1	0	0	0
On-Chip Oscillator Clock	0	0	1	0
PLL Clock	0	1	0	0

NOTE:

1. Refer to 22.2 CAN Clock for details.

8.3 Peripheral Function Clock

The peripheral function clock becomes an operating clock or count source for peripheral functions excluding the watchdog timer.

8.3.1 f1, f8, f32 and f2n

f1, f8 and f32 are the peripheral function clock, selected by the CM21 bit, divided-by-1, -8, or -32. The PM27 and PM26 bits in the PM2 register selects a f2n count source from the peripheral clock, XIN clock, and the on-chip oscillator clock. The CNT3 to CNT0 bits in the TCSPR register selects a f2n division. (n=0 to 15. No division when n=0.)

f1, f8, f32 and f2n stop when the CM02 bit in the CM0 register to "1" (peripheral function stops in wait mode) to enter wait mode or when in low-power consumption mode.

f1, f8 and f2n are used as an operating clock of the serial I/O and count source of the timers A and B. f1 is also used as an operating clock for the intelligent I/O.

The CLKOUT pin outputs f8 and f32 . Refer to **8.4 Clock Output Function** for details.

8.3.2 fad

fAD is an operating clock for the A/D converter and has the same frequency as either the main clock⁽¹⁾ or the on-chip oscillator clock. The CM21 bit determines which clock is selected.

If the CM02 bit is set to "1" (peripheral function stop in wait mode) to enter wait mode, fAD stops. fAD also stops in low-power consumption mode.

NOTE:

1. The PLL clock, instead of the main clock, when the CM17 bit is set to "1" (PLL clock).

8.3.3 fC32

fC32 is the sub clock divided by 32. fC32 is used as a count source for the timers A and B. fC32 is available when the sub clock is running.

8.3.4 fCAN

fCAN has the same frequency as the main clock. It is a clock for the CAN module only.

8.4 Clock Output Function

The CLKOUT pin outputs fC, f8 or f32.

In memory expansion mode or microprocessor mode, a clock having the same frequency as the CPU clock can be output from the BCLK pin as BCLK.

Table 8.5 lists CLKOUT pin function in single-chip mode.

PM0 Register ⁽¹⁾	CM0 Register ⁽²⁾			
PM07 Bit	CM01 Bit	CM00 Bit	CLKOUT Pin Function	
	0	0	P53 I/O port	
1	0	1	Outputs fc	
1	1	0	Outputs f8	
1	1	1	Outputs f32	

- : Can be set to either "0" or "1"

NOTES:

1. Rewrite the PM0 register after the PRC1 bit in the PRCR register is set to "1" (write enabled).

2. Rewrite the CM0 register after the PRC0 bit in the PRCR register is set to "1" (write enabled).

8.5 Power Consumption Control

Normal operating mode, wait mode and stop mode are provided as the power consumption control. All mode states, except wait mode and stop mode, are called normal operating mode in this section. Figure 8.13 shows a block diagram of status transition in wait mode and stop mode. Figure 8.14 shows a block diagram of status transition in all modes.

8.5.1 Normal Operating Mode

The normal operating mode is further separated into six modes.

In normal operating mode, the CPU clock and peripheral function clock are supplied to operate the CPU and peripheral function. The power consumption control is enabled by controlling a CPU clock frequency. The higher the CPU clock frequency is, the more processing power increases. The lower the CPU clock frequency is, the more power consumption decreases. When unnecessary oscillation circuit stops, power consumption is further reduced.

8.5.1.1 High-Speed Mode

The main clock⁽¹⁾ becomes the CPU clock and a clock source of the peripheral function clock. When the sub clock runs, fC32 can be used as a count source for the timers A and B.

8.5.1.2 Medium-Speed Mode

The main $clock^{(1)}$ divided-by-2, -3, -4, -6, -8, -10, -12, -14, or -16 becomes the CPU clock. The main $clock^{(1)}$ is a clock source for the peripheral function clock. When the sub clock runs, fC32 can be used as a count source for the timers A and B.

8.5.1.3 Low-Speed Mode

The sub clock becomes the CPU clock . The main clock⁽¹⁾ is a clock source for the peripheral function clock. fC32 can be used as a count source for the timers A and B.

8.5.1.4 Low-Power Consumption Mode

The microcomputer enters low-power consumption mode when the main clock stops in low-speed mode. The sub clock becomes the CPU clock. Only fC32 can be used as a count source for the timers A and B and the peripheral function clock. In low-power consumption mode, the MCD4 to MCD0 bits in the MCD register are set to "010002" (divide-by-8 mode). Therefore, when the main clock resumes running, the microcomputer is in midium-speed mode (divide-by-8 mode).

8.5.1.5 On-Chip Oscillator Mode

The on-chip oscillator clock divided-by-1 (no division), -2, -3, 4-, -6, -8, -10, -12, -14, or -16 becomes the CPU clock. The on-chip oscillator clock is a clock source for the peripheral function clock. When the sub clock runs, fC32 can be used as a count source for the timers A and B.

8.5.1.6 On-Chip Oscillator Low-Power Consumption Mode

The microcomputer enters on-chip oscillator low-power consumption mode when the main clock stops in on-chip oscillator mode . The on-chip oscillator clock divided-by-1 (no division), -2, -3, -4, -6, -8, -10, - 12, -14, or -16 becomes the CPU clock. The on-chip oscillator clock is a clock source for the peripheral function clock. When the sub clock runs, fC32 can be used as a count source for the timers A and B. Switch the CPU clock after the clock to be switched to stabilize. Sub clock oscillation will take longer⁽²⁾ to stabilize. Wait, by program, until the clock stabilizes directly after turning the microcomputer on or exiting stop mode.

To switch the on-chip oscillator clock to the main clock, enter medium-speed mode (divide-by-8) after the main clock is divided by eight in on-chip oscillator mode (the MCD4 to MCD0 bits in the MCD register are set to "010002").

Do not enter on-chip oscillator mode or on-chip oscillator low-power consumption mode from lowspeed mode or low-power consumption mode and vice versa.

NOTES:

- 1. The PLL clock, instead of the main clock, when the CM17 bit is set to "1" (PLL clock).
- 2. Contact your oscillator manufacturer for oscillation stabilization time.

8.5.2 Wait Mode

In wait mode, the CPU clock stops running. The CPU and watchdog timer, operated by the CPU clock, also stop. When the PM22 bit in the PM2 register is set to "1" (on-chip oscillator clock as watchdog timer count source), the watchdog timer continues operating. Because the main clock, sub clock and on-chip oscillator clock continue running, peripheral functions using these clocks also continue operating.

8.5.2.1 Peripheral Function Clock Stop Function

If the CM02 bit in the CM0 register is set to "1" (peripheral function clock stops in wait mode), f1, f8, f32, f2n (when peripheral clock is selected as a count source), and fAD stop in wait mode. Power consumption can be reduced. f2n, when XIN clock or on-chip oscillator clock is selected as a count source, and fC32 do not stop running.

8.5.2.2 Entering Wait Mode

If wait mode is entered after setting the CM02 bit to "1", set the MCD4 to MCD0 bits in the MCD register to be the 10-MHz or less CPU clock flequency after dividing the main clock. Enter wait mode after setting the followings.

Initial Setting

Set each interrupt priority level after setting the exit priority level required to exit wait mode, controlled by the RLVL2 to RLVL0 bits in the RLVL register, to "7".

• Before Entering Wait Mode

- (1) Set the I flag to "0"
- (2) Set the interrupt priority level of the interrupt being used to exit wait mode
- (3) Set the interrupt priority levels of the interrupts, not being used to exit wait mode, to "0"
- (4) Set IPL in the FLG register. Then set the exit priority level to the same level as IPL Interrupt priority level of the interrupt used to exit wait mode > IPL = the exit priority level
- (5) Set the PRC0 bit in the PRCR register to "1"
- (6) If the CPU clock source is the PLL clock, set the CM17 bit in the CM1 register to "0" (main clock) and PLC07 bit in the PLC0 register to "0" (PLL off)
- (7) Set the I flag to "1"
- (8) Execute the WAIT instruction
- After Exiting Wait Mode

Set the exit priority level to "7" as soon as exiting wait mode.

8.5.2.3 Pin Status in Wait Mode

Table 8.6 lists pin states in wait mode.

Table 8.6 Pin States in Wait Mode

	Pin	Single-Chip Mode
Ports		Maintains state immediately before entering wait mode
CLKOUT	When fc is selected	Outputs clock
When f8, f32 are selected		Outputs the clock when the CM02 bit in the CM0 register is set to "0" (peripheral function clock does not stop in wait mode).
		Maintains state immediately before entering wait mode when the CM02 bit is set to "1" (peripheral function clock stops in wait mode).

8.5.2.4 Exiting Wait Mode

Wait mode is exited by the hardware reset, $\overline{\text{NMI}}$ interrupt or peripheral function interrupts.

When the hardware reset or $\overline{\text{NMI}}$ interrupt, but not the peripheral function interrupts, is used to exit wait mode, set the ILVL2 to ILVL0 bits for the peripheral function interrupts to "0002" (interrupt disabled) before executing the WAIT instruction.

CM02 bit setting affects the peripheral function interrupts. When the CM02 bit in the CM0 register is set to "0" (peripheral function clock does not stop in wait mode), all peripheral function interrupts can be used to exit wait mode. When the CM02 bit is set to "1" (peripheral function clock stops in wait mode), peripheral functions using the peripheral function clock stop. Therefore, the peripheral function interrupts caused by an external clock, fC32, or f2n whose count source is the XIN clock or on-chip oscillator clock, can be used to exit wait mode.

The CPU clock used when exiting wait mode by the peripheral function interrupts or NMI interrupt is the same CPU clock used when the WAIT instruction is executed.

Table 8.7 shows interrupts to be used to exit wait mode and usage conditions.

Interrupt	When CM02=0	When CM02=1
NMI Interrupt	Can be used	Can be used
Serial I/O Interrupt	Can be used when either internal or external clock is selected	Can be used when external clock or f2n (when XIN clock or on-chip oscillator is selected) is selected
Key Input Interrupt	Can be used	Can be used
A/D Conversion Interrupt	Can be used in single or single- sweep mode	Do not use
Timer A Interrupt Timer B Interrupt	Can be used in all modes	Can be used in event counter mode or when count source is fC32 or f2n (when XIN clock or on-chip oscillator is selected)
INT Interrupt	Can be used	Can be used
CAN Interrupt	Can be used	Do not use
Intelligent I/O Interrupt	Can be used	Do not use

Table 8.7 Interrupts to Exit Wait Mode

8.5.3 Stop Mode

In stop mode, all oscillators and resonators stop. The CPU clock and peripheral function clock, as well as the CPU and peripheral functions operated by these clocks, also stop. The least power required to operate the microcomputer is in stop mode. The internal RAM holds its data when the voltage applied to the Vcc pin is VRAM or more. If the voltage applied to the Vcc pin is 2.7V or less, the voltage must be Vcc \geq VRAM.

The following interrupts can be used to exit stop mode:

- NMI interrupt
- Key Input Interrupt
- INT interrupt
- Timer A and B interrupt (Available when the timer counts external pulse, having its 100Hz or less frequency, in event counter mode)

8.5.3.1 Entering Stop Mode

Stop mode is entered when setting the CM10 bit in the CM10 register to "1" (all clocks stops). The MCD4 to MCD0 bits in the MCD register become set to "010002" (divide-by-8 mode). Enter stop mode after setting the followings.

Initial Setting

Set each interrupt priority level after setting the exit priority level required to exit stop mode, controlled by the RLVL2 to RLVL0 bits in the RLVL register, to "7".

- Before Entering stop mode
 - (1) Set the I flag to "0"
 - (2) Set the interrupt priority level of the interrupt being used to exit stop mode
 - (3) Set the interrupt priority levels of the interrupts, not being used to exit stop mode, to "0"
 - (4) Set IPL in the FLG register. Then set the exit priority level to the same level as IPL Interrupt priority level of the interrupt used to exit stop mode > IPL = the exit priority level
 - (5) Set the PRC0 bit in the PRCR register to "1" (write enabled)
 - (6) Select the main clock as the CPU clock
 - When the CPU clock source is the sub clock,
 - (a) set the CM05 bit in the CM0 register to "0" (main clock oscillates)
 - (b) set the CM07 bit in the CM0 register to "0" (clock selected by the CM21 bit divided by MCD register setting)
 - When the CPU clock source is the PLL clock,
 - (a) set the CM17 bit in the CM1 register to "0" (main clock)
 - (b) set the PLC07 bit in the PLC0 register to "0" (PLL off)
 - When main clock direct mode is used,
 - (a) set the PRC1 bit in the PRCR register to "1" (write enabled)
 - (b) set the PM24 bit in the PM2 register to "0" (clock selected by the CM07 bit)
 - When the CPU clock source is the on-chip oscillator clock,
 - (a) set MCD4 to MCD0 bits to "010002" (divide-by-8 mode)
 - (b) set the CM05 bit to "0" (main clock oscillates)
 - (c) set the CM21 bit in the CM2 register to "0" (clock selected by the CM17 bit)
 - (7) The oscillation stop detect function is used, set the CM20 bit in the CM2 register to "0" (oscillation stop detect function disabled)
 - (8) Set the I flag to "1"
 - (9) Set the CM10 bit to "1" (all clocks stops)
- After Exiting Stop Mode

Set the exit priority level to "7" as soon as exiting stop mode.

8.5.3.2 Exiting Stop Mode

Stop mode is exited by the hardware reset, $\overline{\text{NMI}}$ interrupt or peripheral function interrupts (key input interrupt and $\overline{\text{INT}}$ interrupt).

When the hardware reset or $\overline{\text{NMI}}$ interrupt, but not the peripheral function interrupts, is used to exit wait mode, set all ILVL2 to ILVL0 bits in the interrupt control registers for the peripheral function interrupt to "0002" (interrupt disabled) before setting the CM10 bit to "1" (all clocks stops).

8.5.3.3 Pin Status in Stop Mode

Table 8.8 lists pin status in stop mode.

Table 8.8 Pin Status in Stop Mode

	Pin Single-Chip Mode	
Ports		Maintains state immediately before entering stop mode
CLKOUT	When fc selected	"H"
	When f8, f32 selected	Maintains state immediately before entering stop mode
Xin		Placed in a high-impedance state
Хоит		"H"
XCIN, XCOL	IT	Placed in a high-impedance state

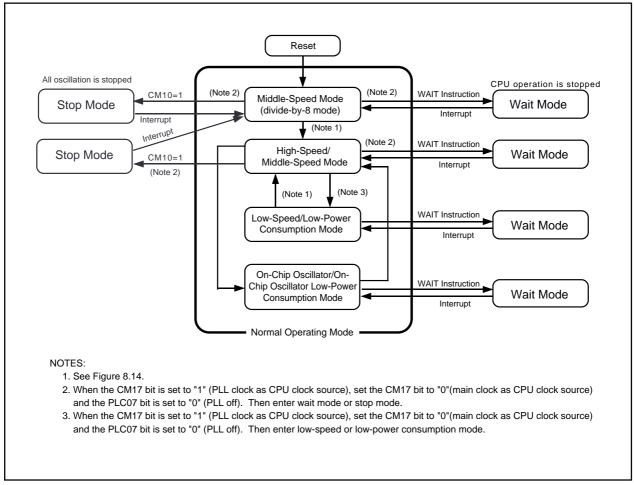


Figure 8.13 Status Transition in Wait Mode and Stop Mode

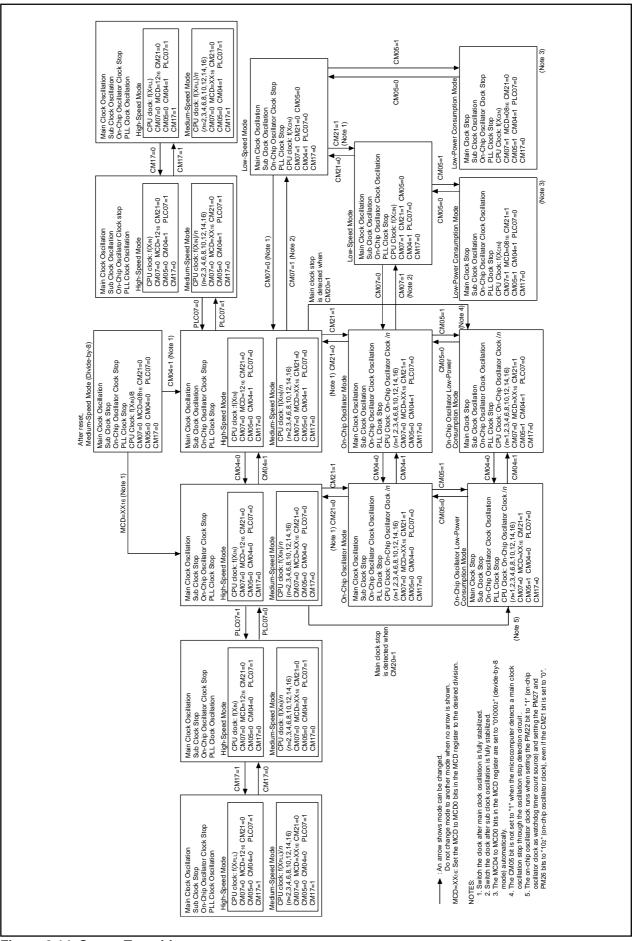
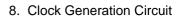



Figure 8.14 Status Transition

RENESAS

8.6 System Clock Protect Function

The system clock protect function prohibits the CPU clock from changing clock sources when the main clock is selected as the CPU clock source. This prevents the CPU clock from stopping the program crash. When the PM21 bit in the PM2 register is set to "1" (clock change disabled), the following bits cannot be written to:

- The CM02 bit, CM05 bit and CM07 bit in the CM0 register
- The CM10 bit and CM17 bit in the CM1 register
- The CM20 bit in the CM2 register
- All bits in the PLC0 and PLC1 registers

The CPU clock continues running when the WAIT instruction is executed.

To use the system clock protect function, set the CM05 bit in the CM0 register to "0" (main clock oscillation) and CM07 bit to "0" (main clock as BCLK clock source) and follow the procedure below.

(1) Set the PRC1 bit in the PRCR register to "1" (write enabled).

(2) Set the PM21 bit in the PM2 register to "1" (protects the clock).

(3) Set the PRC1 bit in the PRCR register to "0" (write disabled).

When the PM21 bit is set to "1", do not execute the WAIT instruction.

9. Protection

The protection function protects important registers from being easily overwritten when a program runs out of control.

Figure 9.1 shows the PRCR register. Individual bit in the PRCR register protects the following registers:

- The PRC0 bit protects the CM0, CM1, CM2, MCD, PLC0, and PLC1 registers;
- The PRC1 bit protects the PM0, PM1, PM2, INVC0, and INVC1 registers;
- The PRC2 bit protects the PD9 and PS3 registers.

The PRC2 bit is set to "0" (write disabled) when data is written to a given address after setting the PRC2 bit to "1" (write enabled). Set the PD9 and PS3 registers immediately after setting the PRC2 bit in the PRCR register to "1" (write enabled). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the following instruction. The PRC0 and PRC1 bits are not set to "0" even if data is written to a given address. Set the PRC0 and PRC1 bits to "0" by program.

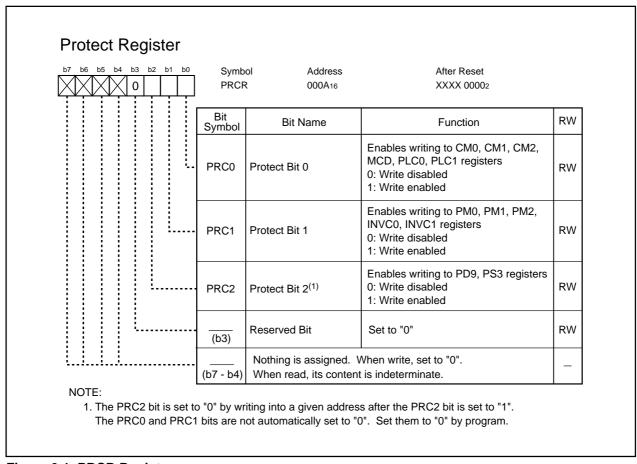
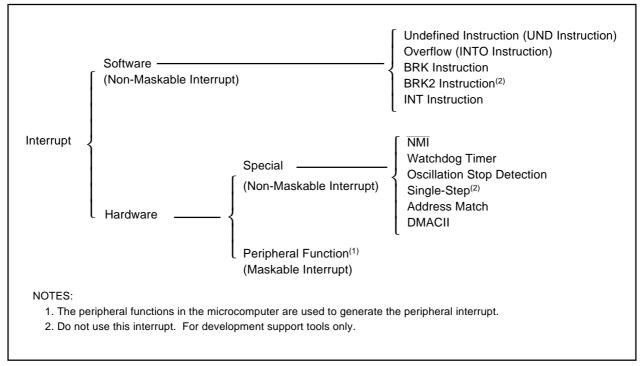



Figure 9.1 PRCR Register

10. Interrupts

10.1 Types of Interrupts

Figure 10.1 shows types of interrupts.

Figure 10.1 Interrupts

Maskable Interrupt

The I flag enables or disables an interrupt.

The interrupt priority order based on interrupt priority level can be changed.

Non-Maskable Interrupt

The I flag does not enable nor disable an interrupt .

The interrupt priority order based on interrupt priority level cannot be changed.

10.2 Software Interrupts

Software interrupt occurs when an instruction is executed. The software interrupts are non-maskable interrupts.

10.2.1 Undefined Instruction Interrupt

The undefined instruction interrupt occurs when the UND instruction is executed.

10.2.2 Overflow Interrupt

The overflow interrupt occurs when the O flag in the FLG register is set to "1" (overflow of arithmetic operation) and the INTO instruction is executed.

Instructions to set the O flag are :

ABS, ADC, ADCF, ADD, ADDX, CMP, CMPX, DIV, DIVU, DIVX, NEG, RMPA, SBB, SCMPU, SHA, SUB, SUBX

10.2.3 BRK Interrupt

The BRK interrupt occurs when the BRK instruction is executed.

10.2.4 BRK2 Interrupt

The BRK2 interrupt occurs when the BRK2 instruction is executed. Do not use this interrupt. For development support tools only.

10.2.5 INT Instruction Interrupt

The INT instruction interrupt occurs when the INT instruction is executed. The INT instruction can select software interrupt numbers 0 to 63. Software interrupt numbers 8 to 50, 52 to 54 and 57 are assigned to the vector table used for the peripheral function interrupt. Therefore, the microcomputer executes the same interrupt routine when the INT instruction is executed as when a peripheral function interrupt occurs.

When the INT instruction is executed, the FLG register and PC are saved to the stack. PC also stores the relocatable vector of specified software interrupt numbers. Where the stack is saved varies depending on a software interrupt number. ISP is selected as the stack for software interrupt numbers 0 to 31 (setting the U flag to "0"). SP, which is set before the INT instruction is executed, is selected as the stack for software interrupt numbers 32 to 63 (the U flag is not changed).

With the peripheral function interrupt, the FLG register is saved and the U flag is set to "0" (ISP select) when an interrupt request is acknowledged. With software interrupt numbers 32 to 50, 52 to 54 and 57, SP to be used varies depending on whether the interrupt is generated by the peripheral function interrupt request or by the INT instruction.

10.3 Hardware Interrupts

Special interrupts and peripheral function interrupts are available as hardware interrupts.

10.3.1 Special Interrupts

Special interrupts are non-maskable interrupts.

10.3.1.1 NMI Interrupt

The NMI interrupt occurs when a signal applied to the NMI pin changes from a high-level ("H") signal to a low-level ("L") signal. Refer to **10.8** NMI Interrupt for details.

10.3.1.2 Watchdog Timer Interrupt

The watchdog timer interrupt occurs when a count source of the watchdog timer underflows. Refer to **11. Watchdog Timer** for details.

10.3.1.3 Oscillation Stop Detection Interrupt

The oscillation stop detection interrupt occurs when the microcomputer detects a main clock oscillation stop. Refer to **8. Clock Generation Circuit** for details.

10.3.1.4 Single-Step Interrupt

Do not use the single-step interrupt. For development support tool only.

10.3.1.5 Address Match Interrupt

The address match interrupt occurs immediately before executing an instruction that is stored into an address indicated by the RMADi register (i=0 to 7) when the AIERi bit in the AIER register is set to "1" (address match interrupt enabled). Set the starting address of the instruction in the RMADi register. The address match interrupt does not occur when a table data or addresses of the instruction other than the starting address, if the instruction has multiple addresses, is set. Refer to **10.10 Address Match Interrupt** for details.

10.3.2 Peripheral Function Interrupt

The peripheral function interrupt occurs when a request from the peripheral functions in the microcomputer is acknowledged. The peripheral function interrupts and software interrupt numbers 8 to 50, 52 to 54 and 57 for the INT instruction use the same interrupt vector table. The peripheral function interrupt is a maskable interrupt.

See **Table 10.2** about how the peripheral function interrupt occurs. Refer to the descriptions of each function for details.

10.4 High-Speed Interrupt

The high-speed interrupt executes an interrupt sequence in five cycles and returns from the interrupt in three cycles.

When the FSIT bit in the RLVL register is set to "1" (interrupt priority level 7 available for the high-speed interrupt), the ILVL2 to ILVL0 bits in the interrupt control registers can be set to "1112" (level 7) to use the high-speed interrupt.

Only one interrupt can be set as the high-speed interrupt. When using the high-speed interrupt, do not set multiple interrupts to interrupt priority level 7. Set the DMAII bit in the RLVL register to "0" (interrupt priority level 7 available for interrupts).

Set the starting address of the high-speed interrupt routine in the VCT register.

When the high-speed interrupt is acknowledged, the FLG register is saved into the SVF register and PC is saved into the SVP register. The program is executed from an address indicated by the VCT register. Execute the FREIT instruction to return from the high-speed interrupt routine.

The values saved into the SVF and SVP registers are restored to the FLG register and PC by executing the FREIT instruction.

The high-speed interrupt and the DMA2 and DMA3 use the same register. When using the high-speed interrupt, neither DMA2 nor DMA3 is available. DMA0 and DMA1 can be used.

10.5 Interrupts and Interrupt Vectors

There are four bytes in one vector. Set the starting address of interrupt routine in each vector table. When an interrupt request is acknowledged, the interrupt routine is executed from the address set in the interrupt vectors.

Figure 10.2 shows the interrupt vector.

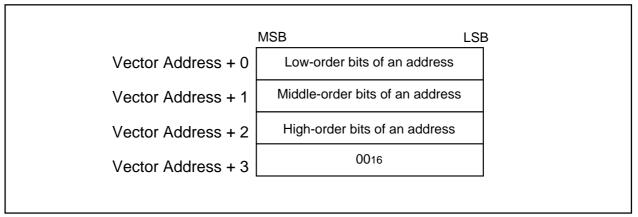


Figure 10.2 Interrupt Vector

10.5.1 Fixed Vector Tables

The fixed vector tables are allocated addresses FFFFDC16 to FFFFF16. Table 10.1 lists the fixed vector tables. Refer to **24.2 Functions to Prevent Rewriting of Flash Memory** for fixed vectors of flash memory.

Interrupt Generated by	Vector Addresses Address (L) to Address (H)	Remarks	Reference	
Undefined Instruction	FFFFDC16 to FFFFDF16			
Overflow	FFFFE016 to FFFFE316		M32C/80 Series	
BRK Instruction	FFFFE416 to FFFFE716	If the content of address FFFFE716 is FF16, a program is executed from the address stored into software interrupt number 0 in the relocatable vector table	Software Manual	
Address Match	FFFFE816 to FFFFEB16			
-	FFFFEC16 to FFFFEF16	Reserved space		
Watchdog Timer	FFFFF016 to FFFFF316	These addresses are used for the watchdog timer interrupt and oscillation stop detection interrupt	Reset, Clock Generation Circuit, Watchdog Timer	
-	FFFFF416 to FFFFF716	Reserved space		
NMI	FFFFF816 to FFFFFB16			
Reset	FFFFFC16 to FFFFFF16		Reset	

Table 10.1 Fixed Vector Table

10.5.2 Relocatable Vector Tables

The relocatable vector tables occupy 256 bytes from the starting address set in the INTB register. Table 10.2 lists the relocatable vector tables.

Set an even address as the starting address of the vector table set in the INTB register to increase interrupt sequence execution rate.

Table 10.2 Relocatable Vector Tables

Interrupt Generated by	Vector Table Address Address(L) to Address(H) ⁽¹⁾	Software Interrupt Number	Reference	
BRK Instruction ⁽²⁾	+0 to +3 (000016 to 000316)	0	M32C/80 Series	
Reserved Space	+4 to +31 (000416 to 001F16)	1 to 7	Software Manual	
DMA0	+32 to +35 (002016 to 002316)	8	DMAC	
DMA1	+36 to +39 (002416 to 002716)	9		
DMA2	+40 to +43 (002816 to 002B16)	10	•	
DMA3	+44 to +47 (002C16 to 002F16)	11	-	
Timer A0	+48 to +51 (003016 to 003316)	12	Timer A	
Timer A1	+52 to +55 (003416 to 003716)	13	•	
Timer A2	+56 to +59 (003816 to 003B16)	14		
Timer A3	+60 to +63 (003C16 to 003F16)	15		
Timer A4	+64 to +67 (004016 to 004316)	16		
UART0 Transmission, NACK ⁽³⁾	+68 to +71 (004416 to 004716)	17	Serial I/O	
UART0 Reception, ACK ⁽³⁾	+72 to +75 (004816 to 004B16)	18		
UART1 Transmission, NACK ⁽³⁾	+76 to +79 (004C16 to 004F16)	19		
UART1 Reception, ACK ⁽³⁾	+80 to +83 (005016 to 005316)	20		
Timer B0	+84 to +87 (005416 to 005716)	21	Timer B	
Timer B1	+88 to +91 (005816 to 005B16)	22		
Timer B2	+92 to +95 (005C16 to 005F16)	23		
Timer B3	+96 to +99 (006016 to 006316)	24		
Timer B4	+100 to +103 (006416 to 006716)	25		
ĪNT5	+104 to +107 (006816 to 006B16)	26	Interrupt	
ĪNT4	+108 to +111 (006C16 to 006F16)	27		
ĪNT3	+112 to +115 (007016 to 007316)	28		
INT2	+116 to +119 (007416 to 007716)	29	*	
ĪNT1	+120 to +123 (007816 to 007B16)	30	-	
ÎNT0	+124 to +127 (007C16 to 007F16)	31		
Timer B5	+128 to +131 (008016 to 008316)	32	Timer B	
UART2 Transmission, NACK ⁽³⁾	+132 to +135 (008416 to 008716)	33	Serial I/O	
UART2 Reception, ACK ⁽³⁾	+136 to +139 (008816 to 008B16)	34	*	
UART3 Transmission, NACK ⁽³⁾	+140 to +143 (008C16 to 008F16)	35		
UART3 Reception, ACK ⁽³⁾	+144 to +147 (009016 to 009316)	36		
UART4 Transmission, NACK ⁽³⁾	+148 to +151 (009416 to 009716)	37		
UART4 Reception, ACK ⁽³⁾	+152 to +155 (009816 to 009B16)	38		

RENESAS

Table 10.2 Relocatable Vector Tables (Continued)

Interrupt Generated by	Vector Table Address Address(L) to Address(H) ⁽¹⁾	Software Interrupt Number	Reference
Bus Conflict Detect, Start Condition Detect,	+156 to +159 (009C16 to 009F16)	39	Serial I/O
Stop Condition Detect (UART2) ⁽³⁾ ,		00	
		40	
Bus Conflict Detect, Start Condition Detect,	+160 to +163 (00A016 to 00A316)	40	
Stop Condition Detect (UART3/UART0) ⁽⁴⁾			
Bus Conflict Detect, Start Condition Detect,	+164 to +167 (00A416 to 00A716)	41	
Stop Condition Detect (UART4/UART1) ⁽⁴⁾			
A/D0	+168 to +171 (00A816 to 00AB16)	42	A/D Converter
Key Input	+172 to +175 (00AC16 to 00AF16)	43	Interrupts
Intelligent I/O Interrupt 0, CAN 3	+176 to +179 (00B016 to 00B316)	44	Intelligent I/O
Intelligent I/O Interrupt 1, CAN 4	+180 to +183 (00B416 to 00B716)	45	CAN
Intelligent I/O Interrupt 2, CAN 6	+184 to +187 (00B816 to 00BB16)	46	
Intelligent I/O Interrupt 3, CAN 7	+188 to +191 (00BC16 to 00BF16)	47	
Intelligent I/O Interrupt 4	+192 to +195 (00C016 to 00C316)	48	
CAN 5	+196 to +199 (00C416 to 00C716)	49	CAN
CAN 8	+200 to +203 (00C416 to 00C716)	50	
Reserved Space	+204 to +207 (00C816 to 00CF16)	51	
Intelligent I/O Interrupt 8	+208 to +211 (00D016 to 00D316)	52	Intelligent I/O
Intelligent I/O Interrupt 9, CAN 0	+212 to +215 (00D416 to 00D716)	53	CAN
Intelligent I/O Interrupt 10, CAN 1	+216 to +219 (00D816 to 00DB16)	54	
Reserved Space	+220 to +227 (00DC16 to 00E316)	55, 56	
CAN 2	+228 to +231 (00E416 to 00E716)	57	CAN
Reserved Space	+232 to +255 (00E816 to 00FF16)	58 to 63	
INT Instruction ⁽²⁾	+0 to +3 (000016 to 000316) to	0 to 63	Interrupts
	+252 to +255 (00FC16 to 00FF16)		

NOTES:

1. These addresses are relative to those in the INTB register.

- 2. The I flag does not disable interrupts.
- 3. In I²C mode, NACK, ACK or start/stop condition detection causes interrupts to be generated.
- 4. The IFSR6 bit in the IFSR register determines whether these addresses are used for an interrupt in UART0 or in UART3.

The IFSR7 bit in the IFSR register determines whether these addresses are used for an interrupt in UART1 or in UART4.

10.6 Interrupt Request Acknowledgement

Software interrupts and special interrupts occur when conditions to generate an interrupt are met. The peripheral function interrupts are acknowledged when all conditions below are met.

- I flag = "1"
- IR bit = "1"
- ILVL2 to ILVL0 bits > IPL

The I flag, IPL, IR bit and ILVL2 to ILVL0 bits are independent of each other. The I flag and IPL are in the FLG register. The IR bit and ILVL2 to ILVL0 bits are in the interrupt control register.

10.6.1 | Flag and IPL

The I flag enables or disables maskable interrupts. When the I flag is set to "1" (enable), all maskable interrupts are enabled; when the I flag is set to "0" (disable), they are disabled. The I flag is automatically set to "0" after reset.

IPL, consisting of three bits, indicates the interrupt priority level from level 0 to level 7.

If a requested interrupt has higher priority level than indicated by IPL, the interrupt is acknowledged. Table 10.3 lists interrupt priority levels associated with IPL.

IPL2	IPL1	IPL0	Interrupt Priority Levels
0	0	0	Level 1 and above
0	0	1	Level 2 and above
0	1	0	Level 3 and above
0	1	1	Level 4 and above
1	0	0	Level 5 and above
1	0	1	Level 6 and above
1	1	0	Level 7 and above
1	1	1	All maskable interrupts are disabled

Table 10.3 Interrupt Priority Levels

10.6.2 Interrupt Control Register and RLVL Register

The peripheral function interrupts use interrupt control registers to control each interrupt. Figures 10.3 and 10.4 show the interrupt control register. Figure 10.5 shows the RLVL register.

		b1 b0 Symbol TA0IC to TA4IC TA0IC to TB5IC SOTIC to S4TIC SORIC to S4TIC BCN0IC to BCN4IC DM0IC to DM3IC AD0IC AD0IC		Address 006C16, 008C16, 006E16, 008E16, 007016 009416, 007616, 009616, 007816, 009816, 006916 009016, 009216, 008916, 008B16, 008D16 007216, 007416, 006B16, 006D16, 006F16		After F XXXX XXXX XXXX XXXX	X000: X000: X000: X000:
				006816, 008816, 007316			X000: X000: X000:
		KUPIC IIO0IC to I IIO8IC to I CAN0IC to CAN3IC to CAN6IC to	IIO10IC CAN2IC CAN5IC	009316 007516, 009516, 007D16, 009D16 009D16, 007F16, 007516, 009516, 007716, 009716,	, 008116 ⁽³⁾ 009916 ⁽³⁾	XXXX XXXX XXXX XXXX XXXX XXXX	X000: X000: X000: X000:
		Bit Symbol	В	lit Name	Function		RW
		··· ILVL0		b2b1b0 0 0 0: Level 0 (interrupt disable 0 0 1: Level 1		oled)	RW
		ILVL1	Interrupt Select B	Priority Level it	0 1 0: Level 2 0 1 1: Level 3 1 0 0: Level 4 1 0 1: Level 5		RW
		ILVL2			1 1 0: Level 6 1 1 1: Level 7		RW
		IR	Interrupt Request Bit 0: requests no interrupt 1: requests an interrupt ⁽⁴⁾			RW	
		(b7 - b4)	0	0	hen write, set to "0". s indeterminate.		-
2. The BC 3. The IIO The IIO The IIO The IIO The IIO The IIO	N1IC register 9IC register s 10IC register s 0IC register sl 1IC register sl 2IC register sl	shares an hares an a shares an nares an a nares an a nares an a nares an a	address wi address wi address wi address wi address wi address wi address wi	with the BCN3IC with the BCN4IC th the CAN0IC r vith the CAN1IC th the CAN3IC r th the CAN4IC r th the CAN6IC r th the CAN7IC r et to "1").	C register. register. register. register. register. register.		

Figure 10.3 Interrupt Control Register (1)

b7 b6 b5	b4 b3	3 b2 b1 b0		to INT2IC 009E16,	After Reset 007E16, 009C16 XX00 X0002 009A16, 007A16 XX00 X0002	
			Bit Symbol	Bit Name	Function	RW
			ILVL0		b2b1b0 0 0 0: Level 0 (interrupt disabled) 0 0 1: Level 1	RW
			ILVL1	Interrupt Priority Level Select Bit	0 1 0: Level 2 0 1 1: Level 3 1 0 0: Level 4	RW
		ILVL2		1 0 1: Level 5 1 1 0: Level 6 1 1 1: Level 7		
		IR	Interrupt Request Bit	0: requests no interrupt 1: requests an interrupt ⁽¹⁾	RW	
			POL	Polarity Switch Bit	0: Selects falling edge or "L" ⁽²⁾ 1: Selects rising edge or "H"	RW
			LVS	Level Sensitive/Edge Sensitive Switch Bit	0: Edge sensitive 1: Level sensitive ⁽³⁾	RW
<u> </u>			(b7 - b6)	Nothing is assigned. Wh When read, its content is		_

1. The IR bit can be set to only "0" (do not set to "1").

2. Set the POL bit to "0" when a corresponding bit in the IFSR register is set to "1" (both edges).

3. When setting the LVS bit to "1", set a corresponding bit in the IFSR register to "0" (one edge).

10.6.2.1 ILVL2 to ILVL0 Bits

The ILVL2 to ILVL0 bits determines an interrupt priority level. The higher the interrupt priority level is, the higher interrupt priority is.

When an interrupt request is generated, its interrupt priority level is compared to IPL. This interrupt is acknowledged only when its interrupt priority level is higher than IPL. When the ILVL2 to ILVL0 bits are set to "0002" (level 0), its interrupt is ignored.

10.6.2.2 IR Bit

The IR bit is automatically set to "1" (interrupt requested) when an interrupt request is generated. The IR bit is automatically set to "0" (no interrupt requested) after an interrupt request is acknowledged and an interrupt routine in the corresponding interrupt vector is executed.

The IR bit can be set to "0" by program. Do not set to "1".

b7 b6 b5 b4	b3 b2 b1 b0	Symbo RLVL	ol Address 009F16	After Reset XXXX 00002	
		Bit Symbol	Bit Name	Function	RW
		RLVL0		b2b1b0 000:Level0 001:Level1	RW
		RLVL1	Stop/Wait Mode Exit Minimum Interrupt Priority Level Control Bit ⁽¹⁾	0 1 0 : Level 2 0 1 1 : Level 3 1 0 0 : Level 4	RW
		RLVL2		1 0 1 : Level 5 1 1 0 : Level 6 1 1 1 : Level 7	RW
		FSIT	High-Speed Interrupt Set Bit ⁽²⁾	 O: Interrupt priority level 7 is used for normal interrupt 1: Interrupt priority level 7 is used for high-speed interrupt 	RW
		(b4)	Nothing is assigned. When write, set to "0". When read, its content is indeterminate.		_
		DMAII	DMA II Select Bit ⁽⁴⁾	 0: Interrupt priority level 7 is used for interrupt 1: Interrupt priority level 7 is used for DMA II transfer⁽³⁾ 	RW
		(b7 - b6)	Nothing is assigned. Wh When read, its content is		-
the leve the FLC 2. When th interrup 3. Set the Do not o when th 4. The DM	el set in the RL B register. he FSIT bit is s t. In this case ILVL2 to ILVL change the DM he DMAII bit to IAII bit become	VL2 to RL set to "1", a set only o 0 bits in th AAII bit set 0 "1". es indeterr	VL0 bits. Set the RLVL2 t an interrupt having the inte one interrupt to the interrup e interrupt control register ting to "0" after setting the	uested interrupt priority level is higher o RLVL0 bits to the same value as IF rrupt priority level 7 becomes the high of priority level 7 and the DMAII bit to after setting the DMAII bit to "1". e DMAII bit to "1". Set the FSIT bit to the DMAII bit for an interrupt setting,	PL in n-speed "0". "0"

Figure 10.5 RLVL Register

10.6.2.3 RLVL2 to RLVL0 Bits

When using an interrupt to exit stop or wait mode, refer to **8.5.2 Wait Mode** and **8.5.3 Stop Mode** for details.

10.6.3 Interrupt Sequence

The interrupt sequence is performed between an interrupt request acknowledgment and interrupt routine execution.

When an interrupt request is generated while an instruction is executed, the CPU determines its interrupt priority level after the instruction is completed. The CPU starts the interrupt sequence from the following cycle. However, in regards to the SCMPU, SIN, SMOVB, SMOVF, SMOVU, SSTR, SOUT or RMPA instruction, if an interrupt request is generated while executing the instruction, the microcomputer suspends the instruction to start the interrupt sequence.

The interrupt sequence is performed as follows:

- (1) The CPU obtains interrupt information (interrupt number and interrupt request level) by reading address 00000016 (address 00000216 for the high-speed interrupt). Then, the IR bit applicable to the interrupt information is set to "0" (interrupt requested).
- (2) The FLG register, prior to an interrupt sequence, is saved to a temporary register⁽¹⁾ within the CPU.
- (3) Each bit in the FLG register is set as follows:
 - The I flag is set to "0" (interrupt disabled)
 - The D flag is set to "0" (single-step disabled)
 - The U flag is set to "0" (ISP selected)
- (4) A temporary register within the CPU is saved to the stack; or to the SVF register for the high-speed interrupt.
- (5) PC is saved to the stack; or to the SVP register for the high-speed interrupt.
- (6) The interrupt priority level of the acknowledged interrupt is set in IPL .
- (7) A relocatable vector corresponding to the acknowledged interrupt is stored into PC.

After the interrupt sequence is completed, an instruction is executed from the starting address of the interrupt routine.

NOTE:

1. Temporary register cannot be modified by users.

10.6.4 Interrupt Response Time

Figure 10.6 shows an interrupt response time. Interrupt response time is the period between an interrupt generation and the execution of the first instruction in an interrupt routine. Interrupt response time includes the period between an interrupt request generation and the completed execution of an instruction ((a) on Figure 10.6) and the period required to perform an interrupt sequence ((b) on Figure 10.6).

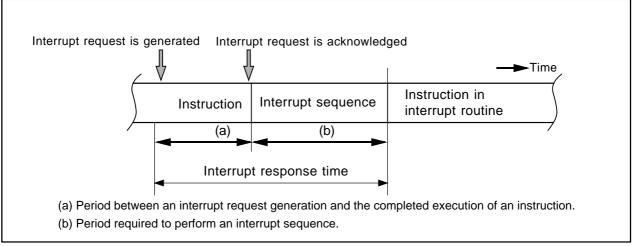


Figure 10.6 Interrupt Response Time

Time (a) varies depending on an instruction being executed. The DIV, DIVX and DIVU instructions require the longest time (a); 42 cycles when an immediate value or register is set as the divisor. When the divisor is a value in the memory, the following value is added.

: 2 + X
: 3 + X
: 5 + X + 2Y
: 6 + X + 2Y

X is the number of wait states for a divisor space. Y is the number of wait states for the space that stores indirect addresses. If X and Y are in an odd address or in 8-bit bus space, the X and Y value must be doubled.

Table 10.4 lists time (b), shown Figure 10.6.

Interrupt	Interrupt Vector Address	16-Bit Bus	8-Bit Bus
Peripheral Function	Even address	14 cycles	16 cycles
	Odd address ⁽¹⁾	16 cycles	16 cycles
INT Instruction	Even address	12 cycles	14 cycles
	Odd address ⁽¹⁾	14 cycles	14 cycles
NMI	Even address ⁽²⁾	13 cycles	15 cycles
Watchdog Timer			
Undefined Instruction			
Address Match			
Overflow	Even address ⁽²⁾	14 cycles	16 cycles
BRK Instruction (relocatable vector table)	Even address	17 cycles	19 cycles
	Odd address ⁽¹⁾	19 cycles	19 cycles
BRK Instruction (fixed vector table)	Even address ⁽²⁾	19 cycles	21 cycles
High-Speed Interrupt	Vector table is internal register	5 cycles	

NOTES:

1. Allocate interrupt vectors in even addresses.

2. Vectors are fixed to even addresses.

10.6.5 IPL Change when Interrupt Request is Acknowledged

When a peripheral function interrupt request is acknowledged, IPL sets the priority level for the acknowledged interrupt.

Software interrupts and special interrupts have no interrupt priority level. If an interrupt request that has no interrupt priority level is acknowledged, the value shown in Table 10.5 is set in IPL as the interrupt priority level.

Table 10.5 Interrupts without Interrupt Priority Levels and IPL

Interrupt Source	Level Set to IPL
Watchdog Timer, NMI, Oscillation Stop Detection	7
Reset	0
Software, Address Match	Not changed

10.6.6 Saving a Register

In the interrupt sequence, the FLG register and PC are saved to the stack.

After the FLG register is saved to the stack, 16 high-order bits and 16 low-order bits of PC, extended to 32 bits, are saved to the stack. Figure 10.7 shows stack states before and after an interrupt request is acknowledged.

Other important registers are saved by program at the beginning of an interrupt routine. The PUSHM instruction can save several registers⁽¹⁾ in the register bank used.

Refer to 10.4 High-Speed Interrupt for the high-speed interrupt.

NOTE:

1. Can be selected from the R0, R1, R2, R3, A0, A1, SB and FB registers.

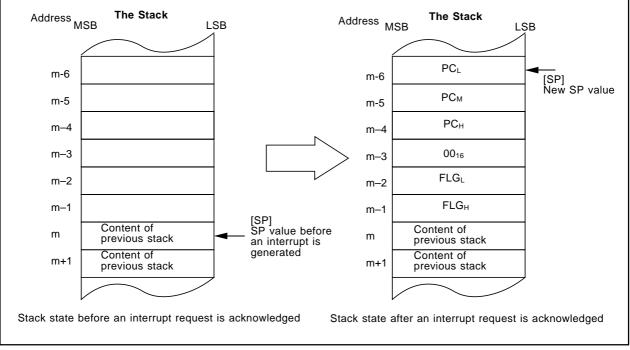


Figure 10.7 Stack States

10.6.7 Restoration from Interrupt Routine

When the REIT instruction is executed at the end of an interrupt routine, the FLG register and PC before the interrupt sequence is performed, which have been saved to the stack, are automatically restored. The program, executed before an interrupt request was acknowledged, starts running again. Refer to **10.4 High-Speed Interrupt** for the high-speed interrupt.

Restore registers saved by program in an interrupt routine by the POPM instruction or others before the REIT and FREIT instructions. Register bank is switched back to the bank used prior to the interrupt sequence by the REIT or FREIT instruction.

10.6.8 Interrupt Priority

If two or more interrupt requests are sampled at the same sampling points (a timing to detect whether an interrupt request is generated or not), the interrupt with the highest priority is acknowledged.

Set the ILVL2 to ILVL0 bits to select the desired priority level for maskable interrupts (peripheral function interrupt).

Priority levels of special interrupts such as reset (reset has the highest priority) and watchdog timer are set by hardware. Figure 10.8 shows priority levels of hardware interrupts.

The interrupt priority does not affect software interrupts. Executing instruction causes the microcomputer to execute an interrupt routine.

Reset > NMI > Oscillation Stop Detection > Peripheral Function > Address Match Watchdog Timer

Figure 10.8 Interrupt Priority

10.6.9 Interrupt Priority Level Select Circuit

The interrupt priority level select circuit selects the highest priority interrupt when two or more interrupt requests are sampled at the same sampling point.

Figure 10.9 shows the interrupt priority level select circuit.

Figure 10.9 Interrupt Priority Level Select Circuit

RENESAS

10.7 INT Interrupt

External input generates the \overline{INTi} interrupt (i = 0 to 5). The LVS bit in the INTilC register selects either edge sensitive triggering to generate an interrupt on any edge or level sensitive triggering to generate an interrupt at an applied signal level. The POL bit in the INTIIC register determines the polarity.

For edge sensitive, when the IFSRi bit in the IFSR register is set to "1", an interrupt occurs on both rising and falling edges of the external input. If the IFSRi bit is set to "1", set the POL bit in the corresponding register to "0" (falling edge).

For level sensitive, set the IFSRi bit to "0" (single edge). When the INTi pin input level reaches the level set in the POL bit, the IR bit in the INTIIC register is set to "1". The IR bit remains unchanged even if the INTI pin level is changed. The IR bit is set to "0" when the INTi interrupt is acknowledged or when the IR bit is written to "0" by program.

Figure 10.10 shows the IFSR register.

b7 b6 b5 b	4 b3 b2 b1 b0	Symb IFSR	ol Address 031F16	After Reset 0016	
		Bit Symbol	Bit Name	Function	RW
		IFSR0	INT0 Interrupt Polarity Select Bit ⁽¹⁾	0: One edge 1: Both edges	RW
		IFSR1	INT1 Interrupt Polarity Select Bit ⁽¹⁾	0: One edge 1: Both edges	RW
		IFSR2	INT2 Interrupt Polarity Select Bit ⁽¹⁾	0: One edge 1: Both edges	RW
		IFSR3	INT3 Interrupt Polarity Select Bit ⁽¹⁾	0: One edge 1: Both edges	RW
		IFSR4	INT4 Interrupt Polarity select bit ⁽¹⁾	0: One edge 1: Both edges	RW
ļ		IFSR5	INT5 Interrupt Polarity Select Bit ⁽¹⁾	0: One edge 1: Both edges	RW
·····		IFSR6	UART0, UART3 Interrupt Source Select Bit	 0: UART3 bus conflict, start condition detect, stop condition detect 1: UART0 bus conflict, start condition detect, stop condition detect 	RW
		IFSR7	UART1, UART4 Interrupt Source Select Bit	0: UART4 bus conflict, start condition detect, stop condition detect 1: UART1 bus conflict, start condition detect, stop condition detect	RW

Figure 10.10 IFSR Register

10.8 NMI Interrupt

The $\overline{\text{NMI}}$ interrupt⁽¹⁾ occurs when a signal applied to the $\overline{\text{NMI}}$ pin changes from a high-level ("H") signal to a low-level ("L") signal. The $\overline{\text{NMI}}$ interrupt is a non-maskable interrupt. Although the P85/ $\overline{\text{NMI}}$ pin is used as the $\overline{\text{NMI}}$ interrupt pin, the P8_5 bit in the P8 register indicates the input level for this pin.

NOTE:

1. When the NMI interrupt is not used, connect the NMI pin to VCC via a resistor. Because the NMI interrupt cannot be ignored, the pin must be connected.

10.9 Key Input Interrupt

Key input interrupt request is generated when one of the signals applied to the P104 to P107 pins in input mode is on the falling edge. The key input interrupt can be also used as key-on wake-up function to exit wait or stop mode. To use the key input interrupt, do not use P104 to P107 as A/D input ports. Figure 10.11 shows a block diagram of the key input interrupt. When an "L" signal is applied to any pins in input mode, signals applied to other pins are not detected as an interrupt request signal.

When the PSC_7 bit in the PSC register⁽²⁾ is set to "1" (key input interrupt disabled), no key input interrupt occurs regardless of interrupt control register settings. When the PSC_7 bit is set to "1", no input from a port pin is available even when in input mode.

NOTE:

2. Refer to 23. Programmable I/O Ports about the PSC register.

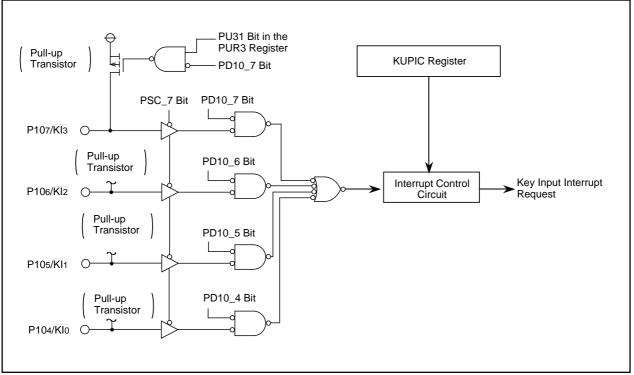


Figure 10.11 Key Input Interrupt

10.10 Address Match Interrupt

The address match interrupt occurs immediately before executing an instruction that is stored into an address indicated by the RMADi register (i=0 to 7). The address match interrupt can be set in eight addresses. The AIERi bit in the AIER register determines whether the interrupt is enabled or disabled. The I flag and IPL do not affect the address match interrupt.

Figure 10.12 shows registers associated with the address match interrupt.

The starting address of an instruction must be set in the RMADi register. The address match interrupt does not occur when a table data or addresses other than the starting address of the instruction is set.

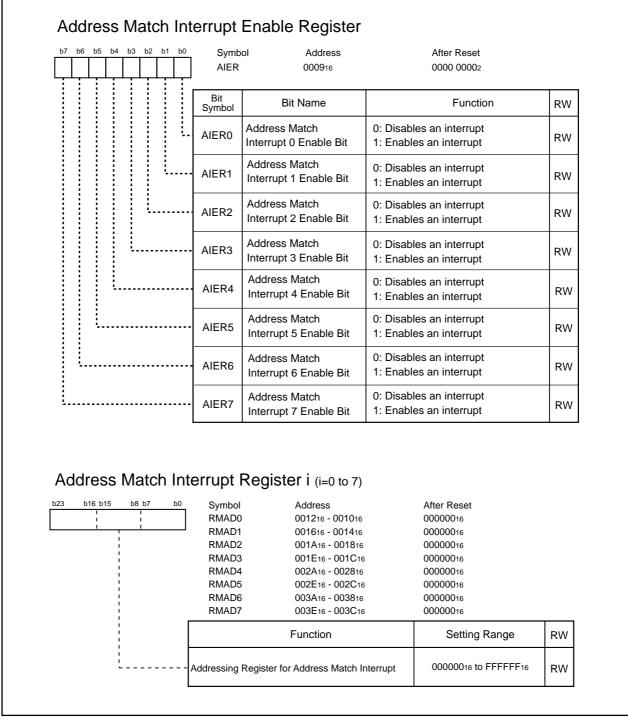


Figure 10.12 AIER Register and RMAD0 to RMAD7 Registers

10.11 Intelligent I/O Interrupt and CAN Interrupt

The intelligent I/O interrupt and CAN interrupt are assigned to software interrupt numbers 44 to 50, 52 to 54, and 57.

When using the intelligent I/O interrupt or CAN interrupt, set the IRLT bit in the IIOiIE register (i = 0 to 6, 8 to 11) to "1" (interrupt request for interrupt used).

Various interrupt requests cause the intelligent I/O interrupt to occur. When an interrupt request is generated with each intelligent I/O or CAN functions, the corresponding bit in the IIOiIR register is set to "1" (interrupt requested). When the corresponding bit in the IIOiIE register is set to "1" (interrupt enabled), the IR bit in the corresponding IIOiIC register is set to "1" (interrupt requested).

After the IR bit setting changes "0" to "1", the IR bit remains set to "1" when a bit in the IIOiIR register is set to "1" by another interrupt request and the corresponding bit in the IIOiIE register is set to "1".

Bits in the IIOiIR register are not set to "0" automatically, even if an interrupt is acknowledged. Set each bit to "0" by program. If these bit settings are left "1", all generated interrupt requests are ignored.

Figure 10.13 shows a block diagram of the intelligent I/O interrupt and CAN interrupt. Figure 10.14 shows the IIOiIR register. Figure 10.15 shows the IIOiIE register.

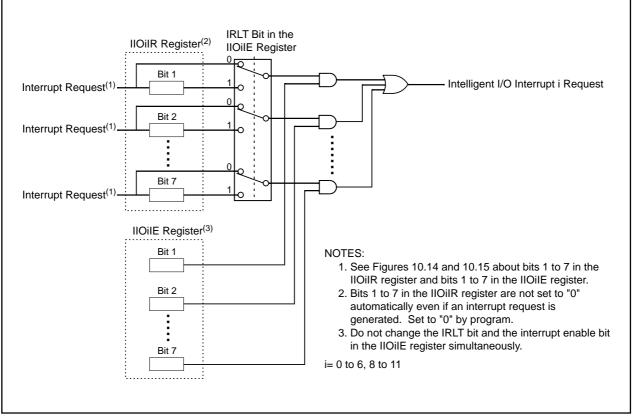


Figure 10.13 Intelligent I/O Interrupt and CAN Interrupt

The CANjk (j=0 to 2, k=0 to 2) interrupt and CANn (n=1, 2) wake-up interrupt are provided as the CAN interrupt. The following registers are required for the CAN interrupts:

- Bits 7 in the IIO9IR to IIO11IR registers and bits 7 in the IIO9IE to IIO11IE registers for the CAN00 to CAN02 interrupts.
- Bits 7 in the IIO0IR, IIO1IR and IIO5IR registers and bits 7 in the IIO0IE, IIO1IE and IIO5IE registers for the CAN10 to CAN12 interrupts.
- Bits 7 in the IIO2IR, IIO3IR and IIO6IR registers and bits 7 in the IIO2IE, IIO3IE and IIO6IE registers for the CAN20 to CAN22 interrupts.
- Bit 6 in the IIO5IR register and bit 6 in the IIO5IE register for the CAN1 wake-up interrupt.
- Bit 6 in the IIO6IR register and bit 6 in the IIO6IE register for the CAN2 wake-up interrupt.

The CAN0IC, CAN1IC, CAN3IC, CAN4IC CAN6IC, and CAN7IC registers share addresses with the following registers:

- The CANOIC register shares an address with the IIO9IC register.
- The CAN1IC register shares an address with the IIO10IC register.
- The CAN3IC register shares an address with the IIO0IC register.
- The CAN4IC register shares an address with the IIO1IC register.
- The CAN6IC register shares an address with the IIO2IC register.
- The CAN7IC register shares an address with the IIO3IC register.

Refer to 22.4 CAN Interrupt for details.

When using the intelligent I/O interrupt or CAN interrupt to activate DMAC II, set the IRLT bit in the IIOiIE register to "0" (interrupt used for DMAC, DMAC II) to enable the interrupt request that the IIOiIE (i=0 to 6, 8 to 11) register requires.

Interrupt Request	Registe	r			
b7 b6 b5 b4 b3 b2 b1 b0	Symbo IIO0IR	I to IIO6IR, IIO8IR to IIO11IR	Address See below	After Reset 0000 000X2	
	Bit Symbol		Function		RW
	(b0)	Nothing is assigned. When When read, its content is in			_
· · · · · · · · · · · · · · · · · · ·	(Note 1)	0: requests no interrupt 1: requests an interrupt ⁽²⁾			RW
	(Note 1)	0: requests no interrupt 1: requests an interrupt ⁽²⁾			RW
	(b3)	Reserved bit. Set to "0". When read, its content is in	ndeterminate.		RW
	(Note 1)	0: requests no interrupt 1: requests an interrupt ⁽²⁾			RW
	(Note 1)	0: requests no interrupt 1: requests an interrupt ⁽²⁾			RW
<u>.</u>	(Note 1)	0: requests no interrupt 1: requests an interrupt ⁽²⁾			RW
	(Note 1)	0: requests no interrupt 1: requests an interrupt ⁽²⁾			RW

NOTES:

1. See table below for bit symbols.

2. Only "0" can be set (nothing is changed even if "1" is set).

Bit Symbols for the Interrupt Request Register

Symbol Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 IIO0IR 00A016 CAN10R - SIO0RR GORIR - TM13R/P013R - - IIO1IR 00A116 CAN11R - SIO0RR GOTOR - TM13R/P013R - - IIO2IR 00A216 CAN20R - SIO1RR G1TOR - TM12R/P012R - - IIO3IR 00A316 CAN21R - SIO1TR G1TOR - TM10R/P010R - - IIO3IR 00A416 SRT0R SRT1R - BT1R - TM17R/P017R -	Bit Oyinibe		interrupt	itoquooti	togiotoi					
IIO1IR 00A116 CAN11R - SIO0TR G0TOR - TM14R/P014R - - IIO2IR 00A216 CAN20R - SIO1TR G1TOR - TM12R/P012R - - IIO3IR 00A316 CAN21R - SIO1TR G1TOR - TM10R/P010R - - IIO4IR 00A416 SRT0R SRT1R - BT1R - TM17R/P017R - - IIO5IR 00A516 CAN12R CAN2WR -	Symbol	Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IIO2IR 00A216 CAN20R SIO1RR G1RIR TM12R/P012R - IIO3IR 00A316 CAN21R SIO1TR G1TOR TM10R/P010R - IIO3IR 00A416 SRT0R SRT1R - BT1R - TM10R/P010R - IIO5IR 00A416 SRT0R SRT1R - BT1R - TM17R/P017R - IIO6IR 00A616 CAN22R CAN2WUR - - - - - IIO8IR 00A616 CAN2R CAN2WUR - - - - - - IIO8IR 00A916 CAN00R - - - - TM17R/P017R - - IIO9IR 00A916 CAN00R - - - - TM15R/P015R - IIO10IR 00A416 CAN01R - - - TM16R/P016R - IIO11IR 00A816 CAN02R - - - - - - - - - - - -	IIO0IR	00A016	CAN10R	-	SIO0RR	G0RIR	-	TM13R/PO13R	-	-
IIO3IR 00A316 CAN21R - SIO1TR G1TOR - TM10R/PO10R - - IIO4IR 00A416 SRT0R SRT1R - BT1R - TM17R/PO17R - - IIO5IR 00A516 CAN12R CAN1WUR - - - - - - IIO6IR 00A616 CAN22R CAN2WUR - 101018 00A416 CAN01R -	IIO1IR	00A116	CAN11R	-	SIO0TR	G0TOR	-	TM14R/PO14R	-	-
IIO4IR 00A416 SRT0R SRT1R - BT1R - TM17R/P017R - - IIO5IR 00A516 CAN12R CAN1WUR -	IIO2IR	00A216	CAN20R	-	SIO1RR	G1RIR	-	TM12R/PO12R	-	-
IIO5IR 00A516 CAN12R CAN1WUR - <td>IIO3IR</td> <td>00A316</td> <td>CAN21R</td> <td>-</td> <td>SIO1TR</td> <td>G1TOR</td> <td>-</td> <td>TM10R/PO10R</td> <td>-</td> <td>-</td>	IIO3IR	00A316	CAN21R	-	SIO1TR	G1TOR	-	TM10R/PO10R	-	-
IIO6IR 00A616 CAN22R CAN2WUR - <td>IIO4IR</td> <td>00A416</td> <td>SRTOR</td> <td>SRT1R</td> <td>-</td> <td>BT1R</td> <td>-</td> <td>TM17R/PO17R</td> <td>-</td> <td>-</td>	IIO4IR	00A416	SRTOR	SRT1R	-	BT1R	-	TM17R/PO17R	-	-
IIO8IR 00A816 - - - - - TM11R/P011R - IIO9IR 00A916 CAN00R - - - - TM15R/P015R - IIO10IR 00A416 CAN01R - - - - TM15R/P015R - IIO10IR 00A416 CAN01R - - - - TM16R/P016R - IIO11IR 00AB16 CAN02R -	IIO5IR	00A516	CAN12R	CAN1WUR	-	-	-	-	-	-
IIO9IR 00A916 CAN00R - - - - TM15R/P015R - IIO10IR 00A416 CAN01R - - - - TM15R/P015R - IIO10IR 00A416 CAN01R - - - - TM16R/P016R - IIO11IR 00AB16 CAN02R - - - - - - - BT1R : Intelligent I/O Base Timer Interrupt Request -	IIO6IR	00A616	CAN22R	CAN2WUR	-	-	-	-	-	-
IIO10IR 00AA16 CAN01R - - - - TM16R/P016R - IIO11IR 00AB16 CAN02R - <td< td=""><td>IIO8IR</td><td>00A816</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>TM11R/PO11R</td><td>-</td></td<>	IIO8IR	00A816	-	-	-	-	-	-	TM11R/PO11R	-
IIO11IR 00AB16 CAN02R -	IIO9IR	00A916	CAN00R	-	-	-	-	-	TM15R/PO15R	-
BT1R : Intelligent I/O Base Timer Interrupt Request TM1jR : Intelligent I/O Time Measurement j Interrupt Request PO1jR : Intelligent I/O Waveform Generating Function j Interrupt Request SIOiRR : Intelligent I/O Communication Unit i Receive Interrupt Request SIOiRR : Intelligent I/O Communication Unit i Transmit Interrupt Request GiTOR : Intelligent I/O Communication Unit i HDLC Data Processing Function Interrupt Request (TO: Output to Trans GiRIR : Intelligent I/O Communication Unit i HDLC Data Processing Function Interrupt Request (RI: Input to Receive SRTir SIRTR : Intelligent I/O Special Communication Function Interrupt Request CANkmR : CANk Communication Function Interrupt Request (k=0 to 2, m=0 to 2) CANnWUR : CANn Wake-up Interrupt Request (n=1, 2)	IIO10IR	00AA16	CAN01R	-	-	-	-	-	TM16R/PO16R	-
TM1jR : Intelligent I/O Time Measurement j Interrupt Request PO1jR : Intelligent I/O Waveform Generating Function j Interrupt Request SIOiRR : Intelligent I/O Communication Unit i Receive Interrupt Request SIOiRR : Intelligent I/O Communication Unit i Transmit Interrupt Request GiTOR : Intelligent I/O Communication Unit i Transmit Interrupt Request GiTOR : Intelligent I/O Communication Unit i HDLC Data Processing Function Interrupt Request (TO: Output to Trans GiRIR : Intelligent I/O Communication Unit i HDLC Data Processing Function Interrupt Request (RI: Input to Receive SRTIR : Intelligent I/O Special Communication Function Interrupt Request CANkmR : CANk Communication Function Interrupt Request (k=0 to 2, m=0 to 2) CANnWUR : CANn Wake-up Interrupt Request (n=1, 2)	IIO11IR	00AB16	CAN02R	-	-	-	-	-	-	-
CANnWUR : CANn Wake-up Interrupt Request (n=1, 2)	tm1jr P01jr Sioirr Sioitr Gitor Girir Srtir	: Intelliger : Intelliger : Intelliger : Intelliger : Intelliger : Intelliger : Intelliger	nt I/O Time nt I/O Wave nt I/O Com nt I/O Com nt I/O Com nt I/O Com nt I/O Spec	e Measurem eform Gene munication munication munication munication cial Commu	ent j Intern erating Fun Unit i Reca Unit i Tran Unit i HDL Unit i HDL nication Fu	upt Request ction j Interr eive Interrup smit Interrup C Data Proo C Data Proo Inction Inter	rupt Reques of Request pt Request cessing Fun cessing Fun rupt Reques	nction Interrupt Re Inction Interrupt Re		
		R:CANn W	Vake-up Int	errupt Req			=0 to 2, m=	0 to 2)		

Figure 10.14 IIO0IR to IIO6IR, IIO8IR to IIO11IR Registers

7 b6 b5 b4 b3 b2 b1 b0	Symb IIO0IE	ol E to IIO6IE, IIO8IE to IIO	Address After Reset 11IE See below 0016	
	Bit Symbol	Bit Name	Function	RW
	IRLT	Interrupt Request Select Bit ⁽²⁾	0: Interrupt request is used for DMAC, DMAC II 1: Interrupt request is used for interrupt	RW
	(Note 1)		0: Disables an interrupt by bit 1 in IIOiIR register 1: Enables an interrupt by bit 1 in IIOiIR register	RW
	(Note 1)		0: Disables an interrupt by bit 2 in IIOiIR register1: Enables an interrupt by bit 2 in IIOiIR register	RW
	(b3)	Reserved Bit	Set to "0"	RW
	(Note 1)		0: Disables an interrupt by bit 4 in IIOiIR register 1: Enables an interrupt by bit 4 in IIOiIR register	RW
	(Note 1)		0: Disables an interrupt by bit 5 in IIOiIR register 1: Enables an interrupt by bit 5 in IIOiIR register	RW
	(Note 1)		0: Disables an interrupt by bit 6 in IIOiIR register 1: Enables an interrupt by bit 6 in IIOiIR register	RW
!	(Note 1)		0: Disables an interrupt by bit 7 in IIOiIR register 1: Enables an interrupt by bit 7 in IIOiIR register	RW

NOTES:

1. See table below for bit symbols.

2. If an interrupt request is used for interrupt, set bits 1, 2, 4 to 7 to "1" after the IRLT bit is set to "1".

Bit Symbols for the Interrupt Enable Register

IIO0IE 00B016 CAN10E - SIO0RE G0RIE - TM13E/P013E IIO1IE 00B116 CAN11E - SIO0TE G0TOE - TM14E/P014E - IIO2IE 00B216 CAN20E - SIO1RE G1RIE - TM12E/P012E - IIO3IE 00B316 CAN21E - SIO1TE G1TOE - TM10E/P010E - IIO4IE 00B416 SRT0E SRT1E - BT1E - TM17E/P017E - IIO5IE 00B516 CAN22E CAN2WUE - 10018 00816 - - - - - TM11E/ - IIO31E 00B316 CAN00E - - - - TM15E/ - - - - TM15E/	•			-						
IIO1IE 00B116 CAN11E - SIOOTE GOTOE - TM14E/P014E IIO2IE 00B216 CAN20E - SIO1RE G1RIE - TM12E/P012E IIO3IE 00B316 CAN21E - SIO1TE G1TOE - TM12E/P012E IIO3IE 00B316 CAN21E - SIO1TE G1TOE - TM17E/P017E IIO4IE 00B516 CAN21E CAN1WUE - - - - IIO5IE 00B516 CAN22E CAN1WUE - - - - IIO6IE 00B616 CAN22E CAN2WUE - - - - IIO6IE 00B316 CAN00E - - - - - TM11E/ IIO9IE 00B316 CAN00E - - - - TM15E/ IIO10IE 00B416 CAN01E - - - - TM16E/ IIO11IE 00B16 CAN02E - - - - - - -	Symbol	Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IIO2IE008216CAN20E-SIO1REG1RIE-TM12F/0112IIO3IE008316CAN21E-SIO1REG1RIE-TM10E/P010E-IIO3IE008316CAN21E-SIO1TEG1TOE-TM10E/P010E-IIO4IE008416SRT0ESRT1E-BT1E-TM17E/P017E-IIO5IE008516CAN12ECAN1WUEIIO6IE008616CAN22ECAN2WUEIIO8IE008816TM11E/IIO9IE008916CAN00ETM15E/IIO10E008416CAN02ETM16E/IIO10E008416CAN02ETM16E/IIO10E008416CAN02EIIO11E008416CAN02EIIO11E008416CAN02EIIO11E008416CAN02EIIO11E008416CAN02EIIO11E008416CAN02EIIO11E008416CAN02EIIO11E00816CAN02E- <td< td=""><td>IIO0IE</td><td>00B016</td><td>CAN10E</td><td>-</td><td>SIO0RE</td><td>GORIE</td><td>-</td><td>TM13E/PO13E</td><td>-</td><td>IRLT</td></td<>	IIO0IE	00B016	CAN10E	-	SIO0RE	GORIE	-	TM13E/PO13E	-	IRLT
IIO3IEO0B316CAN21E-SIOTREOTREOTREOTREOTREIIO3IE00B316CAN21E-SIOTTEG1TOE-TM10E/PO10E-IIO4IE00B416SRT0ESRT1E-BT1E-TM17E/PO17E-IIO5IE00B516CAN12ECAN1WUEIIO6IE00B616CAN22ECAN2WUEIIO6IE00B616CAN22ECAN2WUE10011200816CAN00ETM16E/TM16E/TM16E/	IIO1IE	00B116	CAN11E	-	SIO0TE	G0TOE	-	TM14E/PO14E	-	IRLT
IIO4IE 008416 SRT0E SRT1E - BT1E - TM17E/P017E IIO5IE 008516 CAN12E CAN1WUE - - - - IIO6IE 008616 CAN2E CAN1WUE - - - - IIO6IE 008616 CAN2E CAN2WUE - - - - IIO8IE 008916 CAN00E - - - - - - IIO9IE 008916 CAN00E - - - - - TM17E/ IIO10IE 008416 CAN00E - - - - TM17E/ IIO10IE 008416 CAN01E - - - - TM17E/ IIO11IE 008B16 CAN02E - - - - TM16E/ IIO11IE 008B16 CAN02E - - - - - BT1E Intelligent I/O Base Timer Interrupt Enabled - - - - - SIOIRE Intelligent I/O Wav	IIO2IE	00B216	CAN20E	-	SIO1RE	G1RIE	-	TM12E/PO12E	-	IRLT
IIO5IE 00B516 CAN12E CAN1WUE - 100112 00816 CAN01E - - - - - - - - - 100112 00B16 CAN02E - - - - - - - - - 100112 000000000000000000000000000000000000	IIO3IE	00B316	CAN21E	-	SIO1TE	G1TOE	-	TM10E/PO10E	-	IRLT
IIO6IE 00B616 CAN22E CAN2WUE - - - - - - - - TM11E/ IIO8IE 00B816 - - - - - - TM11E/ IIO9IE 00B916 CAN00E - - - - - TM15E/ IIO10IE 00BA16 CAN01E - - - - TM16E/ IIO11IE 00BB16 CAN02E - - - - TM16E/ IIO11IE 00BB16 CAN02E - - - - TM16E/ IIO11IE 00BB16 CAN02E - - - - - - BT1E : Intelligent I/O Base Timer Interrupt Enabled -	IIO4IE	00B416	SRT0E	SRT1E	-	BT1E	-	TM17E/PO17E	-	IRLT
IIO8IE 008816 - - - - - - TM11E IIO9IE 008916 CAN00E - - - - TM11E IIO9IE 008416 CAN00E - - - - TM15E/ IIO10IE 008A16 CAN01E - - - - TM16E/ IIO11IE 008B16 CAN02E - - - - TM16E/ IIO11IE 008B16 CAN02E - - - - - TM16E/ IIO11IE 008B16 CAN02E -	IIO5IE	00B516	CAN12E	CAN1WUE	-	-	-	-	-	IRLT
IIO9IE 00B916 CAN00E - - - TM15E/ IIO10IE 00B416 CAN01E - - - - TM15E/ IIO10IE 00B416 CAN01E - - - - TM15E/ IIO10IE 00B816 CAN02E - - - - TM16E/ IIO11IE 00BB16 CAN02E - - - - TM16E/ BT1E : Intelligent I/O Base Timer Interrupt Enabled - - - - - - PO1jE : Intelligent I/O Waveform Generating Function j Interrupt Enabled SIOIRE : Intelligent I/O Communication Unit i Receive Interrupt Enabled SIOIRE : Intelligent I/O Communication Unit i Transmit Interrupt Enabled GiTOE : Intelligent I/O Communication Unit i HDLC Data Processing Function Interrupt Enabled (TO: GiRIE : Intelligent I/O Communication Function Interrupt Enabled SRTIE : Intelligent I/O Special Communication Function Interrupt Enabled CANkmE : CANk Communication Function Interrupt Enabled (K=0 to 2, m=0 to 2) CANnWUE : CANn Wake-up Interrupt Enabled (n=1, 2)	IIO6IE	00B616	CAN22E	CAN2WUE	-	-	-	-	-	IRLT
IIIO10IE 00BA16 CAN01E - - - - TM16L/ IIO10IE 00BA16 CAN01E - - - - TM16L/ IIO11IE 00BB16 CAN02E - - - - TM16L/ BT1E : Intelligent I/O Base Timer Interrupt Enabled - - - - - - BT1E : Intelligent I/O Base Timer Interrupt Enabled - - - - - - - BT1E : Intelligent I/O Waveform Generating Function j Interrupt Enabled -	IIO8IE	00B816	-	-	-	-	-	-	TM11E/PO11E	IRLT
IIIO11IE 00BB16 CAN02E _	IIO9IE	00B916	CAN00E	-	-	-	-	-	TM15E/PO15E	IRLT
BT1E : Intelligent I/O Base Timer Interrupt Enabled TM1jE : Intelligent I/O Time Measurement j Interrupt Enabled PO1jE : Intelligent I/O Waveform Generating Function j Interrupt Enabled SIOiRE : Intelligent I/O Communication Unit i Receive Interrupt Enabled SIOiRE : Intelligent I/O Communication Unit i Transmit Interrupt Enabled GiTOE : Intelligent I/O Communication Unit i HDLC Data Processing Function Interrupt Enabled (TO: GiRIE : Intelligent I/O Communication Unit i HDLC Data Processing Function Interrupt Enabled (RI: I SRTiE : Intelligent I/O Special Communication Function Interrupt Enabled CANkmE : CANk Communication Function Interrupt Enabled (k=0 to 2, m=0 to 2) CANNWUE : CANN Wake-up Interrupt Enabled (n=1, 2)	IIO10IE	00BA16	CAN01E	-	-	-	-	-	TM16E/PO16E	IRLT
TM1jE : Intelligent I/O Time Measurement j Interrupt Enabled PO1jE : Intelligent I/O Waveform Generating Function j Interrupt Enabled SIOiRE : Intelligent I/O Communication Unit i Receive Interrupt Enabled SIOiTE : Intelligent I/O Communication Unit i Transmit Interrupt Enabled GiTOE : Intelligent I/O Communication Unit i HDLC Data Processing Function Interrupt Enabled (TO: GiRIE : Intelligent I/O Communication Unit i HDLC Data Processing Function Interrupt Enabled (RI: I SRTiE : Intelligent I/O Special Communication Function Interrupt Enabled CANkmE : CANk Communication Function Interrupt Enabled (k=0 to 2, m=0 to 2) CANNWUE : CANn Wake-up Interrupt Enabled (n=1, 2)	IIO11IE	00BB16	CAN02E	-	-	-	-	-	-	IRLT
CANnWUE : CANn Wake-up Interrupt Enabled (n=1, 2)	BT1E : Intelligent I/O Base Timer Interrupt Enabled ITM1jE : Intelligent I/O Time Measurement j Interrupt Enabled PO1jE : Intelligent I/O Waveform Generating Function j Interrupt Enabled SIOiRE : Intelligent I/O Communication Unit i Receive Interrupt Enabled SIOiRE : Intelligent I/O Communication Unit i Transmit Interrupt Enabled GiTOE : Intelligent I/O Communication Unit i HDLC Data Processing Function Interrupt Enabled (TO: Output to Transmit) GiRIE : Intelligent I/O Communication Unit i HDLC Data Processing Function Interrupt Enabled (RI: Input to Receive)									
- : Reserved Bit. Set to "0".		: CANk Communication Function Interrupt Enabled (k=0 to 2, m=0 to 2)							0, 1 0 to 7	

Figure 10.15 IIO0IE to IIO6IE, IIO8IE to IIO11IE Registers

RENESAS

11. Watchdog Timer

The watchdog timer monitors the program executions and detects defective program. It allows the microcomputer to trigger a reset or to generate an interrupt if the program error occurs. The watchdog timer contains a 15-bit counter, which is decremented by the CPU clock that the prescaler divides. The CM06 bit in the CM0 register determines whether a watchdog timer interrupt request or reset is generated if the watchdog timer underflows. The CM06 bit can only be set to "1" (reset). Once the CM06 bit is set to "1", it cannot be changed to "0" (watchdog timer interrupt) by program. The CM06 bit is set to "0" only after reset. When the main clock, on-chip oscillator clock, or PLL clock runs as the CPU clock, the WDC7 bit in the WDC register determine whether the prescaler divides the clock by 16 or by 128. When the sub clock runs as the CPU clock, the prescaler divides the clock by 2 regardless of the WDC7 bit setting. Watchdog timer cycle is calculated as follows. Marginal errors, due to the prescaler, may occur in watchdog timer cycle.

When the main clock, on-chip oscillator clock, or PLL clock is selected as the CPU clock,

Watchdog timer cycle = Divide-by-16 or -128 prescaler x counter value of watchdog timer (32768) CPU clock

When the sub clock is selected as the CPU clock,

Watchdog timer cycle = Divide-by-2 prescaler x counter value of watchdog timer (32768) CPU clock

For example, if the CPU clock frequency is 30MHz and the prescaler divides it by 16, the watchdog timer cycle is approximately 17.5 ms.

The watchdog timer is reset when the WDTS register is set and when a watchdog timer interrupt request is generated. The prescaler is reset only when the microcomputer is reset. Both watchdog timer and prescaler stop after reset. They begin counting when the WDTS register is set.

The watchdog timer and prescaler stop in stop mode, wait mode and hold state. They resume counting from the value held when the mode or state is exited.

Figure 11.1 shows a block diagram of the watchdog timer. Figure 11.2 shows registers associated with the watchdog timer.

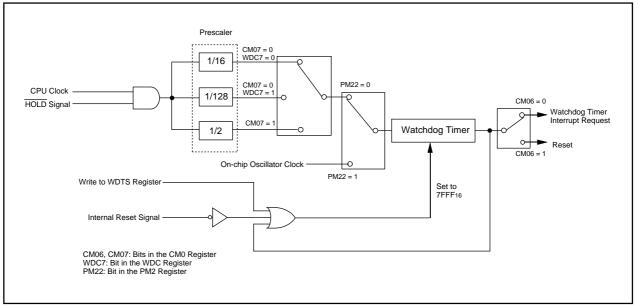


Figure 11.1 Watchdog Timer Block Diagram

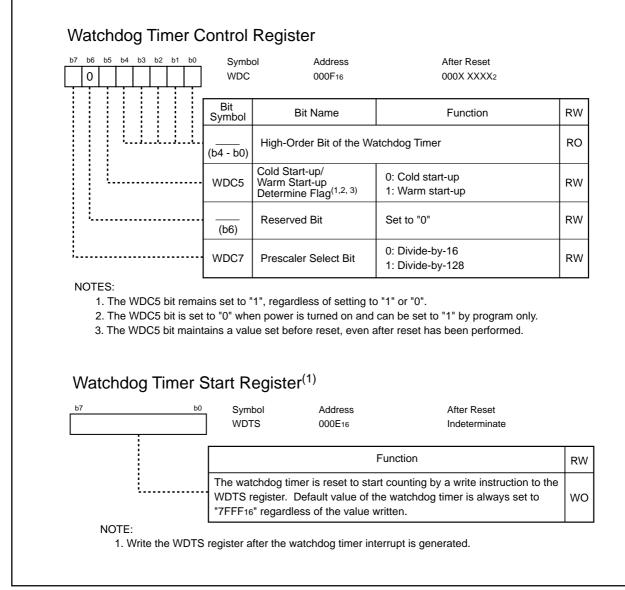


Figure 11.2 WDC Register and WDTS Register

b7 b6 b5 b4 b3 b2 b1 b0	Symb CM0	ool Address 000616	After Reset 0000 10002	
	Bit Symbol	Bit Name	Function	RW
	CM00	Clock Output Function	^{b1 b0} 0 0: I/O port P53 0 1: Outputs fc	RW
	CM01	Select Bit ⁽²⁾	1 0: Outputs f8 1 1: Outputs f32	RW
	CM02	In Wait Mode, Peripheral Function Clock Stop Bit ⁽⁹⁾	 0: Peripheral clock does not stop in wait mode 1: Peripheral clock stops in wait mode⁽³⁾ 	RW
	CM03	XcIN-XCOUT Drive Capacity Select Bit ⁽¹¹⁾	0: Low 1: High	RW
	CM04	Port Xc Switch Bit	0: I/O port function 1: XCIN-XCOUT oscillation function ⁽⁴⁾	RW
	CM05	Main Clock (XIN-XOUT) Stop Bit ^(5, 9)	0: Main clock oscillates 1: Main clock stops ⁽⁶⁾	RW
	CM06	Watchdog Timer Function Select Bit	0: Watchdog timer interrupt 1: Reset ⁽⁷⁾	RW
	CM07	CPU Clock Select Bit 0 ^(8, 9, 10)	0: Clock selected by the CM21 bit divided by MCD register setting 1: Sub clock	RW

NOTES:

- 1. Rewrite the CM0 register after the PRC0 bit in the PRCR register is set to "1" (write enabled).
- 2. When the PM07 bit in the PM0 register is set to "0" (BCLK output), set the CM01 and CM00 bits to "002". When the PM15 and PM14 bits in the PM1 register are set to "012" (ALE output to P53), set the CM01 and CM00 bits to "002". When the PM07 bit is set to "1" (function selected in the CM01 and CM00 bits) in microprocessor or memory expansion mode, and the CM01 and CM00 bits are set to "002", an "L" signal is output from port P53 (port P53 does not function as an I/O port).
- 3. fc32 does not stop running. When the CM02 bit is set to "1", the PLL clock cannot be used in wait mode.
- 4. When setting the CM04 bit is set to "1", set the PD8_7 and PD8_6 bits in the PD8 register to "002" (port P87 and P86 in input mode) and the PU25 bit in the PUR2 register to "0" (no pull-up).
- 5. When entering low-power consumption mode or on-chip oscillator low-power consumption mode, the CM05 bit stops running the main clock. The CM05 bit cannot detect whether the main clock stops or not. To stop running the main clock, set the CM05 bit to "1" after the CM07 bit is set to "1" with a stable sub clock oscillation or after the CM21 bit in the CM2 register is set to "1" (on-chip oscillator clock). When the CM05 bit is set to "1", the clock applied to XOUT becomes "H". The built-in feedback resistor remains ON. XIN is pulled up to XOUT ("H" level) via the feedback resistor.
- 6. When the CM05 bit is set to "1", the MCD4 to MCD0 bits in the MCD register are set to "010002" (divide-by-8 mode). In on-chip oscillation mode, the MCD4 to MCD0 bits are not set to "010002" even if the CM05 bit terminates XIN-XOUT.
- 7. Once the CM06 bit is set to "1", it cannot be set to "0" by program.
- 8. After the CM04 bit is set to "1" with a stable sub clock oscillation, set the CM07 bit to "1" from "0". After the CM05 bit is set to "0" with a stable main clock oscillation, set the CM07 bit to "0" from "1". Do not set the CM07 bit and CM04 or CM05 bit simultaneously.
- 9. When the PM21 bit in the PM2 register is set to "1" (clock change disable), the CM02, CM05 and CM07 bits do not change even when written.
- 10. After the CM07 bit is set to "0", set the PM21 bit to "1".
- 11. When stop mode is entered, the CM03 bit is set to "1".

Figure 11.3 CM0 Register

11.1 Count Source Protection Mode

In count source protection mode, the on-chip oscillator clock is used as a count source for the watchdog timer. The count source protection mode allows the on-chip oscillator clock to run continuously, maintaining watchdog timer operation even if the program error occurs and the CPU clock stops running. Follow the procedures below when using this mode.

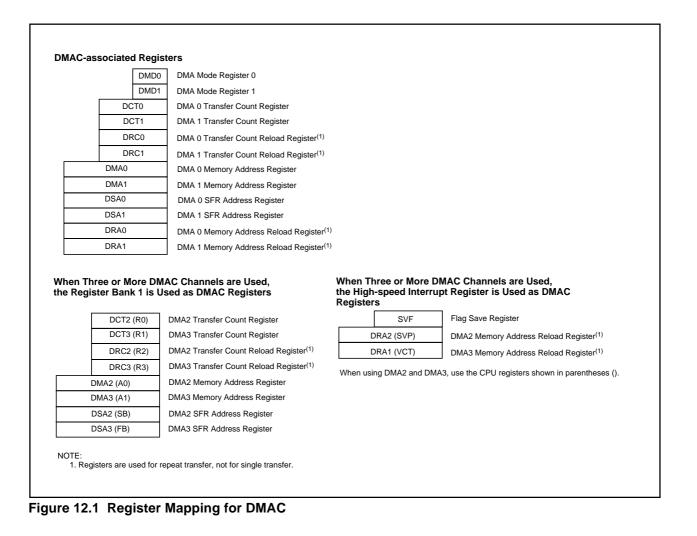
- (1) Set the PRC0 bit in the PRCR register to "1" (write to CM0 register enabled)
- (2) Set the PRC1 bit in the PRCR register to "1" (write to PM2 register enabled)
- (3) Set the CM06 bit in the CM0 register to "1" (reset when the watchdog timer overflows)
- (4) Set the PM22 bit in the PM2 register to "1" (the on-chip oscillator clock as a count source of the watchdog timer)
- (5) Set the PRC0 bit to "0" (write to CM0 register disabled)
- (6) Set the PRC1 bit to "0" (write to PM2 register disabled)
- (7) Write to the WDTS register (the watchdog timer starts counting)

The followings will occur when the PM22 bit is set to "1".

• The on-chip oscillator starts oscillating and the on-chip oscillator clock becomes a count source for the watchdog timer.

Watchdog timer cycle = Counter value of watchdog timer (32768) On-chip oscillator clock

- Write to the CM10 bit in the CM1 register is disabled. (The bit setting remains unchanged even if set it to "1". The microcomputer does not enter stop mode.)
- In wait mode or hold state, the watchdog timer continues running. However, the watchdog timer interrupt cannot be used to exit wait mode.


12. DMAC

This microcomputer contains four DMAC (direct memory access controller) channels that allow data to be sent to memory without using the CPU. DMAC transmits a 8- or 16-bit data from a source address to a destination address whenever a transmit request occurs. DMA0 and DMA1 must be prioritized if using DMAC. DMA2 and DMA3 share registers required for high-speed interrupts. High-speed interrupts cannot be used when using three or more DMAC channels.

The CPU and DMAC use the same data bus, but DMAC has a higher bus access privilege than the CPU. The cycle-steal method employed on DMAC enables high-speed operation between a transfer request and the complete transmission of 16-bit (word) or 8-bit (byte) data. Figure 12.1 shows a mapping of registers to be used for DMAC. Table 12.1 lists specifications of DMAC. Figures 12.2 to 12.5 show registers associated with DMAC.

Because the registers shown in Figure 12.1 are allocated in the CPU, use the LDC instruction to write to the registers. To set the DCT2, DCT3, DRC2, DRC3, DMA2 and DMA3 registers, set the B flag to "1" (register bank 1) and set the R0 to R3, A0, A1 registers with the MOV instruction.

To set the DSA2 and DSA3 registers, set the B flag to "1" and set the SB and FB registers with the LDC instruction. To set the DRA2 and DRA3 registers, set the SVP and VCT registers with the LDC instruction.

Rev. 1.10 Oct. 18, 2005 Page 107 of 435 REJ09B0162-0110

DMAC starts a data transfer by setting the DSR bit in the DMiSL register (i=0 to 3) or by using an interrupt request, generated by the functions determined by the DSEL 4 to DSEL0 bits in the DMiSL register, as a DMA request. Unlike interrupt requests, the I flag and interrupt control register do not affect DMA. Therefore, a DMA request can be acknowledged even if an interrupt is disabled and cannot be acknowledged. In addition, the IR bit in the interrupt control register does not change when a DMA request is acknowledged.

Item		Specification			
Channels		4 channels (cycle-steal method)			
Transfer Memo	ry Space	 From a desired address in a 16-Mbyte space to a fixed address in a 			
		16-Mbyte space			
		 From a fixed address in a 16-Mbyte space to a desired address in a 			
		16-Mbyte space			
Maximum Bytes Transferred		128 Kbytes (when a 16-bit data is transferred) or 64 Kbytes (with an 8-			
		bit data is transferred)			
DMA Request Source ⁽¹⁾		Falling edge or both edges of signals applied to the \overline{INTO} to $\overline{INT3}$ pins			
		Timers A0 to A4 interrupt requests			
		Timers B0 to B5 interrupt requests			
		UART0 to UART4 transmit and receive interrupt requests			
		A/D0 conversion interrupt request			
		Intelligent I/O interrupt request			
		CAN interrupt request			
		Software trigger			
Channel Priority	y	DMA0 > DMA1 > DMA2 > DMA3 (DMA0 has highest priority)			
Transfer Unit		8 bits, 16 bits			
Destination Address		Forward/fixed (forward and fixed directions cannot be specified when			
		specifying source and destination addresses simultaneously)			
Transfer Mode	Single Transfer	Transfer is completed when the DCTi register (i = 0 to 3) is set to "000016"			
	Repeat Transfer	When the DCTi register is set to "000016", the value of the DRCi register			
		is reloaded into the DCTi register and the DMA transfer is continued			
DMA Interrupt Requ	lest Generation Timing	When the DCTi register changes "000116" to "000016"			
DMA Startup	Single Transfer	DMA starts when a DMA request is generated after the DCTi register is			
		set to "000116" or more and the MDi1 and MD0 bits in the DMDj register			
		(j = 0,1) are set to "012" (single transfer)			
	Repeat Transfer	DMA starts when a DMA request is generated after the DCTi register is			
		set to "000116" or more and the MDi1 and MDi0 bits are set to "112"			
		(repeat transfer)			
DMA Stop	Single Transfer	DMA stops when the MDi1 and MDi0 bits are set to "002" (DMA dis-			
		abled) and the DCTi register is set to "000016" (0 DMA transfer) by DMA			
		transfer or write			
	Repeat Transfer	DMA stops when the MDi1 and MDi0 bits are set to "002" and the DCTi			
		register is set to "000016" and the DRCi register set to "000016"			
Reload Timing	to the DCTi	When the DCTi register is set to "000016" from "000116" in repeat trans-			
or DMAi Regist	er	fer mode			
DMA Transfer (Cycles	Minimum 3 cycles between SFRs and internal RAM			
NOTE					

Tahlo 12 1	DMAC Specifications
	DIVIAC Specifications

NOTE:

1. The IR bit in the interrupt control register does not change when a DMA request is acknowledged.

Г

b7 b6 b5 b4 b3 b2 b1 b0	Symb DM05	ol Address SL to DM3SL 037816, 037916	After Reset 6, 037A16, 037B16 0X00 00002	
	Bit Symbol	Bit Name	Function	RW
	DSEL0			RW
	DSEL1			RW
	DSEL2	DMA Request Source Select Bit ⁽¹⁾	See Table 12.2 for the DMiSL register (i=0 to 3) function	RW
	DSEL3			RW
	DSEL4			RW
	DSR	Software DMA Request Bit ⁽²⁾	When a software trigger is selected, a DMA request is generated by setting this bit to "1" (When read, its content is always "0")	RW
	(b6)	Reserved Bit	When read, its content is indeterminate	RO
	DRQ	DMA Request Bit ^(2, 3)	0: Not requested 1: Requested	RW
registers are set to "00 DSEL4 to DSEL0 bit s e.g., MOV.B #08	02" (DMA) settings ar 3h, DMiSi set to "1", s h, DMiSL	disabled). Also, set the DI e changed.	and MDi0 bits in the DMD0 and DMD1 RQ bit to "1" simultaneously when the ultaneously.	

Figure 12.2 DM0SL to DM3SL Registers

Setting Value		DMA Request	Source					
b4 b3 b2 b1 b0	DMA0	DMA1	DMA2	DMA3				
0 0 0 0 0	Software trigger							
0 0 0 0 1	Falling Edge of INT0	Falling Edge of INT1	Falling Edge of INT2	Falling Edge of INT3 ⁽¹⁾				
0 0 0 1 0	Both Edges of INT0	Both Edges of INT1	Both Edges of INT2	Both Edges of INT3 ⁽¹⁾				
0 0 0 1 1		Timer A0 Interrupt Request						
0 0 1 0 0		Timer A1 Inte	rrupt Request					
0 0 1 0 1		Timer A2 Inte	rrupt Request					
0 0 1 1 0		Timer A3 Inte	rrupt Request					
0 0 1 1 1		Timer A4 Inte	rrupt Request					
0 1 0 0 0		Timer B0 Inte	rrupt Request					
0 1 0 0 1		Timer B1 Inte	rrupt Request					
0 1 0 1 0		Timer B2 Inte	rrupt Request					
0 1 0 1 1		Timer B3 Inte	rrupt Request					
0 1 1 0 0		Timer B4 Inte	rrupt Request					
0 1 1 0 1		Timer B5 Interrupt Request						
0 1 1 1 0		UART0 Transmit Interrupt Request						
0 1 1 1 1	UART0 Receive or ACK Interrupt Request ⁽³⁾							
1 0 0 0 0	UART1 Transmit Interrupt Request							
1 0 0 0 1	UART1 Receive or ACK Interrupt Request ⁽³⁾							
1 0 0 1 0	UART2 Transmit Interrupt Request							
1 0 0 1 1		UART2 Receive or ACK Interrupt Request ⁽³⁾						
1 0 1 0 0		UART3 Transmit	Interrupt Request					
10101		UART3 Receive or AC	K Interrupt Request ⁽³⁾					
10110			Interrupt Request					
10111		UART4 Receive or AC	K Interrupt Request ⁽³⁾					
1 1 0 0 0		A/D0 Interrupt	Request					
1 1 0 0 1	Intelligent I/O Interrupt 0 Request ⁽⁶⁾		Intelligent I/O Interrupt 2 Request	Intelligent I/O Interrupt 9 Request ⁽⁴⁾				
1 1 0 1 0	Intelligent I/O Interrupt 1 Request ⁽⁷⁾	Intelligent I/O Interrupt 8 Request	Intelligent I/O Interrupt 3 Request	Intelligent I/O Interrupt 10 Request ⁽⁵⁾				
1 1 0 1 1	Intelligent I/O Interrupt 2 Request ⁽⁸⁾	Intelligent I/O Interrupt 9 Request ⁽⁴⁾	Intelligent I/O Interrupt 4 Request	CAN Interrupt 2 Request				
1 1 1 0 0	Intelligent I/O Interrupt 3 Request ⁽⁹⁾	Intelligent I/O Interrupt 10 Request ⁽⁵⁾	CAN Interrupt 5 Request	Intelligent I/O Interrupt 0 Request ⁽⁶⁾				
1 1 1 0 1	Intelligent I/O Interrupt 4 Request	CAN Interrupt 2 Request	CAN Interrupt 8 Request	Intelligent I/O Interrupt 1 Request ⁽⁷⁾				
1 1 1 1 0	CAN Interrupt 5 Request	Intelligent I/O Interrupt 0 Request ⁽⁶⁾		Intelligent I/O Interrupt 2 Request ⁽⁸⁾				
1 1 1 1 1	CAN Interrupt 8 Request	Intelligent I/O Interrupt 1 Request ⁽⁷⁾	Intelligent I/O Interrupt 8 Request	Intelligent I/O Interrupt 3 Request ⁽⁹⁾				

Table 12.2 DMiSL Register (i = 0 to 3) Function

NOTES:

1. If the INT3 pin is used for data bus in memory expansion mode or microprocessor mode, a DMA3 interrupt request cannot be generated by a signal applied to the INT3 pin.

2. The falling edge and both edges of signals applied to the INTj pin (j=0 to 3) cause a DMA request generation. The INT interrupt (the POL bit in the INTjIC register, the LVS bit, the IFSR register) is not affected and vice versa.

3. Use the UkSMR register and UkSMR2 register (k=0 to 4) to switch between the UARTk receive and ACK interrupt as a DMA request source.

To use the ACK interrupt for a DMA reqest, set the IICM bit in the UkSMR register to "1" and the IICM2 bit in the UkSMR2 register to "0".

4. The same setting is used to generate an intelligent I/O interrupt 9 request and a CAN interrupt 0 request.

5. The same setting is used to generate an intelligent I/O interrupt 10 request and a CAN interrupt 1 request.

6. The same setting is used to generate an intelligent I/O interrupt 0 request and a CAN interrupt 3 request.

7. The same setting is used to generate an intelligent I/O interrupt 1 request and a CAN interrupt 4 request.

8. The same setting is used to generate an intelligent I/O interrupt 2 request and a CAN interrupt 6 request.

9. The same setting is used to generate an intelligent I/O interrupt 3 request and a CAN interrupt 7 request.

b7 b6 b5 b4	b3 b2 b1 b0	Symb DMD0		After Reset ernal Register) 0016	
		Bit Symbol	Bit Name	Function	RW
		MD00	Channel 0 Transfer	b1 b0 0 0: DMA disabled 0 1: Single transfer	RW
		MD01	Mode Select Bit	1 0: Do not set to this value 1 1: Repeat transfer	RW
		BW0	Channel 0 Transfer Unit Select Bit	0: 8 bits 1: 16 bits	RW
		RW0	Channel 0 Transfer Direction Select Bit	0: Fixed address to memory (forward direction)1: Memory (forward direction) to fixed address	RW
		MD10	Channel 1 Transfer	0 0: DMA disabled 0 1: Single transfer	RW
·····		MD11	Mode Select Bit	1 0: Do not set to this value 1 1: Repeat transfer	RW
		BW1	Channel 1 Transfer Unit Select Bit	0: 8 bits 1: 16 bits	RW
		RW1	Channel 1 Transfer Direction Select Bit	0: Fixed address to memory (forward direction) 1: Memory (forward direction) to fixed address	RW

NOTE:

1. Use the LDC instruction to set the DMD0 register.

DMA Mode Register 1⁽¹⁾

b7 b6 b5 b4 b3 b2 b1 b0	Symb DMD1		After Reset ernal register) 0016	
	Bit Symbol	Bit Name	Function	RW
	MD20	Channel 2 Transfer	0 0: DMA disabled 0 1: Single transfer	RV
·····	MD21	Mode Select Bit	1 0: Do not set to this value 1 1: Repeat transfer	
	BW2	Channel 2 Transfer Unit Select Bit	0: 8 bits 1: 16 bits	RV
	RW2	Channel 2 Transfer Direction Select Bit	0: Fixed address to memory (forward direction)1: Memory (forward direction) to fixed address	RV
	MD30	Channel 3 Transfer	0 0: DMA disabled 0 1: Single transfer	RV
	MD31	Mode Select Bit	1 0: Do not set to this value 1 1: Repeat transfer	RV
	BW3	Channel 3 Transfer Unit Select Bit	0: 8 bits 1: 16 bits	RW
	RW3	Channel 3 Transfer Direction Select Bit	0: Fixed address to memory (forward direction) 1: Memory (forward direction) to fixed address	RV

1. Use the LDC instruction to set the DMD1 register.

Figure 12.3 DMD0 and DMD1 Registers

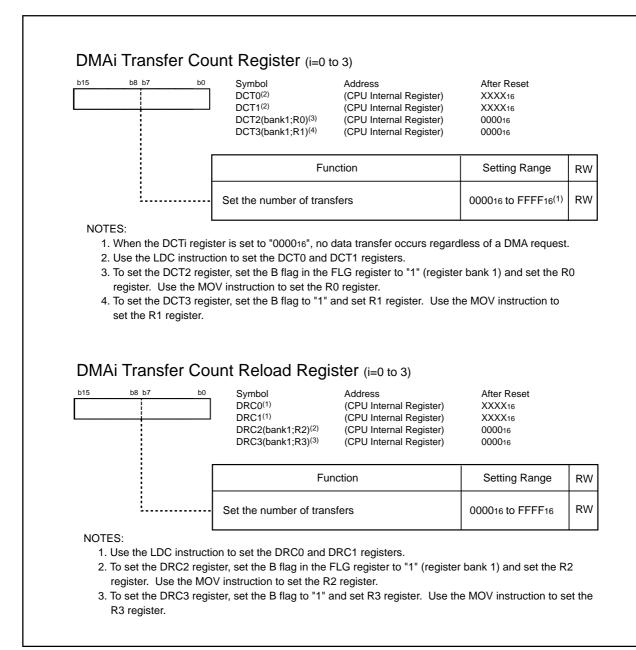
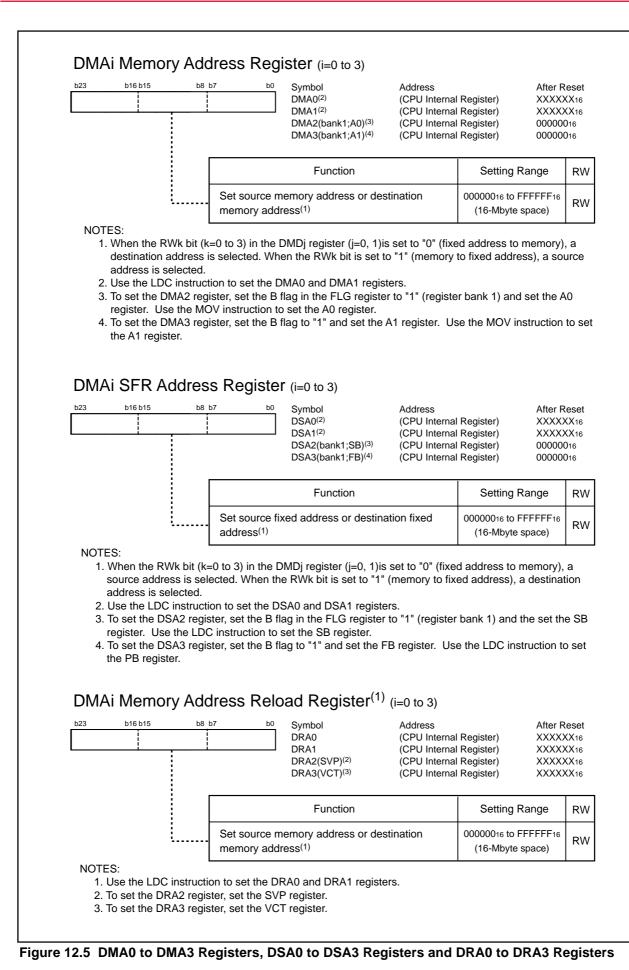



Figure 12.4 DCT0 to DCT3 Registers and DRC0 to DRC3 Registers

RENESAS

12.1 Transfer Cycle

Transfer cycle contains a bus cycle to read data from a memory or the SFR area (source read) and a bus cycle to write data to a memory space or the SFR area (destination write). The number of read and write bus cycles depends on source and destination addresses.

12.1.1 Effect of Source and Destination Addresses

When a 16-bit data is transferred with a 16-bit data bus and a source address starting with an odd address, source read cycle is incremented by one bus cycle, compared to a source address starting with an even address.

When a 16-bit data is transferred with a 16-bit data bus and a destination address starting with an odd address, a destination write cycle is incremented by one bus cycle, compared to a destination address starting with an even address.

12.1.2 Effect of Software Wait State

When the SFR area or memory space with software wait states is accessed, the number of CPU clock cycles is incremented by software wait states.

Figure 12.6 shows an example of a transfer cycle for the source-read bus cycle. In Figure 12.6, the number of source-read bus cycles is illustrated under different conditions, provided that the destination address is an address of an external space with the destination-write cycle as two CPU clock cycles (=one bus cycle). In effect, the destination-write bus cycle is also affected by each condition and the transfer cycles change accordingly. To calculate a transfer cycle, apply respective conditions to both destination-write bus cycle and source-read bus cycle.

CPU Clock		
Address Bus	CPU Use Source Destination CPU Use	
RD Signal		
WR Signal		
Data bus	CPU Use Source Destination CPU Use	
(2) When 16-	bit data is transferred from an odd source address	
CPU Clock		
Address Bus	CPU Use Source + 1 Destination CPU Use	
 RD Signal		
WR Signal		
 Data Bus	CPU Use Source + 1 Destination CPU Use	
CPU Clock	CPU Use Source Destination CPU Use	
Bus		
Bus RD Signal		
RD Signal	CPU Use CPU Use CPU Use	
RD Signal WR Signal Data Bus	CPU Use Source Destination CPU Use CPU Use	ns in (2)
RD Signal WR Signal Data Bus	/\//\//_//\//\//_///_///_//_//_///_///_//_//_//_//_//_//_//_//_//////	ns in (2)
RD Signal WR Signal Data Bus (4) When one	e wait state is inserted into the source-read bus cycle under the condition	ns in (2)
RD Signal WR Signal Data Bus (4) When one CPU Clock	e wait state is inserted into the source-read bus cycle under the condition	
RD Signal WR Signal Data Bus (4) When one CPU Clock	e wait state is inserted into the source-read bus cycle under the condition	
RD Signal WR Signal Data Bus (4) When one CPU Clock Address Bus 	e wait state is inserted into the source-read bus cycle under the condition	

Figure 12.6 Transfer Cycle Examples with the Source-Read Bus Cycle

12.2 DMAC Transfer Cycle

The number of DMAC transfer cycle can be calculated as follows.

Any combination of even or odd transfer read and write addresses are possible. Table 12.3 lists the number of DMAC transfer cycles. Table 12.4 lists coefficient j, k.

Transfer cycles per transfer = Number of read cycle x j + Number of write cycle x k

Table 12.3	DMAC Trans	fer Cycles
------------	------------	------------

Transfer Unit	Bus Width	Access	Single-chip Mode		
	Dus Width	Address	Read Cycle	Write Cycle	
8-bit Transfer	16 Bits	Even	1	1	
(BWi=0)		Odd	1	1	
	8 Bits	Even	-	-	
		Odd	-	-	
16-bit Transfer	16 Bits	Even	1	1	
(BWi=1)		Odd	2	2	
	8 Bits	Even	-	-	
		Odd	-	-	

BWi: Bit in the DMDp register (i=0 to 3, p=0, 1)

Table 12.4 Coefficient j, k

Internal space					
Internal ROM or internal RAM with no wait state	Internal ROM or internal RAM with a wait state	SFR area			
j = 1 k = 1	j = 2 k = 2	j = 2 k = 2			

12.3 Channel Priority and DMA Transfer Timing

When multiple DMA requests are generated in the same sampling period, between the falling edge of the CPU clock and the next falling edge, the DRQ bit in the DMiSL register (i = 0 to 3) is set to "1" (requested) simultaneously. Channel priority in this case is : DMA0 > DMA1 > DMA2 > DMA3.

Figure 12.7 shows an example of the DMA transfer by external source.

In Figure 12.7, the DMA0 request having highest priority is received first to start a transfer when a DMA0 request and DMA1 request are generated simultaneously. After one DMA0 transfer is completed, the bus privilege is returned to the CPU. When the CPU has completed one bus access, the DMA1 transfer starts. After one DMA1 transfer is completed, the privilege is again returned to the CPU.

In addition, DMA requests cannot be counted up since each channel has one DRQ bit. Therefore, when DMA requests, as DMA1 in Figure 12.7, occur more than once before receiving bus privilege, the DRQ bit is set to "0" as soon as privilege is acquired. The bus privilege is returned to the CPU when one transfer is completed.

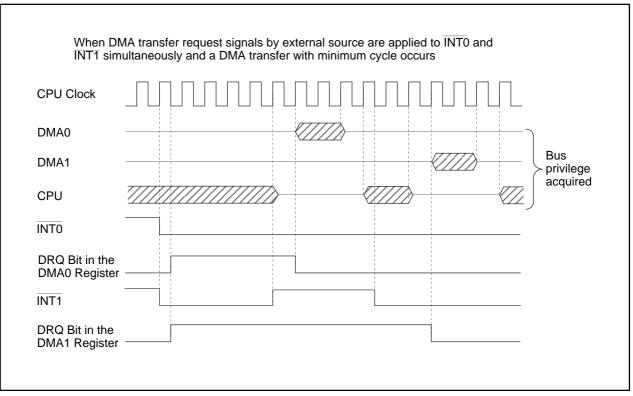


Figure 12.7 DMA Transfer by External Source

13. DMAC II

DMAC II performs memory-to-memory transfer, immediate data transfer and calculation transfer, which transfers the sum of two data added by an interrupt request from any peripheral functions. Table 13.1 lists specifications of DMAC II.

Table 13.1	DMAC II Specificatio	ns
------------	----------------------	----

Item	Specification
DMAC II Request Source	Interrupt requests generated by all peripheral functions when the ILVL2 to
	ILVL0 bits are set to "1112"
Transfer Data	• Data in memory is transferred to memory (memory-to-memory transfer)
	 Immediate data is transferred to memory (immediate data transfer)
	• Data in memory (or immediate data) + data in memory are transferred to
	memory (calculation transfer)
Transfer Block	8 bits or 16 bits
Transfer Space	64-Kbyte space in addresses 0000016 to 0FFFF16 ^(1, 2)
Transfer Direction	Fixed or forward address
	Selected separately for each source address and destination address
Transfer Mode	Single transfer, burst transfer
Chained Transfer Function	Parameters (transfer count, transfer address and other information) are
	switched when transfer counter reaches zero
End-of-Transfer Interrupt	Interrupt occurs when a transfer counter reaches zero
Multiple Transfer Function	Multiple data can be transferred by a generated request for one DMAC II transfer
NOTES:	

- 1. When transferring a 16-bit data to destination address 0FFFF16, it is transferred to 0FFFF16 and 1000016. The same transfer occurs when the source address is 0FFF16.
- 2. The actual space where transfer can occurs is limited due to internal RAM capacity.

13.1 DMAC II Settings

DMAC II can be made available by setting up the following registers and tables.

- RLVL register
- DMAC II Index
- Interrupt control register of the peripheral function causing a DMAC II request
- The relocatable vector table of the peripheral function causing a DMAC II request
- IRLT bit in the IIOiIE register (i = 0 to 5, 8 to 11) if using the intelligent I/O or CAN interrupt Refer to 10. Interrupts for details on the IIOiIE register.

13.1.1 RLVL Register

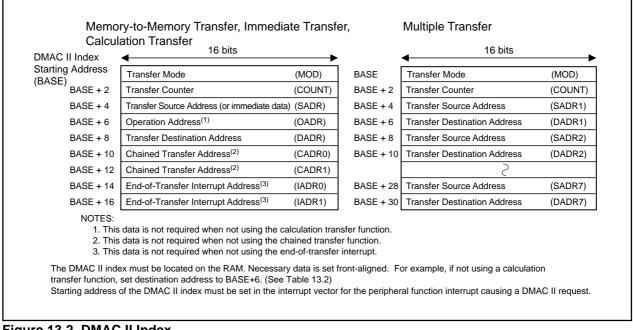
When the DMAII bit is set to "1" (DMAC II transfer) and the FSIT bit to "0" (normal interrupt), DMAC II is activated by an interrupt request from any peripheral function with the ILVL2 to ILVL0 bits in the interrupt control register set to "1112" (level 7).

Figure 13.1 shows the RLVL register.

b7 b6 b5	b4 b3 b2 b1 b0	Symb RLVL		After Reset XXXX 00002	
		Bit Symbol	Bit Name	Function	RV
		RLVL0		b2b1b0 0 0 0 : Level 0 0 0 1 : Level 1	RV
	·····	RLVL1	Stop/Wait Mode Exit Minimum Interrupt Priority Level Control Bit ⁽¹⁾	0 1 0 : Level 2 0 1 1 : Level 3 1 0 0 : Level 4	RV
		RLVL2		1 0 1 : Level 5 1 1 0 : Level 6 1 1 1 : Level 7	RV
		- FSIT	High-Speed Interrupt Set Bit ⁽²⁾	 0: Interrupt priority level 7 is used for normal interrupt 1: Interrupt priority level 7 is used for high-speed interrupt 	RV
			Nothing is assigned. When write, set to "0". When read, its content is indeterminate.		
		DMAII	DMA II Select Bit ⁽⁴⁾	 0: Interrupt priority level 7 is used for interrupt 1: Interrupt priority level 7 is used for DMA II transfer⁽³⁾ 	RV
		(b7 - b6)	Nothing is assigned. Wh When read, its content is		-
th th 2. Wi ini 3. Se Do	e microcomputer e e level set in the R e FLG register. hen the FSIT bit is terrupt. In this case to the ILVL2 to ILVI	LVL2 to RL set to "1", a e, set only _0 bits in th MAII bit se	VL0 bits. Set the RLVL2 t an interrupt having the inte one interrupt to the interru e interrupt control register	uested interrupt priority level is higher to RLVL0 bits to the same value as IP errupt priority level 7 becomes the high pt priority level 7 and the DMAII bit to after setting the DMAII bit to "1". DMAII bit to "1". Set the FSIT bit to	°L in n-spe "0".

4. The DMAII bit becomes indeterminate after reset. To use the DMAII bit for an interrupt setting, set it to "0" before setting the interrupt control register.

Figure 13.1 RLVL Register



13.1.2 DMAC II Index

The DMAC II index is a data table which comprises 8 to 18 bytes (maximum 32 bytes when the multiple transfer function is selected). The DMAC II index stores parameters for transfer mode, transfer counter, source address (or immediate data), operation address as an address to be calculated, destination address, chained transfer address, and end-of-transfer interrupt address.

This DMAC II index must be located on the RAM area.

Figure 13.2 shows a configuration of the DMAC II index. Table 13.2 lists a configuration of the DMAC II index in transfer mode.

The followings are details of the DMAC II index. Set these parameters in the specified order listed in Table 13.2, according to DMAC II transfer mode.

• Transfer mode (MOD)

Two-byte data is required to set transfer mode. Figure 13.3 shows a configuration for transfer mode.

• Transfer counter (COUNT)

Two-byte data is required to set the number of transfer.

• Transfer source address (SADR)

Two-byte data is required to set the source memory address or immediate data.

• Operation address (OADR)

Two-byte data is required to set a memory address to be calculated. Set this data only when using the calculation transfer function.

• Transfer destination address (DADR)

Two-byte data is required to set the destination memory address.

Chained transfer address (CADR)

Four-byte data is required to set the starting address of the DMAC II index for the next transfer. Set this data only when using the chained transfer function.

• End-of-transfer interrupt address (IADR)

Four-byte data is required to set a jump address for end-of-transfer interrupt processing. Set this data only when using the end-of-transfer interrupt.

RENESAS

Transfer Data	/Immediate Data Transfer			fer	Calculation Transfer				Multiple Transfer	
Chained Transfer	Not Used	Used	Not Used	Used	Not Used	Used	Not Used	Used	Not Available	
End-of-Transfer Interrupt	Not Used	Not Used	Used	Used	Not Used	Not Used	Used	Used	Not Available	
	MOD	MOD	MOD	MOD	MOD	MOD	MOD	MOD	MOD	
	COUNT	COUNT	COUNT	COUNT	COUNT	COUNT	COUNT	COUNT	COUNT	
	SADR	SADR	SADR	SADR	SADR	SADR	SADR	SADR	SADR1	
	DADR	DADR	DADR	DADR	OADR	OADR	OADR	OADR	DADR1	
DMAC II	8 bytes	CADR0	IADR0	CADR0	DADR	DADR	DADR	DADR		
Index	0.09100	CADR1	IADR1	CADR1	10 bytes	CADR0	IADR0	CADR0		
		12 bytes	12 bytes	IADR0		CADR1	IADR1	CADR1	SADRi	
		,	,	IADR1		14 bytes	14 bytes	IADR0	DADRi	
				16 bytes				IADR1	i=1 to 7	
								18 bytes	max. 32 bytes (when i=7)	

 Table 13.2 DMAC II Index Configuration in Transfer Mode

b15 b8 b7	Ш		b0					
				Bit Symbol	Bit Name	Function (MULT=0)	Function (MULT=1)	RW
				SIZE	Transfer Unit Select Bit	0: 8 bits 1: 16 bits		RW
				IMM	Transfer Data Select Bit	0: Immediate data 1: Memory	Set to "1"	RW
			UPDS	Transfer Source Direction Select Bit	0: Fixed address 1: Forward address		RW	
				UPDD	Transfer Destination Direction Select Bit	0: Fixed address 1: Forward address		RW
					OPER/ CNT0 ⁽²⁾	Calculation Transfer Function Select Bit	0: Not used 1: Used	0 0 0: Do not set to this value
				BRST/ CNT1 ⁽²⁾	Burst Transfer Select Bit	0: Single transfer 1: Burst transfer	0 0 1: Once 0 1 0: Twice :	RW
			INTE/ CNT2 ⁽²⁾	End-of-Transfer Interrupt Select Bit	0: Interrupt not used 1: Use interrupt	: 1 1 0: 6 times 1 1 1: 7 times	RW	
			CHAIN	Chained Transfer Select Bit	0: Chained transfer not used 1: Use chained transfer	Set to "0"	RW	
	(b			(b14 - b8)	• •	d. When write, set to "0" tent is indeterminate.		_
				MULT	Multiple Transfer Select Bit	0: Multiple transfer not used	1: Use multiple transfer	RW

1. MOD must be located on the RAM.

2. When the MULT bit is set to "0" (no multiple transfer), bits 6 to 4 becomes the INTE, OPER and BRST bits. When the MULT bit is set to "1" (multiple transfer), bits 6 to 4 becomes the CNT2 to CNT0 bits.

Figure 13.3 MOD

13.1.3 Interrupt Control Register for the Peripheral Function

For the peripheral function interrupt activating DMAC II, set the ILVL2 to ILVL0 bits to "1112" (level 7).

13.1.4 Relocatable Vector Table for the Peripheral Function

Set the starting address of the DMAC II index in the interrupt vector for the peripheral function interrupt activating DMAC II.

When using the chained transfer, the relocatable vector table must be located in the RAM.

13.1.5 IRLT Bit in the IIOiIE Register (i=0 to 6, 8 to 11)

When the intelligent I/O interrupt or CAN interrupt is used to activate DMAC II, set the IRLT bit in the IIOiIE register of the interrupt to "0".

13.2 DMAC II Performance

Function to activate DMAC II is selected by setting the DMA II bit to "1" (DMAC II transfer). DMAC II is activated by all peripheral function interrupts with the ILVL2 to ILVL0 bits set to "1112" (level 7). These peripheral function interrupt request signals become DMAC II transfer request signals and the peripheral function interrupt cannot be used.

When an interrupt request is generated by setting the ILVL2 to ILVL0 bits to "1112" (level 7), DMAC II is activated regardless of what state the I flag and IPL are in.

13.3 Transfer Data

DMAC II transfers 8-bit or 16-bit data.

- Memory-to-memory transfer : Data is transferred from a desired memory location in a 64-Kbyte space (Addresses 0000016 to 0FFFF16) to another desired memory location in the same space.
- Immediate data transfer : Immediate data is transferred to a desired memory location in a 64-Kbyte space.
- Calculation transfer : Two 8-bit or16-bit data are added together and the result is transferred to a desired memory location in a 64-Kbyte space.

When a 16-bit data is transferred to the destination address 0FFFF16, it is transferred to 0FFFF16 and 1000016. The same transfer occurs when the source address is 0FFFF16. Actual transferable space varies depending on the internal RAM capacity.

13.3.1 Memory-to-memory Transfer

Data transfer between any two memory locations can be:

- a transfer from a fixed address to another fixed address
- a transfer from a fixed address to a relocatable address
- a transfer from a relocatable address to a fixed address
- a transfer from a relocatable address to another relocatable address

When a relocatable address is selected, the address is incremented, after a transfer, for the next transfer. In a 8-bit transfer, the transfer address is incremented by one. In a 16-bit transfer, the transfer address is incremented by two.

When a source or destination address exceeds address 0FFFF16 as a result of address incrementation, the source or destination address returns to address 0000016 and continues incrementation. Maintain source and destination address at address 0FFFF16 or below.

13.3.2 Immediate Data Transfer

DMAC II transfers immediate data to any memory location. A fixed or relocatable address can be selected as the destination address. Store the immediate data into SADR. To transfer an 8-bit immediate data, write the data in the low-order byte of SADR (high-order byte is ignored).

13.3.3 Calculation Transfer

After two memory data or an immediate data and memory data are added together, DMAC II transfers calculated result to any memory location. SADR must have one memory location address to be calculated or immediate data and OADR must have the other memory location address to be calculated. Fixed or relocatable address can be selected as source and destination addresses when using a memory + memory calculation transfer. If the transfer source address is relocatable, the operation address also becomes relocatable. Fixed or relocatable address can be selected as the transfer destination address when using an immediate data + memory calculation transfer.

13.4 Transfer Modes

Single and burst transfers are available. The BRST bit in MOD selects transfer method, either single transfer or burst transfer. COUNT determines how many transfers occur. No transfer occurs when COUNT is set to "000016".

13.4.1 Single Transfer

For every transfer request source, DMAC II transfers one transfer unit of 8-bit or 16-bit data once. When the source or destination address is relocatable, the address is incremented, after a transfer, for the next transfer.

COUNT is decremented every time a transfer occurs. When using the end-of-transfer interrupt, the interrupt is acknowledged when COUNT reaches "0".

13.4.2 Burst Transfer

For every transfer request source, DMAC II continuously transfers data the number of times determined by COUNT. COUNT is decremented every time a transfer occurs. The burst transfer ends when COUNT reaches "0". The end-of-transfer interrupt is acknowledged when the burst transfer ends if using the endof-transfer interrupt. All interrupts are ignored while the burst transfer is in progress.

13.5 Multiple Transfer

The MULT bit in MOD selects the multiple transfer. When using the multiple transfer, select the memory-tomemory transfer. One transfer request source initiates multiple transfers. The CNT2 to CNT0 bits in MOD selects the number of transfers from "0012" (once) to "1112" (7 times). Do not set the CNT2 to CNT0 bits to "0002".

The transfer source and destination addresses for each transfer must be allocated alternately in addresses following MOD and COUNT. When the multiple transfer is selected, the calculation transfer, burst transfer, end-of-transfer interrupt and chained transfer cannot be used.

13.6 Chained Transfer

The CHAIN bit in MOD selects the chained transfer.

The following process initiates the chained transfer.

- (1) Transfer, caused by a transfer request source, occurs according to the content of the DMAC II index. The vectors of the request source indicates where the DMAC II index is allocated. For each request, the BRST bit selects either single or burst transfer.
- (2) When COUNT reaches "0", the contents of CADR1 and CADR0 are written to the vector of the request source. When the INTE bit in MOD is set to "1", the end-of-transfer interrupt is generated simultaneously.
- (3) When the next DMAC II transfer request is generated, transfer occurs according to the contents of the DMAC II index indicated by the peripheral function interrupt vector rewritten in (2).

Figure 13.4 shows the relocatable vector and DMACII index when the chained transfer is in progress. For the chained transfer, the relocatable vector table must be located in the RAM.

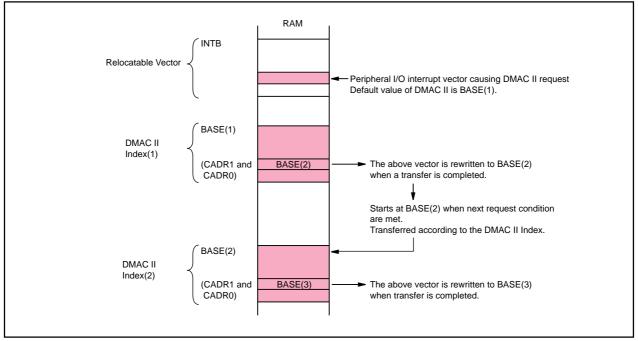


Figure 13.4 Relocatable Vector and DMAC II Index

13.7 End-of-Transfer Interrupt

The INTE bit in MOD selects the end-of-transfer interrupt. Set the starting address of the end-of-transfer interrupt routine in IADR1 and IADR0. The end-of-transfer interrupt is generated when COUNT reaches "0."

13.8 Execution Time

DMAC II execution cycle is calculated by the following equations:

Multiple transfers: $t = 21+(11 + b + c) \times k$ cycles Other than multiple transfers: $t = 6 + (26 + a + b + c + d) \times m + (4 + e) \times n$ cycles

a: If IMM = 0 (source of transfer is immediate data), a = 0;

if IMM = 1 (source of transfer is memory), a = -1

b: If UPDS = 1 (source transfer address is a relocatable address), b = 0;

if UPDS = 0 (source transfer address is a fixed address), b = 1

- c: If UPDD = 1 (destination transfer address is a relocatable address), c = 0;
- if UPDD = 0 (destination transfer address is a fixed address), c = 1
- d: If OPER = 0 (calculation function is not selected), d = 0;
 - if OPER = 1 (calculation function is selected) and UPDS = 0 (source of transfer is immediate data or fixed address memory), d = 7;
 - if OPER = 1 (calculation function is selected) and UPDS = 1 (source of transfer is relocatable address memory), d = 8

e: If CHAIN = 0 (chained transfer is not selected), e = 0; if CHAIN = 1 (chained transfer is selected), e = 4

m: BRST = 0 (single transfer), m = 1; BRST = 1 (burst transfer), m = the value set in transfer counter

n: If COUNT = 1, n = 0; if COUNT = 2 or more, n = 1

k: Number of transfers set in the CNT2 to CNT0 bits

The equations above are approximations. The number of cycles may vary depending on CPU state, bus wait state, and DMAC II index allocation.

The first instruction from the end-of-transfer interrupt routine is executed in the eighth cycle after the DMAC II transfer is completed.

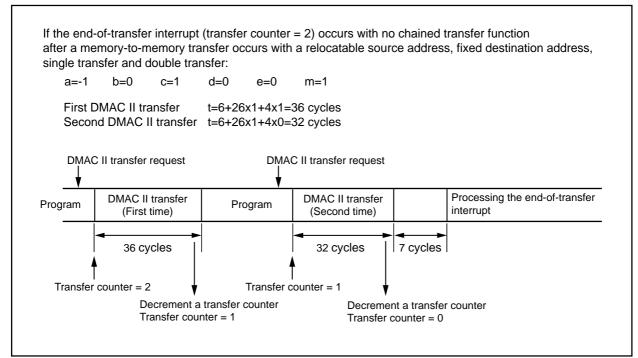


Figure 13.5 Transfer Cycle

When an interrupt request as a DMAC II transfer request source and another interrupt request with higher priority (e.g., NMI or watchdog timer) are generated simultaneously, the interrupt with higher priority takes precedence over the DMAC II transfer. The pending DMAC II transfer starts after the interrupt sequence has been completed.

14. Timer

The microcomputer has eleven 16-bit timers. Five timers A and six timers B have different functions. Each timer functions independently. The count source for each timer becomes the clock for timer operations including counting and reloading, etc. Figures 14.1 and 14.2 show block diagrams of timer A and timer B configuration.

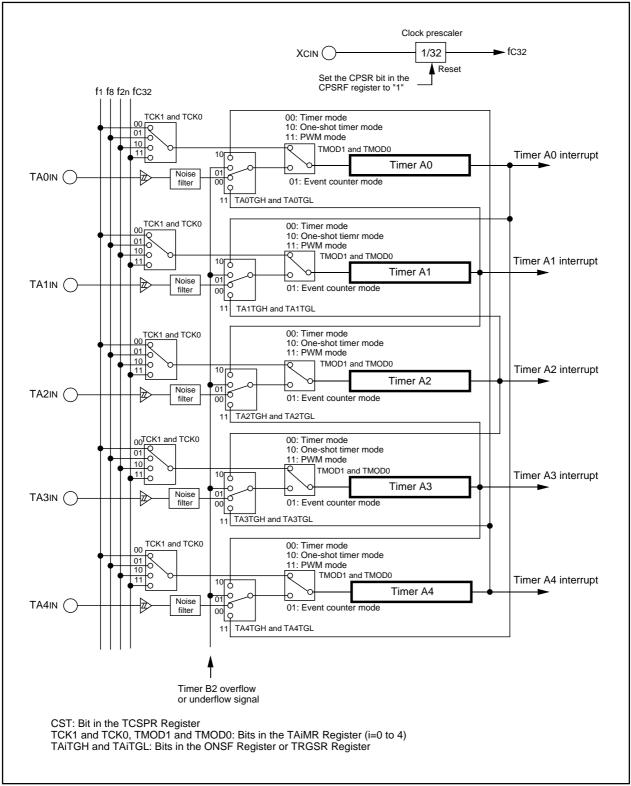


Figure 14.1 Timer A Configuration

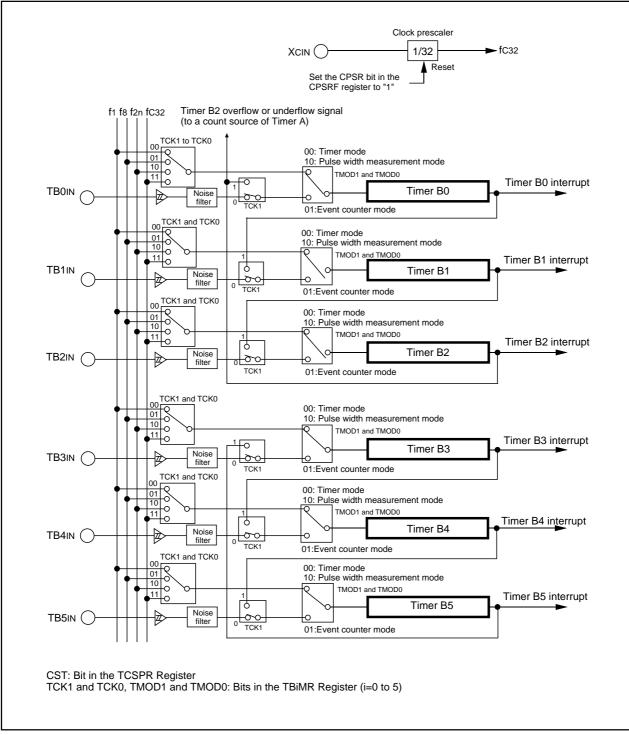


Figure 14.2 Timer B Configuration

14.1 Timer A

Figure 14.3 shows a block diagram of the timer A. Figures 14.4 to 14.7 show registers associated with the timer A.

The timer A supports the following four modes. Except in event counter mode, all timers A0 to A4 have the same function. The TMOD1 and TMOD0 bits in the TAiMR register (i=0 to 4) determine which mode is used.

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts an external pulse or an overflow and underflow of other timers.
- One-shot timer mode: The timer outputs one valid pulse until a counter value reaches "000016".
- Pulse width modulation mode: The timer continuously outputs desired pulse widths.

Table 14.1 lists TAiOUT pin settings when used as an output. Table 14.2 lists TAiIN and TAiOUT pin settings when used as an input.

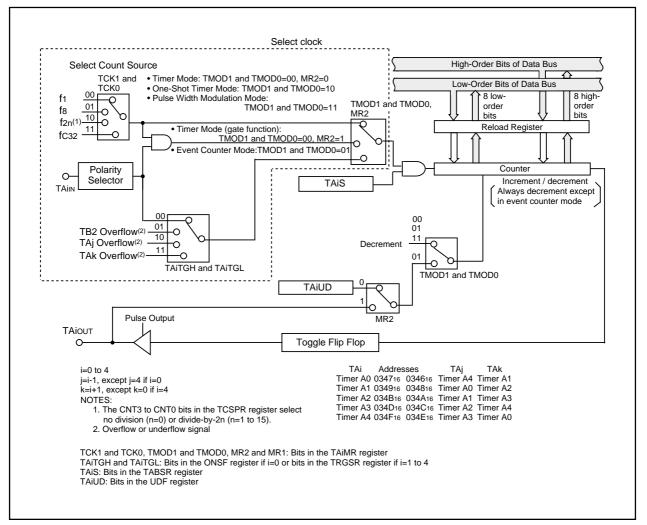


Figure 14.3 Timer A Block Diagram

b15 b8 b7 b0	TA0 to TA2 03	ldress 4716-034616, 034916-034816, 034B16-034 4D16-034C16, 034F16-034E16	After Rese A16 Indetermir Indetermir	nate
	Mode	Function	Setting Range	RW
	Timer Mode	If setting value is n , count source is divided by $n+1$.	000016 to FFFF16	RW
	Event Counter Mode ⁽²⁾	If setting value is n , count source is divided by <i>FFFF16</i> - $n+1$ when the counter is incremented and by $n+1$ when the counter is decremented.	000016 to FFFF16	RW
	One-shot Timer Mode ⁽⁴⁾	If setting value is <i>n</i> , count source is divided by <i>n</i> , then stops.	000016 to FFFF16 ⁽³⁾	wc
	Pulse Width Modulation Mode ⁽⁵⁾ (16-bit PWM)	If count source frequency is fj and setting value of the TAi register is n , PWM cycle: $(2^{16}-1) / fj$ "H" width of PWM pulse: n / fj	000016 to FFFE16 ⁽³⁾	wc
	Pulse Width Modulation Mode ⁽⁵⁾ (8-bit PWM)	If count source frequency is f_i , setting value of high-order bits in the TAi register is n and setting value of low-order bits in the TAi register is m , PWM cycle: $(2^8-1)x(m+1) / f_j$ "H" width of PWM pulse: $(m+1)n / f_j$	0016 to FE16 ⁽³⁾ (High-order address bits) 0016 to FF16 ⁽³⁾ (Low-order address bits)	wc
timer counter overflo 3. Use the MOV instruc 4. When the TAi registe request is not genera 5. When the TAi registe pin is held "L". The T	nts how many pulse ws and underflows tion to set the TAi r r is set to "000016", ated. r is set to "000016", Ai interrupt request		the timer Ai interrup operate and the TAi uation occurs in 8-bi	θt Ουτ

Figure 14.4 TA0 to TA4 Registers

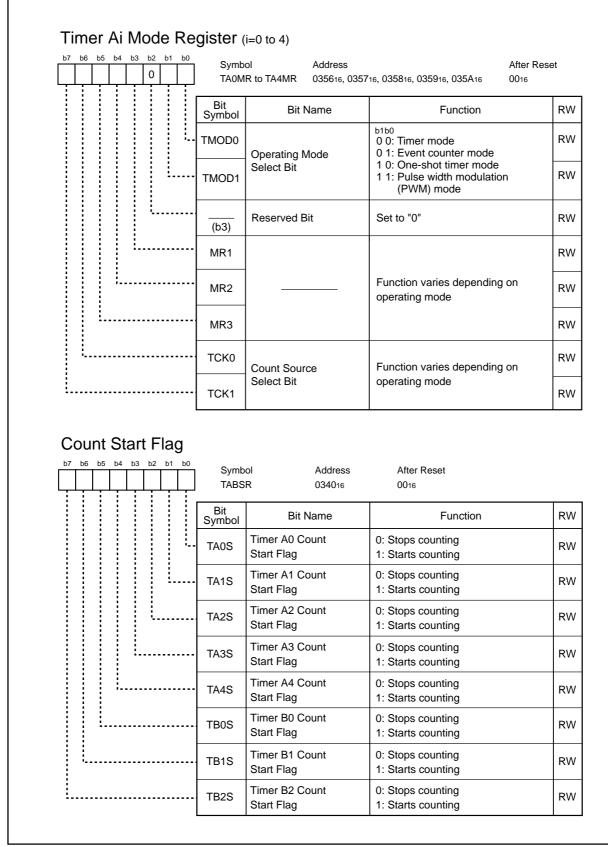


Figure 14.5 TA0MR to TA4MR Registers and TABSR Register

b7 b6 b5	b4 b	3 b2	2 b1	b0	Symb	ol Address	After Reset	
ĻĻĻļ	÷	Ļ.	Ļ	Ļ	UDF	034416	0016	
					Bit Symbol	Bit Name	Function	RW
					TA0UD	Timer A0 Up/Down Flag ⁽²⁾	0: Decrement 1: Increment	RW
					TA1UD	Timer A1 Up/Down Flag ⁽²⁾	0: Decrement 1: Increment	RW
					TA2UD	Timer A2 Up/Down Flag ⁽²⁾	0: Decrement 1: Increment	RW
					TA3UD	Timer A3 Up/Down Flag ⁽²⁾	0: Decrement 1: Increment	RW
					TA4UD	Timer A4 Up/Down Flag ⁽²⁾	0: Decrement 1: Increment	RW
					TA2P	Timer A2 Two-Phase Pulse Signal Processing Function Select Bit ⁽³⁾	0: Disables two-phase pulse signal processing function 1: Enables two-phase pulse signal processing function	wo
				ТАЗР	Timer A3 Two-Phase Pulse Signal Processing Function Select Bit ⁽³⁾	0: Disables two-phase pulse signal processing function 1: Enables two-phase pulse signal processing function	wo	
					TA4P	Timer A4 Two-Phase Pulse Signal Processing Function Select Bit ⁽³⁾	0: Disables two-phase pulse signal processing function 1: Enables two-phase pulse signal processing function	wo

NOTES:

1. Use the MOV instruction to set the UDF register.

2. This bit is enabled when the MR2 bit in the TAiMR register (i=0 to 4) is set to "0" (the UDF register causes increment/decrement switching) in event counter mode.

3. Set this bit to "0" when not using the two-phase pulse signal processing function.

One-Shot Start Flag

b7 b6 b5 b4 b3 b2 b1 b0	Symb ONSF		After Reset 0016	
	Bit Symbol	Bit Name	Function	RW
	TA0OS	Timer A0 One-Shot Start Flag ⁽¹⁾	0: In an idle state 1: Starts the timer	RW
	TA1OS	Timer A1 One-Shot Start Flag ⁽¹⁾	0: In an idle state 1: Starts the timer	RW
	TA2OS	Timer A2 One-Shot Start Flag ⁽¹⁾	0: In an idle state 1: Starts the timer	RW
	TA3OS	Timer A3 One-Shot Start Flag ⁽¹⁾	0: In an idle state 1: Starts the timer	RW
	TA4OS	Timer A4 One-Shot Start Flag ⁽¹⁾	0: In an idle state 1: Starts the timer	RW
	TAZIE	Z-Phase Input Enable Bit	0: Disables Z-phase input 1: Enables Z-phase input	RW
	TA0TGL	Timer A0 Event/Trigger	b7b6 0 0: Selects an input to the TA0IN pin 0 1: Selects TB2 overflows ⁽²⁾	RW
	TA0TGH	Select Bit	1 0: Selects TA4 overflows ⁽²⁾ 1 1: Selects TA1 overflows ⁽²⁾	RW

NOTES:

1. When read, this bit is set to "0".

2. Overflow or underflow.

Figure 14.6 UDF Register and ONSF Register

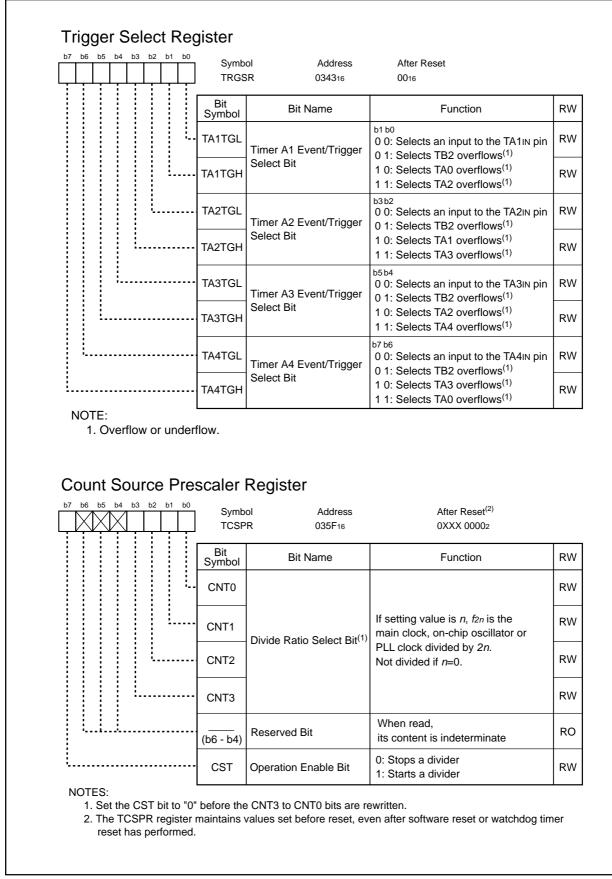


Figure 14.7 TRGSR Register and TCSPR Register

Pin		Setting	
	PS1, PS2 Registers	PSL1, PSL2 Registers	PSC Register
P70/TA00UT ⁽¹⁾	PS1_0= 1	PSL1_0=1	PSC_0= 0
P72/TA10UT	PS1_2= 1	PSL1_2=1	PSC_2= 0
P74/TA2out	PS1_4= 1	PSL1_4=0	PSC_4= 0
P76/TA30UT	PS1_6= 1	PSL1_6=1	PSC_6= 0
P80/TA4OUT	PS2_0= 1	PSL2_0=0	_

Table 14.1 Pin Settings for Output from TAioUT Pin (i=0 to 4)

NOTE:

1. P70/TA00UT is a port for the N-channel open drain output.

Table 14.2 Pin Settings for Input to TAiN and TAiOUT Pins (i=0 to 4)

Pin	Se	tting
	PS1, PS2 Registers	PD7, PD8 Registers
P70/TA00UT	PS1_0=0	PD7_0=0
P71/TA0IN	PS1_1=0	PD7_1=0
P72/TA1out	PS1_2=0	PD7_2=0
P73/TA1IN	PS1_3=0	PD7_3=0
P74TA2out	PS1_4=0	PD7_4=0
P75/TA2IN	PS1_5=0	PD7_5=0
P76TA3OUT	PS1_6=0	PD7_6=0
P77/TA3IN	PS1_7=0	PD7_7=0
P80/TA40UT	PS2_0=0	PD8_0=0
P81/TA4IN	PS2_1=0	PD8_1=0

14.1.1 Timer Mode

In timer mode, the timer counts an internally generated count source (see **Table 14.3**). Figure 14.8 shows the TAiMR register (i=0 to 4) in timer mode.

Item	Specification						
Count Source	f1, f8, f2n ⁽¹⁾ , fC32						
Counting Operation	The timer decrements a counter value						
	Vhen the timer counter underflows, content of the reload register is reloaded into the						
	count register and counting resumes.						
Divide Ratio	1/(n+1) n: setting value of the TAi register (i=0 to 4) 000016 to FFFF16						
Counter Start Condition	The TAiS bit in the TABSR register is set to "1" (starts counting)						
Counter Stop Condition	The TAiS bit is set to "0" (stops counting)						
Interrupt Request Generation Timing	The timer counter underflows						
TAilN Pin Function	Programmable I/O port or gate input						
TAIOUT Pin Function	Programmable I/O port or pulse output						
Read from Timer	The TAi register indicates counter value						
Write to Timer	• While the timer counter stops, the value written to the TAi register is also written to						
	both reload register and counter						
	• While counting, the value written to the TAi register is written to the reload register						
	(It is transferred to the counter at the next reload timing)						
Selectable Function	Gate function						
	Input signal to the TAin pin determines whether the timer counter starts or stops counting						
	Pulse output function						
	The polarity of the TAiOUT pin is inversed whenever the timer counter underflows						

Table 14.3 Timer Mode Specifications

NOTE:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

b7 b6 b5	b4 b3 b2 b1 b0	Symb TA0M		After Rese 716, 035816, 035916, 035A16 0016	∍t
		Bit Symbol	Bit Name	Function	RW
			Operating Mode	b1b0 0 0: Timer mode	RW
		TMOD1	Select Bit		RW
		(b2)	Reserved Bit	Set to "0"	RW
		MR1	Gate Function	b4b3 0 X: Gate function disabled ⁽¹⁾ (TAi⊮ pin is a programmable I/O pin) 1 0: Timer counts only while the	RW
		MR2	Select Bit	TAiiN pin is held "L" 1 1: Timer counts only while the TAiiN pin is held "H"	RW
		MR3	Set to "0" in timer mode		RW
		тско	Count Source	b7b6 0 0: f1 0 1: f8	RW
		TCK1	Select Bit	1 0: f _{2n} ⁽²⁾ 1 1: f _{C32}	RW

Figure 14.8 TA0MR to TA4MR Registers

14.1.2 Event Counter Mode

In event counter mode, the timer counts how many external signals are applied or how many times another timer counter overflows and underflows. The timers A2, A3 and A4 can count externally generated two-phase signals. Table 14.4 lists specifications in event counter mode (when not handling a two-phase pulse signal). Table 14.5 lists specifications in event counter mode (when handling a two-phase signal with the timers A2, A3 and A4). Figure 14.9 shows the TAiMR register (i=0 to 4) in event counter mode.

Table 1/ /	Event Counte	r Mode Specification	e (Whon Not Proc	accina Twa-nhac	o Dulco Signal)
1 4010 14.4		i moue opecification		essing i wu-pilas	e ruise Signal)

Item	Specification
Count Source	• External signal applied to the TAiIN pin (i = 0 to 4) (valid edge can be selected by program)
	• Timer B2 overflow or underflow signal, timer Aj overflow or underflow signal (j=i-1,
	except j=4 if i=0) and timer Ak overflow or underflow signal (k=i+1, except k=0 if i=4)
Counting Operation	• External signal and program can determine whether the timer increments or decre-
	ments a counter value
	• When the timer counter underflows or overflows, content of the reload register is
	reloaded into the count register and counting resumes. When the free-running count
	function is selected, the timer counter continues running without reloading.
Divide Ratio	• 1/(FFFF16 - n + 1) for counter increment
	• $1/(n + 1)$ for counter decrement n : setting value of the TAi register 000016 to FFFF16
Counter Start Condition	The TAiS bit in the TABSR register is set to "1" (starts counting)
Counter Stop Condition	The TAiS bit is set to "0" (stops counting)
Interrupt Request Generation Timing	The timer counter overflows or underflows
TAilN Pin Function	Programmable I/O port or count source input
TAiout Pin Function	Programmable I/O port, pulse output or input selecting a counter increment or decrement
Read from Timer	The TAi register indicates counter value
Write to Timer	• When the timer counter stops, the value written to the TAi register is also written to
	both reload register and counter
	• While counting, the value written to the TAi register is written to the reload register
	(It is transferred to the counter at the next reload timing)
Selectable Function	Free-running count function
	Content of the reload register is not reloaded even if the timer counter overflows or
	underflows
	Pulse output function
	The polarity of the TAiout pin is inversed whenever the timer counter overflows or
	underflows

Counting Operation • Two cou cou • Wh relo fund Divide Ratio • 1/(Counter Start Condition Interrupt Request Generation Timing Interrupt Request Generation Timing TAioUT Pin Function Two- Read from Timer Write to Timer • Whe bott • Whi (It is Selectable Function ⁽¹⁾ • Mult Whi	Specificationphase pulse signal applied to the TAiIN and TAIOUT pins (i = 2 to 4)o-phase pulse signal determines whether the timer increments or decrements a unter valueuene the timer counter overflows or underflows, content of the reload register is paded into the count register and counting resumes. With the free-running count ction, the timer counter continues running without reloading. <i>(FFFF16 - n + 1)</i> for counter increment <i>(n + 1)</i> for counter decrement <i>n</i> : setting value of the TAi register 000016 to FFF16TAIS bit in the TABSR register is set to "1" (starts counting)TAIS bit is set to "0" (stops counting) timer counter overflows or underflows phase pulse signal is appliedphase pulse signal is appliedphase pulse signal is appliedthe timer counter stops, the value written to the TAi register is also written to th reload register and counter ile counting, the value written to the TAi register is also written to th reload register and counter ile counting, the value written to the TAi register is also written to th reload register and counter ile counting, the value written to the TAi register is also written to the reload register and counter ile counting, the value written to the TAi register is also written to the reload register and counter at the next reload timing) rmal processing operation (the timer A2 and timer A3)
Counting Operation • Two cou cou • Wh relo fund Divide Ratio • 1/(Counter Start Condition Interrupt Request Generation Timing The t TAiIN Pin Function Two- Read from Timer Write to Timer Write to Timer • Whe bott • Whi (It is Selectable Function ⁽¹⁾ • Mult Whi	to-phase pulse signal determines whether the timer increments or decrements a unter value then the timer counter overflows or underflows, content of the reload register is baded into the count register and counting resumes. With the free-running count ction, the timer counter continues running without reloading. (FFFF16 - n + 1) for counter increment (n + 1) for counter decrement n : setting value of the TAi register 000016 to FFFF16 TAIS bit in the TABSR register is set to "1" (starts counting) TAIS bit is set to "0" (stops counting) imer counter overflows or underflows phase pulse signal is applied phase pulse signal is applied TAi register indicates the counter value en the timer counter stops, the value written to the TAi register is also written to h reload register and counter ile counting, the value written to the TAi register is written to the reload register is transferred to the counter at the next reload timing)
cou • Wh rela fund Divide Ratio Divide Ratio • 1//(Counter Start Condition The T Counter Stop Condition The T Interrupt Request Generation Timing The T Interrupt Request Generation Timing The T Interrupt Request Generation Timing The T Nor- Read from Timer The T Write to Timer • Whe bott • Whi (It is Selectable Function ⁽¹⁾ • Multive • • • • • • • • • • • • • • • • • • •	unter value then the timer counter overflows or underflows, content of the reload register is baded into the count register and counting resumes. With the free-running count ction, the timer counter continues running without reloading. (FFFF16 - n + 1) for counter increment (n + 1) for counter decrement n : setting value of the TAi register 000016 to FFFF16 TAiS bit in the TABSR register is set to "1" (starts counting) TAiS bit is set to "0" (stops counting) timer counter overflows or underflows phase pulse signal is applied phase pulse signal is applied TAi register indicates the counter value en the timer counter stops, the value written to the TAi register is also written to h reload register and counter ile counting, the value written to the TAi register is written to the reload register is transferred to the counter at the next reload timing)
Wh relo function Divide Ratio Divide Ratio Counter Start Condition Counter Stop Condition Interrupt Request Generation Timing The T Interrupt Request Generation Timing The T TAIOUT Pin Function Two- Read from Timer Write to Timer Write to Timer Write to Timer Selectable Function ⁽¹⁾ Nor Wh incr cou Multive White Nor Nor Nor Nor Nor Nor Nor Nor	then the timer counter overflows or underflows, content of the reload register is baded into the count register and counting resumes. With the free-running count ction, the timer counter continues running without reloading. (FFFF16 - n + 1) for counter increment (n + 1) for counter decrement n : setting value of the TAi register 000016 to FFFF16 TAIS bit in the TABSR register is set to "1" (starts counting) TAIS bit is set to "0" (stops counting) timer counter overflows or underflows phase pulse signal is applied phase pulse signal is applied TAi register indicates the counter value en the timer counter stops, the value written to the TAi register is also written to h reload register and counter ile counting, the value written to the TAi register is written to the reload register is transferred to the counter at the next reload timing)
relatio Divide Ratio Divide Ratio Counter Start Condition The T Counter Stop Condition Interrupt Request Generation Timing The t TAIOUT Pin Function Two- Read from Timer Write to Timer White (It is Selectable Function ⁽¹⁾ • Multi White	baded into the count register and counting resumes. With the free-running count ction, the timer counter continues running without reloading. (FFFF16 - n + 1) for counter increment (n + 1) for counter decrement n : setting value of the TAi register 000016 to FFFF16 TAiS bit in the TABSR register is set to "1" (starts counting) TAiS bit is set to "0" (stops counting) timer counter overflows or underflows phase pulse signal is applied phase pulse signal is applied TAi register indicates the counter value en the timer counter stops, the value written to the TAi register is also written to h reload register and counter ile counting, the value written to the TAi register is written to the reload register is transferred to the counter at the next reload timing)
fund Divide Ratio • 1//(Counter Start Condition The T Counter Stop Condition The T Interrupt Request Generation Timing The t TAIN Pin Function Two-p Read from Timer The T Write to Timer • Whe bott • Whi (It is Selectable Function ⁽¹⁾ Selectable Function ⁽¹⁾ • Multi Whi whi Whi whi Whi whi Whi whi Whi whi Selectable Function ⁽¹⁾ • Multi Whi whi Whi whi Whi whi Whi whi Selectable Function ⁽¹⁾ • Multi Whi whi Selectable • Multi Whi whi	ction, the timer counter continues running without reloading. $(FFFF16 - n + 1)$ for counter increment $(n + 1)$ for counter decrement $(n + 1)$ for counter overflows or underflowsphase pulse signal is appliedphase pulse signal is appliedTAi register indicates the counter valueen the timer counter stops, the value written to the TAi register is also written toh reload register and counterile counting, the value written to the TAi register is written to the reload registeris transferred to the counter at the next reload timing)
Divide Ratio 0 1/(0 1/(0 1/(Counter Start Condition 1 1 1 Counter Stop Condition 1 1 1 Interrupt Request Generation Timing The T TAIN Pin Function Two- TAIOUT Pin Function Read from Timer Write to Timer Write to Timer Whi (It is Selectable Function ⁽¹⁾ • Multive Nor Counter Start Condition • Multive • • • • • • • • • • • • • • • • • • •	<i>(FFFF16 - n + 1)</i> for counter increment <i>(n + 1)</i> for counter decrement <i>n</i> : setting value of the TAi register 000016 to FFFF16 TAiS bit in the TABSR register is set to "1" (starts counting) TAiS bit is set to "0" (stops counting) timer counter overflows or underflows phase pulse signal is applied phase pulse signal is applied TAi register indicates the counter value en the timer counter stops, the value written to the TAi register is also written to h reload register and counter ile counting, the value written to the TAi register is written to the reload register is transferred to the counter at the next reload timing)
• 1/(I Counter Start Condition The T Counter Stop Condition The T Interrupt Request Generation Timing The t TAIN Pin Function Two- Read from Timer The T Write to Timer • Whe bott • Whi (It is Selectable Function ⁽¹⁾ Selectable Function ⁽¹⁾ • Multi Whi incr course • Multi Whi • Multi	 (n + 1) for counter decrement n: setting value of the TAi register 000016 to FFFF16 TAiS bit in the TABSR register is set to "1" (starts counting) TAiS bit is set to "0" (stops counting) timer counter overflows or underflows phase pulse signal is applied phase pulse signal is applied TAi register indicates the counter value en the timer counter stops, the value written to the TAi register is also written to h reload register and counter ile counting, the value written to the TAi register is written to the reload register is transferred to the counter at the next reload timing)
Counter Start Condition The T Counter Stop Condition The T Interrupt Request Generation Timing The t TAiIN Pin Function Two- TAiOUT Pin Function Two- Read from Timer The T Write to Timer • Whe Selectable Function ⁽¹⁾ • Nor Whi incr courter • Multive Whi Whi	TAIS bit in the TABSR register is set to "1" (starts counting) TAIS bit is set to "0" (stops counting) timer counter overflows or underflows phase pulse signal is applied phase pulse signal is applied TAi register indicates the counter value en the timer counter stops, the value written to the TAi register is also written to h reload register and counter ile counting, the value written to the TAi register is written to the reload register is transferred to the counter at the next reload timing)
Counter Stop Condition The T Interrupt Request Generation Timing The t TAiN Pin Function Two-p TAIOUT Pin Function Two-p Read from Timer The T Write to Timer • Whether the bother the state the st	TAiS bit is set to "0" (stops counting) imer counter overflows or underflows phase pulse signal is applied phase pulse signal is applied TAi register indicates the counter value en the timer counter stops, the value written to the TAi register is also written to h reload register and counter ile counting, the value written to the TAi register is written to the reload register is transferred to the counter at the next reload timing)
Interrupt Request Generation Timing The t TAiIN Pin Function Two- TAiOUT Pin Function Two- Read from Timer The T Write to Timer • Whe bott (It is Selectable Function ⁽¹⁾ • Nor cou	imer counter overflows or underflows phase pulse signal is applied phase pulse signal is applied TAi register indicates the counter value en the timer counter stops, the value written to the TAi register is also written to h reload register and counter ile counting, the value written to the TAi register is written to the reload register s transferred to the counter at the next reload timing)
TAIN Pin Function Two-I TAIOUT Pin Function Two-I Read from Timer The T Write to Timer • Whe bott • Whi (It is Selectable Function ⁽¹⁾ • Nor Whi incr course • Multive Whi Whi	phase pulse signal is applied phase pulse signal is applied TAi register indicates the counter value en the timer counter stops, the value written to the TAi register is also written to h reload register and counter ile counting, the value written to the TAi register is written to the reload register s transferred to the counter at the next reload timing)
TAIOUT Pin Function Two- Read from Timer The T Write to Timer • Whe bott • Whi (It is Selectable Function ⁽¹⁾ • Nor Whi • cou • Multi Whi Whi Whi Whi • Multi Whi Whi • Multi Whi Whi • Multi	phase pulse signal is applied TAi register indicates the counter value en the timer counter stops, the value written to the TAi register is also written to h reload register and counter ile counting, the value written to the TAi register is written to the reload register s transferred to the counter at the next reload timing)
Read from Timer The T Write to Timer • Whe bott • Whi (It is Selectable Function ⁽¹⁾ • Nor Whi incr cour • Multi Whi Whi Whi Whi Whi Whi Whi Whi Whi Whi Whi Whi Cour Whi Whi Whi Whi Whi Whi Whi Whi Whi Whi Whi Whi Whi	TAi register indicates the counter value en the timer counter stops, the value written to the TAi register is also written to h reload register and counter ile counting, the value written to the TAi register is written to the reload register s transferred to the counter at the next reload timing)
Write to Timer Write to Timer Whi bott Whi (It is Selectable Function ⁽¹⁾ Nor Wh incr cou Mult Whi	en the timer counter stops, the value written to the TAi register is also written to h reload register and counter ile counting, the value written to the TAi register is written to the reload register s transferred to the counter at the next reload timing)
Selectable Function ⁽¹⁾ • Nor Wh incr cou	h reload register and counter ile counting, the value written to the TAi register is written to the reload register s transferred to the counter at the next reload timing)
Whi (It is Selectable Function ⁽¹⁾ • Nor Wh incr cou • Mult Wh	ile counting, the value written to the TAi register is written to the reload register s transferred to the counter at the next reload timing)
(It is Selectable Function ⁽¹⁾ • Nor Wh incr cou	s transferred to the counter at the next reload timing)
Selectable Function ⁽¹⁾ • Nor Wh incr cou	
• Mul Wh	rmai processing operation (the timer A2 and timer A3)
• Mul Wh	
• Mul Wh	ile a high-level ("H") signal is applied to the TAjOUT pin ($j = 2$ or 3), the timer
• Mul Wh	rements a counter value on the rising edge of the TAjIN pin or decrements a
Wh	inter on the falling edge.
Wh	
Wh	TAJIN Increment Increment Decrement Decrement Decrement
Wh	tiply-by-4 processing operation (the timer A3 and timer A4)
	ile an "H" signal is applied to the TAkout pin ($k = 3 \text{ or } 4$) on the rising edge of the
	kin pin, the timer increments a counter value on the rising and falling edges of the
ΤΔΙ	kout and TAkin pins.
	ile an "H" signal is applied to the TAkout pin on the falling edge of the TAkin pin, the
	er decrements a counter value on the rising and falling edges of the TAkout and
	kin pins.
	TAkın
NOTE:	Increment on all edges

Table 14.5 Event Counter Mode Specifications (When Processing Two-phase Pulse Signal onTimer A2, A3 and A4)

1. Only timer A3 operation can be selected. The timer A2 is for the normal processing operation. The timer A4 is for the multiply-by-4 operation.

b7 b6 b5 b4	b3 b2	_	ьо 1	Symb TA0M		s 035716, 035816, 035916, 0	After Reset 035A16 0016	
				Bit Symbol	Bit Name	Function (When not processing two-phase pulse signal)	Function (When processing two-phase pulse signal)	RW
				TMOD0	Operating Mode	^{b1b0} 0 1: Event counter mo	ode ⁽¹⁾	RW
		į.		TMOD1	Select Bit			RW
				(b2)	Reserved Bit	Set to "0"		RW
				MR1	Count Polarity Select Bit ⁽²⁾	0: Counts falling edges of an external signal1: Counts rising edges of an external signal	Set to "0"	RW
				MR2	Increment/Decrement Switching Source Select Bit	0: UDF registser setting 1: Input signal to TAio∪⊤ pin ⁽³⁾	Set to "1"	RV
				MR3	Set to "0" in event of	counter mode		RV
				TCK0	Count Operation Type Select Bit	0: Reloading 1: Free running		R٧
				TCK1	Two-Phase Pulse Signal Processing Operation Select Bit ^(4,5)	Set to "0"	0: Normal processing operation 1: Multiply-by-4 processing operation	RW

NOTES:

- 1. The TAiTGH and TAiTGL bits in the ONSF or TRGSR register determine the count source in the event counter mode.
- 2. MR1 bit setting is enabled only when counting how many times external signals are applied.
- 3. The timer decrements a counter value when an "L" signal is applied to the TAIOUT pin and the timer
- increments a counter value when an "H" signal is applied to the TAiOUT pin.

4. The TCK1 bit is enabled only in the TA3MR register.

5. For two-phase pulse signal processing, set the TAjP bit in the UDF register (j=2 to 4) to "1" (two-phase pulse signal processing function enabled). Also, set the TAjTGH and TAjTGL bits to "002" (input to the TAjIN pin).

Figure 14.9 TA0MR to TA4MR Registers

14.1.2.1 Counter Reset by Two-Phase Pulse Signal Processing

Z-phase input resets the timer counter when processing a two-phase pulse signal.

This function can be used in timer A3 event counter mode, two-phase pulse signal processing, freerunning count operation type or multiply-by-4 processing. The Z-phase signal is applied to the INT2 pin. When the TAZIE bit in the ONSF register is set to "1" (Z-phase input enabled), Z-phase input can reset the timer counter. To reset the counter by a Z-phase input, set the TA3 register to "000016" beforehand.

Z-phase input is enabled when the edge of the signal applied to the INT2 pin is detected. The POL bit in the INT2IC register can determine edge polarity. The Z-phase must have a pulse width of one timer A3 count source cycle or more . Figure 14.10 shows two-phase pulses (A-phase and B-phase) and the Z-phase.

Z-phase input resets the timer counter in the next count source following Z-phase input. Figure 14.11 shows the counter reset timing.

Timer A3 interrupt request is generated twice continuously when a timer A3 overflow or underflow, and a counter reset by $\overline{INT2}$ input occur at the same time. Do not use the timer A3 interrupt request when this function is used.

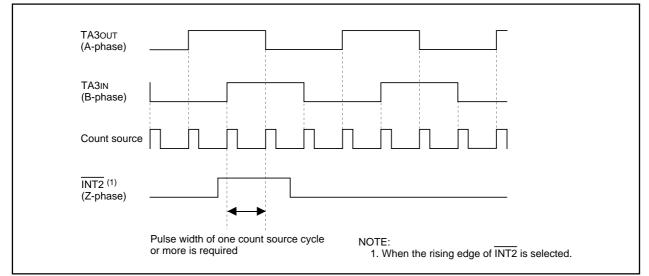


Figure 14.10 Two-Phase Pulse (A-phase and B-phase) and Z-phase

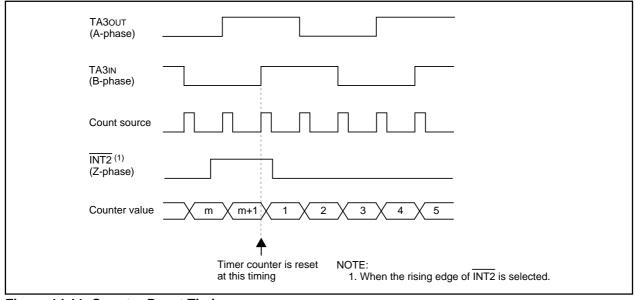


Figure 14.11 Counter Reset Timing

14.1.3 One-Shot Timer Mode

In one-shot timer mode, the timer operates only once for each trigger (see **Table 14.6**). Once a trigger occurs, the timer starts and continues operating for a desired period. Figure 14.12 shows the TAiMR register (i=0 to 4) in one-shot timer mode.

Item	Specification
Count Source	f1, f8, f2n ⁽¹⁾ , fC32
Counting Operation	The timer decrements a counter value
	When the timer counter reaches "000016", it stops counting after reloading.
	If a trigger occurs while counting, content of the reload register is reloaded into the
	count register and counting resumes.
Divide Ratio	1/n n: setting value of the TAi register (i=0 to 4) 000016 to FFFF16,
	but the timer counter does not run if n=000016
Counter Start Condition	The TAiS bit in the TABSR register is set to "1" (starts counting) and following triggers
	occur:
	 External trigger input is provided
	 Timer counter overflows or underflows
	 The TAiOS bit in the ONSF register is set to "1" (timer started)
Counter Stop Condition	After the timer counter has reached "000016" and is reloaded
	When the TAiS bit is set to "0" (stops counting)
Interrupt Request Generation Timing	The timer counter reaches "000016"
TAilN Pin Function	Programmable I/O port or trigger input
TAiout Pin Function	Programmable I/O port or pulse output
Read from Timer	The value in the TAi register is indeterminate when read
Write to Timer	• When the timer counter stops, the value written to the TAi register is also written to
	both reload register and counter
	• While counting, the value written to the TAi register is written to the reload register
	(It is transferred to the counter at the next reload timing)

Table 14.6 One-Sho	t Timer N	Mode Spec	ifications
--------------------	-----------	-----------	------------

NOTE:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

-	-	0	:	Ļ	0	1 0	Symb TA0M		After Rese 716, 035816, 035916, 035A16 0016	
			ł				Bit Symbol	Bit Name	Function	RV
							TMOD0	Operating Mode	b1b0 1 0: One-shot timer mode	RV
							TMOD1	Select Bit		RV
							(b2)	Reserved Bit	Set to "0"	_
							MR1	External Trigger Select Bit ⁽¹⁾	0: Falling edge of input signal to TAim pin 1: Rising edge of input signal to TAim pin	1 81
							MR2	Trigger Select Bit	0: TAiOS bit setting is enabled 1: Selected by the TAiTGH and TAiTGL bits	RV
							MR3	Set to "0" in the one-sho	ot timer mode	RV
	Ì						TCK0	Count Source	b7b6 0 0: f1 0 1: f8	RV
				TCK1	Select Bit	1 0: $f_{2n}^{(2)}$ 1 1: fC32	RV			
N		The to " TAi "11	002 TG 2" (2" (in L bit TAi	put s ai ove	to the re set to rflow a	s enabled o TAiın pin). p "012" (TE nd underflo	only when the TAiTGH and The MR1 bit can be set t 32 overflow and underflow ow).		re nd

Figure 14.12 TA0MR to TA4MR Registers

14.1.4 Pulse Width Modulation Mode

In pulse width modulation mode, the timer outputs pulse of desired width continuously (see **Table 14.7**). The timer counter functions as either 16-bit pulse width modulator or 8-bit pulse width modulator. Figure 14.13 shows the TAiMR register (i=0 to 4) in pulse width modulation mode. Figures 14.14 and 14.15 show examples of how a 16-bit pulse width modulator operates and of how an 8-bit pulse width modulator operates.

Item	Specification				
Count Source	f1, f8, f2n ⁽¹⁾ , fC32				
Counting Operation	The timer decrements a counter value				
	(The counter functions as an 8-bit or a 16-bit pulse width modulator)				
	Content of the reload register is reloaded on the rising edge of PWM pulse and count-				
	ing continues.				
	The timer is not affected by a trigger that is generated during counting.				
16-Bit PWM	• "H" width = n/f_j n : setting value of the TAi register 000016 to FFFE16				
	f/: count source frequency				
	• Cycle = $(2^{16}-1)/f_j$ fixed				
8-Bit PWM	• "H" width = n x (m+1) / fj				
	• Cycles = $(2^{8}-1) \times (m+1) / f_{j}$				
	<i>m</i> : setting value of low-order bit address of the TAi register 0016 to FF16				
	<i>n</i> : setting value of high-order bit address of the TAi register 0016 to FE16				
Counter Start Condition	External trigger input is provided				
	Timer counter overflows or underflows				
	The TAiS bit in the TABSR register is set to "1" (starts counting)				
Counter Stop Condition	e TAiS bit is set to "0" (stops counting)				
Interrupt Request Generation Timing	On the falling edge of the PWM pulse				
TAilN Pin Function	Programmable I/O port or trigger input				
TAIOUT Pin Function	Pulse output				
Read from Timer	The value in the TAi register is indeterminate when read				
Write to Timer	• When the timer counter stops, the value written to the TAi register is also written to				
	both reload register and counter				
	• While counting, the value written to the TAi register is written to the reload register				
	(It is transferred to the counter at the next reload timing)				

Table 14.7	Pulse Width	Modulation	Mode Specifications
------------	-------------	------------	---------------------

NOTE:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

 b5 b4	0	b1 b0 1 1 i i	Symb TA0N		After Res 716, 035816, 035916, 035A16 0016	et
			Bit Symbol	Bit Name	Function	RW
		ļ	TMOD0	Operating Mode	b1b0 1 1: Pulse width modulation (PWM)	RW
			TMOD1	Select Bit	mode	RW
			(b2)	Reserved Bit	Set to "0"	RW
			MR1	External Trigger Select Bit ⁽¹⁾	0: Falling edge of input signal to TAiın pin 1: Rising edge of input signal to TAiın pin	RW
		MR2	Trigger Select Bit	0: TAiS bit setting is enabled 1: Selected by the TAiTGH and TAiTGL bits	RW	
			MR3	16/8-Bit PWM Mode Select Bit	0: Functions as a 16-bit pulse width modulator 1: Functions as an 8-bit pulse width modulator	
 				Count Source	b7b6 0 0: f1 0 1: f8	RW
 		TCK1	Select Bit	1 0: f2n ⁽²⁾ 1 1: fC32		
MR1 bir "002" (i TAiTGI "112" (T	nput to ₋ bits ar Āi over	the TA e set to flow ar	iın pin). T o "012" (TE nd underflo	he MR1 bit can be set to on 32 overflow and underflow pw).	xiTGL bits in the TRGSR register are se either "0" or "1" when the TAiTGH and v), "102" (TAi overflow and underflow) o division (n=0) or divide-by-2n (n=1 to 19	r

Figure 14.13 TA0MR to TA4MR Registers

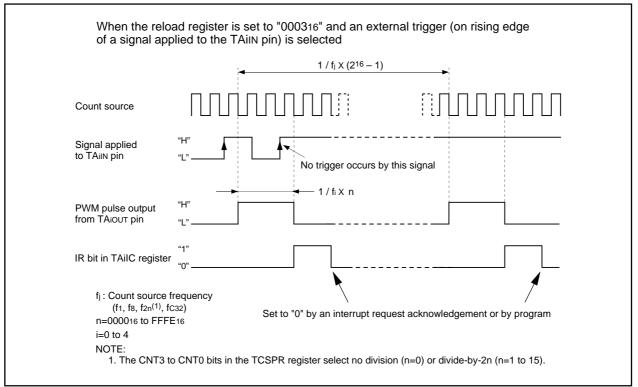
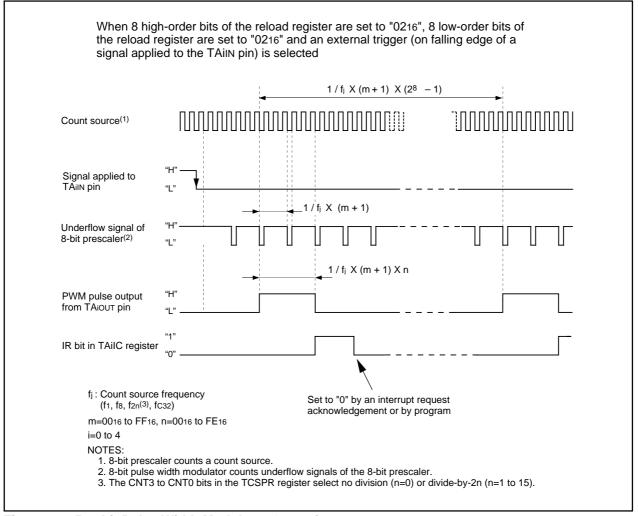
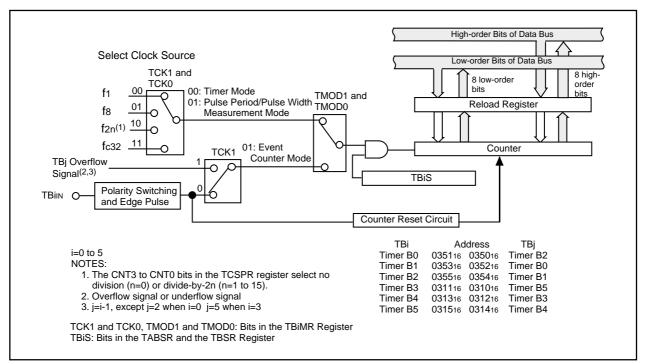


Figure 14.14 16-bit Pulse Width Modulator Operation




Figure 14.15 8-bit Pulse Width Modulator Operation

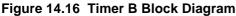

14.2 Timer B

Figure 14.16 shows a block diagram of the timer B. Figures 14.17 to 14.19 show registers associated with the timer B. The timer B supports the following three modes. The TMOD1 and TMOD0 bits in the TBiMR register (i=0 to 5) determine which mode is used.

- Timer mode : The timer counts an internal count source.
- Event counter mode : The timer counts pulses from an external source or overflow and underflow of another timer.
- Pulse period/pulse width measurement mode : The timer measures pulse period or pulse width of an external signal.

Table 14.8 lists TBin pin settings.

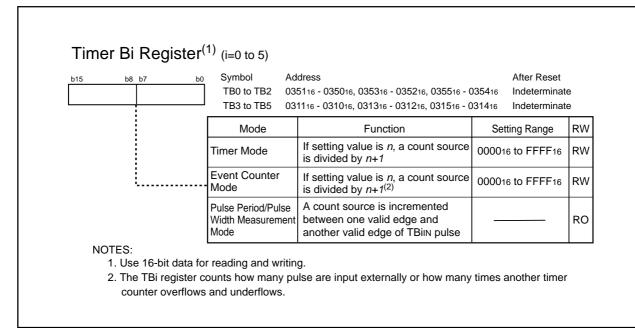


Figure 14.17 TB0 to TB5 Registers

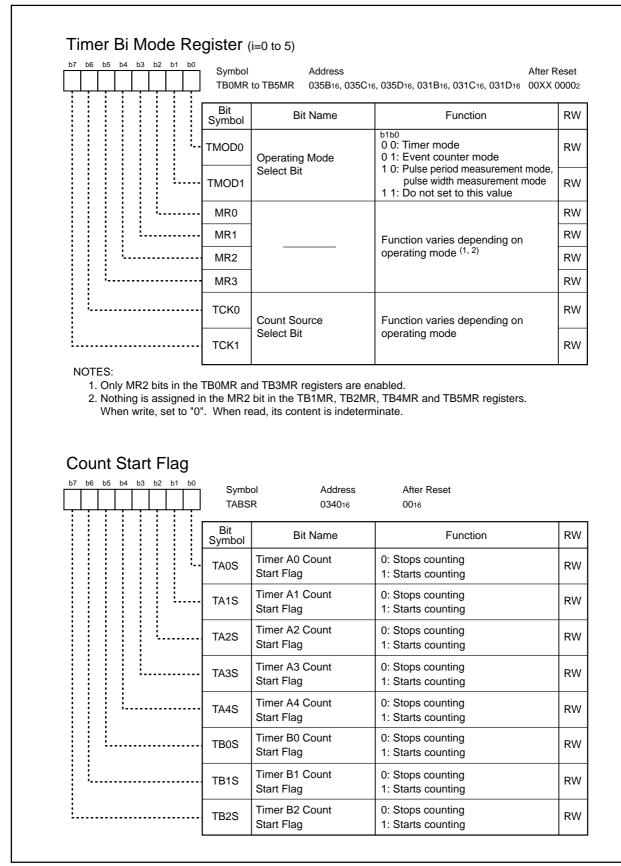


Figure 14.18 TB0MR to TB5MR Registers, TABSR Register

b7 b6 b5 b4 b3 b2 b1 b0	Symb TBSR		After Reset 000X XXXX2	
	Bit Symbol	Bit Name	Function	RW
	(b4 - b0)	Nothing is assigned. Whe When read, its content is	-	-
	TB3S	Timer B3 Count Start Flag	0: Stops counting 1: Starts counting	RW
	TB4S	Timer B4 Count Start Flag	0: Stops counting 1: Starts counting	RW
	TB5S	Timer B5 Count Start Flag	0: Stops counting 1: Starts counting	RW

Figure 14.19 TBSR Register

Table 14.8	Settings	for the	TBiin	Pins ((i=0 to 5	5)

Port Name	Function	Setting	
		PS1, PS3 ⁽¹⁾ Registers	PD7, PD9 ⁽¹⁾ Registers
P90	TB0IN	PS3_0=0	PD9_0=0
P91	TB1IN	PS3_1=0	PD9_1=0
P92	TB2IN	PS3_2=0	PD9_2=0
P93	TB3IN	PS3_3=0	PD9_3=0
P94	TB4IN	PS3_4=0	PD9_4=0
P71	ΤΒ5ιΝ	PS1_1=0	PD7_1=0

NOTE:

 Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enabled). Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

14.2.1 Timer Mode

In timer mode, the timer counts an internally generated count source (see **Table 14.9**). Figure 14.20 shows the TBiMR register (i=0 to 5) in timer mode.

Item	Specification					
Count Source	f1, f8, f2n ⁽¹⁾ , fC32					
Counting Operation	The timer decrements a counter value					
	When the timer counter underflows, content of the reload register is reloaded into the					
	count register and counting resumes					
Divide Ratio	1/(n+1) n. setting value of the TBi register (i=0 to 5) 000016 to FFFF16					
Counter Start Condition	The TBiS bits in the TABSR and TBSR registers are set to "1" (starts counting)					
Counter Stop Condition	The TBiS bit is set to "0" (stops counting)					
Interrupt Request Generation Timing	Timer counter underflows					
TBilN Pin Function	Programmable I/O port					
Read from Timer	The TBi register indicates counter value					
Write to Timer	• When the timer counter stops, the value written to the TBi register is also written to					
	both reload register and counter					
	• While counting, the value written to the TBi register is written to the reload register					
	(It is transferred to the counter at the next reload timing)					

Table 14.9 Timer Mode Specifications

NOTE:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

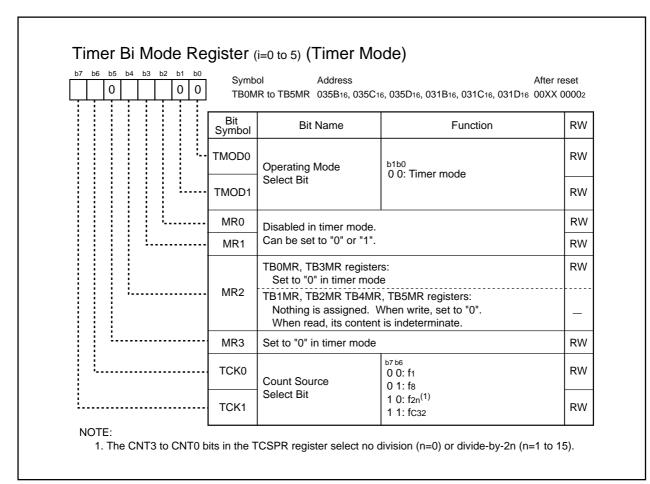


Figure 14.20 TB0MR to TB5MR Registers

14.2.2 Event Counter Mode

In event counter mode, the timer counts how many external signals are applied or how many times another timer overflows and underflows. (See **Table 14.10**) Figure 14.21 shows the TBiMR register (i=0 to 5) in event counter mode.

Table 14.10	Event	Counter	Mode S	pecifications

Item	Specification
Count Source	• External signal applied to the TBiIN pin (i = 0 to 5) (valid edge can be selected by
	program)
	• TBj overflow or underflow signal (j=i-1, except j=2 when i=0, j=5 when i=3)
Counting Operation	The timer decrements a counter value
	When the timer counter underflows, content of the reload register is reloaded into the
	count register to continue counting
Divide Ratio	1/(n+1) n: setting value of the TBi register 000016 to FFFF16
Counter Start Condition	The TBiS bits in the TABSR and TBSR register are set to "1" (starts counting)
Counter Stop Condition	The TBiS bit is set to "0" (stops counting)
Interrupt Request Generation Timing	The timer counter underflows
TBiIN Pin Function	Programmable I/O port or count source input
Read from Timer	The TBi register indicates counter value
Write to Timer	• When the timer counter stops, the value written to the TBi register is also written to
	both reload register and counter
	• While counting, the value written to the TBi register is written to the reload register
	(It is transferred to the counter at the next reload timing)

b7 b6 b5 b4	b3 b2 b1 b0 0 1	Symb TB0N		After re 16, 035D16, 031B16, 031C16, 031D16 00XX (
		Bit Symbol	Bit Name	Function	RW
		TMOD0	Operating Mode	b1b0	RW
		TMOD1	Select Bit	0 1: Event counter mode	RW
		- MR0	Count Polarity Select	b3b2 0 0: Counts falling edges of external signal 0 1: Counts rising edges of external signal	RW
		· MR1	Bit ⁽¹⁾	 1 0: Counts falling and rising edges of external signal 1 1: Do not set to this value 	RW
			TB0MR and TB3MR reg Set to "0" in event count		RW
		MR2	TB1MR, TB2MR, TB4M Nothing is assigned. Wi When read, its content is	hen write, set to "0".	_
		MR3	Disabled in event counte When read, its content is	er mode. When write, set to "0". s indeterminate.	_
		тско	Disabled in event counter mode. Can be set to "0" or "1".		RW
l		TCK1	Event Clock Select Bit	0: Input signal from the TBiIN pin 1: TBj overflows or underflows ⁽²⁾	RW

either "0" or "1", when the TCK1 bit is set to "1".

2. j=i-1, except j=2 when i=0 and j=5 when i=3.

Figure 14.21 TB0MR to TB5MR Registers

14.2.3 Pulse Period/Pulse Width Measurement Mode

In pulse period/pulse width measurement mode, the timer measures pulse period or pulse width of an external signal. (See **Table 14.11**) Figure 14.22 shows the TBiMR register (i=0 to 5) in pulse period/pulse width measurement mode. Figure 14.23 shows an operation example in pulse period measurement mode. Figure 14.24 shows an operation example in the pulse width measurement mode.

Item	Specification		
Count Source	f1, f8, f2n ⁽³⁾ , fC32		
Counting Operation	The timer increments a counter value		
	Counter value is transferred to the reload register on the valid edge of a pulse to be		
	measured. It is set to "000016" and the timer continues counting		
Counter Start Condition	The TBiS bits (i=0 to 5) in the TABSR and TBSR register are set to "1" (starts counting)		
Counter Stop Condition	The TBiS bit is set to "0" (stops counting)		
Interrupt Request Generation Timing	 On the valid edge of a pulse to be measured⁽¹⁾ 		
	The timer counter overflows		
	The MR3 bit in the TBiMR register is set to "1" (overflow) simultaneously. When the		
	TBiS bit is set to "1" (start counting) and the next count source is counted after setting		
	the MR3 bit to "1" (overflow), the MR3 bit can be set to "0" (no overflow) by writing to		
	the TBiMR register.		
TBilN Pin Function	Input for a pulse to be measured		
Read from Timer	The TBi register indicates reload register values (measurement results) ⁽²⁾		
Write to Timer	Value written to the TBi register can be written to neither reload register nor counter		

 Table 14.11
 Pulse Period/Pulse Width Measurement Mode Specifications

NOTES:

- 1. No interrupt request is generated when the pulse to be measured is on the first valid edge after the timer has started counting.
- 2. The TBi register is in an indeterminate state until the pulse to be measured is on the second valid edge after the timer has started counting.
- 3. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

7 b6 b5 b4 b3 b2 b1 b0	Symb TB0N		After re 6, 035D16, 031B16, 031C16, 031D16 00XX (
	Bit Symbol	Bit Name	Function	RW
	TMOD0	Operating Mode	b1b0 1 0: Pulse period measurement mode,	RW
	TMOD1	Select Bit	Pulse width measurement mode	RW
,	MR0	00	b3b2 0 0: Pulse period measurement 1 0 1: Pulse period measurement 2	RW
	MR1	Select Bit ⁽¹⁾	1 0: Pulse width measurement 1 1: Do not set to this value	RW
	MR2		od/pulse width measurement mode	RW
	MR2 TB1MR, TB2MR TB4MR Nothing is assigned. W When read, its content		When write, set to "0".	
	MR3	Timer Bi Overflow Flag ⁽²⁾	0: No overflow 1: Overflow	RO
<u>.</u>	TCK0	Count Source	b7b6 0 0: f1 0 1: f8	RW
	TCK1	Select Bit	1 0: f _{2n} ⁽³⁾ 1 1: fC32	RW
Pulse period measu Measures betwe Pulse period measu Measures betwe Pulse width measu Measures betwe	urement 1 urement 2 urement 2 ven the ris rement (t ven a fallin ng edge a	(the MR1 and MR0 bits at ing edge and the next risin he MR1 and MR0 bits are ig edge and the next rising nd the next falling edge of hen reset.	re set to "002") : ing edge of a pulse to be measured re set to "012") : ng edge of a pulse to be measured set to "102") : g edge of a pulse to be measured and	

Figure 14.22 TB0MR to TB5MR Registers

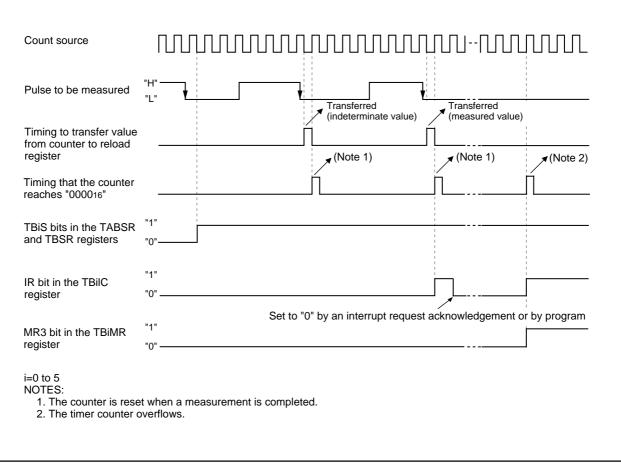


Figure 14.23 Operation Example in Pulse Period Measurement Mode

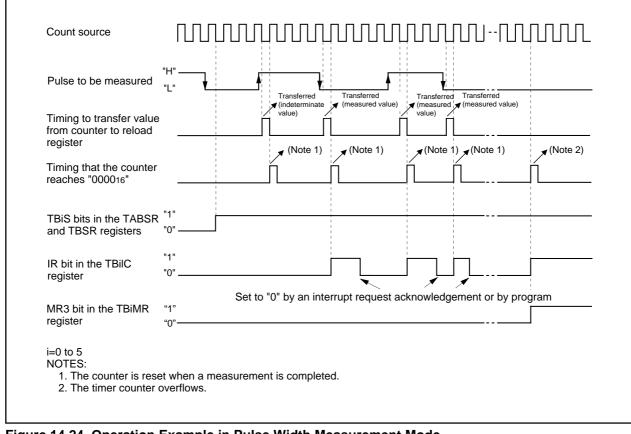


Figure 14.24 Operation Example in Pulse Width Measurement Mode

15. Three-Phase Motor Control Timer Functions

Three-phase motor driving waveform can be output by using the timers A1, A2, A4 and B2. Table 15.1 lists specifications of the three-phase motor control timer functions. Table 15.2 lists pin settings. Figure 15.1 shows a block diagram. Figures 15.2 to 15.7 show registers associated with the three-phase motor control timer functions.

ltem	Specification	
Three-Phase Waveform Output Pin	Six pins (U, \overline{U} , V, \overline{V} , W, \overline{W})	
Forced Cutoff ⁽¹⁾	Apply a low-level ("L") signal to the MMI pin	
Timers to be Used	Timer A4, A1, A2 (used in one-shot timer mode):	
	Timer A4: U- and U-phase waveform control	
	Timer A1: V- and \overline{V} -phase waveform control	
	Timer A2: W- and \overline{W} -phase waveform control	
	Timer B2 (used in timer mode):	
	Carrier wave cycle control	
	Dead time timer (three 8-bit timers share reload register):	
	Dead time control	
Output Waveform	Triangular wave modulation, Sawtooth wave modulation	
	Can output a high-level waveform or a low-level waveform for one cycle;	
	Can set positive-phase level and negative-phase level separately	
Carrier Wave Cycle	Triangular wave modulation: <i>count source</i> x (<i>m+1</i>) x 2	
	Sawtooth wave modulation: <i>count source</i> x (<i>m+1</i>)	
	m. setting value of the TB2 register, 000016 to FFF16	
	Count source: f1, f8, f2n ⁽²⁾ , fc32	
Three-Phase PWM Output Width	Triangular wave modulation: <i>count source</i> x n x 2	
	Sawtooth wave modulation: <i>count source</i> x n	
	<i>n</i> : setting value of the TA4, TA1 and TA2 register (of the TA4, TA41, TA1, TA11,	
	TA2 and TA21 registers when setting the INV11 bit to "1"), 000116 to FFFF16	
	Count source: f1, f8, f2n ⁽²⁾ , fc32	
Dead Time	<i>Count source</i> x <i>p</i> , or no dead time	
	p: setting value of the DTT register, 0116 to FF16	
	Count source: f1, or f1 divided by 2	
Active Level	Selected from a high level ("H") or low level ("L")	
Positive- and Negative-Phase Con-	Positive and negative-phases concurrent active disable function	
current Active Disable Function	Positive and negative-phases concurrent active detect function	
Interrupt Frequency	For the timer B2 interrupt, one carrier wave cycle-to-cycle basis through 15	
	time- carrier wave cycle-to-cycle basis can be selected	

Table 15.1 Three-Phase Motor Control Timer Functions Specification

NOTES:

- 1. Forced cutoff by the signal applied to the NMI pin is available when the INV02 bit is set to "1" (threephase motor control timer functions) and the INV03 bit is set to "1" (three-phase motor control timer output enabled).
- 2. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Table 15.2 Pin Settings

Pin	Setting				
	PS1, PS2 Registers ⁽¹⁾	PSL1, PSL2 Registers	PSC Register		
P72/V	PS1_2 =1	PSL1_2 =0	PSC_2 =1		
P73/V	PS1_3 =1	PSL1_3 =1	PSC_3 =0		
P74/W	PS1_4 =1	PSL1_4 =1	PSC_4 =0		
P75/W	PS1_5 =1	PSL1_5 =0			
P80/U	PS2_0 =1	PSL2_0 =1			
P81/Ū	PS2_1 =1	PSL2_1 =0			

NOTE:

1. Set the PS1_5 to PS1_2 bits and PS2_1 and PS2_0 bits in the PS1 and PS2 registers to "1" after the INV02 bit is set to "1".

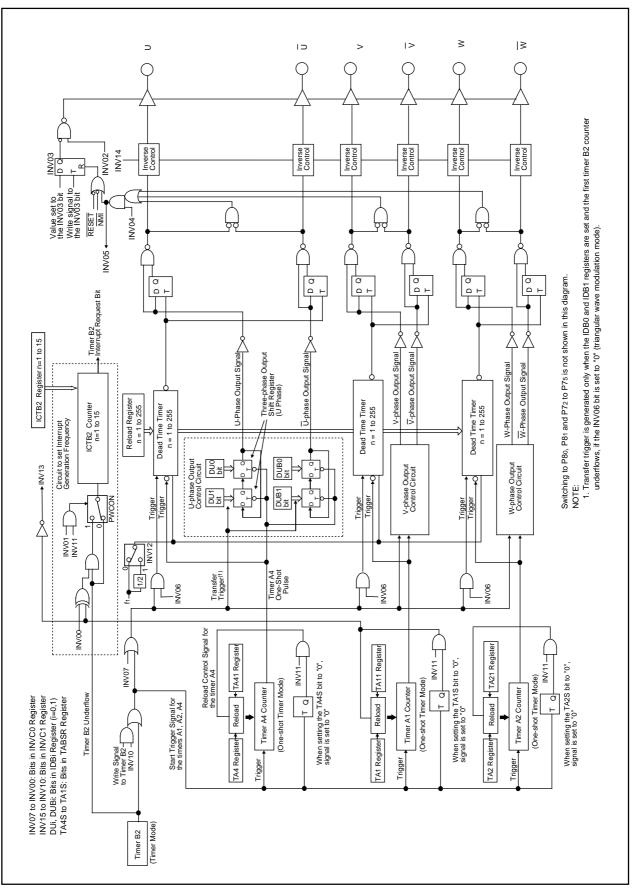


Figure 15.1 Three-Phase Motor Control Timer Functions Block Diagram

b6 b5 b	4 b3 b2 b1	ьо 	Sym INV		After Reset 0016	
				Bit Name	Function	RW
			INV00	Interrupt Enable Output Polarity Select Bit ⁽³⁾	 The ICTB2 counter is incremented by one on the rising edge of the timer A1 reload control signal The ICTB2 counter is incremented by one on the falling edge of the timer A1 reload control signal 	RW
			INV01	Interrupt Enable Output Specification Bit ^(2, 3)	0: ICTB2 counter is incremented by one when timer B2 counter underflows1: Selected by the INV00 bit	RW
			INV02	Mode Select Bit ^(4, 5, 6)	0: No three-phase control timer function 1: Three-phase control timer function	RW
			INV03	Output Control Bit ^(6, 7)	0: Disables three-phase control timer output 1: Enables three-phase control timer output	RW
INV05		INV04	Positive and Negative- Phases Concurrent Active Disable Function Enable Bit	0: Enables concurrent active output 1: Disables concurrent active output	RW	
		INV05	Positive and Negative- Phases Concurrent Active Output Detect Flag ⁽⁸⁾	0: Not detected 1: Detected	RW	
		INV06	Modulation Mode Select ^(9, 10)	0: Triangular wave modulation mode 1: Sawtooth wave modulation mode	RW	
		INV07	Software Trigger Select	Transfer trigger is generated when the INV07 bit is set to "1". Trigger to the dead time timer is also generated when setting the INV06 bit to "1". Its value is "0" when read.	RW	

NOTES:

1. Set the INVC0 register after the PRC1 bit in the PRCR register is set to "1" (write enabled). Rewrite the INV02 to INV00 and INV06 bits when the timers A1,A2, A4 and B2 stop.

- 2. Set the INV01 bit to "1" after setting the ICTB2 register.
- 3. The INV01 and INV00 bit settings are enabled only when the INV11 bit in the INVC1 register is set to "1" (three-phase mode 1). The ICTB2 counter is incremented by one every time the timer B2 counter underflows, regardless of INV01 and INV00bit settings, when the INV11 bit is set to "0" (three-phase mode). When setting the INV01 bit to "1", set the timer A1 count start flag before the first timer B2 counter underflows. When the INV00 bit is set to "1", the first interrupt is generated when the timer B2 counter underflows n-1 times, if n is the value set in the ICTB2 counter. Subsequent interrupts are generated every n times the timer B2 counter underflows.
- 4. Set the INV02 bit to "1" to operate the dead time timer, U-, V-and W-phase output control circuits and ICTB2 counter.
- 5. Set pins after the INV02 bit is set to "1". See Table 16.2 for pin settings.
- 6. When the INV02 bit is set to "1" and the INV03 bit to "0", the U, \overline{U} , V, \overline{V} , W and \overline{W} pins, including pins shared with other output functions, are all placed in high-impedance states.
- 7. The INV03 bit is set to "0" when the followings occurs :

- Reset

- A concurrent active state occurs while the INV04 bit is set to "1"
- The INV03 bit is set to "0" by program An "H" signal applied to the NMI pin changes to an "L" signal
- 8. The INV05 bit can not be set to "1" by program. Set the INV04 bit to "0", as well, when setting the INV05 bit to "0".
- 9. The following table describes how the INV06 bit setting works.

Item	INV06 = 0	INV06 = 1
Mode	Triangular wave modulation mode	Sawtooth wave modulation mode
Timing to Transfer from the IDB0 and IDB1 Registers to Three- Phase Output Shift Register	Transferred once by generating a transfer trigger after setting the IDB0 and IDB1 registers	Transferred every time a transfer trigger is generated
Timing to Trigger the Dead Time Timer when the INV16 Bit=0	On the falling edge of a one-shot pulse of the timer A1, A2 or A4	By a transfer trigger, or the falling edge of a one-shot pulse of the timer A1, A2 or A4
INV13 Bit	Enabled when the INV11 bit=1 and the INV06 bit=0	Disabled

Transfer trigger : Timer B2 counter underflows and write to the INV07 bit, or write to the TB2 register when INV10 = 1 10. When the INV06 bit is set to "1", set the INV11 bit to "0" (three-phase mode 0) and the PWCON bit in the TB2SC register to "0" (timer B2 counter underflows).

Figure 15.2 INVC0 Register

0 ; ; ;	5 b4 b3	3 b2	b1 b0	Symt INVC		After Reset 0016		
				Bit Symbol	Bit Name	Function F		
				INV10	Timer A1, A2 and A4 Start Trigger Select Bit	0: Timer B2 counter underflows 1: Timer B2 counter underflows and write to the TB2 register		
				INV11	Timer A1-1, A2-1 and A4-1 Control Bit ^(2, 3)	0: Three-phase mode 0 1: Three-phase mode 1		
				INV12	Dead Time Timer Count Source Select Bit	0: f1 1: f1 divided-by-2		
				INV13	Carrier Wave Detect Flag ⁽⁴⁾	0: Timer A1 reload control signal is "0" 1: Timer A1 reload control signal is "1"		
	,				Output Polarity Control Bit	0: Active "L" of an output waveform 1: Active "H" of an output waveform		
					Dead Time Disable Bit	0: Enables dead time 1: Disables dead time		
				INV16	Dead Time Timer Trigger Select Bit	0: Falling edge of a one-shot pulse of the timer A1, A2 and A4 ⁽⁵⁾ 1: Rising edge of the three-phase output shift register (U-, V-, W-phase)		
				(b7)	Reserved Bit	Set to "0" F		
Т	ewrite t he time	ers A1	, A2, A4	, and B2	the PRC1 bit in the PRCR must be stopped during re e INV11 bit setting works.	register is set to "1" (write enabled). write.		
	Item	1			INV11 = 0	JNV11 = 1		
Mode	•			Three-p	hase mode 0	Three-phase mode 1		
TA11, T	A21 and	TA41 F	Registers	Not use	d	Used		
	and IN INVC0			increme	d. The ICTB2 counter is ented whenever the timer E underflows	32 Enabled		
-	INV13 Bit				d	Enabled when INV11=1 and INV06=0		
in the	Bit					awtooth wave modulation mode), set the		

Figure 15.3 INVC1 Register

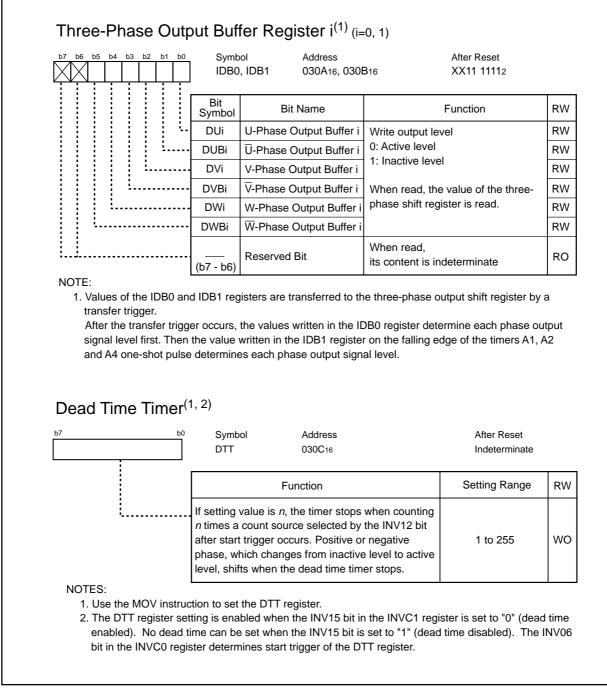


Figure 15.4 IDB0 and IDB1 registers, DTT Register

Timer B2 Interrupt Generation Frequency Set Counter^(1, 2, 3)

Symbol ICTB2	Address 030D16	After Reset Indeterminate	
	Function	Setting Range	RW
 increments where the setting value is every <i>n</i> th time time When the INV01 count timing of th <i>n</i> , the timer B2 in	it is set to "0" (the ICTB2 counter ver the timer B2 counter underflows) ar s n, the timer B2 interrupt is generated ar B2 counter underflow occurs. bit is set to "1" (the INV00 bit selects e ICTB2 counter) and setting value is terrupt is generated every nth time underflow meeting the condition V00 bit occurs.	d 1 to 15	wo
Nothing is ass	igned. When write, set to "0".		-

NOTES:

1. Use the MOV instruction to set the ICTB2 register.

2. If the INV01 bit in the INVC0 register is set to "1", set the ICTB2 register in the TABSR register when the TB2S bit is set to "0" (timer B2 counter stopped).

If the INV01 bit is set to "0" and the TB2S bit to "1" (timer B2 counter start), do not set the ICTB2 register when the timer B2 counter underflows.

3. If the INV00 bit in the INVC0 register is set to "1", the first interrupt is generated when the timer B2 counter underflows *n*-1 times, *n* being the value set in the ICTB2 counter. Subsequent interrupts are generated every *n* times the timer B2 counter underflows.

Timer Ai, Ai-1 Register (i=1, 2, 4)^(1, 2, 3, 4, 5, 6)

b15	b8 b7	ь0	Symbol TA1, TA2, TA4 TA11, TA21, TA41	Address 034916 - 034816, 034B16 - 034A16, 03 030316 - 030216, 030516 - 030416, 03		After Re Indetern Indetern	ninate
				Function	Setting Ra	ange	RW
			source is counted a Positive phase cha	the timer stops when the <i>n</i> th count fter a start trigger is generated. nges to negative phase, and vice ners A1, A2 and A4 stop.	000016 to F	FFF16	wo

NOTES:

- 1. Use a 16-bit data for read and write.
- 2. If the TAi or TAi1 register is set to "000016", no counter starts and no timer Ai interrupt is generated.
- 3. Use the MOV instruction to set the TAi and TAi1 registers.
- 4. When the INV15 bit in the INVC1 register is set to ^{*0}" (dead timer enabled), phase switches from an inactive level to an active level when the dead time timer stops.
- 5. When the INV11 bit in the INVC1 register is set to "0" (three-phase mode 0), the value of the TAi register is transferred to the reload register by a timer Ai start trigger.

When the INV11 bit is set to "1" (three-phase mode 1), the value of the TAi1 register is first transferred to the reload register by a timer Ai start trigger. Then, the value of the TAi register is transferred by the next trigger. The values of the TAi1 and TAi registers are transferred alternately to the reload register with every timer Ai start trigger.

6. Do not write to these registers when the timer B2 counter underflows.

Timer B2 Special Mode Register

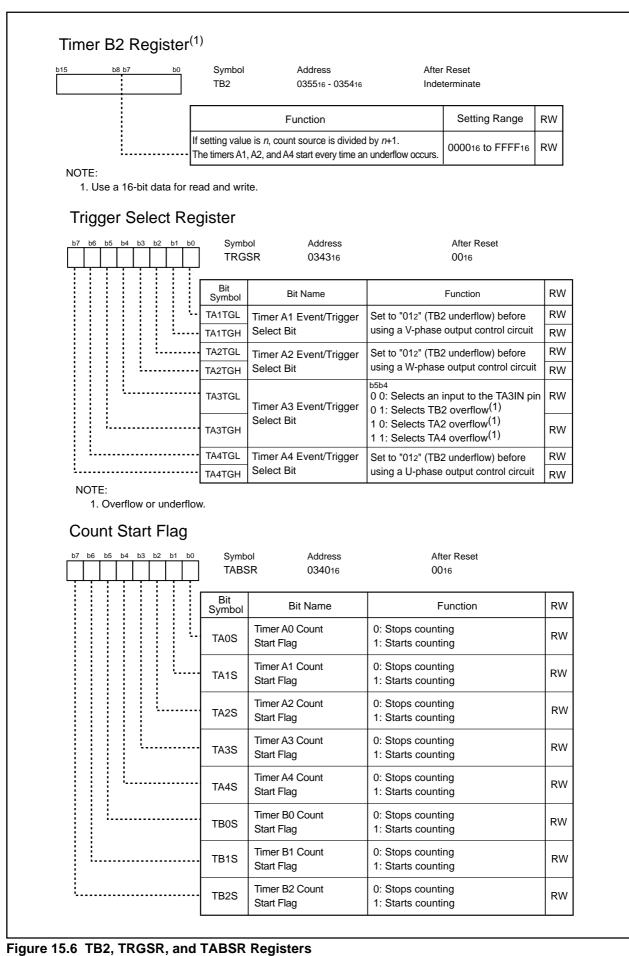



Figure 15.5 ICTB2 Register, TA1, TA2, TA4, TA11, TA21, and TA41 Registers, TB2SC Register

07 b6 b5 b4		Symb	ol Add MR, TA2MR, TA4MR 035	dress After Reset	
		IAIN	IR, IAZIVIR, IA4IVIR 050	0716, 033016, 033A16 0016	
		Bit Symbol	Bit Name	Function	R
		TMOD0 TMOD1	Operating Mode Select Bit	Set to "102" (one-shot timer mode) when using the three-phase motor control timer function	R
		MR0	Reserved Bit	Set to "0"	R
		MR1	External Trigger Select Bit	Set to "0" when using the three-phase motor control timer function	R
		MR2	Trigger Select Bit	Set to "1" (selected by the TRGSR register) when using the three- phase motor control timer function	R
		MR3	Set to "0" with the three-	phase motor control timer function	R
		тско	Count Source Select Bit	b7 b6 0 0: f1 0 1: f8	R
			Count Source Select Bit		
	CNT3 to CNT0 b 2 Mode Re		CSPR register select no c	1 0: f _{2n} ⁽¹⁾ 1 1: f _{C32} division (n=0) or divide-by-2n (n=1 to 1	
1. The C	2 Mode Re	its in the T	ol Address	1 1: fc32	
1. The C	2 Mode Re	its in the T egister Symb	ol Address	1 1: fc32 division (n=0) or divide-by-2n (n=1 to 1 After Reset	5).
1. The C	2 Mode Re	its in the T egister Symb TB2N Bit Symbol TMOD0	ol Address //R 035D16	1 1: fc32 division (n=0) or divide-by-2n (n=1 to 1 After Reset 00XX 00002 Function Set to "002" (timer mode) when using the three-phase motor control timer	R\
1. The C imer B2	2 Mode Re	its in the T egister Symbol TMOD0 TMOD1 MR0	ol Address MR 035D16 Bit Name Operating Mode Select Bit Disabled when using the t When write, set to "0".	1 1: fc32 division (n=0) or divide-by-2n (n=1 to 1 After Reset 00XX 00002 Function Set to "002" (timer mode) when using the three-phase motor control timer function hree-phase motor control timer function.	5).
1. The C	2 Mode Re	its in the T egister Symb TB2N Bit Symbol TMOD0 TMOD1	ol Address MR 035D16 Bit Name Operating Mode Select Bit Disabled when using the t When write, set to "0". When read, its content is i	1 1: fc32 division (n=0) or divide-by-2n (n=1 to 1 After Reset 00XX 00002 Function Set to "002" (timer mode) when using the three-phase motor control timer function hree-phase motor control timer function.	5).
1. The C imer B2	2 Mode Re	egister Symb TB2N Bit Symbol TMOD0 TMOD1 MR0 MR1	ol Address MR 035D16 Bit Name Operating Mode Select Bit Disabled when using the t When write, set to "0". When read, its content is i Set to "0" when using th Nothing is assigned. Wi	1 1: fc32 division (n=0) or divide-by-2n (n=1 to 1 After Reset 00XX 00002 Function Set to "002" (timer mode) when using the three-phase motor control timer function. three-phase motor control timer function. indeterminate. ree-phase motor control timer function. hen write, set to "0".	5).
1. The C	2 Mode Re	egister Symb TB2N TMOD0 TMOD1 MR0 MR1 MR2	ol Address MR 035D16 Bit Name Operating Mode Select Bit Disabled when using the t When write, set to "0". When read, its content is i Set to "0" when using th	1 1: fc32 division (n=0) or divide-by-2n (n=1 to 1 After Reset 00XX 00002 Function Set to "002" (timer mode) when using the three-phase motor control timer function. three-phase motor control timer function. indeterminate. ree-phase motor control timer function. hen write, set to "0".	5).

Figure 15.7 TA1MR, TA2MR, and TA4MR Registers, TB2MR Register

The three-phase motor control timer function is available by setting the INV02 bit in the INVC0 register to "1". The timer B2 is used for carrier wave control and the timers A1, A2, A4 for three-phase PWM output $(U, \overline{U}, V, \overline{V}, W, \overline{W})$ control. An exclusive dead time timer controls dead time. Figure 15.8 shows an example of the triangular modulation waveform. Figure 15.9 shows an example of the sawtooth modulation waveform.

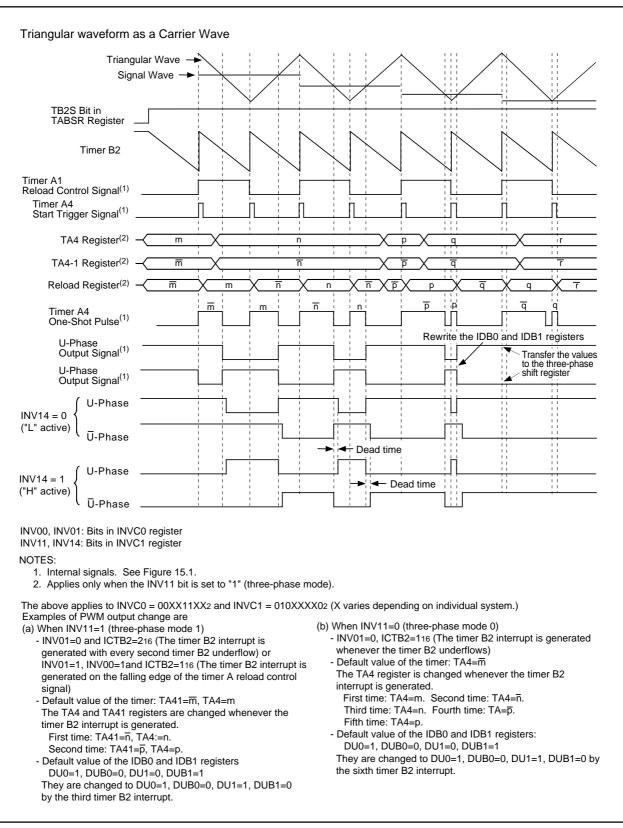


Figure 15.8 Triangular Wave Modulation Operation

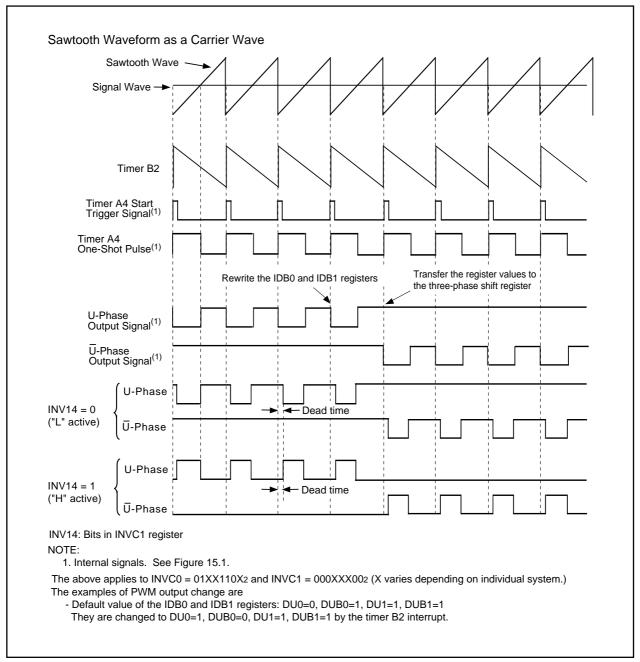


Figure 15.9 Sawtooth Wave Modulation Operation

16. Serial I/O

16. Serial I/O

Serial I/O consists of five channels (UART0 to UART4).

Each UARTi (i=0 to 4) has an exclusive timer to generate the transfer clock and operates independently.

Figure 16.1 shows a UARTi block diagram.

UARTi supports the following modes :

- Clock synchronous serial I/O mode
- Clock asynchronous serial I/O mode (UART mode)
- Special mode 1 (I²C mode)
- Special mode 2
- Special mode 3 (Clock-divided synchronous function, GCI mode)
- Special mode 4 (Bus conflict detect function, IE mode)
- Special mode 5 (SIM mode)

Figures 16.2 to 16.9 show registers associated with UARTi.

Refer to the tables listing each mode for register and pin settings.

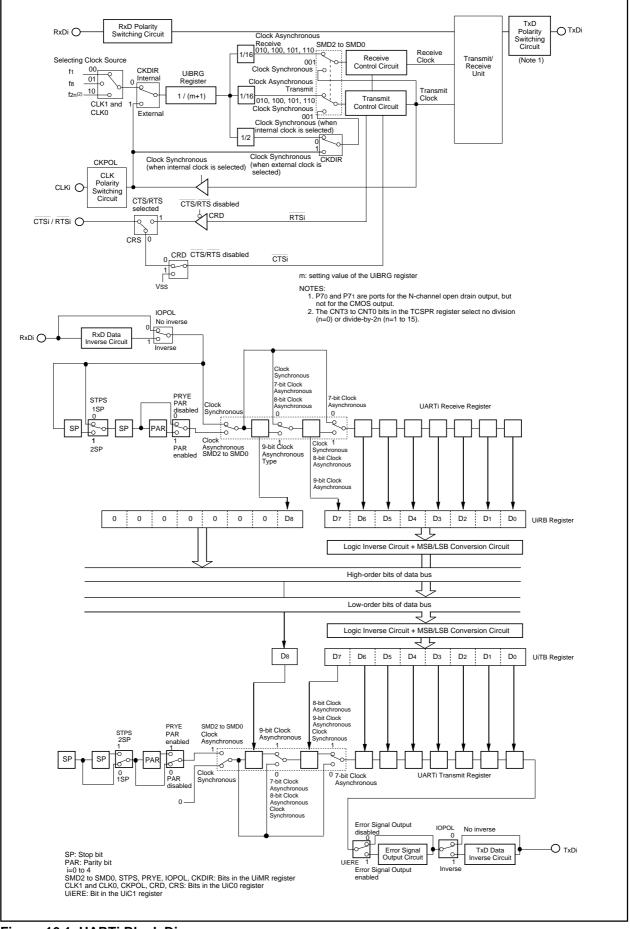


Figure 16.1 UARTi Block Diagram

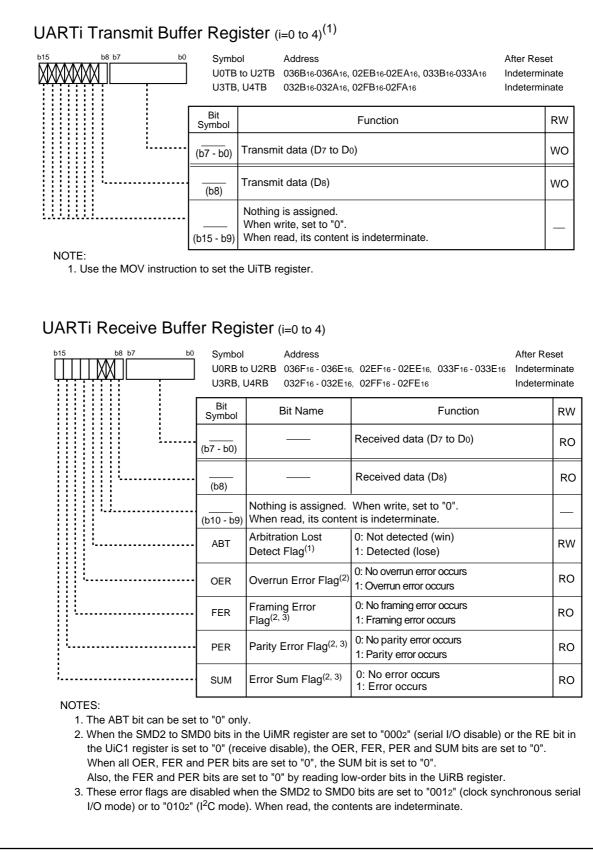


Figure 16.2 U0TB to U4TB Registers and U0RB to U4RB Registers

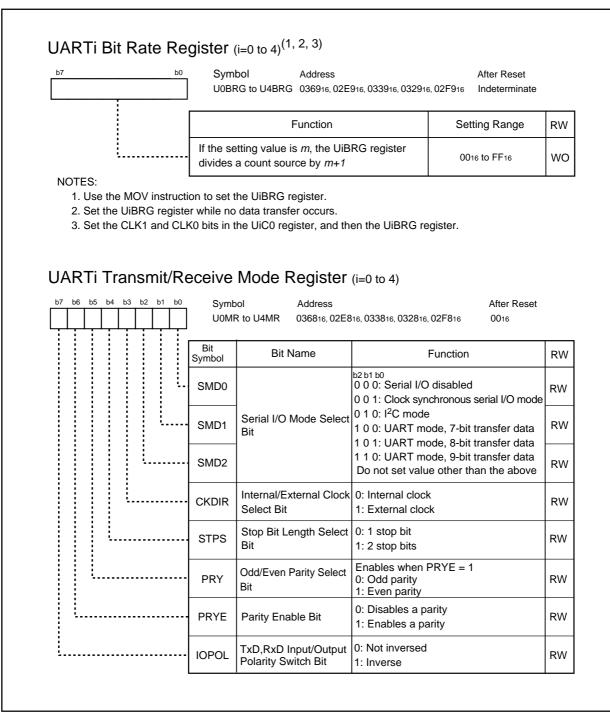


Figure 16.3 U0BRG to U4BRG Registers and U0MR to U4MR Registers

	Bit Symbol	Bit Name	Function	RW
	CLK0	UiBRG Count	b1 b0 0 0: Selects f1	RV
	 CLK1	Source Select Bit ⁽⁴⁾	0 1: Selects f ₈ 1 0: Selects f _{2n} ⁽²⁾ 1 1: Do not set to this value	RV
	 CRS	CST/RTS Function Select Bit	Enabled wh <u>en</u> CRD=0 0: Selects <u>CTS</u> function 1: Selects RTS function	RW
	 TXEPT	Transmit Register Empty Flag	0: Data in the transmit register (during transmission)1: No data in the transmit register (transmission is completed)	RC
	 CRD	CTS/RTS Disable Bit	0: Enables CTS/RTS function 1: Disables CTS/RTS function	RW
	 NCH	Data Output Select Bit ⁽¹⁾	0: TxDi/SDAi and SCLi are ports for the CMOS output 1: TxDi/SDAi and SCLi are ports for the N-channel open drain output	RW
,	 CKPOL	CLK Polarity Select Bit	 0: Data is transmitted on the falling edge of the transfer clock and data is received on the rising edge 1: Data is transmitted on the rising edge of the transfer clock and data is received on the falling edge 	RW
l	 UFORM	Transfer Format Select Bit ⁽³⁾	0: LSB first 1: MSB first	RW

Figure 16.4 U0C0 to U4C0 Registers

	Symt U0C ²		ress After Reset D16, 02ED16, 033D16, 032D16, 02FD16 0000 00102	
	Bit Symbol	Bit Name	Function	RW
	TE	Transmit Enable Bit	0: Transmit disabled 1: Transmit enabled	RW
·	ΤI	Transmit Buffer Empty Flag	0: Data in the UiTB register 1: No data in the UiTB register	RO
	RE	Receive Enable Bit	0: Receive disabled 1: Receive enabled	RW
	RI	Receive Complete Flag	0: No data in the UiRB register 1: Data in the UiRB register	RO
	UiIRS	UARTi Transmit Interrupt Cause Select Bit	0: No data in the UiTB register (TI = 1) 1: Transmission is completed (TXEPT = 1)	RW
	UiRRM	UARTi Continuous Receive Mode Enable Bit	0: Disables continuous receive mode to be entered 1: Enables continuous receive mode to be entered	RW
	UiLCH	Data Logic Select Bit ⁽²⁾	0: Not inversed 1: Inverse	RW
	SCLKSTPB /Uiere	Clock-Divided Synchronous Stop Bit / Error Signal Output Enable Bit ⁽¹⁾	Clock-divided synchronous stop bit (special mode 3) 0: Stops synchronizing 1: Starts synchronizing Error signal output enable bit (special mode 5) 0: Not output 1: Output	RW

NOTES:

1. Set the SCLKSTPB/UiERE bit after setting the SMD2 to SMD0 bits in the UiMR register.

2. The UiLCH bit setting is enabled when setting the SMD2 to SMD0 bits to "0012" (clock syncronous serial I/O mode), "1002" (UART mode, 7-bit transfer data) or "1012" (UART mode, 8-bit transfer data). Set the UiLCH bit to "0" when setting the SMD2 to SMD0 bits to"0102" (I²C mode) or "1102" (UART mode, 9-bit transfer data).

UARTi Special Mode Register (i=0 to 4)

b7 b6	b5	b4	b3	b2	b1	і b0	Symb U0SM			After Reset 0016
							Bit Symbol	Bit Name	Function	RW
							IICM	I ² C Mode Select Bit	0: Except I ² C mode 1: I ² C mode	RW
					į		ABC	Arbitration Lost Detect Flag Control Bit	0: Update per bit 1: Update per byte	RV
							BBS	Bus Busy Flag	0: Stop condition detected 1: Start condition detected (B	usy) RW
		ļ					- LSYN	SCLL Sync Output Enable Bit	0: Disabled 1: Enabled	RV
							ABSCS	Bus Conflict Detect Sampling Clock Select Bit	0: Rising edge of transfer cloo 1: Timer Aj underflow(j=0 to 4)	
							ACSE	Auto Clear Function Select Bit for Transmit Enable Bit	0: No auto clear function 1: Auto clear at bus conflict	RV
							SSS	Transmit Start Condition Select Bit	0: Not related to RxDi 1: Synchronized with RxDi	RV
							- SCLKDIV	Clock Divide Synchronous Bit	(Note 3)	RV

NOTES:

1. The BBS bit is set to "0" by program. It is unchanged if set to "1".

2. UART0: timer A3 underflow signal, UART1: timer A4 underflow signal,

UART2: timer A0 underflow signal, UART3: timer A3 underflow signal,

UART4: timer A4 underflow signal.

3. Refer to notes for the SU1HIM bit in the UiSMR2 register.

Figure 16.5 U0C1 to U4C1 Registers and U0SMR to U4SMR Registers

b7 b6 b5 b4 b3 b2	b1 b0	Sym U0S		ess After Reset 16, 02E616, 033616, 032616, 02F616 0016
		Bit Symbol	Bit Name	Function F
		IICM2	I ² C Mode Select Bit 2	2 (Note 1)
		csc	Clock Synchronous I	Bit 0: Disabled 1: Enabled
		SWC	SCL Wait Output Bit	0: Disabled 1: Enabled
		ALS	SDA Output Stop Bit	0: Output 1: No output
		STC	UARTi Initialize Bit	0: Disabled 1: Enabled
		SWC2	SCL Wait Output Bit	2 0: Transfer clock 1: "L" output
l		SDHI	SDA Output Inhibit B	it 0: Output 1: No output (high-impedance)
		SU1HIN	External Clock Synchronous Enable	Bit (Note 2)
NOTES: 1. Refer to Tab l 2. The external SCLKDIV bit	clock sy	nchronou		ted by combining the SU1HIM bit and the
	DIV bit in R Registe		SU1HIM bit in the UiSMR2 Register	External Clock Synchronous Function Selection
0			0	No synchronization

1

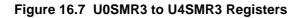
0 or 1

Same division as the external clock

External clock divided by 2

Figure 16.6 U0SMR2 to U4SMR2 Registers

0


1

b7 b6 b5	b4 b3 b2 b1 b0	Symb U0SN		ress After Rese 516, 02E516, 033516, 032516, 02F516 0016	et
		Bit Symbol	Bit Name	Function	RV
		SSE	SS Pin Function Enable Bit ⁽¹⁾	0: Disables \overline{SS} pin function 1: Enables SS pin function	RV
		СКРН	Clock Phase Set Bit	0: No clock delay 1: Clock delay	RV
		DINC	Serial Input Port Set Bit	0: Selects the TxDi and RxDi pins (master mode) 1: Selects the STxDi and SRxDi pins (slave mode)	RV
		NODC	Clock Output Select Bit	0: CMOS output 1: N-channel open drain output	RV
		ERR	Fault Error Flag ⁽²⁾	0: No error 1: Error	RV
		DL0		^{b7 b6 b5} 000: No delay 001: 1-to-2 cycles of BRG count source	RV
ļ		DL1	SDAi Digital Delay Time Set Bit ^(3, 4)	010: 2-to-3 cycles of BRG count source 011: 3-to-4 cycles of BRG count source 100: 4-to-5 cycles of BRG count source 101: 5-to-6 cycles of BRG count source	RV
		DL2		110: 6-to-7 cycles of BRG count source 111: 7-to-8 cycles of BRG count source	R\

2. The ERR bit is set to "0" by program. It is unchanged if set to "1".

 Digital delay is generated from a SDAi output by the DL2 to DL0 bits in I²C mode. Set these bits to "0002" (no delay) except in the I²C mode.

4. When the external clock is selected, approximately 100ns delay is added.

b7 b6 b5 b4 b3	b2 b1 b0	Symbo U0SM		After F 02E416, 033416, 032416, 02F416 0016	Reset
		Bit Symbol	Bit Name	Function	RV
		STAREQ	Start Condition Generate Bit ⁽¹⁾	0: Clear 1: Start	RV
		RSTAREQ	Restart Condition Generate Bit ⁽¹⁾	0: Clear 1: Start	RW
		STPREQ	Stop Condition Generate Bit ⁽¹⁾	0: Clear 1: Start	RV
		STSPSEL	SCL, SDA Output Select Bit	0: Selects the serial I/O circuit 1: Selects the start/stop condition generating circuit	RV
		ACKD	ACK Data Bit	0: ACK 1: NACK	RV
		ACKC	ACK Data Output Enable Bit	0: Serial I/O data output 1: ACK data output	RV
		SCLHI	SCL Output Stop Enable Bit	0: Disabled 1: Enabled	RV
		SWC9	SCL Wait Output Bit 3	0: SCL "L" hold disabled 1: SCL "L" hold enabled	RV

Figure 16.8 U0SMR4 to U4SMR4 Registers

b7 b6 b5	b4 b	3 b2	b1 b0	Symb IFSR	ol Address 031F16	After Reset 0016	
				Bit Symbol	Bit Name	Function	RW
				IFSR0	INT0 Interrupt Polarity Select Bit ⁽¹⁾	0: One edge 1: Both edges	RW
				IFSR1	INT1 Interrupt Polarity Select Bit ⁽¹⁾	0: One edge 1: Both edges	RW
				IFSR2	INT2 Interrupt Polarity Select Bit ⁽¹⁾	0: One edge 1: Both edges	RW
				IFSR3	INT3 Interrupt Polarity Select Bit ⁽¹⁾	0: One edge 1: Both edges	RW
				IFSR4	INT4 Interrupt Polarity select bit ⁽¹⁾	0: One edge 1: Both edges	RW
				IFSR5	INT5 Interrupt Polarity Select Bit ⁽¹⁾	0: One edge 1: Both edges	R٧
				IFSR6	UART0, UART3 Interrupt Source Select Bit	 0: UART3 bus conflict, start condition detect, stop condition detect 1: UART0 bus conflict, start condition detect, stop condition detect 	RW
				IFSR7	UART1, UART4 Interrupt Source Select Bit	 0: UART4 bus conflict, start condition detect, stop condition detect 1: UART1 bus conflict, start condition detect, stop condition detect 	₽\A

1. Set this bit to "0" to select a level-sensitive triggering.

When setting this bit to "1", set the POL bit in the INTIIC register (i = 0 to 5) to "0" (falling edge).

16.1 Clock Synchronous Serial I/O Mode

In clock synchronous serial I/O mode, data is transmitted and received with the transfer clock. Table 16.1 lists specifications of clock synchronous serial I/O mode. Table 16.2 lists register settings. Tables 16.3 to 16.5 list pin settings. When UARTi (i=0 to 4) operating mode is selected, the TxDi pin outputs a high-level ("H") signal before transfer starts (the TxDi pin is in a high-impedance state when the N-channel open drain output is selected). Figure 16.10 shows transmit and receive timings in clock synchronous serial I/O mode.

Item	Specification
Transfer Data Format	Transfer data : 8 bits long
Transfer Clock	• The CKDIR bit in the UiMR register (i=0 to 4) is set to "0" (internal clock selected):
	$\frac{f_i}{2(m+1)}$ f=f1, f8, f2n ⁽¹⁾ m :setting value of the UiBRG register, 0016 to FF16
	• The CKDIR bit is set to "1" (external clock selected) : an input from the CLKi pin
Transmit/Receive Control	Selected from the $\overline{\text{CTS}}$ function, $\overline{\text{RTS}}$ function or $\overline{\text{CTS}}/\overline{\text{RTS}}$ function disabled
Transmit Start Condition	To start transmitting, the following requirements must be met ⁽²⁾ :
	- Set the TE bit in the UiC1 register to "1" (transmit enabled)
	- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)
	- Apply a low-level ("L") signal to the $\overline{\text{CTSi}}$ pin when the $\overline{\text{CTS}}$ function is selected
Receive Start Condition	To start receiving, the following requirements must be met ⁽²⁾ :
	- Set the RE bit in the UiC1 register to "1" (receive enabled)
	- Set the TE bit to "1" (transmit enabled)
	- Set the TI bit to "0" (data in the UiTB register)
Interrupt Request Generation Timing	While transmitting, the following conditions can be selected:
	- The UiIRS bit in the UiC1 register is set to "0" (no data in the transmit buffer):
	when data is transferred from the UiTB register to the UARTi transmit register (transfer started)
	- The UiIRS bit is set to "1" (transmission completed):
	when a data transfer from the UARTi transmit register is completed
	While receiving
	When data is transferred from the UARTi receive register to the UiRB register (reception completed)
Error Detection	Overrun error ⁽³⁾
	This error occurs when the seventh bit of the next received data is read before reading
	the UiRB register
Selectable Function	CLK polarity
	Selectable from the rising edge or falling edge of the transfer clock at transferred data
	output or input timing
	LSB first or MSB first
	Selectable from data transmission or reception in either bit 0 or in bit 7
	Continuous receive mode
	Data can be received simultaneously by reading the UiRB register
	Serial data logic inverse
	This function inverses transmitted/received data logically
NOTES	

NOTES:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

- 2. To start transmission/reception when selecting the external clock, these conditions must be met after the CKPOL bit in the UiC0 register is set to "0" (data is transmitted on the falling edge of the transfer clock and data is received on the rising edge) and the CLKi pin is held "H", or when the CKPOL bit is set to "1" (data is transmitted on the rising edge of the transfer clock and data is received on the falling edge) and the CLKi pin is held "H".
- 3. If an overrun error occurs, the UiRB register is indeterminate. The IR bit setting in the SiRIC register does not change to "1" (interrupt requested).

Register	Bit	Function		
UiTB	7 to 0	Set transmit data		
UiRB	7 to 0	Received data can be read		
	OER	Overrun error flag		
UiBRG	7 to 0	Set bit rate		
UiMR	SMD2 to SMD0	Set to "0012"		
	CKDIR	Select the internal clock or external clock		
	IOPOL	Set to "0"		
UiC0	CLK1, CLK0	Select count source for the UiBRG register		
	CRS	Select CTS or RTS when using either		
	TXEPT	Transmit register empty flag		
	CRD	Enables or disables the CTS or RTS function		
	NCH	Select output format of the TxDi pin		
	CKPOL	Select transmit clock polarity		
	UFORM	Select either LSB first or MSB first		
UiC1	TE	Set to "1" to enable data transmission and reception		
	TI	Transmit buffer empty flag		
	RE	Set to "1" to enable data reception		
	RI	Reception complete flag		
	UiIRS	Select what causes the UARTi transmit interrupt to be generated		
	UiRRM	Set to "1" when using continuous receive mode		
	UiLCH	Set to "1" when using data logic inverse		
	SCLKSTPB	Set to "0"		
UiSMR	7 to 0	Set to "0016"		
UiSMR2	7 to 0	Set to "0016"		
UiSMR3	2 to 0	Set to "0002"		
	NODC	Select clock output format		
	7 to 4	Set to "00002"		
UiSMR4	7 to 0	Set to "0016"		

Table 16.2 Register Settings in Clock Synchronous Serial I/O Mode

i=0 to 4

Port	Function		Setting			
		PS0 Register	PSL0 Register	PD6 Register		
P60	CTS0 input	PS0_0=0	-	PD6_0=0		
	RTS0 output	PS0_0=1	PSL0_0=0	-		
P61	CLK0 input	PS0_1=0	-	PD6_1=0		
	CLK0 output	PS0_1=1	-	-		
P62	RxD0 input	PS0_2=0	-	PD6_2=0		
P63	TxD0 output	PS0_3=1	-	-		
P64	CTS1 input	PS0_4=0	-	PD6_4=0		
	RTS1 output	PS0_4=1	PSL0_4=0	-		
P65	CLK1 input	PS0_5=0	-	PD6_5=0		
	CLK1 output	PS0_5=1	-	-		
P66	RxD1 input	PS0_6=0	-	PD6_6=0		
P67	TxD1 output	PS0_7=1	-	-		

Table 16.3 Pin Settings in Clock Synchronous Serial I/O Mode (1)

Table 16.4 Pin Settings (2)

Port	Function		Setting		
		PS1 Register	PSL1 Register	PSC Register	PD7 Register
P70 ⁽¹⁾	TxD2 output	PS1_0=1	PSL1_0=0	PSC_0=0	-
P71 ⁽¹⁾	RxD2 input	PS1_1=0	-	-	PD7_1=0
P72	CLK2 input	PS1_2=0	-	-	PD7_2=0
	CLK2 output	PS1_2=1	PSL1_2=0	PSC_2=0	-
P73	CTS2 input	PS1_3=0	-	-	PD7_3=0
	RTS2 output	PS1_3=1	PSL1_3=0	PSC_3=0	-

NOTE:

1. P70 and P71 are ports for the N-channel open drain output.

Table 16.5 Pin Settings (3)

Port	Function		Setting			
		PS3 Register ⁽¹⁾	PSL3 Register	PSC3 Register	PD9 Register ⁽¹⁾	
P90	CLK3 input	PS3_0=0	-	-	PD9_0=0	
	CLK3 output	PS3_0=1	-	-	-	
P91	RxD3 input	PS3_1=0	-	-	PD9_1=0	
P92	TxD3 output	PS3_2=1	PSL3_2=0	-	-	
P93	CTS3 input	PS3_3=0	PSL3_3=0	-	PD9_3=0	
	RTS3 output	PS3_3=1	-	-	-	
P94	CTS4 input	PS3_4=0	PSL3_4=0	-	PD9_4=0	
	RTS4 output	PS3_4=1	-	-	-	
P95	CLK4 input	PS3_5=0	PSL3_5=0	-	PD9_5=0	
	CLK4 output	PS3_5=1	-	-	-	
P96	TxD4 output	PS3_6=1	-	PSC3_6=0	-	
P97	RxD4 input	PS3_7=0	-	-	PD9_7=0	

NOTE:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enabled). Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

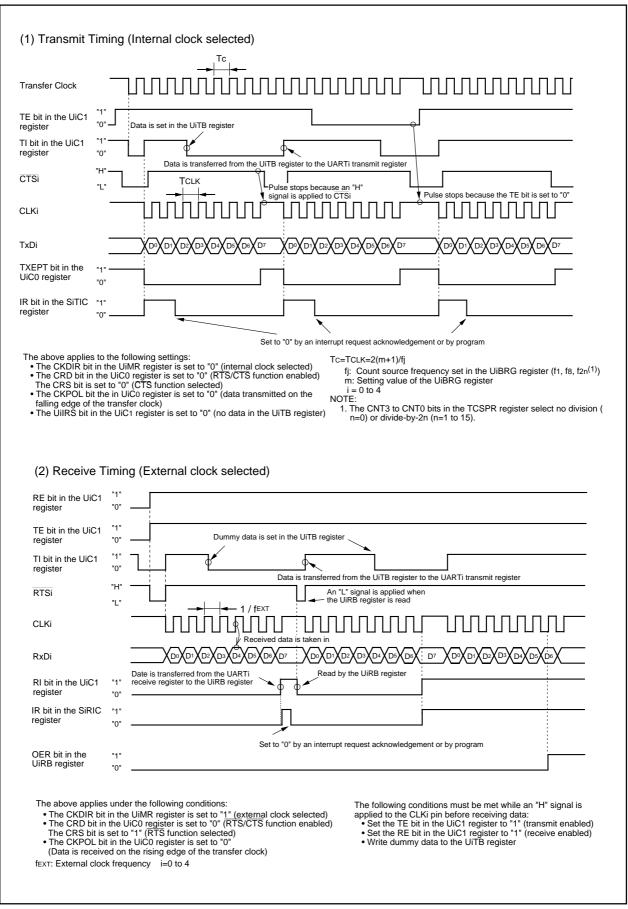


Figure 16.10 Transmit and Receive Operation

16.1.1 Selecting CLK Polarity Selecting

As shown in Figure 16.11, the CKPOL bit in the UiC0 register (i=0 to 4) determines the polarity of the transfer clock.

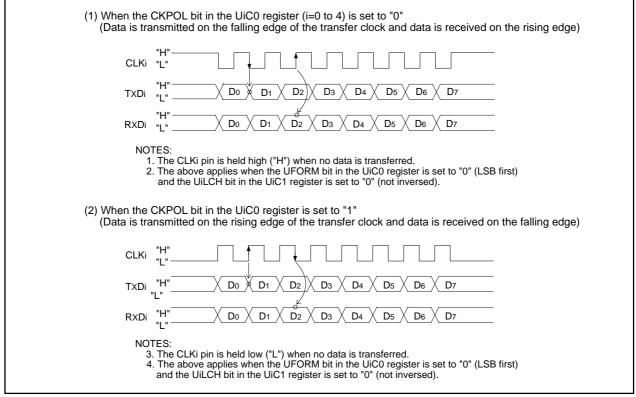


Figure 16.11 Transfer Clock Polarity

16.1.2 Selecting LSB First or MSB First

As shown in Figure 16.12, the UFORM bit in the UiC0 register (i=0 to 4) determines a data transfer format.

(1) When the UFORM bit in the UiC0 register (i=0 to 4) is set to "0" (LSB first)
"Н"СLКі "L"
"H" D0 / D1 / D2 / D3 / D4 / D5 / D6 / D7
$RXDi \overset{"H"}{\overset{"L"}{=}} \underbrace{D0 D1 D2 D3 D4 D5 D6 D7}_{D6 D7}$
NOTE: 1. The above applies when the CKPOL bit in the UiC0 register is set to "0" (data is transmitted on the falling edge of the transfer clock and received on the rising edge) and the UiLCH bit in the UiC1 register is set to "0" (not inversed).
(2) When the UFORM bit in the UiC0 register is set to "1" (MSB first)
"Н"СLКі "L"
TXDi "H" D7 \ D6 \ D5 \ D4 \ D3 \ D2 \ D1 \ D0
RXDi "H" D7 \ D6 \ D5 \ D4 \ D3 \ D2 \ D1 \ D0
NOTE: 2. The above applies when the CKPOL bit in the UiC0 register is set to "0" (data is transmitted on the falling edge of the transfer clock and received on the rising edge) and the UiLCH bit in the UiC1 register is set to "0" (not inversed).

Figure 16.12 Transfer Format

16.1.3 Continuous Receive Mode

When the UiRRM bit in the UiC1 register (i=0 to 4) is set to "1" (continuous receive mode), the TI bit is set to "0" (data in the UiTB register) by reading the UiRB register. When the UiRRM bit is set to "1", do not set dummy data in the UiTB register by program.

16.1.4 Serial Data Logic Inverse

When the UiLCH bit (i=0 to 4) in the UiC1 register is set to "1" (inverse), data logic written in the UiTB register is inversed when transmitted. The inversed receive data logic can be read by reading the UiRB register. Figure 16.13 shows a switching example of the serial data logic.

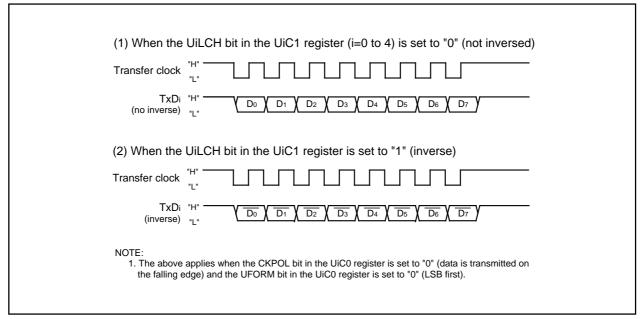


Figure 16.13 Serial Data Logic Inverse

16.2 Clock Asynchronous Serial I/O (UART) Mode

In UART mode, data is transmitted and received after setting a desired bit rate and data transfer format. Table 16.6 lists specifications of UART mode.

Item	Specification
Transfer Data Format	 Character bit (transfer data) : selected from 7 bits, 8 bits, or 9 bits long
	Start bit: 1 bit long
	 Parity bit: selected from odd, even, or none
	Stop bit: selected from 1 bit or 2 bits long
Transfer Clock	 The CKDIR bit in the UiMR register is set to "0" (internal clock selected):
	$f_j/16(m+1)$ $f_j = f_1, f_8, f_{2n}(1)$ <i>m</i> . setting value of the UiBRG register, 0016 to FF_16
	 The CKDIR bit is set to "1" (external clock selected):
	<i>fEXT/16(m+1) fEXT</i> : clock applied to the CLKi pin
Transmit/Receive Control	Select from CTS function, RTS function or CTS/RTS function disabled
Transmit Start Condition	To start transmitting, the following requirements must be met:
	- Set the TE bit in the UiC1 register to "1" (transmit enabled)
	- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)
	- Apply a low-velel ("L") signal to the $\overline{\text{CTS}}$ i pin when the $\overline{\text{CTS}}$ function is selected
Receive Start Condition	To start receiving, the following requirements must be met:
	- Set the RE bit in the UiC1 register to "1" (receive enabled)
	- The start bit is detected
Interrupt Request	While transmitting, the following condition can be selected:
Generation Timing	- The UiIRS bit in the UiC1 register is set to "0" (no data in the UiTB register):
	when data is transferred from the UiTB register to the UARTi transmit register (transfer started)
	- The UiIRS bit is set to "1" (transmission completed):
	when data transmission from the UARTi transfer register is completed
	While receiving
	when data is transferred from the UARTi receive register to the UiRB register (reception completed)
Error Detect	• Overrun error ⁽²⁾
	This error occurs when the bit before the last stop bit of the next received data is read
	prior to reading the UiRB register (the first stop bit when selecting 2 stop bits)
	Framing error
	This error occurs when the number of stop bits set is not detected
	Parity error
	When parity is enabled, this error occurs when the number of "1" in parity and charac-
	ter bits does not match the number of "1" set
	• Error sum flag
	This flag is set to "1" when any of an overrun, framing or parity errors occur
Selectable Function	LSB first or MSB first
	Selectable from data transmission or reception in either bit 0 or in bit 7
	Serial data logic inverse
	Logic values of data to be transmitted and received data are inversed. The start bit
	and stop bit are not inversed
	•TxD and RxD I/O polarity Inverse
	TxD pin output and RxD pin input are inversed. All I/O data levels are also inversed

Table 16.6 UART Mode Specifications

NOTES:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

2. If an overrun error occurs, the UiRB register is indeterminate. The IR bit setting in the SiRIC register does not change to "1" (interrupt requested).

Table 16.7 lists register settings. Tables 16.8 to 16.10 list pin settings. When UARTi (i=0 to 4) operating mode is selected, the TxDi pin outputs a high-level ("H") signal before transfer is started (the TxDi pin is in a high-impedance state when the N-channel open drain output is selected). Figure 16.14 shows an example of a transmit operation in UART mode. Figure 16.15 shows an example of a receive operation in UART mode.

Register	Bit	Function	
UiTB	8 to 0	Set transmit data ⁽¹⁾	
UiRB	8 to 0	Received data can be read ⁽¹⁾	
	OER, FER,	Error flags	
	PER, SUM		
UiBRG	7 to 0	Set bit rate	
UiMR	SMD2 to SMD0	Set to "1002" when transfer data is 7 bits long	
		Set to "1012" when transfer data is 8 bits long	
		Set to "1102" when transfer data is 9 bits long	
	CKDIR	Select the internal clock or external clock	
	STPS	Select stop bit length	
	PRY, PRYE	Select parity enable or disable, odd or even	
	IOPOL	Select TxD and RxD I/O polarity	
UiC0	CLK1, CLK0	Select count source for the UiBRG register	
	CRS	Select either CTS or RTS when using either	
	TXEPT	Transfer register empty flag	
	CRD	Select the CTS or RTS function enabled or disabled	
	NCH	Select output format of the TxDi pin	
	CKPOL	Set to "0"	
	UFORM	Select the LSB first or MSB first when a transfer data is 8 bits long	
		Set to "0" when transfer data is 7 bits or 9 bits long	
UiC1	TE	Set to "1" to enable data transmission	
	ТІ	Transfer buffer empty flag	
	RE	Set to "1" to enable data reception	
	RI	Reception complete flag	
	UiIRS	Select what causes the UARTi transmit interrupt to be generated	
	UiRRM	Set to "0"	
	UiLCH	Select whether data logic is inversed or not inversed when a transfer data is	
		7 bits or 8 bits long. Set to "0" when transfer data is 9 bits long	
	UiERE	Set to either "0" or "1"	
UiSMR	7 to 0	Set to "0016"	
UiSMR2	7 to 0	Set to "0016"	
UiSMR3	7 to 0	Set to "0016"	
UiSMR4	7 to 0	Set to "0016"	

Table 16.7 Register Settings in UART Mode

NOTE:

1. Use bits 0 to 6 when transfer data is 7 bits long, bits 0 to 7 when 8 bits long, bits 0 to 8 when 9 bits long.

Port	Function	Setting		
		PS0 Register	PSL0 Register	PD6 Register
P60	CTS0 input	PS0_0=0	-	PD6_0=0
	RTS0 output	PS0_0=1	PSL0_0=0	-
P61	CLK0 input	PS0_1=0	-	PD6_1=0
P62	RxD0 input	PS0_2=0	-	PD6_2=0
P63	TxD0 output	PS0_3=1	-	-
P64	CTS1 input	PS0_4=0	-	PD6_4=0
	RTS1 output	PS0_4=1	PSL0_4=0	-
P65	CLK1 input	PS0_5=0	-	PD6_5=0
P66	RxD1 input	PS0_6=0	-	PD6_6=0
P67	TxD1 output	PS0_7=1	-	_

Table 16.8 Pin Settings in UART Mode (1)

Table 16.9 Pin Settings (2)

Port	Function	Setting			
		PS1 Register	PSL1 Register	PSC Register	PD7 Register
P70 ⁽¹⁾	TxD2 output	PS1_0=1	PSL1_0=0	PSC_0=0	-
P71 ⁽¹⁾	RxD2 input	PS1_1=0	-	-	PD7_1=0
P72	CLK2 input	PS1_2=0	-	-	PD7_2=0
P73	CTS2 input	PS1_3=0	-	-	PD7_3=0
	RTS2 output	PS1_3=1	PSL1_3=0	PSC_3=0	_

NOTE:

1. P70 and P71 are ports for the N-channel open drain output.

Table 16.10 Pin Settings (3)

Port	Function	Setting			
		PS3 Register ⁽¹⁾	PSL3 Register	PSC3 Register	PD9 Register ⁽¹⁾
P90	CLK3 input	PS3_0=0	-	-	PD9_0=0
P91	RxD3 input	PS3_1=0	-	-	PD9_1=0
P92	TxD3 output	PS3_2=1	PSL3_2=0	-	-
P93	CTS3 input	PS3_3=0	PSL3_3=0	-	PD9_3=0
	RTS3 output	PS3_3=1	-	-	-
P94	CTS4 input	PS3_4=0	PSL3_4=0	-	PD9_4=0
	RTS4 output	PS3_4=1	-	-	-
P95	CLK4 input	PS3_5=0	PSL3_5=0	-	PD9_5=0
P96	TxD4 output	PS3_6=1	-	PSC3_6=0	-
P97	RxD4 input	PS3_7=0	-	_	PD9_7=0

NOTE:

1. Set the PD9 and PS3 registers set immediately after the PRC2 bit in the PRCR register is set to "1" (write enabled). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

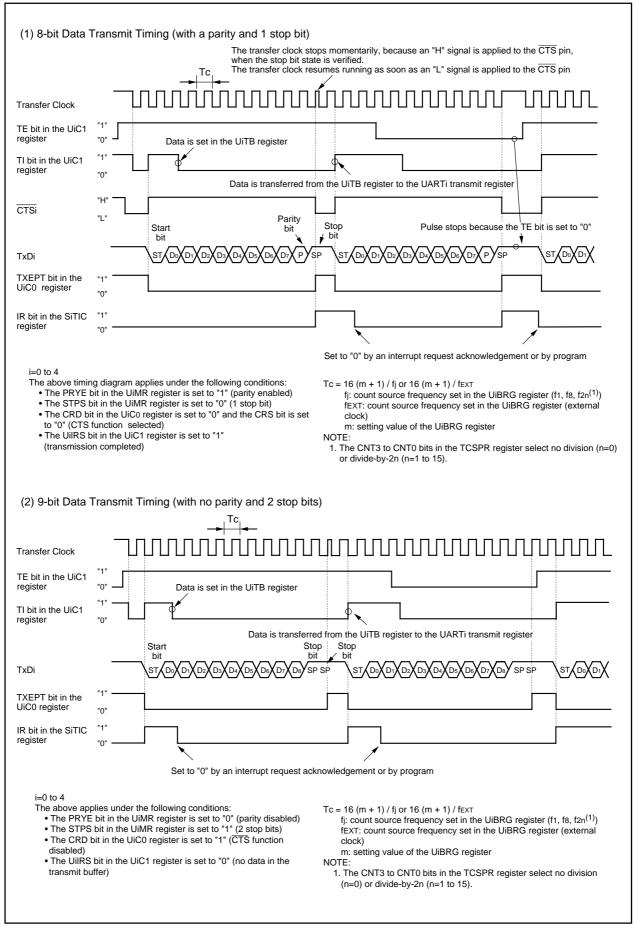


Figure 16.14 Transmit Operation

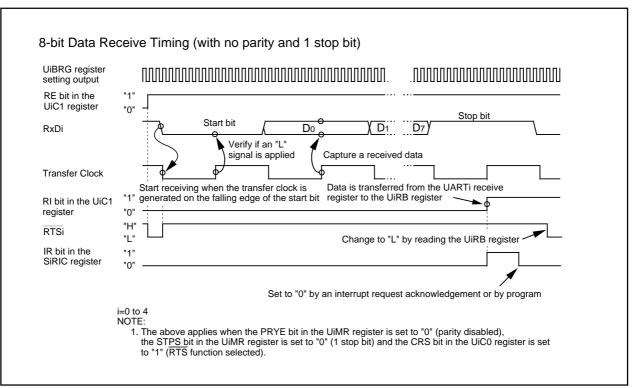


Figure 16.15 Receive Operation

16.2.1 Bit Rate

In UART mode, bit rate is clock frequency which is divided by a setting value of the UiBRG (i=0 to 4) register and again divided by 16. Table 16.11 lists an example of bit rate setting.

Table '	16.11	Bit Rate
---------	-------	----------

Bit Rate	Count Source	Peripheral Function Clock: 16MHz		Peripheral Function Clock: 24MHz		Peripheral Function Clock: 32MHz	
(bps)	of UiBRG	Setting Value of UiBRG: //	Actual Bit Rate (bps)	Setting Value of UiBRG: //	Actual Bit Rate (bps)	Setting Value of UiBRG: //	Actual Bit Rate (bps)
1200	f8	103 (67h)	1202	155 (96h)	1202	207 (CFh)	1202
2400	f8	51 (33h)	2404	77 (46h)	2404	103 (67h)	2404
4800	f8	25 (19h)	4808	38 (26h)	4808	51 (33h)	4808
9600	f1	103 (67h)	9615	155 (96h)	9615	207 (CFh)	9615
14400	f1	68 (44h)	14493	103 (67h)	14423	138 (8Ah)	14388
19200	f1	51 (33h)	19231	77 (46h)	19231	103 (67h)	19231
28800	f1	34 (22h)	28571	51 (33h)	28846	68 (44h)	28986
31250	f1	31 (1Fh)	31250	47 (2Fh)	31250	63 (3Fh)	31250
38400	f1	25 (19h)	38462	38 (26h)	38462	51 (33h)	38462
51200	f1	19 (13h)	50000	28 (1Ch)	51724	38 (26h)	51282

16.2.2 Selecting LSB First or MSB First

As shown in Figure 16.16, the UFORM bit in the UiC0 register (i=0 to 4) determines data transfer format. This function is available for 8-bit transfer data.

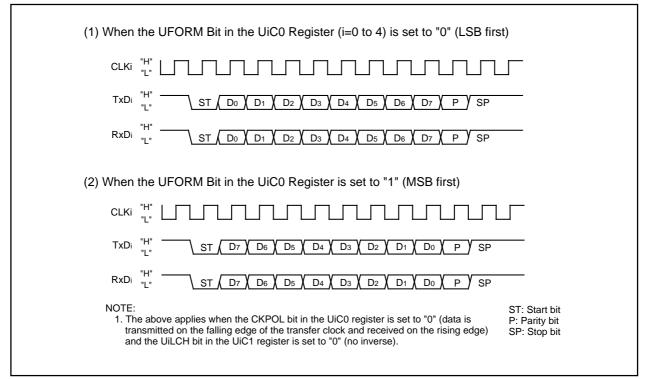


Figure 16.16 Transfer Format

16.2.3 Serial Data Logic Inverse

When the UiLCH bit (i=0 to 4) in the UiC1 register is set to "1" (inverse), data logic written in the UiTB register is inversed when transmitted. The inversed receive data logic can be read by reading the UiRB register. Figure 16.17 shows a switching example of the serial data logic.

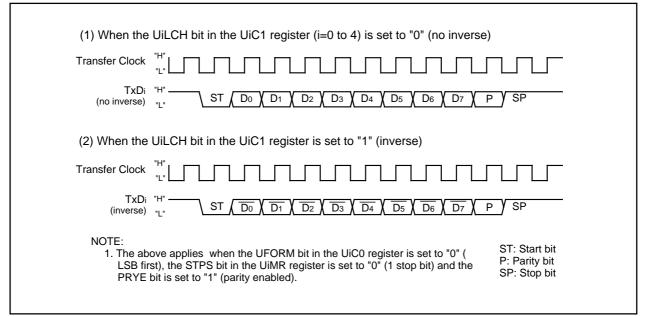


Figure 16.17 Serial Data Logic Inverse

16.2.4 TxD and RxD I/O Polarity Inverse

TxD pin output and RxD pin input are inversed. All I/O data level, including the start bit, stop bit and parity bit, are inversed. Figure 16.18 shows TxD and RxD I/O polarity inverse.

Transfer Clock	
TxDi (no inverse)	$\stackrel{\text{"H"}}{} \underbrace{\text{ST}}_{D_0} \underbrace{\text{D}}_{1} \underbrace{\text{D}}_{2} \underbrace{\text{D}}_{3} \underbrace{\text{D}}_{4} \underbrace{\text{D}}_{5} \underbrace{\text{D}}_{6} \underbrace{\text{D}}_{7} \underbrace{\text{P}}_{7} \underbrace{\text{SP}}_{7} \underbrace{\text{SP}}_{1} \underbrace{\text{SP}$
RxDi (no inverse)	"H"
(2) When the	IOPOL bit in the UiMR register is set to "1" (inverse)
Transfer Clock	
Transfer Clock TxDi (inverse)	$\stackrel{^{*H^{*}}}{{_{L^{*}}}} \underbrace{ \int \overline{D_{0} (D_{1} (D_{2} (D_{3} (D_{4} (D_{5} (D_{7} (P_{1} (D_{2} (D_{1} (D_{1} (D_{2} (D_{1} (D_{2} (D_{1} (D_{1} (D_{2} (D_{1} ($
	- "H"

Figure 16.18 TxD and RxD I/O Polarity Inverse

16.3 Special Mode 1 (I²C Mode)

 I^2C mode is a mode to communicate with external devices with a simplified I^2C . Table 16.12 lists specifications of I^2C mode. Table 16.13 lists register settings, Table 16.14 lists each function. Figure 16.19 shows a block diagram of I^2C mode. Figure 16.20 shows timings for transfer to the UiRB register (i=0 to 4) and interrupts. Tables 16.15 to 16.17 list pin settings.

As shown in Table 16.12, I²C mode is entered when the SMD2 to SMD0 bits in the UiMR register is set to "0102" and the IICM bit in the UiSMR register is set to "1". Output signal from the SDAi pin changes after the SCLi pin level becomes low ("L") and stabilizes due to a SDAi transmit output via the delay circuit.

Item	Specifications				
Interrupt	Start condition detect, stop condition detect, no acknowledgment detect, acknowledgment				
	detect				
Selectable Function	Arbitration lost				
	Selectable from update timing of the ABT bit in the UiRB register.				
	Refer to 16.3.3 Arbitration				
	• SDAi digital delay				
	Selectable from no digital delay or 2 to 8 cycle delay of the count source of the UiBRG				
	register. Refer to 16.3.5 SDA Output				
	Clock phase setting				
	Selectable from clock delay or no clock delay. Refer to 16.3.4 Transfer Clock				

Table 16.12 I²C Mode Specifications

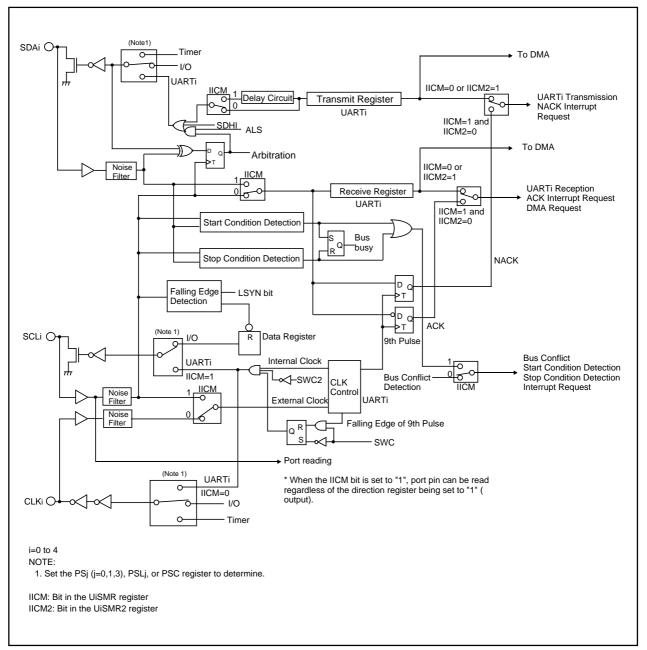


Figure 16.19 I²C Mode Block Diagram

Table 16.13 Register Settings in I²C Mode

Register	Bit	Function	1				
		Master	Slave				
UiTB	7 to 0	Set transmit data					
UiRB	7 to 0	Received data can be read					
	8	ACK or NACK bit can be read					
	ABT	Arbitration lost detect flag	Disabled				
	OER	Overrun error flag					
UiBRG	7 to 0	Set bit rate	Disabled				
UiMR	SMD2 to SMD0	Set to "0102"					
	CKDIR	Set to "0"	Set to "1"				
	IOPOL	Set to "0"	F				
UiC0	CLK1, CLK0	Select count source of the UiBRG register Disabled					
	CRS	Disabled because the CRD bit is set to "1"					
	TXEPT	Transfer register empty flag					
	CRD, NCH	Set to "1"					
	CKPOL	Set to "0"					
	UFORM	Set to "1"					
UiC1	TE	Set to "1" to enable data transmission					
		TI Transfer buffer empty flag					
	RE	Set to "1" to enable data reception					
	RI	Reception complete flag					
	UiRRM, UiLCH,	Set to "0"					
	UiERE						
UiSMR	IICM	Set to "1"					
	ABC	Select an arbitration lost detect timing Disabled					
	BBS	Bus busy flag					
	7 to 3	Set to "000002"					
UiSMR2	IICM2	See Table 16.14					
	CSC	Set to "1" to enable clock synchronization Set to "0"					
	SWC	Set to "1" to fix an "L" signal output from SCLi on the falling edge of the nin					
		of the transfer clock					
	ALS	Set to "1" to terminate SDAi output when	Not used. Set to "0"				
		detecting the arbitration lost					
	STC	Not used. Set to "0"	Set to "1" to reset UARTi				
			by detecting the start condition				
	SWC2	Set to "1" for an "L" signal output from SCL forcibly					
	SDHI	Set to "1" to disable SDA output					
	SU1HIM	Set to "0"					
UiSMR3	SSE	Set to "0"					
	СКРН	See Table 16.14					
	DINC, NODC, ERR						
	DL2 to DL0	Set digital delay value					
UiSMR4	STAREQ	Set to "1" when generating a start condition	Not used. Set to "0"				
	RSTAREQ	Set to "1" when generating a restart condition					
	STPREQ	Set to "1" when generating a stop condition					
	STSPSEL	Set to "1" when using a condition generating function					
-	ACKD	Select ACK or NACK					
	ACKC	Set to "1" for ACK data output					
	SCLHI	Set to "1" to enable SCL output stop when	Not used. Set to "0"				
	JULIII						
	014/00	detecting stop condition					
	SWC9	Not used. Set to "0"	Set to "1" to fix an "L" signal output				
			from SCLi on the falling edge of the				
			ninth bit of the transfer clock				
IFSR	IFSR6, IFSR7	Set to "1"					

i=0 to 4

Table 16.14 I²C Mode Functions

	I ² C Mode (SMD2 to SMD0=0102, IICM=1)				
Serial I/O Mode	IICM2=0 (NACK/ACK interrupt)		IICM2=1 (UART transmit/UART receive interrupt)		
IICM=0)	CKPH=0 (No clock delay)	CKPH=1 (Clock delay)	CKPH=0 (No clock delay)	CKPH=1 (Clock delay)	
-	Start condition or stop condition detec		detection (See Tab	etection (See Table 16.18)	
UARTi transmission - Transmission started or completed (selected by the UiIRS register)	No acknowledgement detection (NACK) - Rising edge of 9th bit of SCL i		UARTi transmission - Rising edge of 9th bit of SCLi	UARTi transmission - Next falling edge after the 9th bit of SCLi	
UARTi reception - Receiving at 8th bit CKPOL=0(rising edge) CKPOL=1(falling edge)			UARTi Reception - Falling edge of 9th bit of SCLi		
CKPOL=0(rising edge) CKPOL=1(falling edge)			Falling edge of 9th bit of SCLi	Falling edge and rising edge of 9th bit of SCLi	
No delay	Delay				
TxDi output	SDAi input and o	utput			
RxDi input	SCLi input and output				
Select CLKi input or output	 – (Not used in I² 				
15 ns	200 ns				
Can be read if port direction bit is set to "0"	Can be read regardless of the port directi		ort direction bit	ction bit	
CKPOL=0 (H) CKPOL=1 (L)	Values set in the port register before entering I ² C			mode ⁽²⁾	
-	н	L	н	L	
UARTi reception	Acknowledgement detection (ACK)		UARTi reception - Falling edge of 9th bit of SCLi		
1st to 8th bits of the received data are stored	1st to 8th bits of the received data are stored into bits 7 to 0 in the UiRB register		1st to 7th bits of the received data are store into bits 6 to 0 in the UiRB register. 8th bit is stored into bit 8 in the UiRB register.		
into bits 7 to 0 in the UiRB register				1st to 8th bits are stored into bits 7 to 0 in the UiRB register ⁽³⁾	
Reading Received Data The UiRB register status		s read		Bits 6 to 0 in the UiRB registerts ⁽⁴⁾ are read as bit 7 to 1. Bit 8 in the UiRB register is read as bit 0	
	(SMD2 to SMD0=0012, IICM=0) - UARTi transmission - Transmission started or completed (selected by the UiIRS register) UARTi reception - Receiving at 8th bit CKPOL=0(rising edge) CKPOL=1(falling edge) CKPOL=1(falling edge) CKPOL=1(falling edge) CKPOL=1(falling edge) CKPOL=1(falling edge) CKPOL=1(falling edge) Select CLKi input or output 15 ns Can be read if port direction bit is set to "0" CKPOL=0 (H) CKPOL=1 (L) - UARTi reception 1st to 8th bits of the received data are stored into bits 7 to 0 in the UIRB register	Clock Synchronous Serial I/O Mode (SMD2 to SMD0=0012, IICM=0)IICM2=0 (NACK/ACK inter CKPH=0 (No clock delay)-Start condition orUARTI transmission - Transmission started or completed (selected by the UilRS register)No acknowledger (NACK) - Rising edge of 9thUARTI reception - Receiving at 8th bit CKPOL=0(rising edge) CKPOL=1(falling edge)Acknowledgemer (ACK) - Rising edge of 9thNo delayDelayNo delayDelayTxDi outputSCLi input and ou select CLKi input or outputSelect CLKi input or output- (Not used in 1215 ns200 nsCan be read if port direction bit is set to "0"Can be read regaCKPOL=0 (H) CKPOL=1 (L)Values set in the-HUARTI receptionAcknowledgement (ACK)	$ \begin{array}{ CM2 = 0 \\ (NACK/ACK interrupt) \\ \hline \begin{tabular}{ CM2 = 0 \\ (NACK/ACK interrupt) \\ \hline \begin{tabular}{ CM2 = 0 \\ (NACK/ACK interrupt) \\ \hline \begin{tabular}{ CM2 = 0 \\ (NACK/ACK interrupt) \\ \hline \begin{tabular}{ CKP1 = 0 \\ (COck delay) \\ \hline \begin{tabular}{ CKP1 = 0 \\ (COck delay) \\ \hline \begin{tabular}{ CKP1 = 0 \\ (COck delay) \\ \hline \begin{tabular}{ CKP1 = 0 \\ (NACK) - Rising edge of 9 \\ \hline \begin{tabular}{ CKP0 = 0 \\ CKP0L = 0 (rising edge) \\ CKP0L = 1 (ralling edge) \\ CKP0L = 1 (ralling edge) \\ CKP0L = 1 (ralling edge) \\ \hline \begin{tabular}{ CKP0 = 0 \\ CKP0L = 1 (ralling edge) \\ \hline \begin{tabular}{ CKP0 = 0 \\ CKP0L = 1 (ralling edge) \\ \hline \begin{tabular}{ CKP0 = 0 \\ CKP0L = 1 (ralling edge) \\ \hline \begin{tabular}{ CKP0 = 0 \\ CKP0 = 0 \\ CKP0L = 1 (L) \\ \hline \begin{tabular}{ CKP0 = 0 \\ CKP0L = 1 (L) \\ \hline \begin{tabular}{ CKP0 = 0 \\ CKP0L = 1 (L) \\ \hline \begin{tabular}{ CKP0 = 0 \\ CKP0 = 1 (L) \\ \hline \begin{tabular}{ CKP0 = 0 \\ CKP0 = 1 (L) \\ \hline \begin{tabular}{ CKP0 = 0 \\ CKP0 = 1 (L) \\ \hline \begin{tabular}{ CKP0 = 0 \\ CKP0 = 1 (L) \\ \hline \begin{tabular}{ CKP0 = 0 \\ CKP0 = 1 (L) \\ \hline \begin{tabular}{ CKP0 = 0 \\ CKP0 = 1 (L) \\ \hline \end{tabular} \\ \hline \begin{tabular}{ CKP0 = 0 \\ CKP0 = 1 (L) \\ \hline \end{tabular} \\ \hline \begin{tabular}{ CKP0 = 0 \\ CKP0 = 1 (L) \\ \hline \end{tabular} \\ \hline \begin{tabular}{ CKP0 = 0 \\ CKP0 = 1 (L) \\ \hline \end{tabular} \\ \hline \begin{tabular}{ CKP0 = 0 \\ CKP0 = 1 (L) \\ \hline \end{tabular} \\ \hline \end{tabular} \\ \hline \begin{tabular}{ CKP0 = 0 \\ CKP0 = 1 (L) \\ \hline \end{tabular} \\ \hline \end{tabular} \\ \hline \end{tabular} \\ \hline \begin{tabular}{ CKP0 = 0 \\ CKP0 = 1 (L) \\ \hline \end{tabular} \\$	$ \begin{array}{ l Clock Synchronous Serial I/O Mode (SMD2 to SMD0=0012, IICM2=0 (NACK/ACK interrupt) IICM2=1 (UART transmit/L (CKPH=0 (No clock delay))) \\ \hline CKPU = 0(156, 200, 200, 200, 200, 200, 200, 200, 20$	

i=0 to 4

NOTES:

1. Use the following procedure to change what causes an interrupt to be generated.

(a) Disable interrupt of corresponding interrupt number.

(b) Change what causes an interrupt to be generated.

(c) Set the IR bit of a corresponding interrupt number to "0" (no interrupt requested).

(d) Set the ILVL2 to ILVL0 bits of a corresponding interrupt number.

2. Set default value of the SDAi output when the SMD2 to SMD0 bits in the UiMR register are set to "0002" (serial I/O disabled).

3. Second data transfer to the UiRB register (on the rising edge of the ninth bit of SCLi).

4. First data transfer to the UiRB register (on the falling edge of the ninth bit of SCLi).

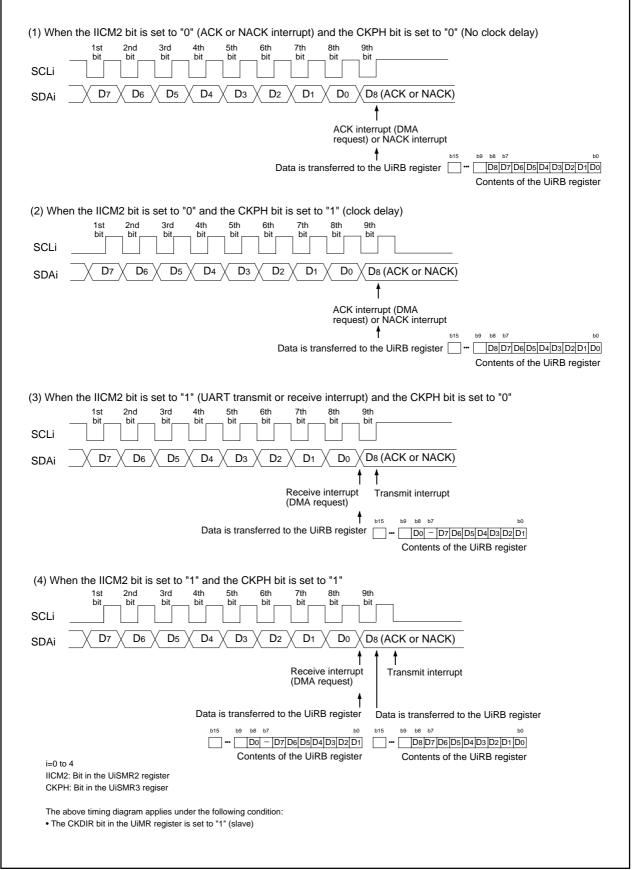


Figure 16.20 SCLi Timing

Port	Function	Setting				
		PS0 Register	PSL0 Register	PD6 Register		
P62	SCL0 output	PS0_2=1	PSL0_2=0	-		
	SCL0 input	PS0_2=0	-	PD6_2=0		
P63	SDA0 output	PS0_3=1	-	-		
	SDA0 input	PS0_3=0	-	PD6_3=0		
P66	SCL1 output	PS0_6=1	PSL0_6=0	-		
	SCL1 input	PS0_6=0	-	PD6_6=0		
P67	SDA1 output	PS0_7=1	-	-		
	SDA1 input	PS0_7=0	-	PD6_7=0		

Table 16.15 Pin Settings in I²C Mode (1)

Table 16.16 Pin Settings (2)

Port	Function	Setting				
		PS1 Register	PSL1 Register	PSC Register	PD7 Register	
P70 ⁽¹⁾	SDA2 output	PS1_0=1	PSL1_0=0	PSC_0=0	-	
	SDA2 input	PS1_0=0	-	-	PD7_0=0	
P71 ⁽¹⁾	SCL2 output	PS1_1=1	PSL1_1=1	PSC_1=0	-	
	SCL2 input	PS1_1=0	_	_	PD7_1=0	

NOTE:

1. P70 and P71 are ports for the N-channel open drain output.

Table 16.17 Pin Settings (3)

Port	Function	Setting					
		PS3 Register ⁽¹⁾	PSL3 Register	PSC3 Register	PD9 Register ⁽¹⁾		
P91	SCL3 output	PS3_1=1	PSL3_1=0	-	-		
	SCL3 input	PS3_1=0	-	-	PD9_1=0		
P92	SDA3 output	PS3_2=1	PSL3_2=0	-	-		
	SDA3 input	PS3_2=0	-	-	PD9_2=0		
P96	SDA4 output	PS3_6=1	-	PSC3_6=0	-		
	SDA4 input	PS3_6=0	-	-	PD9_6=0		
P97	SCL4 output	PS3_7=1	PSL3_7=0	-	-		
	SCL4 input	PS3_7=0	-	-	PD9_7=0		

NOTE:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enabled). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

16.3.1 Detecting Start Condition and Stop Condition

The microcomputer detects either a start condition or stop condition. The start condition detect interrupt is generated when the SCLi (i=0 to 4) pin level is held high ("H") and the SDAi pin level changes "H" to low ("L"). The stop condition detect interrupt is generated when the SCLi pin level is held "H" and the SDAi pin level changes "L" to "H". The start condition detect interrupt shares interrupt control registers and vectors with the stop condition detect interrupt. The BBS bit in the UiSMR register determines which interrupt is requested.

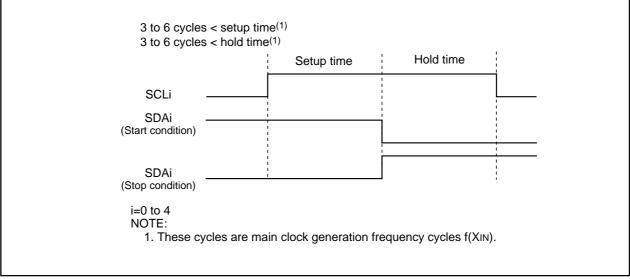


Figure 16.21 Start Condition or Stop Condition Detecting

16.3.2 Start Condition or Stop Condition Output

The start condition is generated when the STAREQ bit in the UiSMR4 register (i=0 to 4) is set to "1" (start). The restart condition is generated when the RSTAREQ bit in the UiSMR4 register is set to "1" (start). The stop condition is generated the STPREQ bit in the UiSMR4 is set to "1" (start).

The start condition is output when the STAREQ bit is set to "1" and the STSPSEL bit in the UiSMR4 register is set to "1" (start or stop condition generating circuit selected). The restart condition output is provided when the RSTAREQ bit and STSPSEL bit are set to "1". The stop condition output is provided when the STPREQ bit and the STSPSEL bit are set to "1".

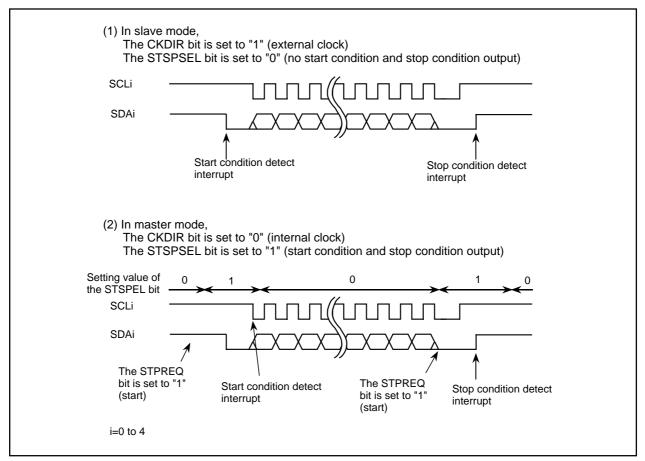

When the start condition, stop condition or restart condition is output, do not generate an interrupt between the instruction to set the STAREQ bit, STPREQ bit or RSTAREQ bit to "1" and the instruction to set the STSPSEL bit to "1". When the start condition is output, set the STAREQ bit to "1" before the STSPSEL bit is set to "1".

Table 16.18 lists function of the STSPSEL bit. Figure 16.22 shows functions of the STSPSEL bit.

Table 16.18 STSPSEL Bit Function

Function	STSPSEL = 0	STSPSEL = 1
Start condition and stop condition output	Program with ports determines how the start condition or stop condition is output	The STAREQ bit, RSTAREQ bit and STPREQ bit determine how the start condition or stop condition is output
Timing to generate start condition and stop condition interrupt requests	Start condition and stop condition are detected	Start condition and stop condition generation are completed

16.3.3 Arbitration

The ABC bit in the UiSMR register (i=0 to 4) determines an update timing for the ABT bit in the UiRB register. On the rising edge of the SCLi pin, the microcomputer determines whether a transmit data matches data input to the SDAi pin.

When the ABC bit is set to "0" (update per bit), the ABT bit is set to "1" (detected-arbitration is lost) as soon as a data discrepancy is detected. The ABT bit is set to "0" (not detected-arbitration is won) if not detected. When the ABC bit is set to "1" (update per byte), the ABT bit is set to "1" on the falling edge of the ninth bit of the transfer clock if any discrepancy is detected. When the ABT bit is updated per byte, set the ABT bit to "0" between an ACK detection in the first byte data and the next byte data to be transferred. When the ALS bit in the UiSMR2 register is set to "1" (SDA output stop enabled), the arbitration lost occurs. As soon as the ABT bit is set to "1", the SDAi pin is placed in a high-impedance state.

16.3.4 Transfer Clock

The transfer clock transmits and receives data as is shown in Figure 16.20.

The CSC bit in the UiSMR2 register (i=0 to 4) synchronizes an internally generated clock (internal SCLi) with the external clock applied to the SCLi pin. When the CSC bit is set to "1" (clock synchronous enabled) and the internal SCLi is held high ("H"), the internal SCLi become low ("L") if signal applied to the SCLi pin is on the falling edge. Value of the UiBRG register is reloaded to start counting for low level. A counter stops when the SCLi pin is held "L" and then the internal SCLi changes "L" to "H". Counting is resumed when the SCLi pin become "H". The transfer clock of UARTi is equivalent to the AND for signals from the internal SCLi and the SCLi pin.

The transfer clock is synchronized between a half cycle before the falling edge of first bit of the internal SCLi and the rising edge of the ninth bit. Select the internal clock as the transfer clock while the CSC bit is set to "1".

The SWC bit in the UiSMR2 register determines whether the SCLi pin is fixed to be an "L" signal output on the falling edge of the ninth cycle of the transfer clock or not.

When the SCLHI bit in the UiSMR4 register is set to "1" (enabled), a SCLi output stops when a stop condition is detected (high-impedance).

When the SWC2 bit in the UiSMR2 register is set to "1" (0 output), the SCLi pin focibly outputs an "L" signal while transmitting and receiving. The fixed "L" signal applied to the SCLi pin is cancelled by setting the SWC2 bit to "0" (transfer clock) and the transfer clock input to and output from the SCLi pin are provided.

When the CKPH bit in the UiSMR3 register is set to "1" and the SWC9 bit in the UiSMR4 register is set to "1" (SCL "L" hold enabled), the SCLi pin is fixed to be an "L" signal output on the next falling edge after the ninth bit of the clock. The fixed "L" signal applied to the SCLi pin is cancelled by setting the SWC9 bit to "0" (SCL "L" hold disabled).

16.3.5 SDA Output

Values output set in bits 7 to 0 (D7 to D0) in the UiTB register (i=0 to 4) are provided in descending order from D7. The ninth bit (D8) is ACK or NACK.

Set the default value of SDAi transmit output when the IICM bit is set to "1" (I²C mode) and the SMD2 to SMD0 bits in the UiMR register are set to "0002" (serial I/O disabled).

The DL2 to DL0 bits in the UiSMR3 register determine no delay in the SDAi output or a delay of 2 to 8 UiBRG register count source cycles.

When the SDHI bit in the UiSMR2 register is set to "1" (SDA output disabled), the SDAi pin is forcibly placed in a high-impedance state. Do not set the SDHI bit on the rising edge of the UARTi transfer clock. The ABT bit in the UiRB register may be set to "1" (detected).

16.3.6 SDA Input

When the IICM2 bit in the UiSMR2 register (i=0 to 4) is set to "0", the first eight bits of received data are stored into bits 7 to 0 (D7 to D0) in the UiRB register. The ninth bit (D8) is ACK or NACK.

When the IICM2 bit is set to "1", the first seven bits (D7 to D1) of received data are stored into bits 6 to 0 in the UiRB register. Store the eighth bit (D0) into bit 8 in the UiRB register.

If the IICM2 bit is set to "1" and the CKPH bit in the UiSMR3 register is set to "1", the same data as that of when setting the IICM2 bit to "0" can be read. To read the data, read the UiRB register after the rising edge of the ninth bit of the transfer clock.

16.3.7 ACK, NACK

When the STSPSEL bit in the UiSMR4 register (i=0 to 4) is set to "0" (serial I/O circuit selected) and the ACKC bit in the UiSMR4 register is set to "1" (ACK data output), the SDAi pin provides the value output set in the ACKD bit in the UiSMR4 register.

If the IICM2 bit is set to "0", the NACK interrupt request is generated when the SDAi pin is held high ("H") on the rising edge of the ninth bit of the transfer clock. The ACK interrupt request is generated when the SDAi pin is held low ("L") on the rising edge of the ninth bit of the transfer clock.

When ACK is selected to generate a DMA request, the DMA transfer is activated by an ACK detection.

16.3.8 Transmit and Receive Reset

When the STC bit in the UiSMR2 register (i=0 to 4) is set to "1" (UARTi initialization enabled) and a start condition is detected,

- the transmit shift register is reset and the content of the UiTB register is transferred to the transmit shift register. The first bit starts transmitting when the next clock is input. UARTi output value remains unchanged between when the clock is applied and when the first bit data output is provided. The value remains the same as when start condition was detected.
- the receive shift register is reset and the first bit start receiving when the next clock is applied.
- the SWC bit is set to "1" (SCL wait output enabled). The SCLi pin becomes "L" on the falling edge of the ninth bit of the transfer clock.

If UARTi transmission and reception are started with this function, the TI bit in the UiC1 register remains unchanged. Select the external clock as the transfer clock when using this function.

16.4 Special Mode 2

In special mode 2, serial communication between one or multiple masters and multiple slaves is available. The SSi input pin (i=0 to 4) controls the serial bus communication. Table 16.19 lists specifications of special mode 2. Table 16.20 lists register settings. Tables 16.21 to 16.23 list pin settings.

Item	Specification
Transfer Data Format	Transfer data : 8 bits long
Transfer Clock	• The CKDIR bit in the UiMR register (i=0 to 4) is set to "0" (internal clock selected): $f_{i}/2(m+1)$ $f_{j} = f_{1}, f_{8}, f_{2n}^{(1)}$ m : setting value of the UiBRG register, 0016 to FF16
	 The CKDIR bit to "1" (external clock selected) : input from the CLKi pin
Transmit/Receive Control	SSi input pin function
Transmit Start Condition	To start transmitting, the following requirements must be met ⁽²⁾ :
	- Set the TE bit in the UiC1 register to "1" (transmit enabled)
	- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)
Receive Start Condition	To start receiving, the following requirement must be met ⁽²⁾ :
	- Set the RE bit in the UiC1 register to "1" (receive enabled)
	- Set the TE bit in the UiC1 register to "1" (transmit enabled)
	- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)
Interrupt Request	 While transmitting, the following conditions can be selected:
Generation Timing	- The UiIRS bit in the UiC1 register is set to "0" (no data in a transmit buffer) :
	when data is transferred from the UiTB register to the UARTi transmit register (transmission started)
	 The UiIRS register is set to "1" (transmission completed): when data transmission from UARTi transfer register is completed
	While receiving
	When data is transferred from the UARTi receive register to the UiRB register (reception completed
Error Detection	• Overrun error ⁽³⁾
	This error occurs when the seventh bit of the next received data is read before reading the UiRB register
	Fault error
	In master mode, the fault error occurs an "L" signal is applied to the SSi pin
Selectable Function	CLK polarity
	Selectable from the rising edge or falling edge of the transfer clock at transferred data output or input timing
	LSB first or MSB first
	Selectable from data transmission or reception in either bit 0 or in bit 7
	Continuous receive mode
	Reception is enabled simultaneously by reading the UiRB register
	Serial data logic inverse
	This function inverses transmitted or received data logically
	 TxD and RxD I/O polarity inverse
	TxD pin output and RxD pin input are inversed. All I/O data levels are also inversed
	Clock phase
	Selectable from one of 4 combinations of transfer data polarity and phases
	SSi input pin function
	Output pin is placed in a high-impedance state to avoid data conflict between master and other masters or slaves

Table 16.19	Special	Mode 2	Specifications
-------------	---------	--------	----------------

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

- 2. To start transmission/reception when selecting the external clock, these conditions must be met after the CKPOL bit in the UiC0 register is set to "0" (data is transmitted on the falling edge of the transfer clock and data is received on the rising edge) and the CLKi pin is held high ("H"), or when the CKPOL bit is set to "1" (Data is transmitted on the rising edge of the transfer clock and data is received on the falling edge) and the CLKi pin is held low ("L").
- 3. If an overrun error occurs, the UiRB register is in an indeterminate state. The IR bit setting in the SiRIC register does not change to "1" (interrupt requested).

Register	Bit	Function
UiTB	7 to 0	Set transmit data
UiRB	7 to 0	Received data can be read
	OER	Overrun error flag
UiBRG	7 to 0	Set bit rate
UiMR	SMD2 to SMD0	Set to "0012"
	CKDIR	Set to "0" in master mode or "1" in slave mode
	IOPOL	Set to "0"
UiC0	CLK1, CLK0	Select count source for the UiBRG register
	CRS	Disabled because the CRD bit is set to "1"
	TXEPT	Transfer register empty flag
	CRD	Set to "1"
	NCH	Select the output format of the TxDi pin
	CKPOL	Clock phase can be set by the combination of the CKPOL bit and the CKPH bit in
		the UiSMR3 register
	UFORM	Select either LSB first or MSB first
UiC1	TE	Set to "1" to enable data transmission and reception
	TI	Transfer buffer empty flag
	RE	Set to "1" to enable data reception
	RI	Reception complete flag
	UilRS	Select what causes the UARTi transmit interrupt to be generated
	UiRRM	Set to "1" to enable continuous receive mode
	UiLCH, SCLKSTPB	Set to "0"
UiSMR	7 to 0	Set to "0016"
UiSMR2	7 to 0	Set to "0016"
UiSMR3	SSE	Set to "1"
	СКРН	Clock phase can be set by the combination of the CKPH bit and the CKPOL bit
		in the UiC0 register
	DINC	Set to "0" in master mode or "1" in slave mode
	NODC	Set to "0"
	ERR	Fault error flag
	7 to 5	Set to "0002"
UiSMR4	7 to 0	Set to "0016"

Table 16.20 Register Settings in Special Mode 2

i=0 to 4

Table 16.21 Pin Settings in Special Mode 2 (1)

Port	Function	Setting			
		PS0 Register	PSL0 Register	PD6 Register	
P60	SS0 input	PS0_0=0	-	PD6_0=0	
P61	CLK0 input (slave)	PS0_1=0	-	PD6_1=0	
	CLK0 output (master)	PS0_1=1	-	-	
P62	RxD0 input (master)	PS0_2=0	-	PD6_2=0	
	STxD0 output (slave)	PS0_2=1	PSL0_2=1	-	
P63	TxD0 output (master)	PS0_3=1	-	-	
	SRxD0 input (slave)	PS0_3=0	-	PD6_3=0	
P64	SS1 input	PS0_4=0	-	PD6_4=0	
P65	CLK1 input (slave)	PS0_5=0	-	PD6_5=0	
	CLK1 output (master)	PS0_5=1	-	-	
P66	RxD1 input (master)	PS0_6=0	-	PD6_6=0	
	STxD1 output (slave)	PS0_6=1	PSL0_6=1	-	
P67	TxD1 output (master)	PS0_7=1	-	-	
	SRxD1 input (slave)	PS0_7=0	_	PD6_7=0	

Table 16.22 Pin Settings (2)

Port	Function	Setting				
		PS1 Register	PSL1 Register	PSC Register	PD7 Register	
P70 ⁽¹⁾	TxD2 output (master)	PS1_0=1	PSL1_0=0	PSC_0=0	-	
	SRxD2 input (slave)	PS1_0=0	-	-	PD7_0=0	
P71 ⁽¹⁾	RxD2 input (master)	PS1_1=0	-	-	PD7_1=0	
	STxD2 output (slave)	PS1_1=1	PSL1_1=1	PSC_1=0	-	
P72	CLK2 input (slave)	PS1_2=0	-	-	PD7_2=0	
	CLK2 output (master)	PS1_2=1	PSL1_2=0	PSC_2=0	-	
P73	SS2 input	PS1_3=0	-	—	PD7_3=0	

NOTE:

1. P70 and P71 are ports for the N-channel open drain output.

Table 16.23 Pin Settings (3)

Port	Function	Setting				
		PS3 Register ⁽¹⁾	PSL3 Register	PSC3 Register	PD9 Register ⁽¹⁾	
P90	CLK3 input (slave)	PS3_0=0	-	-	PD9_0=0	
	CLK3 output (master)	PS3_0=1	-	-	-	
P91	RxD3 input (master)	PS3_1=0	-	-	PD9_1=0	
	STxD3 output (slave)	PS3_1=1	PSL3_1=1	-	-	
P92	TxD3 output (master)	PS3_2=1	PSL3_2=0	-	-	
	SRxD3 input (slave)	PS3_2=0	-	-	PD9_2=0	
P93	SS3 input	PS3_3=0	PSL3_3=0	-	PD9_3=0	
P94	SS4 input	PS3_4=0	PSL3_4=0	-	PD9_4=0	
P95	CLK4 input (slave)	PS3_5=0	PSL3_5=0	-	PD9_5=0	
	CLK4 output (master)	PS3_5=1	-	-	-	
P96	TxD4 output (master)	PS3_6=1	-	PSC3_6=0	-	
	SRxD4 input (slave)	PS3_6=0	PSL3_6=0	-	PD9_6=0	
P97	RxD4 input (master)	PS3_7=0	-	-	PD9_7=0	
	STxD4 output (slave)	PS3_7=1	PSL3_7=1	-	-	

NOTE:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enabled). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

16.4.1 **SSi** Input Pin Function (i=0 to 4)

When the SSE bit in the UiSMR3 register is set to "1" (\overline{SS} function enabled), the special mode 2 is selected, activating the pin function.

The DINC bit in the UiSMR3 register determines which microcomputer performs as master or slave. When multiple microcomputers perform as the masters (multi-master system), the \overline{SSi} pin setting determines which master microcomputer is active and when.

16.4.1.1 When Setting the DINC Bit to "1" (Slave Mode)

When a high-level ("H") signal is applied to the \overline{SSi} pin, the STxDi and SRxDi pins are placed in a highimpedance state and the transfer clock applied to the CLKi pin is ignored. When a low-level ("L") signal is applied to the \overline{SSi} input pin, the transfer clock input is valid and serial communication is enabled.

16.4.1.2 When Setting the DINC Bit to "0" (Master Mode)

When using the \overline{SSi} pin functin in master mode, set the UiRS bit in the UiC1 register to "1" (transmission completed).

When an "H" signal is applied to the SSi pin, serial communication is available due to transmission privilege. The master provides the transfer clock output. When an "L" signal is applied to the SSi pin, it indicates that another master is active. The TxDi and CLKi pins are placed in high-impedance states and the ERR bit in the UiSMR3 register is set to "1" (fault error) Use the transmit complete interrupt routine to verify the ERR bit state.

To resume the serial communication after the fault error occurs, set the ERR bit to "0" while applying the "H" signal to the \overline{SSi} pin. The TxDi and CLKi pins become ready for signal outputs.

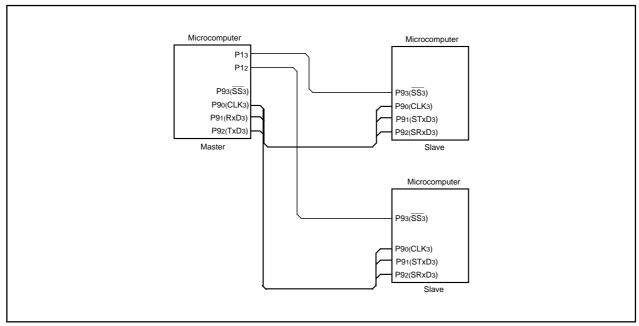


Figure 16.23 Serial Bus Communication Control with SS Pin

16.4.2 Clock Phase Setting Function

The CKPH bit in the UiSMR3 register (i=0 to 4) and the CKPOL bit in the UiC0 register select one of four combinations of transfer clock polarity and phases.

The transfer clock phase and polarity must be the same between the master and the slave involved in the transfer.

16.4.2.1 When setting the DINC Bit to "0" (Master (Internal Clock))

Figure 16.24 shows transmit and receive timing.

16.4.2.2 When Setting the DINC Bit to "1" (Slave (External Clock))

When the CKPH bit is set to "0" (no clock delay) and the \overline{SSi} input pin is held high ("H"), the STxDi pin is placed in a high-impedance state. When the \overline{SSi} input pin becomes low ("L"), conditions to start a serial transfer are met, but output is indeterminate. The serial transmission is synchronized with the transfer clock. Figure 16.25 shows the transmit and receive timing.

When the CKPH bit is set to "1" (clock delay) and the \overline{SSi} input pin is held high, the STxDi pin is placed in a high-impedance state. When the \overline{SSi} pin becomes low, the first data is output. The serial transmission is synchronized with the transfer clock. Figure 16.26 shows the transmit and receive timing.

Signal Applied to	"H"				
the SS Pin	"L"				
Clock Output (CKPOL=0, CKPH=0)	"H"				
Clock Output (CKPOL=1, CKPH=0)	"H"				
Clock Output (CKPOL=0, CKPH=1)	"H"				
Clock Output (CKPOL=1, CKPH=1)	"H"				
Data Output Timing	"H"D0 \	D1 D2	D3 D4		D6 D7
Data Input Timing	1	$\uparrow \uparrow$	$\uparrow \uparrow$	1	

Figure 16.24 Transmit and Receive Timing in Master Mode (Internal Clock)

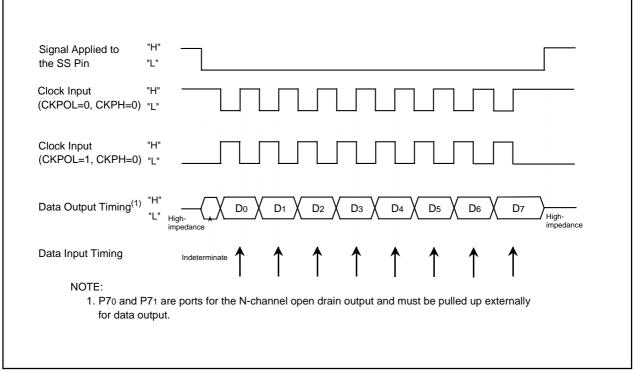


Figure 16.25 Transmit and Receive Timing in Slave Mode (External Clock) (CKPH=0)

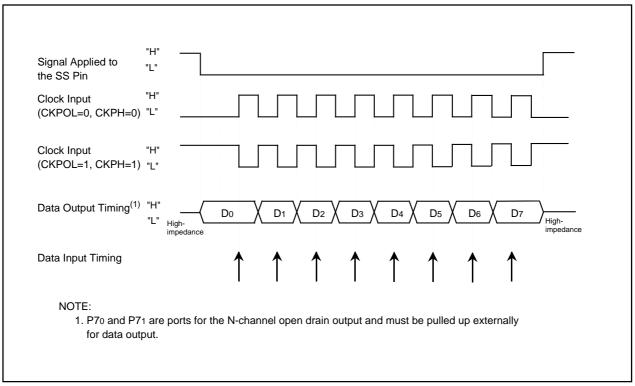


Figure 16.26 Transmit and Receive Timing in Slave Mode (External Clock) (CKPH=1)

16.5 Special Mode 3 (GCI Mode)

In GCI mode, the external clock is synchronized with the transfer clock used in the clock synchronous serial I/O mode.

Table 16.24 lists specifications of GCI mode. Table 16.25 lists registers settings. Tables 16.26 to 16.28 list pin settings.

ltem	Specification
Transfer Data Format	Transfer data : 8 bits long
Transfer Clock	The CKDIR bit in the UiMR register (i=0 to 4) is set to "1" (external clock selected): input from the CLKi pin
Clock Synchronization Function	Trigger signal input from the CTSi pin
Transmit/Receive Start	To start data transmission and reception, meet the following conditions and then apply a
Condition	trigger signal to the CTSi pin:
	- Set the TE bit in the UiC1 register to "1" (transmit enabled)
	- Set the RE bit in the UiC1 register to "1" (receive enabled)
	- Set the TI bit in the UiC1 register to "0" (Data in the UiTB register)
Interrupt Request	 While transmitting, the following condition can be selected:
Generation Timing	- The UiIRS bit in the UiC1 register is set to "0" (UiTB register empty):
	when data is transferred from the UiTB register to the UARTi transmit register (transmission started)
	- The UiIRS bit is set to "1" (Transmit completed):
	when a data transmission from the UARTi transfer register is completed
	While receiving,
	when data is transferred from the UARTi receive register to the UiRB register (reception completed)
Error Detection	Overrun error ⁽¹⁾
NOTE	This error occurs when the seventh bit of the next received data is read before reading the UiRB register.

Table16.24 GCI Mode Specifications

NOTE:

1. If an overrun error occurs, the UiRB register is indeterminate. The IR bit setting in the SiRIC register does not change to "1" (interrupt requested).

Register	Bit	Function
UiTB	7 to 0	Set transmit data
UiRB 7 to 0		Received data
	OER	Overrun error flag
UiBRG	7 to 0	Set to "0016"
UiMR	SMD2 to SMD0	Set to "0012"
	CKDIR	Set to "1"
	IOPOL	Set to "0"
UiC0	CLK1, CLK0	Set to "002"
	CRS	Disabled because the CRD bit is set to "1"
	TXEPT	Transfer register empty flag
	CRD	Set to "1"
	NCH	Select the output format of the TxDi pin
	CKPOL	Set to "0"
	UFORM	Set to "0"
UiC1	TE	Set to "1" to enable data transmission and reception
	TI	Transfer buffer empty flag
	RE	Set to "1" to enable data reception
	RI	Reception complete flag
	UiIRS	Select what causes the UARTi transmit interrupt to be generated
	UiRRM, UiLCH	Set to "0"
	SCLKSTPB	Set to "0"
UiSMR	6 to 0	Set to "0000002"
	SCLKDIV	See Table 16.29
UiSMR2	6 to 0	Set to "0000002"
	SU1HIM	See Table 16.29
UiSMR3	2 to 0	Set to "0002"
	NODC	Set to "0"
	7 to 4	Set to "00002"
UiSMR4	7 to 0	Set to "0016"

Table 16.25 Register Settings in GCI Mode

i=0 to 4

Port	Function	Setting		
		PS0 Register	PD6 Register	
P60	CTS0 input ⁽¹⁾	PS0_0=0	PD6_0=0	
P61	CLK0 input	PS0_1=0	PD6_1=0	
P62	RxD0 input	PS0_2=0	PD6_2=0	
P63	TxD0 output	PS0_3=1	-	
P64	CTS1 input ⁽¹⁾	PS0_4=0	PD6_4=0	
P65	CLK1 input	PS0_5=0	PD6_5=0	
P66	RxD1 input	PS0_6=0	PD6_6=0	
P67	TxD1 output	PS0_7=1	_	

Table 16.26 Pin Settings in GCI Mode (1)

NOTE:

1. CTS input is used as a trigger siganl input.

Table 16.27 Pin Settings (2)

Port	Function	Setting				
		PS1 Register	PSL1 Register	PSC Register	PD7 Register	
P70 ⁽¹⁾	TxD2 output	PS1_0=1	PSL1_0=0	PSC_0=0	-	
P71 ⁽¹⁾	RxD2 input	PS1_1=0	-	-	PD7_1=0	
P72	CLK2 input	PS1_2=0	-	-	PD7_2=0	
P73	CTS2 input ⁽²⁾	PS1_3=0	_	-	PD7_3=0	

NOTES:

1. P70 and P71 are ports for the N-channel open drain output.

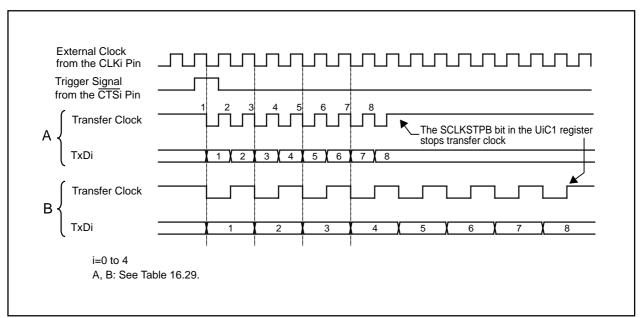
2. $\overline{\text{CTS}}$ input is used as a trigger siganl input.

Table 16.28 Pin Settings (3)

Port	Function	Setting				
		PS3 Register ⁽¹⁾	PSL3 Register	PSL3 Register	PD9 Register ⁽¹⁾	
P90	CLK3 input	PS3_0=0	-	-	PD9_0=0	
P91	RxD3 input	PS3_1=0	-	-	PD9_1=0	
P92	TxD3 output	PS3_2=1	PSL3_2=0	-	-	
P93	CTS3 input ⁽²⁾	PS3_3=0	PSL3_3=0	-	PD9_3=0	
P94	CTS4 input ⁽²⁾	PS3_4=0	PSL3_4=0	-	PD9_4=0	
P95	CLK4 input	PS3_5=0	PSL3_5=0	-	PD9_5=0	
P96	TxD4 output	PS3_6=1	PSL3_6=0	PSL3_6=0	-	
P97	RxD4 input	PS3_7=0	-	-	PD9_7=0	

NOTES:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enabled). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.


2. $\overline{\text{CTS}}$ input is used for a trigger siganl input.

To generate the internal clock synchronized with the external clock, set the SU1HIM bit in the UiSMR2 register (i=0 to 4) and the SCLKDIV bit in the UiSMR register to values shown in Table 16.29. Then apply a trigger signal to the $\overline{\text{CTSi}}$ pin. Either the same clock cycle as the external clock or external clock divided by two can be selected as the transfer clock. The SCLKSTPB bit in the UiC1 register controls the transfer clock. Set the SCLKSTPB bit accordingly, to start or stop the transfer clock during an external clock operation. Figure 16.27 shows an example of the clock-divided synchronous function.

SCLKDIV Bit in	SU1HIM Bit in	Clock-Divided Synchronous Function	Example of Waveform
UiSMR Register	UiSMR2 Register		
0	0	Not synchronized	-
0	1	Same division as the external clock	A in Figure 16.27
1	0 or 1	Same division as the external clock	B in Figure 16.27
		divided by 2	

i=0 to 4

16.6 Special Mode 4 (IE Mode)

In IE mode, devices connected with the IEBus can communicate in UART mode. Table 16.30 lists register settings. Tables 16.31 to 16.33 list pin settings.

Register	Bit	Function			
UiTB	8 to 0	Set transmit data			
UiRB	8 to 0	Received data can be read			
	OER, FER,	Error flags			
	PER, SUM				
UiBRG	7 to 0	Set bit rate			
UiMR	SMD2 to SMD0	Set to "1102"			
	CKDIR	Select the internal clock or external clock			
	STPS	Set to "0"			
	PRY	Disabled because the PRYE bit is set to "0"			
	PRYE	Set to "0"			
	IOPOL	Select TxD and RxD I/O polarity			
UiC0	CLK1, CLK0	Select count source for the UiBRG register			
	CRS	Disabled because the CRD bit is set to "1"			
	TXEPT	Transfer register empty flag			
	CRD	Set to "1"			
	NCH	Select output format of the TxDi pin			
	CKPOL	Set to "0"			
	UFORM	Set to "0"			
UiC1	TE	Set to "1" to enable data transmission			
	ТІ	Transfer buffer empty flag			
	RE	Set to "1" te enable data reception			
	RI	Reception complete flag			
	UiIRS	Select what causes the UARTi transmit interrupt to be generated			
	UiRRM, UiLCH,	Set to "0"			
	SCLKSTPB				
UiSMR	3 to 0	Set to "00002"			
	ABSCS	Select bus conflict detect sampling timing			
	ACSE	Set to "1" to automatically clear the transmit enable bit			
	SSS	Select transmit start condition			
	SCLKDIV	Set to "0"			
UiSMR2	7 to 0	Set to "0016"			
UiSMR3	7 to 0	Set to "0016"			
UiSMR4	7 to 0	Set to "0016"			
	1 10 0				

Table 16.30	Register	Settings	in	IE	Mode

i=0 to 4

Port	Function	Setting		
		PS0 Register	PD6 Register	
P61	CLK0 input	PS0_1=0	PD6_1=0	
	CLK0 output	PS0_1=1	-	
P62	RxD0 input	PS0_2=0	PD6_2=0	
P63	TxD0 output	PS0_3=1	-	
P65	CLK1 input	PS0_5=0	PD6_5=0	
	CLK1 output	PS0_5=1	-	
P66	RxD1 input	PS0_6=0	PD6_6=0	
P67	TxD1 output	PS0_7=1	-	

Table 16.31 Pin Settings in IE Mode (1)

Table 16.32 Pin Settings (2)

Port	Function	Setting			
		PS1 Register	PSL1 Register	PSC Register	PD7 Register
P70 ⁽¹⁾	TxD2 output	PS1_0=1	PSL1_0=0	PSC_0=0	-
P71 ⁽¹⁾	RxD2 input	PS1_1=0	_	-	PD7_1=0
P72	CLK2 input	PS1_2=0	-	-	PD7_2=0
	CLK2 output	PS1_2=1	PSL1_2=0	PSC_2=0	_

NOTE:

1. P70 and P71 are ports for the N-channel open drain output.

Table 16.33 Pin Settings (3)

Port	Function	Setting			
		PS3 Register ⁽¹⁾	PSL3 Register	PSC3 Register	PD9 Register ⁽¹⁾
P90	CLK3 input	PS3_0=0	-	-	PD9_0=0
	CLK3 output	PS3_0=1	-	-	-
P91	RxD3 input	PS3_1=0	-	-	PD9_1=0
P92	TxD3 output	PS3_2=1	PSL3_2=0	-	-
P95	CLK4 input	PS3_5=0	PSL3_5=0	-	PD9_5=0
	CLK4 output	PS3_5=1	-	-	-
P96	TxD4 output	PS3_6=1	-	PSC3_6=0	-
P97	RxD4 input	PS3_7=0	-	-	PD9_7=0

NOTE:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enabled). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

If the output signal level of the TxDi pin (i=0 to 4) differs from the input signal level of the RxDi pin, an interrupt request is generated.

UART0 and UART3 are assigned software interrupt number 40. UART1 and UART4 are assigned number 41. When using the bus conflict detect function of UART0 or UART3, of UART1 or UART4, set the IFSR6 bit and the IFSR7 bit in the IFSR register accordingly.

When the ABSCS bit in the UiSMR register is set to "0" (rising edge of the transfer clock), it is determined, on the rising edge of the transfer clock, if the output level of the TxD pin and the input level of the RxD pin match. When the ABSCS bit is set to "1" (timer Aj underflow), it is determined when the timer Aj (timer A3 in UART0, timer A4 in UART1, timer A0 in UART2, timer A3 in UART3, the timer A4 in UART4) counter overflows. Use the timer Aj in one-shot timer mode.

When the ACSE bit in the UiSMR register is set to "1" (automatic clear at bus conflict) and the IR bit in the BCNiIC register to "1" (discrepancy detected), the TE bit in the UiC1 register is set to "0" (transmit disable).

When the SSS bit in the UiSMR register is set to "1" (synchronized with RxDi), data is transmitted from the TxDi pin on the falling edge of the RxDi pin. Figure 16.28 shows bits associated with the bus conflict detect function.

Transfer Clock	
TxDi	
RxDi	Trigger signal is applied to the TAjıN pin
Timer Aj	
	When the ABSCS bit is set to "1", bus conflict is detected when the timer Aj underflows (in the one-shot timer mode). An interrupt request is generated.
	Timer Aj: timer A3 in UART0 or UART3, timer A4 in UART1 or UART4, timer A0 in UART2
(2) The ACSE	Bit in the UiSMR Register (Transmit enable bit is automatically cleare
Transfer Clock	ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP
TxDi	
RxDi	
IR bit in BCNilC register	
TE bit in UiC1 register	
(3) The SSS bi	t in the UiSMR Register (Transmit start condition is selected)
	e SSS bit is set to "0", data is transmitted after one transfer clock cycle ansmission is enabled.
Transfer Clock	ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP
TxDi	
	transmit enable conditons are met
When th	e SSS bit is set to "1", data is transmitted on the falling edge of RxDi ⁽¹⁾
CLKi	\square
TxDi	(Note 2)

Figure 16.28 Bit Function Related Bus Conflict Detection

16.7 Special Mode 5 (SIM Mode)

In SIM mode, SIM interface devices can communicate in UART mode. Both direct and inverse formats are available and a low-level ("L") signal output can be provided from the TxDi pin (i=0 to 4) when a parity error is detected.

Table 16.34 lists specifications of SIM mode. Table 16.35 lists register settings. Tables 16.36 to 16.38 list pin settings.

Item			Specification		
Transfer Data Format	• Transfer data: 8-bit UART mode		One stop bit		
	In direct format		In inverse format		
	Parity:	Even	Parity:	Odd	
	Data logic:	Direct	Data logic:	Inverse	
	Transfer format:	LSB first	Transfer format:	MSB first	
Transfer Clock			0 to 4) is "0" (internal setting value of the U	clock selected): iBRG register, 0016 to FF16	
	Do not set the CKD	OIR bit to "1" (externa	I clock selected)		
Transmit/Receive Control	The CRD bit in the	UiC0 register is set t	o "1" (CTS, RTS func	tion disabled)	
Other Setting Items	The UiIRS bit in the	e UiC1 register is set	to "1" (transmission of	completed)	
Transmit Start Condition	To start transmitting	g, the following requi	rements must be met	:	
	- Set the TE bit in t	he UiC1 register to "	1" (transmit enabled)		
	- Set the TI bit in th	e UiC1 register to "0	" (data in the UiTB re	gister)	
Receive Start Condition	To start receiving, the following requirements must be met:				
	- Set the RE bit in t	he UiC1 register to "	1" (receive enabled)		
	- Detect the start bi	t			
Interrupt Request	 While transmitting],			
Generation Timing		et to "1" (transmissio mission from the UAF	n completed): RTi transfer register is	completed	
	• While receiving,				
	when data is transfe	erred from the UARTi re	eceive register to the Uif	RB register (reception completed)	
Error Detection	• Overrun error ⁽¹⁾				
	This error occurs when the eighth bit of the next data is received before UiRB register				
	 Framing error 				
	This error occur	s when the number o	of the stop bit set is no	ot detected	
	 Parity error 				
	This error occur the number set	s when the number o	of "1" in parity bit and	character bits differs from	
	 Error sum flag 				
	The SUM bit is	set to "1" when an ov	verrun error, framing e	error or parity error occurs	

Table 16.34 SIM Mode Specifications

NOTES:

1. If an overrun error occurs, the UiRB register is indeterminate. The IR bit setting in the SiRIC register does not change to "1" (interrupt requested).

2. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Register	Bit	Function			
UiTB	7 to 0	Set transmit data			
UiRB	7 to 0	Received data can be read			
	OER, FER,	Error flags			
	PER, SUM				
UiBRG	7 to 0	Set bit rate			
UiMR	SMD2 to SMD0	Set to "1012"			
	CKDIR	Set to "0"			
	STPS	Set to "0"			
	PRY	Set to "1" for direct format or "0" for inverse format			
	PRYE	Set to "1"			
	IOPOL	Set to "0"			
UiC0	CLK1, CLK0	Select count source for the UiBRG register			
	CRS	Disabled because the CRD bit is set to "1"			
	TXEPT	Transfer register empty flag			
	CRD	Set to "1"			
	NCH	Set to "1"			
	CKPOL	Set to "0"			
	UFORM	Set to "0" for direct format or "1" for inverse format			
UiC1	TE	Set to "1" to enable data transmission			
	TI	Transfer buffer empty flag			
	RE	Set to "1" to enable data reception			
	RI	Reception complete flag			
	UilRS	Set to "1"			
	UiRRM	Set to "0"			
	UiLCH	Set to "0" for direct format or "1" for inverse format			
	UiERE	Set to "1"			
UiSMR	7 to 0	Set to "0016"			
UiSMR2	7 to 0	Set to "0016"			
UiSMR3	7 to 0	Set to "0016"			
UiSMR4	7 to 0	Set to "0016"			

Table 16.35	Reaister	Settinas in	SIM Mode
	regiotor	oottingo iii	

i=0 to 4

Port	Function	Setting		
		PS0 Register	PD6 Register	
P62	RxD0 input	PS0_2=0	PD6_2=0	
P63	TxD0 output	PS0_3=1	-	
P66	RxD1 input	PS0_6=0	PD6_6=0	
P67	TxD1 output	PS0_7=1	_	

Table 16.36 Pin Settings in SIM Mode (1)

Table 16.37 Pin Settings (2)

Port	Function	Setting				
		PS1 Register	PSL1 Register	PSC Register	PD7 Register	
P70 ⁽¹⁾	TxD2 output	PS1_0=1	PSL1_0=0	PSC_0=0	-	
P71 ⁽¹⁾	RxD2 input	PS1_1=0	_	-	PD7_1=0	

NOTE:

1. P70 and P71 are ports for the N-channel open drain output.

Table 16.38 Pin Settings (3)

Port	Function		Setting					
		PS3 Register ⁽¹⁾	PSL3 Register	PSC3 Register	PD9 Register ⁽¹⁾			
P91	RxD3 input	PS3_1=0	-		PD9_1=0			
P92	TxD3 output	PS3_2=1	PSL3_2=0		-			
P96	TxD4 output	PS3_6=1	-	PSC3_6=0	-			
P97	RxD4 input	PS3_7=0	-		PD9_7=0			

NOTE:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enabled). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

Figure 16.29 shows an example of a SIM interface operation. Figure 16.30 shows an example of a SIM interface connection. Connect the TxDi pin to the RxDi pin for a pull-up.

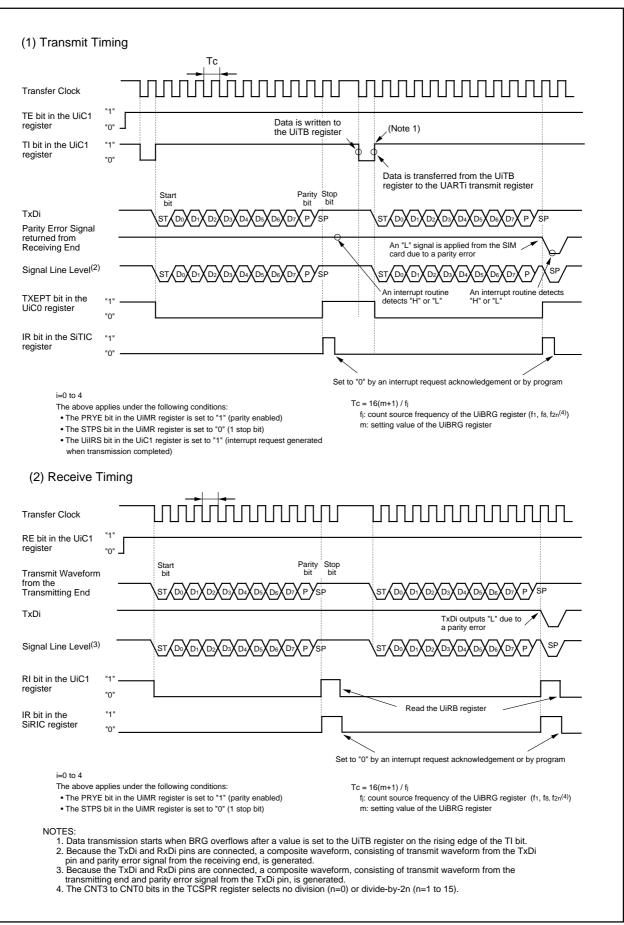


Figure 16.29 SIM Interface Operation

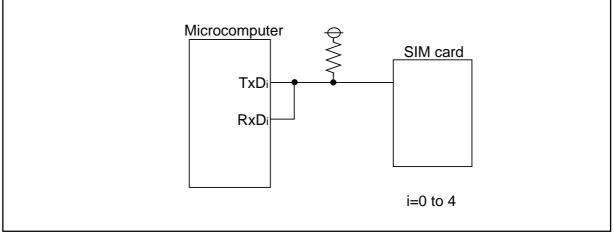


Figure 16.30 SIM Interface Connection

16.7.1 Parity Error Signal

16.7.1.1 Parity Error Signal Output Function

When the UiERE bit in the UiC1 register (i=0 to 4) is set to "1" (output), the parity error signal output can be provided. The parity error signal output is provided when a parity error is detected upon receiving data. A low-level ("L") signal output is provided from the TxDi pin in the timing shown in Figure 16.31. When reading the UiRB register during a parity error output, the PER bit in the UiRB register is set to "0" (no error occurs) and a high-level ("H") signal output is again provided simultaneously.

16.7.1.2 Parity Error Signal

To determine whether the parity error signal is output, the port that shares a pin with the RxDi pin is read by using an end-of-transmit interrupt routine.

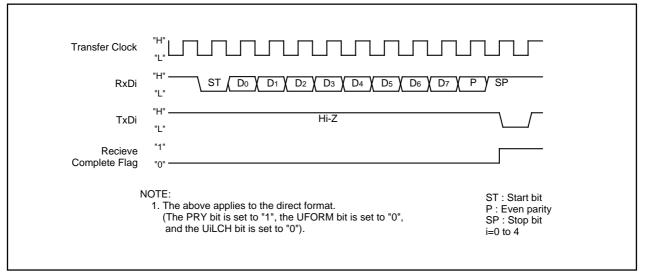


Figure 16.31 Parity Error Signal Output Timing (LSB First)

16.7.2 Format

16.7.2.1 Direct Format

Set the PRYE bit in the UiMR register (i=0 to 4) to "1" (parity enabled), the PRY bit to "1" (even parity), the UFORM bit in the UiC0 register to "0" (LSB first) and the UiLCH bit in the UiC1 register to "0" (not inversed). When data are transmitted, data set in the UiTB register are transmitted with the even-numbered parity, starting from D0. When data are received, received data are stored in the UiRB register, starting from D0. The even-numbered parity determines whether a parity error occurs.

16.7.2.2 Inverse Format

Set the PRYE bit to "1", the PRY bit to "0" (odd parity), the UFORM bit to "1" (MSB first) and the UiLCH bit to "1" (inversed). When data are transmitted, values set in the UiTB register are logically inversed and are transmitted with the odd-numbered parity, starting from D7. When data are received, received data are logically inversed to be stored in the UiRB register, starting from D7. The odd-numbered parity determines whether a parity error occurs.

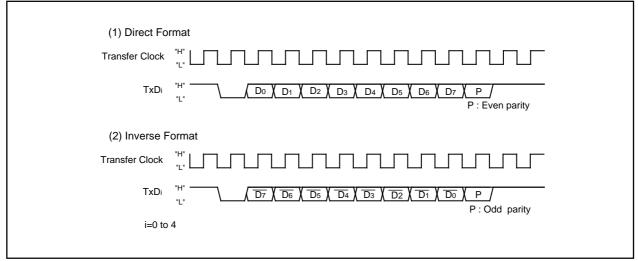


Figure 16.32 SIM Interface Format

17. A/D Converter

The A/D converter consists of one 10-bit successive approximation A/D converter with a capacitive coupling amplifier.

The result of an A/D conversion is stored into the A/D registers corresponding to selected pins. It is stored into the AD00 register only when DMAC operating mode is entered.

Table 17.1 lists specifications of the A/D converter. Figure 17.1 shows a block diagram of the A/D converter. Figures 17.2 to 17.6 show registers associated with the A/D converter.

NOTE

This section is described in the 144-pin package only as an example. The AN150 to AN157 pins are not included in the 100-pin package.

Item	Specification			
A/D Conversion Method	Successive approximation (with a capacitive coupling amplifier)			
Analog Input Voltage ⁽¹⁾	0V to AVcc (Vcc)			
Operating Clock, ØAD ⁽²⁾	fad, fad/2, fad/3, fad/4, fad/6, fad/8			
Resolution	8 bits or 10 bits			
Operating Mode	One-shot mode, repeat mode, single sweep mode, repeat sweep mode 0,			
	repeat sweep mode 1, multi-port single sweep mode, multi-port repeat sweep			
	mode 0			
Analog Input Pins ⁽³⁾	34 pins			
	8 pins each for AN (ANo to AN7), ANO (AN0o to AN07), AN2 (AN2o to AN27),			
	AN15 (AN150 to AN157)			
	2 extended input pins (ANEX0 and ANEX1)			
A/D Conversion Start Condition	Software trigger			
	The ADST bit in the AD0CON0 register is set to "1" (A/D conversion started) by			
	program			
	• External trigger (re-trigger is enabled)			
	When a falling edge is applied to the $\overline{\text{ADTRG}}$ pin after the ADST bit is set to "1" by			
	program			
	Hardware trigger (re-trigger is enabled)			
	The timer B2 interrupt request of the three-phase motor control timer functions			
	(after the ICTB2 counter completes counting) is generated after the ADST bit is			
	set to "1" by program			
Conversion Rate Per Pin	Without the sample and hold function			
	8-bit resolution : 49 ØAD cycles			
	10-bit resolution : 59 ØAD cycles			
	With the sample and hold function			
	8-bit resolution : 28 ØAD cycles			
	10-bit resolution : 33 ØAD cycles			

Table 17.1 A/D Converter Specifications

NOTES:

- 1. Analog input voltage is not affected by the sample and hold function status.
- 2. ØAD frequency must be 16 MHz or below when VCC=5V.Without the sample and hold function, the ØAD frequency is 250 kHz or above.With the sample and hold function, the ØAD frequency is 1 MHz or above.
- 3. AVcc = VREF = Vcc, A/D input voltage (for AN₀ to AN7, AN0₀ to AN07 and AN2₀ to AN27, AN15₀ to AN157, ANEX0 and ANEX1) ≤ Vcc.

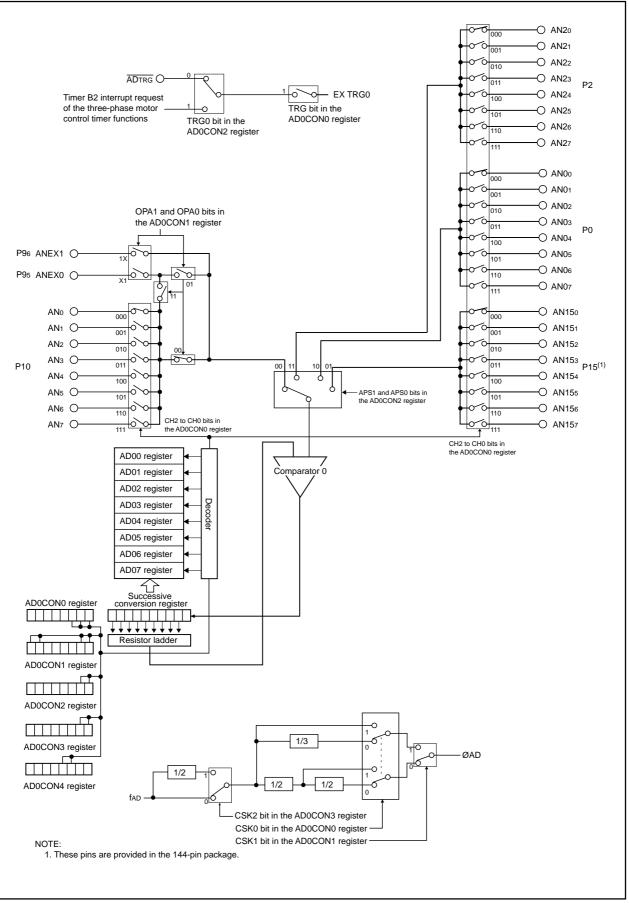


Figure 17.1 A/D Converter Block Diagram

57 b6 b5 b4 b3 b2 b	o1 b0	Symb AD0C			
		Bit Symbol	Bit Name	Function	RW
		CH0		b2b1b0 0 0 0: ANio 0 0 1: ANi1	RW
		CH1	Analog Input Pin Select Bit ^(2, 3, 8, 9)	0 1 0: ANi2 0 1 1: ANi3 1 0 0: ANi4	RW
		CH2		1 0 1: ANis 1 1 0: ANi6 1 1 1: ANi7 (i=none, 0, 2, 1	5) RW
		MD0	A/D Operating Mode	^{b4 b3} 0 0: One-shot mode 0 1: Repeat mode	RW
			Select Bit 0 ^(2, 6, 7)	1 0: Single sweep mode 1 1: Repeat sweep mode 0 or 1	RW
		TRG	Trigger Select Bit	0: Software trigger 1: External trigger, hardware trigger ⁽⁴	₄₎ RW
		ADST	A/D Conversion Start Flag	0: A/D conversion stops 1: A/D conversion starts ⁽⁴⁾	RW
		CKS0	Frequency Select Bit	(Note 5)	RW
indeterminate.		-	rewritten during the A/ gain after changing an	D conversion, the conversion result is	

- Then set the ADST bit to "1" after the TRG bit is set to "1".
- 5. $\not \text{OAD}$ frequency must be under 16 MHz when Vcc=5V.

The CKS2 Bit in the AD0CON3 Register	The CKS0 Bit in the AD0CON0 Register	The CKS1 Bit in the AD0CON1 Register	ØAD
	0	0	fad divided by 4
0	1	1	fad divided by 3
0		0	fad divided by 2
		1	fad
	0	0	fad divided by 8
1	U	1	fad divided by 6

- 6. When the MSS bit in the AD0CON3 register is set to "1" (multi-port sweep mode enabled), set the MD1 and MD0 bits to "102" to enter multi-port single sweep mode and to "112" to enter multi-port repeat sweep mode 0.
- 7. When the MSS bit is set to "1", the MD1 and MD0 bits cannot be set to "002" or "012".
- 8. AVcc=VREF=Vcc, AD input voltage (for AN₀ to AN7, AN0₀ to AN07, AN2₀ to AM27, AN15₀ to AN157, ANEX0, ANEX1) ≤ Vcc.
- 9. Set the PSC_7 bit in the PSC register to "1" to use the P10 pin as an analog input pin.

Figure 17.2 AD0CON0 Register

b7 b6 b5 b4 b	b3 b2 b1 b0	Symbo AD0C0		After Reset 0016	
		Bit Symbol	Bit Name	Function	RW
		SCAN0		Single sweep mode and repeat sweep mode 0 ^{b1 b0} 0 0: ANio, ANi1 0 1: ANio to ANi3 1 0: ANio to ANi5 1 1: ANio to ANi7	RW
		SCAN1	A/D Sweep Pin Select Bit ^(2, 10)	Repeat sweep mode 1 ⁽³⁾ b1b0 0 0: ANio 0 1: ANio, ANi1 1 0: ANio to ANi2 1 1: ANio to ANi3 (i=none, 0, 2, 15) Multi-port single sweep mode and multi-port repeat sweep mode 0 ⁽⁴⁾ b1b0 1 1: ANio to ANi7	RW
		MD2	A/D Operating Mode Select Bit 1	0: Any mode other than repeat sweep mode 1 1: Repeat sweep mode 1 ⁽⁵⁾	RW
		BITS	8/10-Bit Mode Select Bit	0: 8-bit mode 1: 10-bit mode	RW
		CKS1	Frequency Select Bit	(Note 6)	RW
		VCUT	VREF Connection Bit	0: No VREF connection ⁽¹¹⁾ 1: VREF connection	RW
	······ 0		External Op-Amp	b7b6 0 0: ANEX0 and ANEX1 are not used ⁽⁸⁾	RW
		OPA1	Connection Mode Bit ^(7, 9)	0 1: Signal into ANEX0 is A/D converted1 0: Signal into ANEX1 is A/D converted1 1: External op-amp connection mode	RW
indeterm 2. The SCA	iinate. N1 and SCA	N0 bit setti	ngs are disabled in s	VD conversion, the conversion result is single sweep mode, repeat sweep mode 0, r ulti-port repeat sweep mode 0.	repea

- SCAN0 bits to any setting other than "112". 5. When the MSS bit in the AD0CON3 register is set to "1" (multi-port sweep mode enabled), set the
- MD2 bit to "0". 6. Refer to the note for the CKS0 bit in the AD0CON0 register.
- 7. In one-shot mode and repeat mode, the OPA1 and OPA0 bits can be set to "012" or "102" only. Do not set the OPA0 and OPA1 bits to "012" or "102" in other modes.
- 8. To set the OPA1 and OPA0 bits to "002", set the PSL3_5 bit in PSL3 register to "0" (other than ANEX0) and the PSL3_6 bit to "0" (other than ANEX1).
- 9. When the MSS bit is set to "1", set the OPA1 and OPA0 bits to "002".
- 10. AVcc=VREF=Vcc, AD input voltage (for AN₀ to AN7, AN0₀ to AN07, AN2₀ to AM27, AN15₀ to AN157, ANEX0, ANEX1) ≤ Vcc.
- 11. Do not set the VCUT bit to "0" during the A/D conversion. VREF is a reference voltage for AD0 only. The VCUT bit setting does not affect the VREF performance of the D/A converter.

Figure 17.3 AD0CON1 Register

b7 b6 b5 b4 b3 b2 b1 b0	Symb AD0C			
	Bit Symbol	Bit Name	Function	RV
	SMP	A/D Conversion Method Select Bit	0: Without the sample and hold funtion 1: With the sample and hold function	RV
	- APS0	Analog Input Port	^{b2b1} 0 0: ANº to AN7, ANEX0, ANEX1 0 1: AN150 to AN157	RV
	· APS1	Select Bit ^(2, 3)	1 0: AN00 to AN07 1 1: AN20 to AN27	RV
	(b4 - b3)	Nothing is assigned. When read, its conten	When write, set to "0". It is indeterminate.	-
	• TRG0	External Trigger Request Cause Select Bit	0: Selects ADTRG 1: Selects a timer B2 interrupt request of the three-phase motor control timer functions (after the ICTB2 counter completes counting)	RV
	(b7 - b6)	Reserved Bit	Set to "0". When read, its content is indeterminate.	RV
indeterminate. 2. When the MSS bit in t APS1 and APS0 bits t	the AD0CC to "012".	0N3 register is set to "1"	conversion, the conversion result is (multi-port sweep mode enabled), set the pin package only when the MSS bit in the	

Figure 17.4 AD0CON2 Register

b7 b6 b5 b4 b3 b2 b1 0 0 0 0	b0 Symb	AddressCON3039516	After Reset XXXX X0002	
	Bit Symbol	Bit Name	Function	RW
	DUS	DMAC Operation Select Bit ⁽³⁾	0: Disables DMAC operating mode 1: Enables DMAC operating mode ^(4, 5)	RW
	MSS	Multi-Port Sweep Mode Select Bit	0: Disables multi-port sweep mode 1: Enables multi-port sweep mode ^(3, 6)	RW
	CKS2	Frequency Select Bit	(Note 7)	RW
	MSF0	Multi-Port Sweep	^{b4 b3} 0 0: AN₀ to AN7 0 1: AN15₀ to AN157	RO
	····· MSF1	Status Flag ⁽⁸⁾	1 0: AN00 to AN07 1 1: AN20 to AN27	RO
	(b7 - b5)	Reserved Bit	Set to "0". When read, its content is indeterminate.	RW
indeterminate. 2. The AD0CON3 ma A/D converter stop 3. When the MSS bit 4. When the DUS bit 5. When the DUS bit 6. When the MSS bit sweep mode 1), th	ay be read und bs operating. is set to "1", s is set to "1", s is set to "1", s is set to "1", s he APS1 and A	correctly during the A/D set the DUS bit to "1". he AD00 register store set the DMAC. set the MD2 bit in the A APS0 bits in the AD0C0	D conversion, the conversion result is C conversion. It must be read or written aft as all A/D conversion results. AD0CON1 register to "0" (other than repea DN2 register to "012" (AN150 to AN157) an ' (ANEX0 and ANEX1 not used).	t

Figure 17.5 AD0CON3 Register

indeterminate when the MSS bit is set to "0".

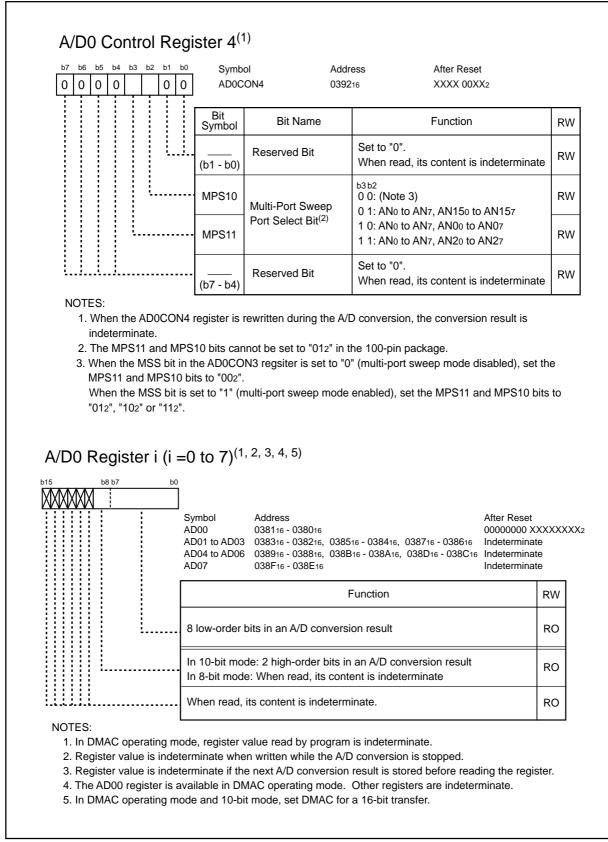


Figure 17.6 AD0CON4 Register and AD00 to AD07 Registers

17.1 Mode Description

17.1.1 One-shot Mode

In one-shot mode, analog voltage applied to a selected pin is converted to a digital code once. Table 17.2 lists specifications of one-shot mode.

Item	Specification
Function	The CH2 to CH0 bits in the AD0CON0 register, the OPA1 and OPA0 bits in the
	AD0CON1 register and the APS1 and APS0 bits in the AD0CON2 register select a
	pin. Analog voltage applied to the pin is converted to a digital code once
Start Condition	• When the TRG bit in the AD0CON0 register is set to "0" (software trigger),
	the ADST bit in the AD0CON0 register is set to "1" (A/D conversion starts) by
	program
	When the TRG bit is set to "1" (external trigger, hardware trigger):
	- a falling edge is applied to the ADTRG pin after the ADST bit is set to "1" by
	program
	- The timer B2 interrupt request of three-phase motor control timer functions
	(after the ICTB2 register counter completes counting) is generated after the
	ADST bit is set to "1" by program
Stop Condition	• A/D conversion is completed (the ADST bit is set to "0" when the software trigger is
	selected)
	 The ADST bit is set to "0" (A/D conversion stopped) by program
Interrupt Request Generation Timing	A/D conversion is completed
Analog Voltage Input Pins	Select one pin from ANio to ANi7 (i=none, 0, 2, 15), ANEX0 or ANEX1
Reading of A/D Conversion Result	When the DUS bit in the AD0CON3 register is set to "0" (DMAC operating
	mode disabled), the microcomputer reads the AD0j register (j=0 to 7) corre-
	sponding to selected pin
	• When the DUS bit is set to "1" (DMAC operating mode enabled), do not read the
	AD00 register. A/D conversion result is stored in the AD00 register after the A/D
	conversion is completed. DMAC transfers the conversion result to any memory
	space. Refer to 12. DMAC for DMAC settings

Table 17.2 One-shot Mode Specifications

17.1.2 Repeat Mode

In repeat mode, analog voltage applied to a selected pin is repeatedly converted to a digital code. Table 17.3 lists specifications of repeat mode.

Item	Specification
Function	The CH2 to CH0 bits in the AD0CON0 register, the OPA1 and OPA0 bits in the
	AD0CON1 register and the APS1 and APS0 bits in the AD0CON2 register select a
	pin. Analog voltage applied to the pin is repeatedly converted to a digital code
Start Condition	Same as one-shot mode
Stop Condition	The ADST bit in the AD0CON0 register is set to "0" (A/D conversion stopped) by
	program
Interrupt Request Generation Timing	When the DUS bit in the AD0CON3 register is set to "0" (DMAC operating
	mode disabled), no interrupt request is generated.
	• When DUS bit is set to "1" (DMAC operating mode enabled), an interrupt request
	is generated every time an A/D conversion is completed.
Analog Voltage Input Pins	Select one pin from ANio to ANi7 (i=none, 0, 2, 15), ANEX0 or ANEX1
Reading of A/D Conversion Result	• When the DUS bit is set to "0", the microcomputer reads the AD0j register (j=0 to
	7) corresponding to the selected pin.
	• When DUS bit is set to "1", do not read the AD00 register. A/D conversion result
	is stored in the AD00 register after the A/D conversion is completed. DMAC
	transfers the conversion result to any memory space.
	Refer to 12. DMAC for DMAC settings

Table 17.3 Repeat Mode Specifications

17.1.3 Single Sweep Mode

In single sweep mode, analog voltage that is applied to selected pins is converted one-by-one to a digital code. Table 17.4 lists specifications of single sweep mode.

Item	Specification
Function	The SCAN1 and SCAN0 bits in the AD0CON1 register and the APS1 and APS0
	bits in the AD0CON2 register select pins. Analog voltage applied to the pin is
	converted one-by-one to a digital code
Start Condition	Same as one-shot mode
Stop Condition	Same as one-shot mode
Interrupt Request Generation Timing	When the DUS bit in the AD0CON3 register is set to "0" (DMAC operating
	mode disabled), an interrupt request is generated after a sweep is completed.
	• When DUS bit is set to "1" (DMAC operating mode enabled), an interrupt
	request is generated every time an A/D conversion is completed
Analog Voltage Input Pins	Select from ANio and ANi1 (2 pins) (i=none, 0, 2, 15), ANio to ANi3 (4 pins), ANio to
	ANi5 (6 pins) or ANi0 to ANi7 (8 pins)
Reading of A/D Conversion Result	When the DUS bit is set to "0", the microcomputer reads the AD0j register corre-
	sponding to selected pins
	• When DUS bit is set to "1", do not read the AD00 register. A/D conversion result
	is stored in the AD00 register after the A/D conversion is completed. DMAC
	transfers the conversion result to any memory space. Refer to 12. DMAC for
	DMAC settings

Table 17.4 Single Sweep Mode Specifications

17.1.4 Repeat Sweep Mode 0

In repeat sweep mode 0, analog voltage applied to selected pins is repeatedly converted to a digital code. Table 17.5 lists specifications of repeat sweep mode 0.

Item	Specification		
Function	The SCAN1 and SCAN0 bits in the AD0CON1 register and the APS1 and APS0		
	bits in the AD0CON2 register select pins. Analog voltage applied to the pins is		
	repeatedly converted to a digital code		
Start Condition	Same as one-shot mode		
Stop Condition	The ADST bit in the AD0CON0 register is set to "0" (A/D conversion stopped) by		
	program		
Interrupt Request Generation Timing	• When the DUS bit in the AD0CON3 register is set to "0" (DMAC operating mode		
	disabled), no interrupt request is generated		
	• When DUS bit is set to "1" (DMAC operating mode enabled), an interrupt request		
	is generated every time an A/D conversion is completed		
Analog Voltage Input Pins	Select from ANio and ANi1 (2 pins) (i=none, 0, 2, 15), ANio to ANi3 (4 pins), ANio to		
	ANi5 (6 pins) or ANi0 to ANi7 (8 pins)		
Reading of A/D Conversion Result	• When the DUS bit is set to "0", the microcomputer reads the AD0j register (j=0 to		
	7) corresponding to selected pins		
	\bullet When the DUS bit is set to "1", do not read the AD00 register. A/D conversion		
	result is stored in the AD00 register after the A/D conversion is completed.		
	DMAC transfers the conversion result to any memory space. Refer to 12. DMAC		
	for DMAC settings		

Table 17.5	Repeat Swee	p Mode 0 S	pecifications
------------	-------------	------------	---------------

_

17.1.5 Repeat Sweep Mode 1

In repeat sweep mode 1, analog voltage selectively applied to eight pins is repeatedly converted to a digital code. Table 17.6 lists specifications of repeat sweep mode 1.

Item	Specification
Function	The SCAN1 and SCAN0 bits in the AD0CON1 register and the APS1 and APS0
	bits in the AD0CON2 register select 8 pins. Analog voltage selectively applied to
	8 pins is repeatedly converted to a digital code
	e.g., When ANio is selected (i =none, 0, 2, 15), analog voltage is converted to a
	digital code in the following order:
	ANio \rightarrow ANi1 \rightarrow ANio \rightarrow ANi2 \rightarrow ANio \rightarrow ANi3 etc.
Start Condition	Same as one-shot mode (Any trigger generated during an A/D conversion is invalid)
Stop Condition	The ADST bit is set to "0" (A/D conversion stopped) by program
Interrupt Request Generation Timing	When the DUS bit in the AD0CON3 register is set to "0" (DMAC operating
	mode disabled), no interrupt request is generated
	• When DUS bit is set to "1" (DMAC operating mode enabled), an interrupt request
	is generated every time an A/D conversion is completed
Analog Voltage Input Pins	ANio to ANi7 (8 pins)
Prioritized Pins	ANio (1 pin), ANio and ANi1 (2 pins), ANio to ANi2 (3 pins) or ANio to ANi3 (4 pins)
Reading of A/D Conversion Result	• When the DUS bit is set to "0", the microcomputer reads the AD0j register (j=0 to
	7) corresponding to selected pins
	• When the DUS bit is set to "1", do not read the AD00 register. A/D conversion
	result is stored in the AD00 register after the A/D conversion is completed.
	DMAC transfers the conversion result to any memory space. Refer to 12. DMAC
	for DMAC settings

Table 17.6 Repeat Sweep Mode 1 Specifications	Table 17.6	Repeat Swee	p Mode 1 S	pecifications
---	------------	-------------	------------	---------------

17.1.6 Multi-Port Single Sweep Mode

In multi-port single sweep mode, analog voltage applied to 16 selected pins is converted one-by-one to a digital code. Set the DUS bit in the AD0CON3 register to "1" (DMAC operating mode enabled). Table 17.7 lists specifications of multi-port single sweep mode.

Item	Specification
Function	The MPS11 and MPS10 bits in the AD0CON4 register select 16 pins. Analog
	voltage applied to 16 pins is converted one-by-one to a digital code in the following
	order: AN₀ to AN7 → ANi₀ to ANi7 (i=0, 2, 15)
	e.g., When the MPS11 and MPS10 bits are set to "102" (ANo to AN7, AN0o to
	AN07), analog voltage is converted to a digital code in the following order:
	$AN_0 \rightarrow AN_1 \rightarrow AN_2 \rightarrow AN_3 \rightarrow AN_4 \rightarrow AN_5 \rightarrow AN_6 \rightarrow AN_7 \rightarrow$
	$AN00 \rightarrow AN01 \rightarrow \dots \rightarrow AN06 \rightarrow AN07$
Start Condition	Same as one-shot mode
Stop Condition	The ADST bit in the AD0CON0 register is set to "0" (A/D conversion stopped) by
	program
Interrupt Request Generation Timing	An interrupt request is generated every time A/D conversion is completed
	(Set the DUS bit to "1")
Analog Voltage Input Pins	Select from AN₀ to AN7 → AN15₀ to AN157, AN₀ to AN7 → AN0₀ to AN07 or AN₀ to
	AN7→AN20 to AN27
Reading of A/D Conversion Result	Do not read the AD00 register. A/D conversion result is stored in the AD00 regis-
	ter after the A/D conversion is completed. DMAC transfers the conversion result
	to any memory space. Refer to 12. DMAC for DMAC settings
	(Set the DUS bit to "1")

17.1.7 Multi-Port Repeat Sweep Mode 0

In multi-port repeat sweep mode 0, analog voltage that is applied to 16 selected pins is repeatedly converted to a digital code. Set the DUS bit in the AD0CON3 register to "1" (DMAC operating mode enabled). Table 17.8 lists specifications of multi-port repeat sweep mode 0.

Item	Specification		
Function	The MPS11 and MPS10 bits in the AD0CON4 register select 16 pins. Analog		
	voltage applied to the 16 pins is repeatedly converted to a digital code in the fol-		
	lowing order: AN0 to AN7 \rightarrow ANi0 to ANi7 (i=0, 2, 15)		
	e.g., When the MPS11 and MPS10 bits are set to "102" (ANo to AN7, AN0o to AN07),		
	analog voltage is repeatedly converted to a digital code in the following order:		
	$AN_0 \rightarrow AN_1 \rightarrow AN_2 \rightarrow AN_3 \rightarrow AN_4 \rightarrow AN_5 \rightarrow AN_6 \rightarrow AN_7 \rightarrow$		
	$AN00 \rightarrow AN01 \rightarrow \dots \rightarrow AN06 \rightarrow AN07$		
Start Condition	Same as one-shot mode		
Stop Condition	The ADST bit is set to "0" (A/D conversion stopped) by program		
Interrupt Request Generation Timing	An interrupt request is generated after each A/D conversion is completed		
	(Set the DUS bit to "1")		
Analog Voltage Input Pins	Selectable from AN0 to AN7 → AN150 to AN157, AN0 to AN7 → AN00 to AN07 or		
	AN0 to AN7 \rightarrow AN20 to AN27		
Reading of A/D Conversion Result	Do not read the AD00 register. A/D conversion result is stored in the AD00 regis-		
	ter after the A/D conversion is completed. DMAC transfers the conversion result		
	to any memory space. Refer to 12. DMAC for DMAC settings		
	(Set the DUS bit to "1")		

Table 17.8 Multi-Port Repeat Sweep Mode 0 Specifications

17.2 Functions

17.2.1 Resolution Select Function

The BITS bit in the AD0CON1 register determines the resolution. When the BITS bit is set to "1" (10-bit precision), the A/D conversion result is stored into bits 9 to 0 in the AD0j register (j = 0 to 7). When the BITS bit is set to "0" (8-bit precision), the A/D conversion result is stored into bits 7 to 0 in the AD0j register.

17.2.2 Sample and Hold Function

When the SMP bit in the AD0CON2 register is set to "1" (with the sample and hold function), A/D conversion rate per pin increases to 28 ØAD cycles for 8-bit resolution and 33 ØAD cycles for 10-bit resolution. The sample and hold function is available in all operating modes. Start the A/D conversion after selecting whether the sample and hold function is to be used or not.

17.2.3 Trigger Select Function

The TRG bit in the AD0CON0 register and the TRG0 bit in the AD0CON2 register select the trigger to start the A/D conversion. Table 17.9 lists settings of the trigger select function.

Bit and Setting		Trigger
AD0CON0 Register	AD0CON2 Register	
TRG = 0	-	Software trigger
		The A/D0 starts the A/D conversion when the ADST bit in the AD0CON0 register is set to "1"
$TRG = 1^{(1)}$	TRG0 = 0	External trigger ⁽²⁾
		Falling edge of a signal applied to ADTRG
	TRG0 = 1	Hardware trigger ⁽²⁾
		The timer B2 interrupt request of three-phase motor control timer functions (after the ICTB2 counter completes counting)

Table 17.9 Trigger	Select	Function	Settings
--------------------	--------	----------	----------

NOTES:

1. A/D0 starts the A/D conversion when the ADST bit is set to "1" (A/D conversion started) and a trigger is generated.

2. The A/D conversion is restarted if an external trigger or a hardware trigger is inserted during the A/D conversion. (The A/D conversion in process is aborted.)

17.2.4 DMAC Operating Mode

DMAC operating mode is available with all operating modes. When the A/D converter is in multi-port single sweep mode or multi-port repeat sweep mode 0, the DMAC operating mode must be used. When the DUS bit in the AD0CON3 register is set to "1" (DMAC operating mode enabled), all A/D conversion results are stored into the AD00 register. DMAC transfers data from the AD00 register to any memory space every time an A/D conversion is completed in each pin. 8-bit DMA transfer must be selected for 8-bit resolution and 16-bit DMA transfer for 10-bit resolution. Refer to **12. DMAC** for instructions.

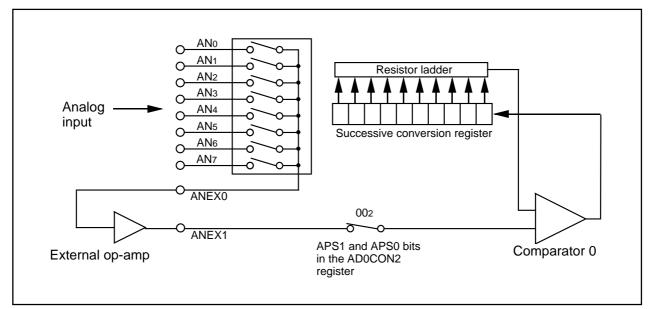
17.2.5 Extended Analog Input Pins

In one-shot mode and repeat mode, the ANEX0 and ANEX1 pins can be used as analog input pins. The OPA1 and OPA0 bits in the AD0CON1 register select which pins to use as analog input pins. An A/D conversion result for the ANEX0 pin is stored into the AD00 register. The result for the ANEX1 pin is stored into the AD01 register, but is stored into the AD00 register when the DUS bit in the AD0CON3 register is set to "1" (DMAC operating mode enabled).

Set the APS1 and APS0 bits in the AD0CON2 register to "002" (AN0 to AN7, ANEX0, ANEX1) and the MSS bit in the AD0CON3 register to "0" (multi-port sweep mode disabled).

17.2.6 External Operating Amplifier (Op-Amp) Connection Mode

In external op-amp connection mode, multiple analog voltage can be amplified by one external op-amp using extended analog input pins ANEX0 and ANEX1.


When the OPA1 and OPA0 bits in the AD0CON1 register are set to "112" (external op-amp connection), voltage applied to the AN0 to AN7 pins are output from ANEX0. Amplify this output signal by an external op-amp and apply it to ANEX1.

Analog voltage applied to ANEX1 is converted to a digital code and the A/D conversion result is stored into the corresponding AD0j register (j=0 to 7). A/D conversion rate varies depending on the response of the external op-amp. The ANEX0 pin cannot be connected to the ANEX1 pin directly.

Set the APS1 and APS0 bits in the AD0CON2 register to "002" (AN0 to AN7, ANEX0, ANEX1). Figure 17.7 shows an example of an external op-amp connection.

AD0CON1 Register		ANEX0 Function	ANEX1 Function
OPA1 Bit	OPA0 Bit		
0	0	Not used	Not used
0	1	P95 as an analog input	Not used
1	0	Not used	P96 as an analog input
1	1	Output to an external op-amp	Input from an external op-amp

Table 17.10 Extended Analog Input Pin Settings

17.2.7 Power Consumption Reducing Function

When the A/D converter is not used, the VCUT bit in the AD0CON1 register isolates the resistor ladder of the A/D converter from the reference voltage input pin (VREF). Power consumption is reduced by shutting off any current flow into the resistor ladder from the VREF pin.

When using the A/D converter, set the VCUT bit to "1" (VREF connection) before setting the ADST bit in the AD0CON0 register to "1" (A/D conversion started). Do not set the ADST bit and VCUT bit to "1" simultaneously, nor set the VCUT bit to "0" (no VREF connection) during the A/D conversion. The VCUT bit does not affect the VREF performance of the D/A converter.

17.2.8 Output Impedance of Sensor Equivalent Circuit under A/D Conversion

For perfect A/D converter performance, complete internal capacitor (C) charging, shown in Figure 17.8, for the specified period (T) as sampling time. Output Impedance of the sensor equivalent circuit (R₀) is determined by the following equations:

$$VC = VIN \{1 - e^{-\frac{1}{C(R0 + R)}t}\}$$

When t = T,
$$VC = VIN - \frac{X}{Y}VIN = VIN (1 - \frac{X}{Y})$$

$$e^{-\frac{1}{C(R0+R)}T} = \frac{X}{Y}$$
$$-\frac{1}{C(R0+R)}T = \ln\frac{X}{Y}$$
$$R0 = -\frac{T}{C \cdot \ln\frac{X}{Y}} - R$$

where:

Vc = Voltage between pins

R = Internal resistance of the microcomputer

X = Precision (error) of the A/D converter

Y = Resolution of the A/D converter (1024 in 10-bit mode, and 256 in 8-bit mode)

Figure 17.8 shows analog input pin and external sensor equivalent circuit. The impedance (R₀) can be obtained if the voltage between pins (Vc) changes from 0 to VIN-(0.1/1024) VIN in the time (T), when the difference between VIN and Vc becomes 0.1LSB.

(0.1/1024) means that A/D precision drop, due to insufficient capacitor charge, is held to 0.1LSB at time of A/D conversion in the 10-bit mode. Actual error, however, is the value of absolute precision added to 0.1LSB. When ØAD = 10 MHz, T = 0.3 µs in the A/D conversion mode with the sample and hold function. Output impedance (R0) for sufficiently charging capacitor (C) in the time (T) is determined by the following equation:

Using T = 0.3 $\mu s,$ R = 7.8 k $\Omega,$ C = 1.5 pF, X = 0.1, Y = 1024,

$$R0 = -\frac{0.3 \times 10^{-6}}{1.5 \times 10^{-12} \cdot \ln \frac{0.1}{1024}} -7.8 \times 10^{3} = 13.9 \times 10^{3}$$

Thus, the allowable output impedance of the sensor equivalent circuit, making the precision (error) 0.1LSB or less, is approximately 13.9 k Ω maximum.

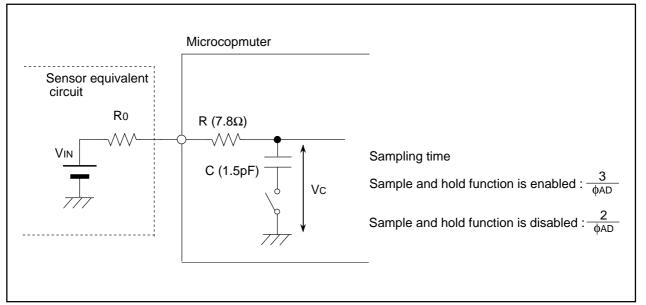


Figure 17.8 Analog Input Pin and External Sensor Equivalent Circuit

18. D/A Converter

The D/A converter consists of two separate 8-bit R-2R ladder D/A converters.

Digital code is converted to an analog voltage when a value is written to the corresponding DAi registers (i=0,1). The DAiE bit in the DACON register determines whether the D/A conversion result output is provided or not. Set the DAiE bit to "1" (output enabled) to disable a pull-up of a corresponding port. Output analog voltage (V) is calculated from value *n* (*n*=decimal) set in the DAi register.

$$V = \frac{V_{\text{REF x } n}}{256}$$
 (*n* = 0 to 255)

VREF : reference voltage (not related to VCUT bit setting in the AD0CON1 register)

Table 18.1 lists specifications of the D/A converter. Table 18.2 lists the DA0 and DA1 pin settings. Figure 18.1 shows a block diagram of the D/A converter. Figure 18.2 shows the D/A control register. Figure 18.3 shows a D/A converter equivalent circuit.

When the D/A converter is not used, set the DAi register to "0016" and the DAiE bit to "0" (output disabled).

ltem	Specification
D/A Conversion Method	R-2R
Resolution	8 bits
Analog Output Pin	2 channels

Table 18.1 D/A Converter Specifications

Table 18.2 Pin Settings

Port	Function	Bit and Setting		
		PD9 Register ⁽¹⁾	PS3 Register ⁽¹⁾	PSL3 Register
P93	DA0 output	PD9_3=0	PS3_3=0	PSL3_3=1
P94	DA1 output	PD9_4=0	PS3_4=0	PSL3_4=1

NOTE:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enabled). Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

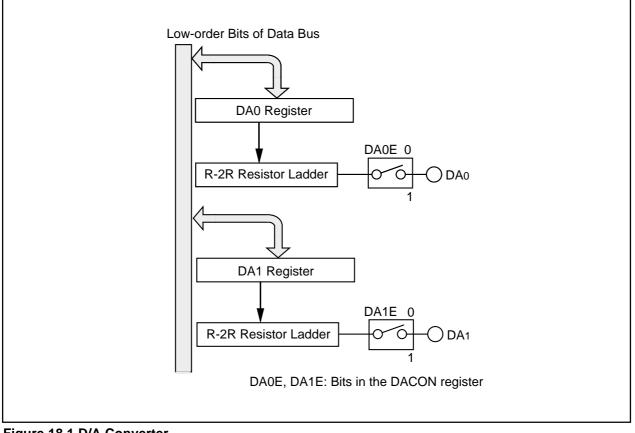


Figure 18.1 D/A Converter

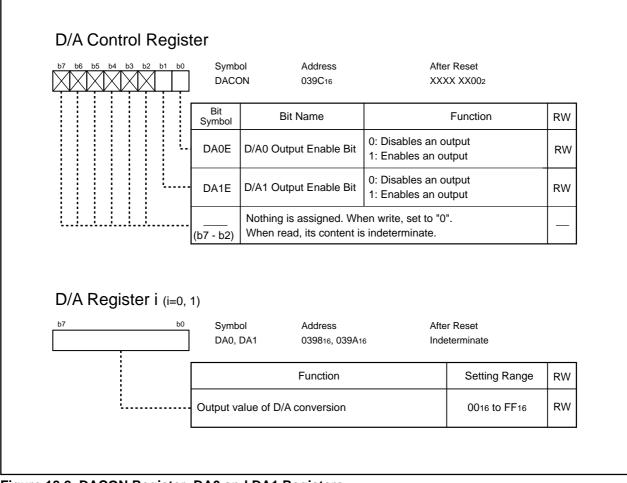


Figure 18.2 DACON Register, DA0 and DA1 Registers

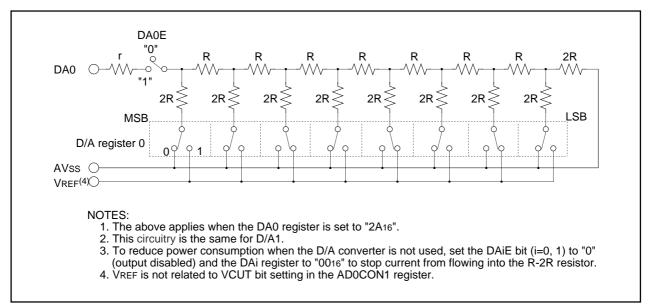


Figure 18.3 D/A Converter Equivalent Circuit

19. CRC Calculation

The CRC (Cyclic Redundancy Check) calculation detects an error in data blocks. A generator polynomial of CRC_CCITT ($X^{16} + X^{12} + X^{5} + 1$) generates CRC code.

The CRC code is a 16-bit code generated for a block of data of desired length. This block of data is in 8-bit units. The CRC code is set in the CRCD register every time one-byte data is transferred to the CRCIN register after a default value is written to the CRCD register. CRC code generation for one-byte data is completed in two cycles.

Figure 19.1 shows a block diagram of a CRC circuit. Figure 19.2 shows CRC-associated registers. Figure 19.3 shows an example of the CRC calculation.

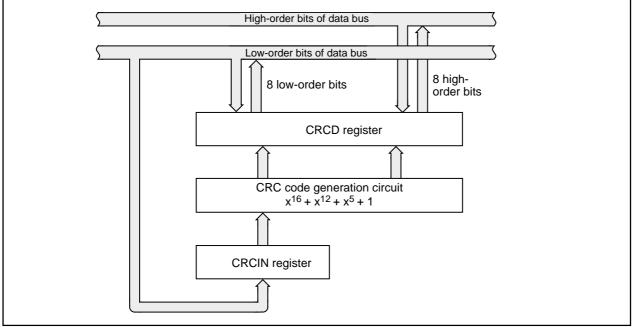


Figure 19.1 CRC Calculation Block Diagram

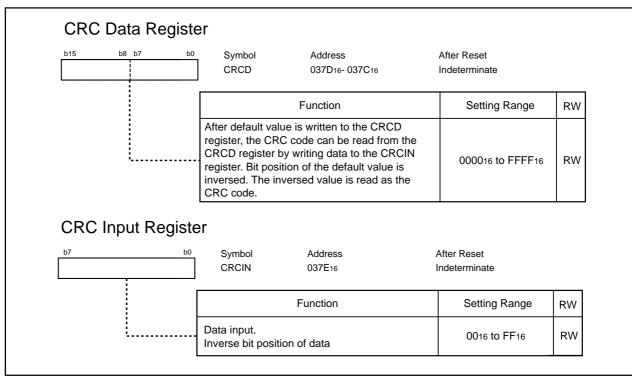


Figure 19.2 CRCD Register and CRCIN Register

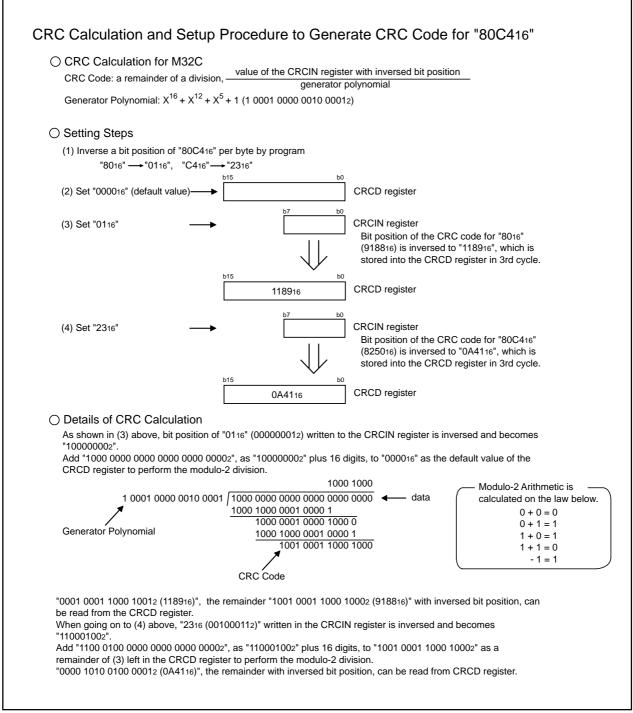


Figure 19.3 CRC Calculation

20. X/Y Conversion

The X/Y conversion rotates a 16 x 16 matrix data by 90 degrees and inverses high-order bits and low-order bits of a 16-bit data. Figure 20.1 shows the XYC register.

The 16-bit XiR register (i=0 to 15) and 16-bit YjR register (j=0 to 15) are allocated to the same address. The XiR register is a write-only register, while the YjR register is a read-only register. Access the XiR and YjR registers from an even address in 16-bit units. Performance cannot be guaranteed if the XiR and YiR registers are accessed in 8-bit units.

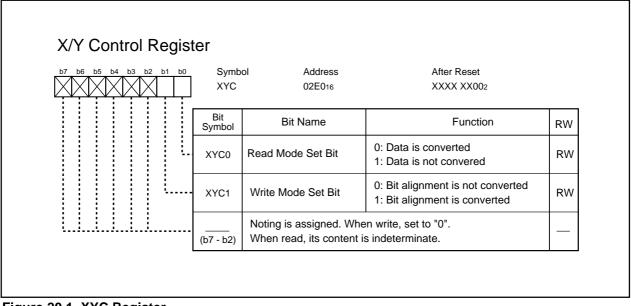


Figure 20.1 XYC Register

The XYC0 bit in the XYC register determines how to read the YjR register.

By reading the YjR register when the XYC0 bit is set to "0" (data conversion), bit j in the X0R to X15R registers can be read simultaneously.

For example, bit 0 in the X0R register can be read if reading bit 0 in the Y0R register, bit 0 in the X1R register if reading bit 1 in the Y0R register..., bit 0 in the X14R register if reading bit 14 in the Y0R register and bit 0 in the X15R register if reading bit 15 in the Y0R register.

Figure 20.2 shows the conversion table when the XYC0 bit is set to "0". Figure 20.3 shows an example of the X/Y conversion.

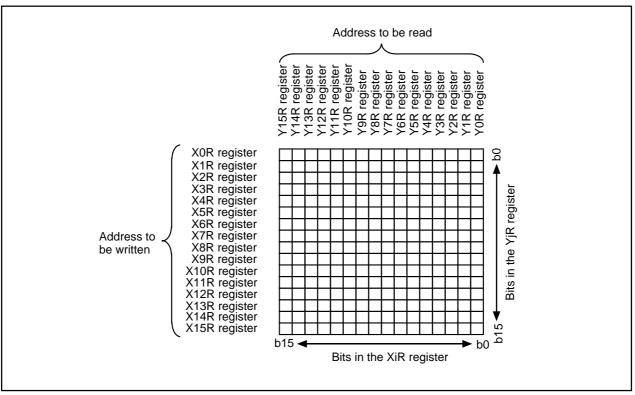


Figure 20.2 Conversion Table when Setting the XYC0 Bit to "0"

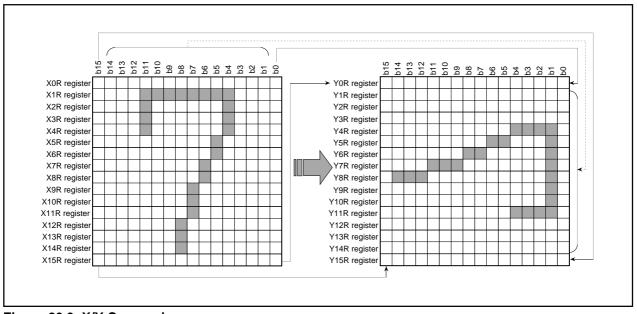


Figure 20.3 X/Y Conversion

By reading the YjR register when the XYC0 bit in the XYC register is set to "1" (no data conversion), the value written to the XiR register can be read directly. Figure 20.4 shows the conversion table when the XYC0 bit is set to "1."

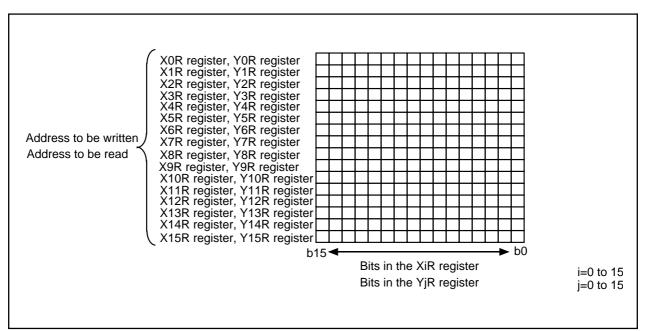


Figure 20.4 Conversion Table when Setting the XYC0 Bit to "1"

The XYC1 bit in the XYC register selects bit alignment of the value in the XiR register.

By writing to the XiR register while the XYC1 bit is set to "0" (no bit alignment conversion), bit alignment is written as is. By writing to the XiR register while the XYC1 bit is set to "1" (bit sequence replaced), bit alignment is written inversed.

Figure 20.5 shows the conversion table when the XYC1 bit is set to "1".

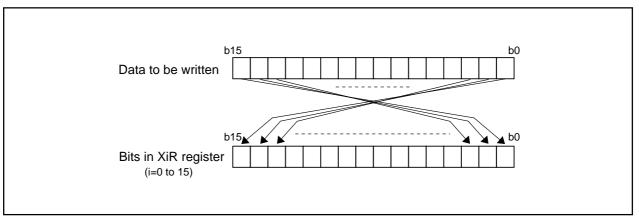


Figure 20.5 Conversion Table when Setting the XYC1 Bit to "1"

21. Intelligent I/O

The intelligent I/O is a multifunctional I/O port for time measurement, waveform generating, clock synchronous serial I/O, clock asynchronous serial I/O (UART), HDLC data processing and more.

The intelligent I/O has one 16-bit base timer for free-running operation, eight 16-bit registers for time measurement and waveform generating and two sets of two 8-bit shift registers for communications. Table 21.1 lists functions and channels of the intelligent I/O.

Function	Description	
Time Measurement ⁽¹⁾	8 channels	
Digital Filter	8 channels	
Trigger Input Prescaler	2 channels (channel 6 and channel 7)	
Trigger Input Gate	2 channels (channel 6 and channel 7)	
Waveform Generating ⁽¹⁾	8 channels	
Single-Phase Waveform Output Mode	8 channels	
Phase-Delayed Waveform Output Mode	8 channels	
SR Waveform Output Mode	8 channels	
Communication	Communication unit 0	Communication unit 1
Clock Synchronous Serial I/O Mode	Available	
UART Mode	Not Available	Available
HDLC Data Processing Mode	Available	

Table 21.1 Intelligent I/O Functions and Channels

NOTE:

1. The time measurement function and the waveform generating function share a pin.

The time measurement function and waveform generating function can be selected for each channel. The communication function is available by a combining multiple channels.

Figures 21.1 shows a block diagram of the intelligent I/O. Figure 21.2 shows a block diagram of the intelligent I/O communication.

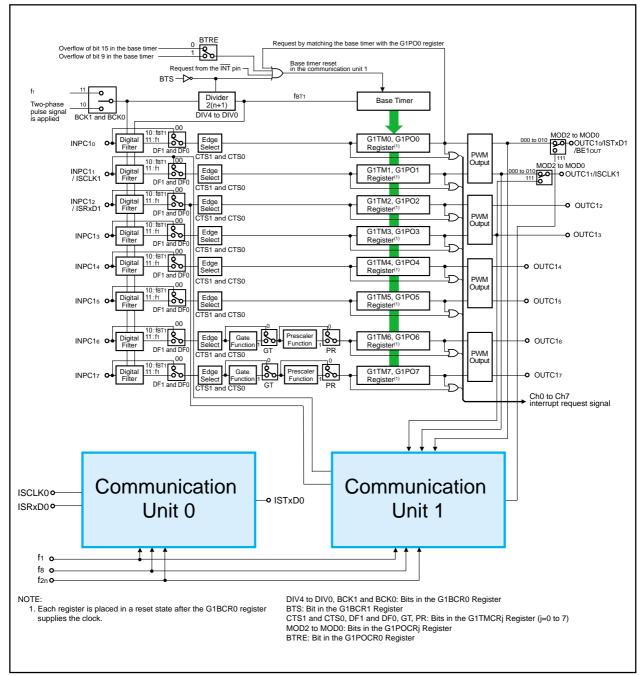


Figure 21.1 Intelligent I/O Block Diagram

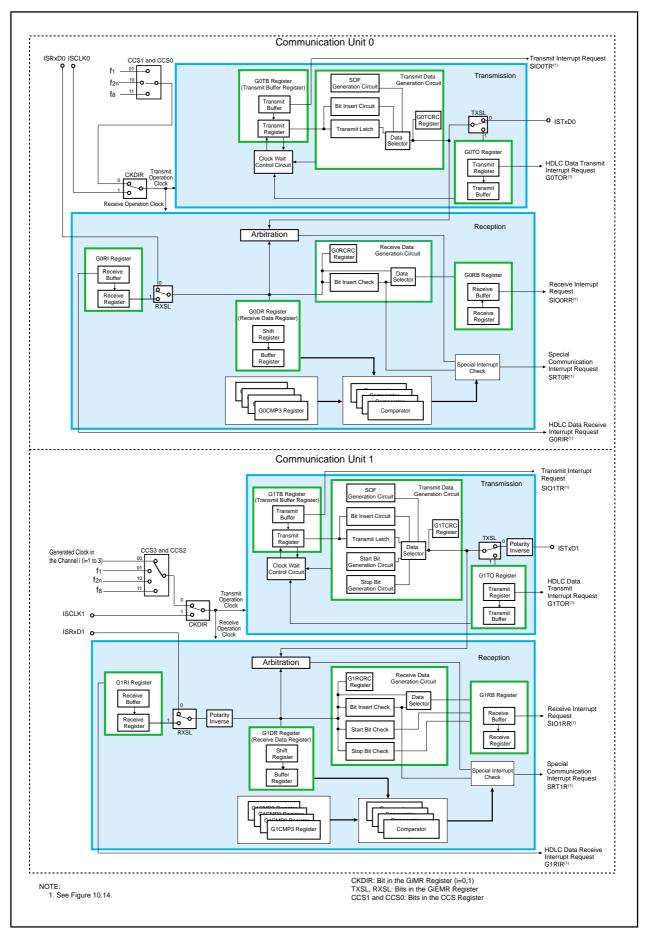
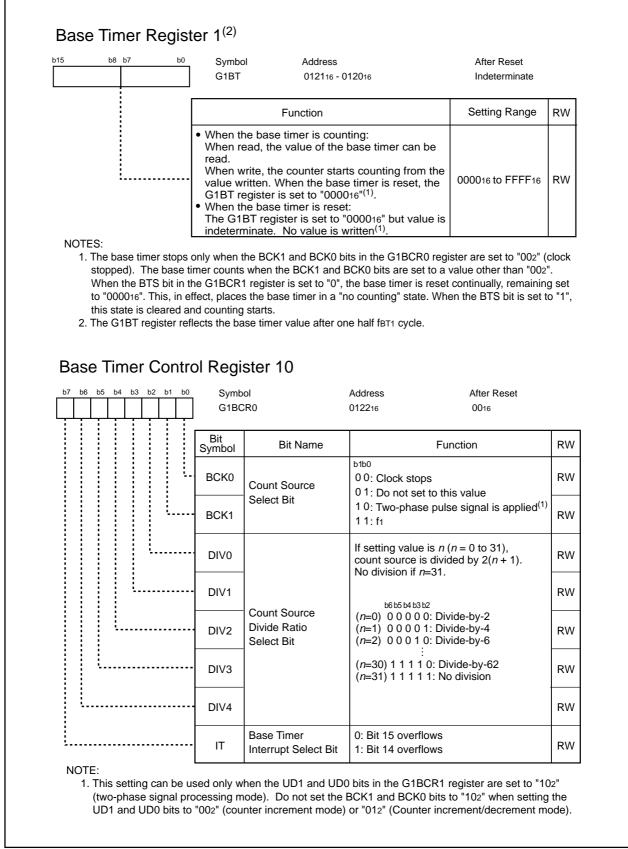
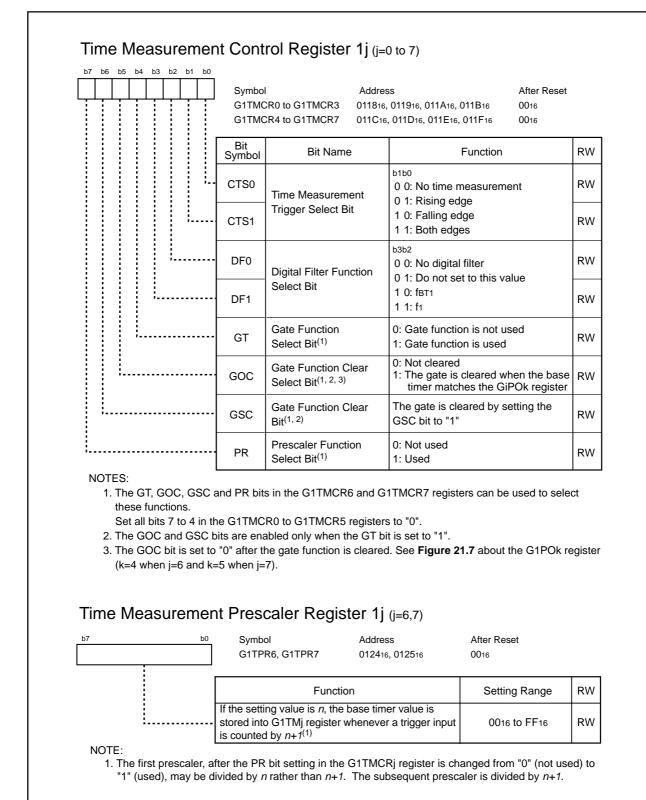
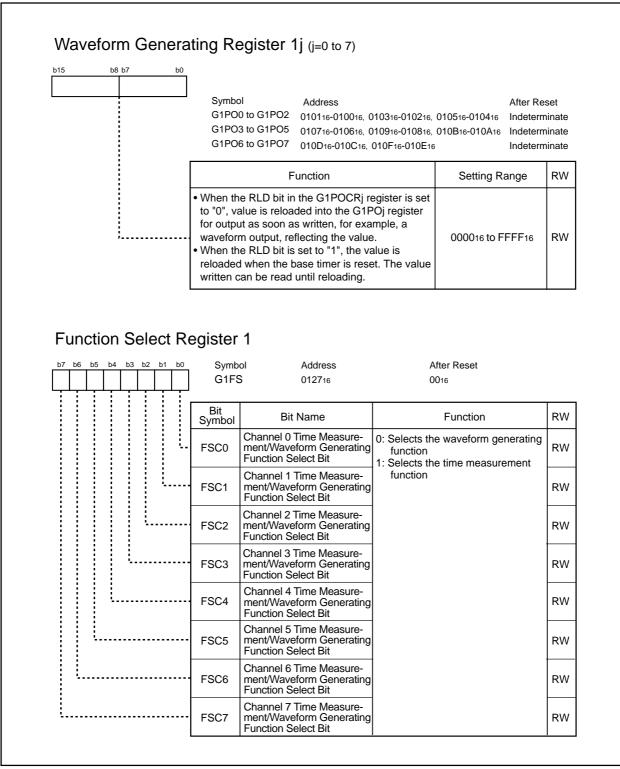



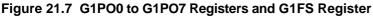
Figure 21.2 Intelligent I/O Communication Block Diagram

Figures 21.3 to 21.8 show registers associated with the intelligent I/O base timer, the time measurement function and waveform generating function. (For registers associated with the communication function, see Figures 21.19 to 21.28.)

b7 b6 b5	b4 b3 b2	2 b1 b0	Symb G1B		Address After Reset 012316 X000 000X2	
			Bit Symbol	Bit Name	Function	RW
			(b0)	Nothing is assigned. When read, its conte	When write, set to "0". nt is indeterminate.	-
			RST1	Base Timer Reset Cause Select Bit 1	 0: The base timer is not reset by matching with the G1PO0 register 1: The base timer is reset by matching with the G1PO0 register⁽¹⁾ 	RW
			RST2	Base Timer Reset Cause Select Bit 2	0: The base timer is not reset by applying "L" to the INT0 or INT1 pin 1: The base timer is reset by applying "L" to the INT0 or INT1 pin ⁽²⁾	RW
			(b3)	Reserved Bit	Set to "0"	RW
			BTS	Base Timer Start Bit	0: Base timer is reset 1: Base timer starts counting	RW
		UD0	Counter Increment/	0 0: Counter increment mode	RW	
		UD1	Decrement Control Bit	 Two-phase pulse signal processing mode⁽³⁾ Do not set to this value 	RW	
			(b7)	Nothing is assigned. When read, its conte	When write, set to "0". nt is indeterminate.	-
reg the be 2. Th 3. In set	e base tim gister settir e G1POj re set to a va e IPSA_0 two-phase	ng. (See I egister (j= alue smal bit in the pulse sig he counte	Figure 21 1 to 7) for ller than th IPSA regi gnal proce er is decre	.7 for details on the G the waveform general the G1PO0 register. ster can select the INT ssing mode, the base	In the base timer value matches the G1PC PO0 register.) When the RST1 bit is set t ting function and communication function r $\overline{0}$ or $\overline{INT1}$ pin. timer is not reset, even though the RST1 bic cycles when the base timer value matched	o "1" nust pit is

Figure 21.4 G1BCR1 Register


Figure 21.5 G1TMCR0 to G1TMCR7 Registers, G1TPR6 and G1TPR7 Registers

b15	b8 b7 b0					
		Symbol G1TM0 to G1TM3 to				inate
		G1TM6, G	1TM7 010D16 - 010C16, 0	010F16 - 010E16	Indeterm	inate
			Function		Setting Range	RW
	i	- 1	e timer value is stored ever ment timing	у		RC
Wave	eform Genera	ating C	ontrol Register 1j	(i=0 to 7)		
b7 b6 b		1	, j	0 ,		
<u>. </u>	╒┤ _╴ ┝┥ _{╸┥╺} ┥╴] Symb	ol Addres	SS	After Reset	
		G1PC			0000 X0002	
				s, 011216, 011316 s, 011516, 011616,	0X00 X0002 011716 0X00 X0002	
		Bit		1		
		Symbol	Bit Name	b2b1b0	Function	RW
		MOD0		0 00: Single v 0 01: SR wav 0 10: Phase-o	vaveform output mode eform output mode ⁽¹⁾ delayed waveform	RW
		• MOD1	Operating Mode Select Bit	1 00: Do not s 1 01: Do not s	set to this value set to this value set to this value	RW
		MOD2			set to this value ⁽²⁾ nmunication function)	RW
		(b3)	Nothing is assigned. Wh When read, its content is		"0".	_
		. IVL	Output Initial Value Select Bit ⁽⁶⁾		as default value as default value	RW
		RLD	G1POj Register Value Reload Timing Select Bit	value is wr 1: Reloads th	e G1POj register when tten e G1POj register when ner is reset	RW
		BTRE	Base Timer Reset Enable Bit ⁽⁴⁾	bit 15 in the 1: Enables ba	se timer reset when base timer overflows se timer reset when base timer overflows ⁽⁷⁾	RW
[. INV	Inverse Output Function Select Bit ⁽⁵⁾	0: Output is n 1: Output is ir		RW
ск w 2. Т 3. Т in a 4. Т G 5. Т tc p 6. Т (v	orresponding odd c vaveform output. Oc o receive data in U/ his setting is enable o the G1POCR0 reg nd 1 and for the co he BTRE bit is prov 61POCR7 registers he inverse output fu o "1", an "H" signal i rovided by setting it o output either "H" o	hannel (ne. ld channels ART mode, ed only for d ister to "111 ister to"111 mmunicatic ided in the to "0". unction is th s provided to "1". or "L" signa g function s	G1POCR0 register only. S ne final step in waveform gu a default output by setting I set in the IVL bit, set the I selected) and IFEj bit in the	nannel) are igno tput. r to "0000 0110 the ISTxD1 pin, n for an output, to MOD0 bits to Set each bit 6 ir enerating proce the IVL bit to "(FSCj bit in the (ored. Even channels pro 2". set the MOD2 to MOD set the MOD2 to MOD "1112" except in chann in the G1POCR1 to ess. When the INV bit is "; and an "L" signal is G1FS register to "0"	0 bits 0 bits els 0

Figure 21.6 G1TM0 to G1TM7 Registers and G1POCR0 to G1POCR7 Registers

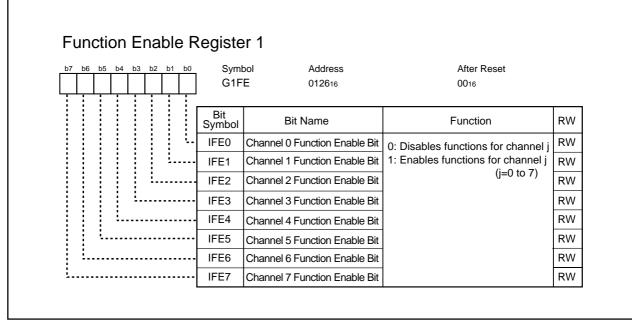
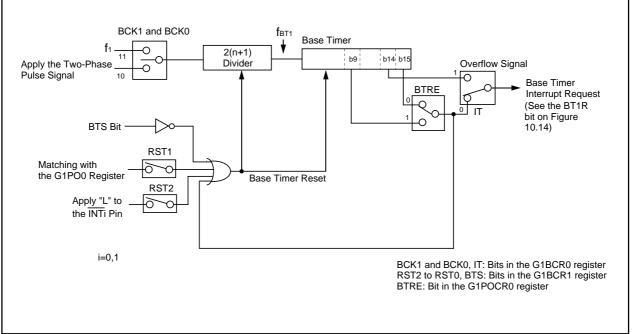


Figure 21.8 G1FE Register


21.1 Base Timer

The base timer is a free-running counter that counts an internally generated count source. Table 21.2 lists specifications of the base timer. Figures 21.3 and 21.4 show registers associated with the base timer. Figure 21.9 shows a block diagram of the base timer. Figure 21.10 shows an example of the base timer in counter increment mode. Figure 21.11 shows an example of the base timer in counter increment mode. Figure 21.12 shows an example of two-phase pulse signal processing mode.

Item	Specification		
Count Source (fBT1)	f1 divided by 2(n+1), two-phase pulse input divided by 2(n+1)		
	<i>n</i> : determined by the DIV4 to DIV0 bits in the G1BCR0 register $n=0$ to 31; however no division when $n=31$		
Counting Operation	The base timer increments the counter value		
	The base timer increments and decrements the counter value Two-phase pulse signal processing		
Counter Start Condition	The BTS bit in the G1BCR1 register is set to "1" (base timer starts counting)		
Counter Stop Condition	The BTS bit in the G1BCR1 register is set to "0" (base timer reset)		
Base Timer Reset Condition	The value of the base timer matches the value of the G1PO0 register		
	 An low-level ("L") signal is applied to the INTO or INT1 pin 		
	Bit 15 or bit 9 in the base timer overflows		
Value when the Base Timer is Reset	"000016"		
Interrupt Request	The BT1R bit in the IIO4IR register is set to "1" (interrupt requested) when bit 9, bit 14 or bit 15 in the base timer overflows (See Figure 10.14.)		
Read from Base Timer	• The G1BT register indicates the counter value while the base timer is running		
Write to Base Timer	The G1BT register is indeterminate when the base timer is reset When a value is written while the base timer is running, the timer counter immediately starts counting from this value. No value can be written while the base timer is reset		
Selectable Function	 Counter increment/decrement mode The base timer starts counting when the BTS bit is set to "1". After reaching to "FFFF16", the timer counter is then decremented back to "000016". If the RST1 bit in the G1BCR1 register is set to "1" (the base timer is reset by matching with the G1PO0 register), the timer counter starts decrementing in two counts after the base timer matches the G1PO0 register. The base timer increments the counter value again when the timer counter reaches "000016." (See Figure 21.11.) Two-phase pulse processing mode Two-phase pulse signals from P76 and P77 pins or P80 and P81 pins are counted as well. (See Figure 21.12.) The IPSA_0 bit in the IPSA register controls input pin selection. (Refer to 23. Programmable I/O Ports) 		
	P81 (P77) The timer increments counter on all edge The timer of all edge		

Table 21 2	Base Timer	Specifications
		opecifications

Table 21.3 Base Timer Associated Register Settings

(Also applies when using time measurement function, waveform generating function and communication function)

Register	Bit	Function		
G1BCR0	BCK1, BCK0	Select count source		
	DIV4 to DIV0	Select divide ratio of count source		
	IT	Select the base timer interrupt		
G1BCR1	RST2, RST1	Select source for a base timer reset		
	BTS	Used to start the base timer independently		
	UD1, UD0	Select how to count		
G1POCR0	BTRE	Select source for a base timer reset		
G1BT	-	Read or write base timer value		

Set the following registers to set the RST1 bit to "1" (base timer reset by matching the base timer with the G1PO0 register).

G1POCR0	MOD2 to MOD0	Set to "0002" (single-phase waveform output mode)
G1PO0	-	Set reset cycle
G1FS	FSC0	Set to "0" (waveform generating function)
G1FE	IFE0	Set to "1" (channel operation start)

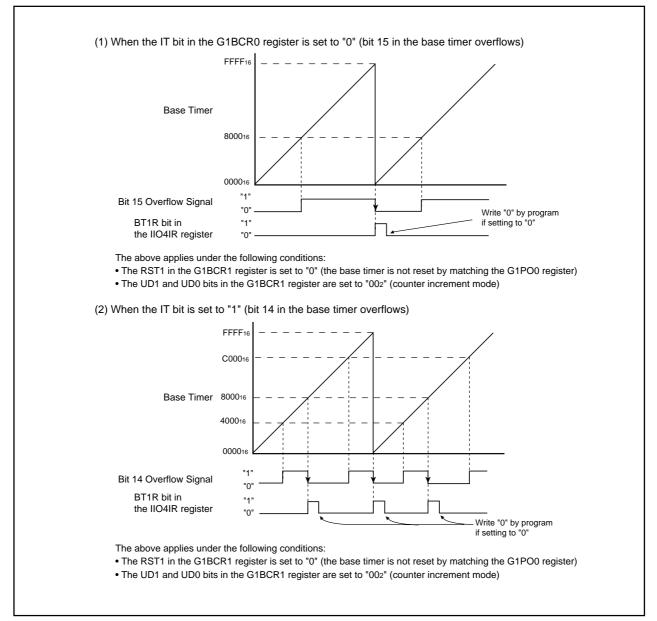


Figure 21.10 Counter Increment Mode

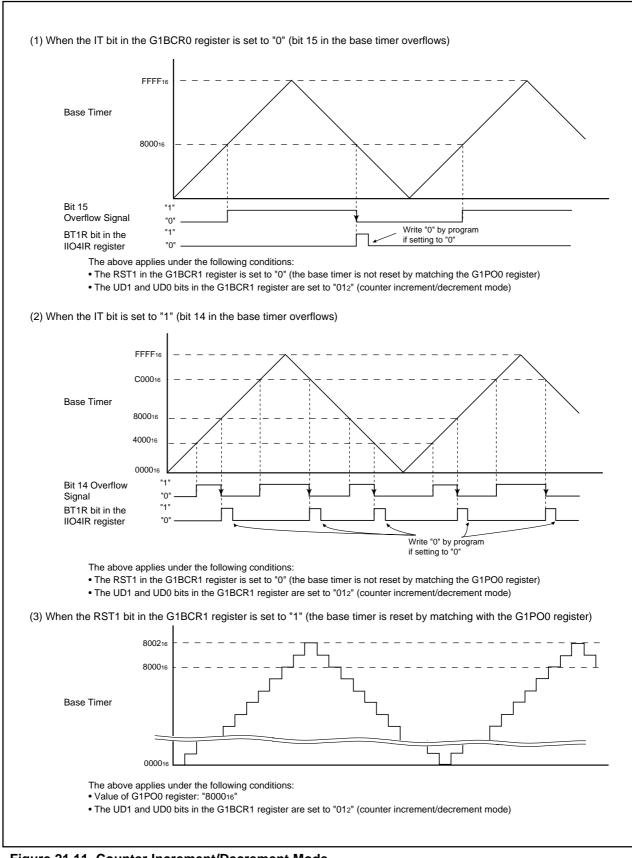


Figure 21.11 Counter Increment/Decrement Mode

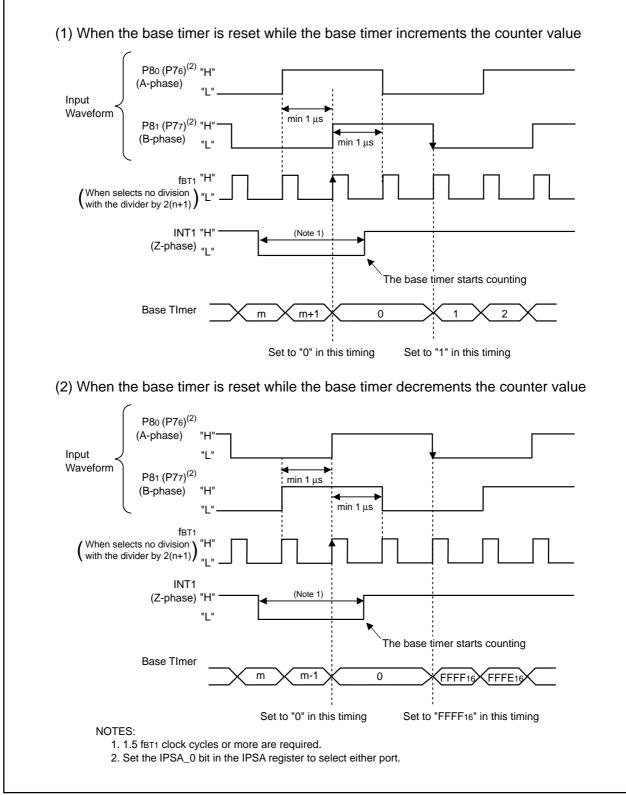


Figure 21.12 Base Timer Operation in Two-phase Pulse Signal Processing Mode

21.2 Time Measurement Function

When external trigger is applied, the base timer value is stored into the G1TMj register (j=0 to 7). Table 21.4 shows specifications of the time measurement function. Tables 21.5 and 21.6 list pin settings of the time measurement function. Figures 21.13 and 21.14 show operation examples of the time measurement function. Figure 21.15 shows an operation example of the prescaler function and gate function.

Item	Specification		
Measurement Channel	Channels 0 to 7		
Trigger Input Polarity	Rising edge, falling edge and both edges of the INPC1j pin		
Measurement Start Condition	The IFEj bit in the G1FE register is set to "1" (channel j function enabled) while the FSCj bit (j=0 to 7) in the G1FS register is set to "1" (time measurement function selected)		
Measurement Stop Condition	The IFEj bit is set to "0" (channel j function disabled)		
Time Measurement Timing	 No prescaler: every time a trigger signal is applied Prescaler (for channel 6 and channel 7): every <i>G1TPRk register (k=6,7) value +1</i> times a trigger signal is applied 		
Interrupt Request Generating Timing	The TM1jR bit in the interrupt request register (See Figure 10.14) is set to "1" (interrupt requested) at time measurement timing		
INPC1j Pin Function	Trigger input pin		
Selectable Function	 Digital filter function The digital filter samples a trigger input signal level every f1 or fBT1 cycles and passes pulse signals, matching trigger input signal level three times 		
	 Prescaler function (for channel 6 and channel 7) Time measurement is executed every <i>G1TPRk register value +1</i> times a trigger signal is applied 		
	 Gate function (for channel 6 and channel 7) After time measurement by the first trigger input, trigger input cannot be accepted. However, while the GOC bit in the G1TMCRk register is set to "1" (gate cleared by matching the base timer with the G1POp register (p=4 when k=6, p=5 when k=7), trigger input can be accepted again by matching the base timer value with the G1POp register setting or by setting the GSC bit in the G1TMCRk register is set to "1" 		

Table 21.4 Time Measurement Function Specifications

Pin	Bit and Setting				
	PS1, PS2, PS5, PS8 Registers	PD7, PD8, PD11, PD14 Registers	IPS Register		
P70/INPC16	PS1_0 = 0	PD7_0 = 0	IPS1 = 0		
P71/INPC17	PS1_1 = 0	PD7_1 = 0			
P73/INPC10	PS1_3 = 0	PD7_3 = 0			
P74/INPC11	PS1_4 = 0	PD7_4 = 0			
P75/INPC12	PS1_5 = 0	PD7_5 = 0			
P76/INPC13	PS1_6 = 0	PD7_6 = 0			
P77/INPC14	PS1_7 = 0	PD7_7 = 0			
P81/INPC15	PS2_1 = 0	PD8_1 = 0			
P110/INPC10 ⁽¹⁾	PS5_0 = 0	PD11_0 = 0	IPS1 = 1		
P111/INPC11 ⁽¹⁾	PS5_1 = 0	PD11_1 = 0			
P112/INPC12 ⁽¹⁾	PS5_2 = 0	PD11_2 = 0			
P113/INPC13 ⁽¹⁾	PS5_3 = 0	PD11_3 = 0			
P140/INPC14 ⁽¹⁾	PS8_0 = 0	PD14_0 = 0			
P141/INPC15 ⁽¹⁾	PS8_1 = 0	PD14_1 = 0			
P142/INPC16 ⁽¹⁾	PS8_2 = 0	PD14_2 = 0			
P143/INPC17 ⁽¹⁾	PS8_3 = 0	PD14_3 = 0			

Table 21.5	5 Pin Settings for Time Measurement Function
------------	--

NOTE:

1. This port is provided in the 144-pin package only.

Table 21.6 Tim	e Measurement Function	Associated Register Settings
----------------	------------------------	------------------------------

Register	Bit	Function
G1TMCRj	CTS1, CTS0	Select a time measurement trigger
	DF1, DF0	Select the digital filter function
	GT, GOC, GSC	Select the gate function
	PR	Select the prescaler function
G1TPRk	-	Setting value of the prescaler
G1FS	FSCj	Set to "1" (time measurement function)
G1FE	IFEj	Set to "1" (channel j function enabled)

j = 0 to 7 k = 6, 7

Bit configurations and functions vary with channels used.

Registers associated with the time measurement function must be set after setting registers associated with the base timer.

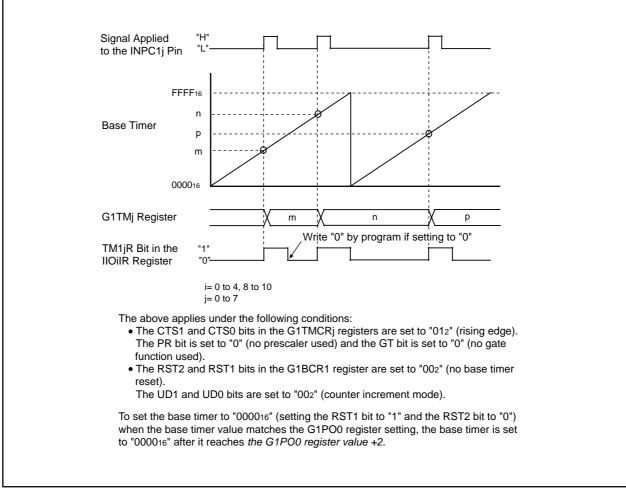


Figure 21.13 Time Measurement Function (1)

fBT1	
Base timer	<u></u>
INPC1j pin	
TM1jR bit ⁽¹⁾	"1" "0" Urite "0" by program if setting to "0"
G1TMj register	Pelayed by max. 1 clock if setting to "0" n n+5 n+8
(2) When selec (The CTS1	ting both edges as a time measurement trigger and CTS0 bits are set to "112")
fBT1	
Base timer	<u> </u>
INPC1j pin	"H" "L" "1" (Note 2)
TM1jR bit ⁽¹⁾	"0" Write "0" by pi
G1TMj register	<u>n</u> <u>n+2</u> <u>n+5</u> <u>n+6</u> <u>n+8</u> <u>n+12</u>
NOTES:	in the IIO0IR to IIO4IR, IIO08IR to IIO10IR registers. See Figure 10.14 about the TM1jR bit. tterrupt is generated if the microcomputer receives a trigger signal when the TM1jR bit is set to "1". ever, the value of the G1TMj register changes.
2. No i	
2. No i How (3) Trigger sigi	nal when using the digital filter and DF0 bits in the G1TMCRj register are set to "102" or "112")
2. No i How (3) Trigger sigi	and DF0 bits in the G1TMCRj register are set to "102" or "112")
2. No i How (3) Trigger sign (The DF1 a	and DF0 bits in the G1TMCRj register are set to "102" or "112")
2. No i How (3) Trigger sign (The DF1 a f1 or fBT1 ⁽¹⁾	and DF0 bits in the G1TMCRj register are set to "102" or "112")

Figure 21.14 Time Measurement Function (2)

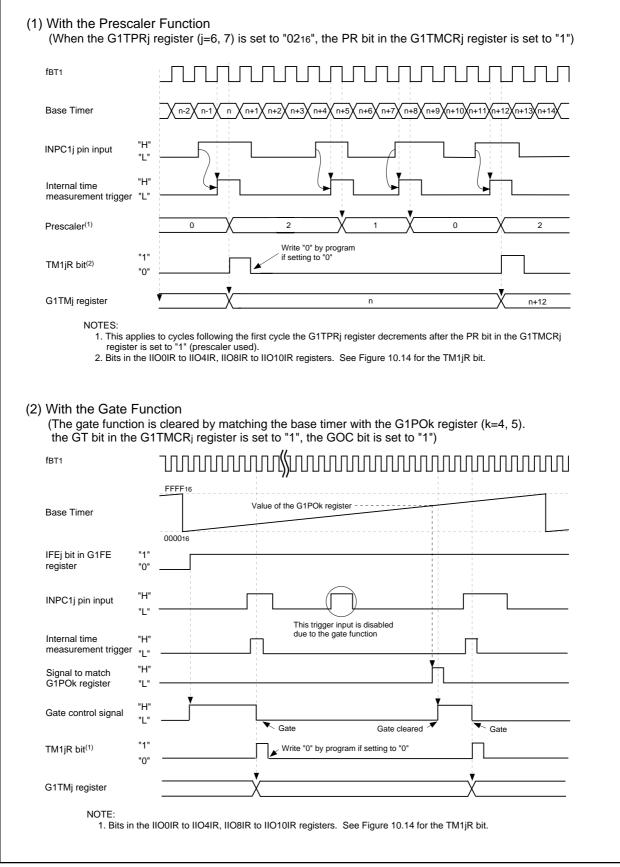


Figure 21.15 Prescaler Function and Gate Function

21.3 Waveform Generating Function

Waveforms are generated when the value of the base timer matches that of the G1POj register (j=0 to 7). The waveform generating function has the following three modes :

- Single-phase waveform output mode
- Phase-delayed waveform output mode
- Set/Reset waveform output (SR waveform output) mode

Table 21.7 lists pin settings of the waveform generating function. Table 21.8 lists registers associated with the waveform generating function.

Pin	Bit and Setting				
	PS1, PS2, PS5 to PS8 Registers	PSL1, PSL2 Registers	PSC, PSC2 Registers	PSD1 Register	
P70/OUTC16	PS1_0 = 1	PSL1_0 = 0	PSC_0 = 1	PSD1_0=1	
P71/OUTC17	PS1_1 = 1	PSL1_1 = 0	PSC_1 = 1	PSD1_1=1	
P73/OUTC10	PS1_3 = 1	PSL1_3 = 0	PSC_3 = 1	-	
P74/OUTC11	PS1_4 = 1	PSL1_4 = 0	PSC_4 = 1	-	
P75/OUTC12	PS1_5 = 1	PSL1_5 = 1	-	-	
P76/OUTC13	PS1_6 = 1	PSL1_6 = 0	PSC_6 = 0	PSD1_6=1	
P77/OUTC14	PS1_7 = 1	PSL1_7 = 1	-	-	
P81/OUTC15	PS2_1 = 1	PSL2_1 = 1	PSC2_1=1	-	
P110/OUTC10 ⁽¹⁾	PS5_0 = 1	-	-	-	
P111/OUTC11 ⁽¹⁾	PS5_1 = 1				
P112/OUTC12 ⁽¹⁾	PS5_2 = 1				
P113/OUTC13 ⁽¹⁾	PS5_3 = 1				
P140/OUTC14 ⁽¹⁾	PS8_0 = 1				
P141/OUTC15 ⁽¹⁾	PS8_1 = 1				
P142/OUTC16 ⁽¹⁾	PS8_2 = 1				
P143/OUTC17 ⁽¹⁾	PS8_3 = 1				

Table 21.7	Pin Settings for	Waveform	Generating	Function
------------	------------------	----------	------------	----------

NOTE:

1. This port is provided in the 144-pin package only.

Table 21.8 Waveform Generating Function Associated Register Settings

Register	Bit	Function		
G1POCRj	MOD2 to MOD0	Select waveform output mode		
IVL Select default output value				
RLD Select a timing to reload the value of the G1POj register				
	INV	Select if output level is inversed		
G1POj	-	Select when output waveform is inversed		
G1FS	FSCj	Set to "0" (waveform generating function)		
G1FE	IFEj	Set to "1" (channel j function enabled)		

j = 0 to 7

Bit configurations and functions vary with channels used.

Registers associated with the waveform generating measurement function must be set after setting registers associated with the base timer.

21.3.1 Single-Phase Waveform Output Mode

Output signal level of the OUTC1j pin becomes high ("H") when the base timer value matches the G1POj register (j=0 to 7) setting. The "H" signal switches to a low-level ("L") signal when the base timer reaches "000016". If the IVL bit in the G1POCRj register is set to "1" ("H" output as default value), an "H" signal output is provided when waveform output starts. If the INV bit is set to "1" (output inversed), the level of the waveform output is inversed. See Figure 21.16 for details on single-phase waveform output mode operation. Table 21.9 lists specifications of single-phase waveform output mode.

Item	Specification			
Output Waveform ⁽²⁾	Free-running operation			
	(the RST2 and RST1 bits in the G1BCR1 register are set to "002")			
	Cycle : <u>65536</u> fBT1			
	"L" width : <u>m</u> fBT1			
	"H" width : <u>65536-m</u> fBT1			
	m : setting value of the G1POj register (j=0 to 7), 000016 to FFFF16			
	• The base timer is cleared to "000016" by matching the base timer with the			
	G1PO0 register (the RST1 bit is set to "1" and the RST2 bit is set to "0")			
	Cycle : <u>n+2</u> fBT1			
	"L" width : <u>m</u> fBT1			
	"H" width : <u>n+2-m</u> fBT1			
	m : setting value of the G1POj register (j=1 to 7), 000016 to FFFF16			
	n : setting value of the G1PO0 register, 000116 to FFFD16			
	If $m \ge n+2$, the output level is fixed to "L"			
Waveform Output Start Condition ⁽¹⁾	The IFEj bit in the G1FE register is set to "1" (channel j function enabled)			
Waveform Output Stop Condition	The IFEj bit is set to "0" (channel j function disabled)			
Interrupt Request	The PO1jR bit in the interrupt request register is set to "1" (interrupt			
	requested) when the base timer value matches the G1POj register setting.			
	(See Figure 10.14)			
OUTC1j Pin	Pulse signal output pin			
Selectable Function	Default value set function: Set starting waveform output level			
	Inversed output function:			
	Waveform output signal is inversed and provided from the OUTC1j pin			

Table 21.9	Single-Phase	Waveform	Output M	Mode	Specifications
------------	--------------	----------	----------	------	----------------

NOTES:

1. Set the FSCj bit in the G1FS register to "0" (waveform generating function selected).

2. When the INV bit in the G1POCRj register is set to "1" (output inversed), the "L" width and "H" width are inversed.

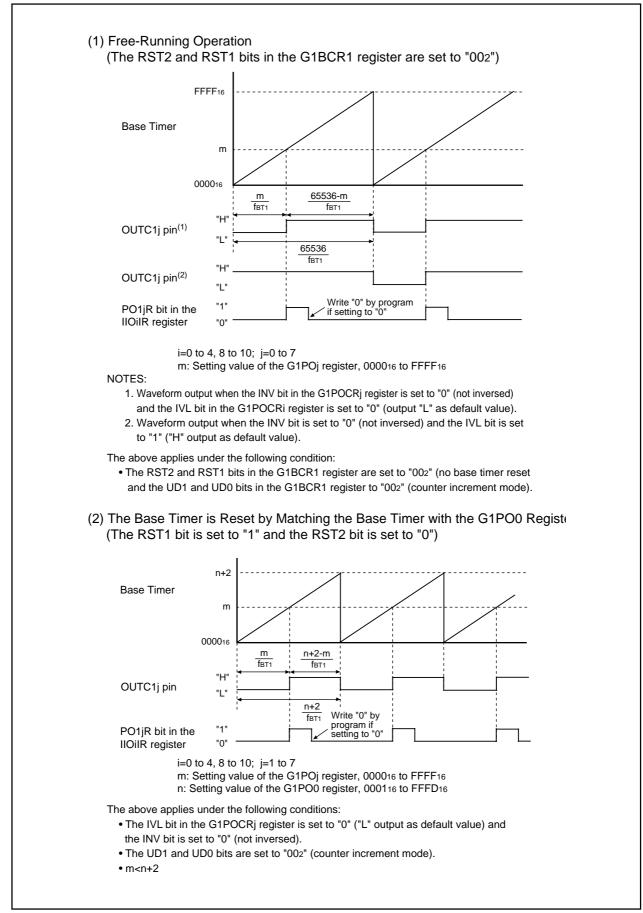


Figure 21.16 Single-Phase Waveform Output Mode

21.3.2 Phase-Delayed Waveform Output Mode

Output signal level of the OUTC1j pin is inversed every time the base timer value matches the G1POj register (j=0 to 7) setting. Table 21.10 lists specifications of phase-delayed waveform output mode. Figure 21.17 lists an example of phase-delayed waveform output mode operation.

Item	Specification
Output Waveform	Free-running operation
	(the RST2 and RST1 bits in the G1BCR1 register are set to "002")
	Cycle : <u>65536 x 2</u> fBT1
	"H" and "L" widths : <u>65536</u> f _{BT1}
	Setting value of the G1POj (j=0 to 7) register is 000016 to FFFF16
	• The base timer is cleared to "000016" by matching the base timer with the
	G1PO0 register (the RST1 bit is set to "1" and the RST2 bit is set to "0")
	Cycle : $\frac{2(n+2)}{fBT1}$
	"H" and "L" widths : <u>n+2</u> fвт1
	n : setting value of the G1PO0 register, 000116 to FFFD16
	Setting value of the G1POj (j=1 to 7) register is 000016 to FFFF16
	If G1POj register \geq n+2, the output level is not inversed
Waveform Output Start Condition ⁽¹⁾	The IFEj bit (j=0 to 7) in the G1FE register is set to "1" (channel j function enabled)
Waveform Output Stop Condition	The IFEj bit is set to "0" (channel j function disabled)
Interrupt Request	The PO1jR bit in the interrupt request register is set to "1" (interrupt
	requested) when the base timer vslur matches the G1POj register setting. (See Figure 10.14)
OUTC1j Pin	Pulse signal output pin
Selectable Function	Default value set function: Set starting waveform output level
	Inversed output function
	Waveform output level is inversed to output a waveform from the OUTC1j pin

Table 21.10	Phase-Delay	ved Waveform	Output Mod	le Specifications
	T Hadd Dola	, oa maroioi in	output mot	

NOTE:

1. Set the FSCj bit in the G1FS register to "0" (waveform generating function selected).

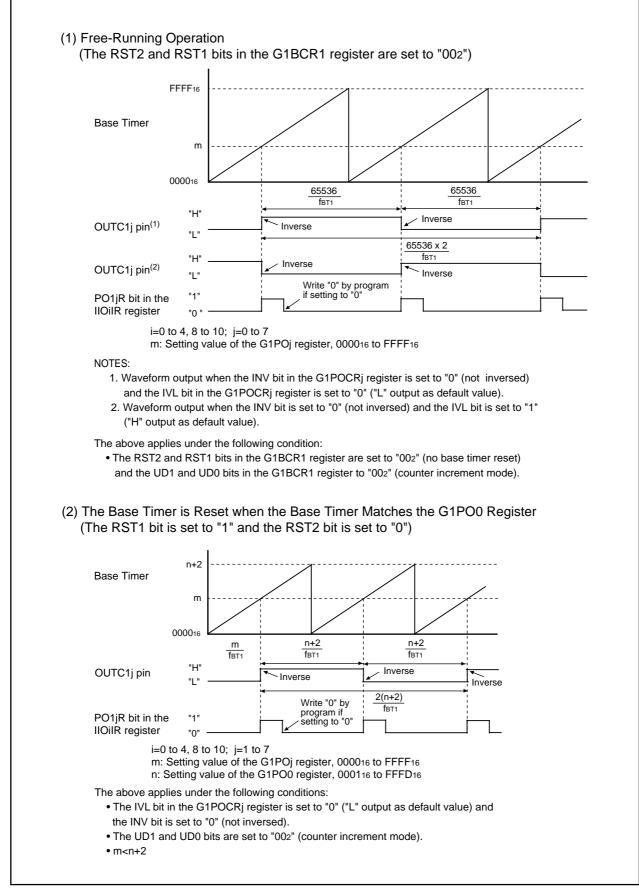


Figure 21.17 Phase-delayed Waveform Output Mode

21.3.3 Set/Reset Waveform Output (SR Waveform Output) Mode

Output signal level of the OUTC1j pin becomes high ("H") when the base timer value matches the G1POj register (j=0, 2, 4, 6) setting. The "H" signal switches to a low-level ("L") signal when the base timer value matches the G1POk register (k=j+1) setting or when the base timer is set to "000016". If the IVL bit in the G1POCRj register is set to "1" ("H" output as default value), an "H" signal output is provided when waveform output starts. If the INV bit is set to "1" (output inversed), the level of the output waveform is inversed. Table 21.11 lists specifications of SR waveform output mode. Figure 21.18 shows an example of a SR waveform output mode operation.

Item	Specification
Output Waveform ⁽²⁾	Free-running operation
	(the RST2 and RST1 bits in the G1BCR1 register are set to "002")
	(1) m < n
	"H" width : <u>n-m</u>
	fBT1 "L" width : m ⁽³⁾ . 65536 - n ⁽⁴⁾
	"L" width : <u>m ⁽³⁾</u> + <u>65536 - n⁽⁴⁾</u> fBT1 + <u>f</u> BT1
	(2) m ≥ n
	"H" width : <u>65536 - m</u> fBT1
	"L" width : \underline{m}
	fBT1 m : setting value of the G1POj register (j=0, 2, 4, 6)
	n : setting value of the G1POk register (k=j+1)
	• The base timer is cleared to "000016" by matching the base timer with the
	G1PO0 register ⁽¹⁾ (the RST1 bit is set to "1" and the RST2 bit is set to "0")
	(1) m < n < p+2
	"H" width : <u>n-m</u>
	"L" width : $\frac{m^{(3)}}{fBT1}$ + $\frac{p+2 - n^{(4)}}{fBT1}$
	(2) m < p+2 ≤ n
	"H" width : <u>p + 2 - m</u> fBT1
	"L" width :
	(3) If $m \ge p+2$, the output level is fixed to "L"
	m : setting value of the G1POj register (j=2, 4, 6), 000016 to FFF16
	n : setting value of the G1POk register (k=j+1), 000016 to FFF16
	p : setting value of the G1PO0 register, 000116 to FFFD16

NOTES:

- 1. When the G1PO0 register resets the base timer, the channel 0 and 1 SR waveform generating functions are not available.
- 2. When the INV bit in the G1POCRj register is set to "1" (output inversed), the "L" width and "H" width are inversed.
- 3. Waveform from base timer reset until when output level becomes "H".
- 4. Waveform from when output level becomes "L" until base timer reset.

Item	Specification
Waveform Output Start Condition ⁽⁵⁾	The IFEq bit (q=0 to 7) in the G1FE register is set to "1" (channel q function enabled)
Waveform Output Stop Condition	The IFEq bit is set to "0" (channel q function disabled)
Interrupt Request	The PO1jR bit in the interrupt request register is set to "1" (interrupt requested) when the value of the base timer matches that of the G1POj register. The PO1kR bit in the interrupt request register is set to "1" (interrupt requested) when the value of the base timer matches that of the G1POk register. (See Figure 10.14)
OUTC1j Pin	Pulse signal output pin
Selectable Function	 Default value set function: Set starting waveform output level Inversed output function Waveform output level is inversed to provide a waveform from the OUTC1j pin

Table 21.11 SR Waveform Output Mode Specifications (Continued)

NOTE:

5. Set the FSCj bit in the G1FS register to "0" (waveform generating function selected).

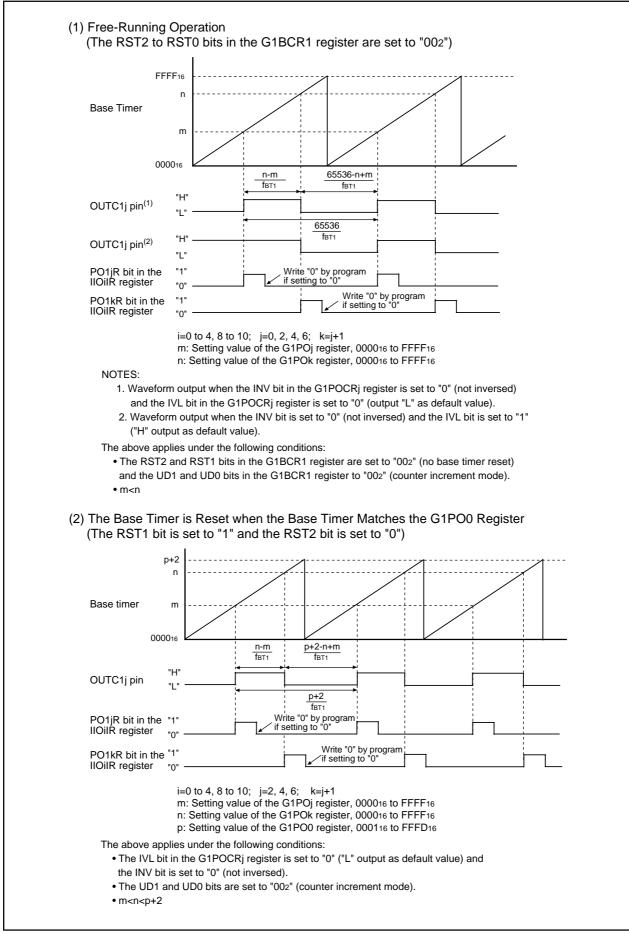


Figure 21.18 SR Waveform Output Mode

21.4 Communication Unit 0 and 1 Communication Function

In the intelligent I/O communication unit 1, 8-bit clock synchronous serial I/O, 8-bit clock asynchronous serial I/O (UART) or HDLC data processing is available. In the communication unit 0, 8-bit clock synchronous serial I/O or HDLC data processing is available.

Figures 21.19 to 21.28 show registers associated with the communication function.

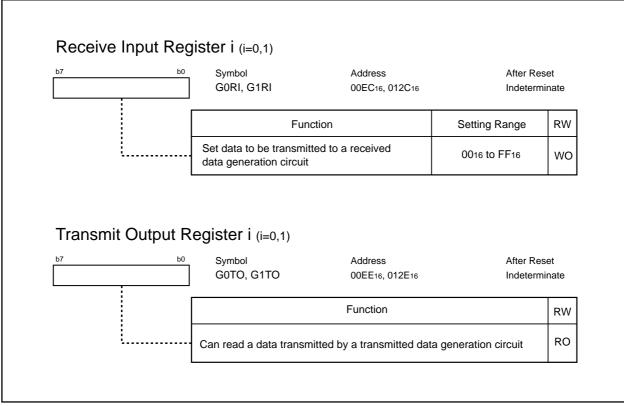
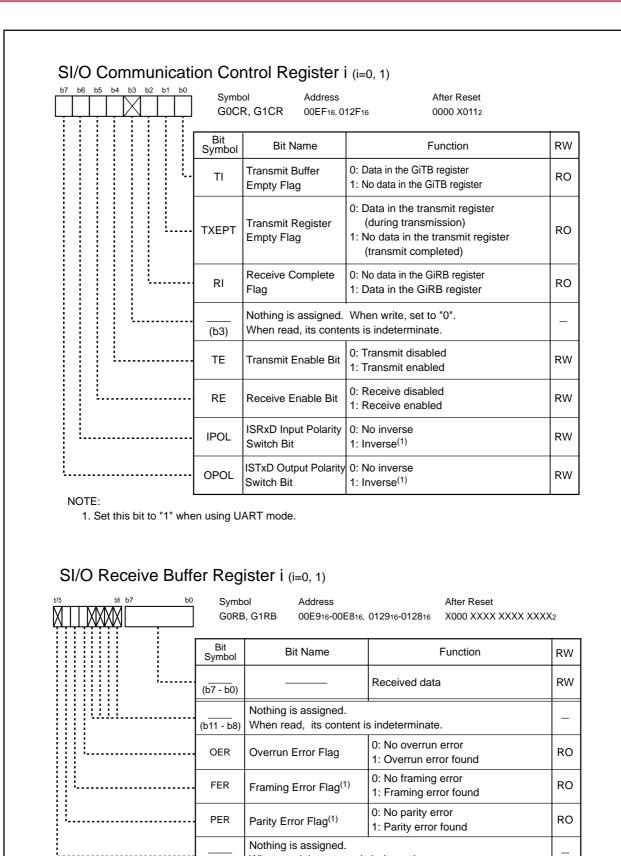



Figure 21.19 G0RI and G1RI Registers, G0TO and G1TO Registers

NOTE:

1. Nothing is assigned in the FER and PER bits in the G0RB register.

When read, its content is indeterminate.

Figure 21.20 G0CR and G1CR Registers, G0RB and G1RB Registers

(b15)

RENESAS

When read, its content is indeterminate.

7 b6 b5 b4 b3	b2 b1 b0	Symbo G0MF		After Reset 0016	
		Bit Symbol	Bit Name	Function	RW
		GMD0	Communication Mode	b1b0 0 1 : Clock synchronous serial I/O	RW
		GMD1	Select Bit	mode 1 1 : HDLC data processing mode ⁽¹⁾	RW
		CKDIR	Internal/External Clock Select Bit	0: Internal clock 1: External clock	RW
		(b5 - b3)	Reserved Bit	Set to "0"	RW
		UFORM	Transfer Format Select Bit	0: LSB first 1: MSB first	RW
		IRS	Transmit Interrupt Cause Select Bit	 0: No data in the G0TB register (TI=1) 1: Transmission is completed (TXEPT=1) 	RW

NOTE:

1. Do not set to any bit combinations except the above.

SI/O Communication Mode Register 1

b7 b6 b	5 b4 b3 b2 b1 b0	Symb G1MI		After Reset 0016	
		Bit Symbol	Bit Name	Function	RV
		GMD0	Communication Mode	b1b0 0 0 : UART mode 0 1 : Clock synchronous serial I/O	R۷
		GMD1	Select Bit	mode 1 0 : Special communication mode ⁽¹⁾ 1 1 : HDLC data processing mode	R١
		CKDIR	Internal/External Clock Select Bit	0 : Internal clock 1 : External clock	R١
		STPS	Stop Bit Length Select Bit	0: 1 stop bit 1: 2 stop bits	R۱
	<u>[</u>	PRY	Parity Odd/Even Select Bit	0: Odd parity 1: Even parity	R۷
		PRYE	Parity Enable Select Bit	0: Parity disabled 1: Parity enabled	R١
ļ		UFORM	Transfer Format Select Bit	0: LSB first 1: MSB first	R۷
		IRS	Transmit Interrupt Cause Select Bit	0: No data in the G1TB register (TI=1) 1: Transmission is completed (TXEPT=1)	RV

1. In M32C/88, do not set the GMD1 and GMD0 bits to "102" except when using in motor vehicles.

Figure 21.21 GOMR and G1MR Registers

b7 b6 b5 b4 b3 b2 b1	о 0	Symbo G0EN		After Reset 0016	
		Bit Symbol	Bit Name	Function	RW
		(b0)	Reserved Bit	Set to "0"	RW
		CRCV	CRC Default Value Select Bit	0: Set to "000016" 1: Set to "FFFF16"	RW
		ACRC	CRC Reset Select Bit	0: Not reset 1: Reset ⁽²⁾	RW
		BSINT	Bit Stuffing Error Interrupt Select Bit	0: Not used 1: Used	RW
		RXSL	Receive Source Switch Bit	0: ISRxD0 pin 1: G0RI register	RW
		TXSL	Transmit Source Switch Bit	0: ISTxD0 pin 1: G0TO register	RW
		CRC0	CRC Generation	b7b6 0 0: X ⁸ +X ⁴ +X+1	RW
		CRC1	Polynomial Select Bit	0 1: Do not set to this value 1 0: X ¹⁶ +X ¹⁵ +X ² +1 1 1: X ¹⁶ +X ¹² +X ⁵ +1	RW

NOTES:

- 1. The G0EMR register is used in HDLC data processing mode. It must be in a reset state or set to "0016" in clock synchronous serial I/O mode.
- 2. CRC is reset when data in the G0CMP3 register matches received data.

SI/O Expansion Mode Register 1⁽¹⁾

b7 b6 b5 b4 b3 b	2 b1 b0	Symbo G1EM		After Reset 0016	
		Bit Symbol	Bit Name	Function	RW
		SMODE	Synchronous Mode Select Bit	0: Re-synchronous mode not used 1: Re-synchronous mode	RW
		CRCV	CRC Default Value Select Bit	0: Set to "000016" 1: Set to "FFFF16"	RW
		ACRC	CRC Reset Select Bit	0: Not reset 1: Reset ⁽²⁾	RW
		BSINT	Bit Stuffing Error Interrupt Select Bit	0: Not used 1: Used	RW
		RXSL	Receive Source Switch Bit	0: ISRxD1 pin 1: G1RI register	RW
		TXSL	Transmit Source Switch Bit	0: ISTxD1 pin 1: G1TO register	RW
		CRC0	CRC Generation	b7b6 0 0: X ⁸ +X ⁴ +X+1 0 1: Do not set to this value	RW
		CRC1	Polynomial Select bit	1 0: $X^{16}+X^{15}+X^2+1$ 1 1: $X^{16}+X^{12}+X^5+1$	RW

NOTES:

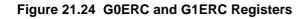

1. The G1EMR register is used in special communication mode or HDLC data processing mode. It

must be in a reset state or be set to "0016" in clock synchronous serial I/O mode or UART mode.

2. CRC is reset when data in the G1CMP3 register matches received data.

Figure 21.22 G0EMR and G1EMR Registers

	0 0 Symb		After Reset 0000 0XXX2	
	Bit Symbol	Bit Name	Function	R۱
	(b3 - b0)	Reserved Bit	Set to "0"	-
	TCRCE	Transmit CRC Enable Bit	0: Not used 1: Used	R
	(b5)	Reserved Bit	Set to "0"	R۱
	TBSF0	Transmit Bit Stuffing "1" Insert Select Bit	0: "1" is not inserted 1: "1" is inserted	RV
	TBSF1	Transmit Bit Stuffing "0" Insert Select Bit	0: "0" is not inserted 1: "0" is inserted	RV
"0016" in clocl	synchronous so n Transmi	erial I/O mode. t Control Register	node. It must be in a reset state or set r 1⁽¹⁾ After Reset 0000 0XXX2	t to
1. The GOETC r "0016" in clock	on Transmi	erial I/O mode. t Control Register	r 1 ⁽¹⁾ After Reset	
1. The GOETC r "0016" in clock	on Transmi on Transmi G1 ^{b0} Symb G1E Bit	erial I/O mode. t Control Register pol Address TC 013F16	r 1 ⁽¹⁾ After Reset 0000 0XXX2	RV
1. The GOETC r "0016" in clock	on Transmi	erial I/O mode. t Control Register pol Address TC 013F16 Bit Name	r 1 ⁽¹⁾ After Reset 0000 0XXX2 Function When read,	t to
1. The GOETC r "0016" in clock	on Transmi on Transmi G1E Bit Symbol (b2 - b0)	erial I/O mode. t Control Register ool Address TC 013F16 Bit Name Reserved Bit SOF Transmit	r 1 ⁽¹⁾ After Reset 0000 0XXX2 Function When read, its content is indeterminate 0: Not requested to transmit SOF	RV
1. The GOETC r "0016" in clock	on Transmi	erial I/O mode. t Control Register ool Address TC 013F16 Bit Name Reserved Bit SOF Transmit Request Bit Transmit CRC	r 1 ⁽¹⁾ After Reset 0000 0XXX2 Function When read, its content is indeterminate 0: Not requested to transmit SOF 1: Requested to transmit SOF 0: Not used	RV RV RV
1. The GOETC r "0016" in clock	on Transmi	erial I/O mode. t Control Register ool Address TC 013F16 Bit Name Reserved Bit SOF Transmit Request Bit Transmit CRC Enable Bit	r 1 ⁽¹⁾ After Reset 0000 0XXX2 Function When read, its content is indeterminate 0: Not requested to transmit SOF 1: Requested to transmit SOF 1: Requested to transmit SOF 1: Requested to transmit SOF 0: Not used 1: Used 0: Not used	RV


L

b7 b6 b5	b4 b3 l	b2 b1 b0	Symb G0Ef		Address After Reset	
			Bit Symbol	Bit Name	Function	RV
			CMP0E	Data Compare Function 0 Select Bit	0: The GiDR register (receive data register) is not compared with the GiCMP0 register 1: The GiDR register is compared with the GiCMP0 register	RV
			CMP1E	Data Compare Function 1 Select Bit	0: The GiDR register (receive data register) is not compared with the GiCMP1 register 1: The GiDR register is compared with the GiCMP1 register	RV
			CMP2E	Data Compare Function 2 Select Bit	0: The GiDR register (receive data register) is not compared with the GiCMP2 register 1: The GiDR register is compared with the GiCMP2 register	R٧
			CMP3E	Data Compare Function 3 Select Bit	 0: The GiDR register (receive data register) is not compared with the GiCMP3 register 1: The GiDR register is compared with the GiCMP3 register⁽²⁾ 	RV
	[RCRCE	Receive CRC Enable Bit	0: Not used 1: Used	RV
			RSHTE	Receive Shift Operation Enable Bit	0: Receive shift operation disabled 1: Receive shift operation enabled	RV
			RBSF0	Receive Bit Stuffing "1" Delete Select Bit	0: "1" is not deleted 1: "1" is deleted	RV
			RBSF1	Receive Bit Stuffing "0" Delete Select Bit	0: "0" is not deleted 1: "0" is deleted	RV

It must be set to "0010 00002" in clock synchronous serial I/O mode.

It must be in a reset state or be set to "0016" in UART mode.

2. When the ACRC bit in the GiEMR register is set to "1" (CRC reset function used), set the CMP3E bit to "1".

	00	Symb G0IR		Address After Reset 00FE16 0016	
		Bit Symbol	Bit Name	Function	RW
		(b1 - b0)	Reserved Bit	Set to "0"	RW
		BSERR	Bit Stuffing Error Detect Flag	0: Not detected 1: Detected	RW
		(b3)	Reserved Bit	Set to "0"	RW
		IRF0	Interrupt Cause Determination Flag 0	0: The G0DR register (receive data register) does not match the G0CMP0 register 1: The G0DR register matches the G0CMP0 register	RW
		IRF1	Interrupt Cause Determination Flag 1	0: The G0DR register (receive data register) does not match the G0CMP1 register 1: The G0DR register matches the G0CMP1 register	RW
<u> </u>		IRF2	Interrupt Cause Determination Flag 2	0: The G0DR register (receive data register) does not match the G0CMP2 register 1: The G0DR register matches the G0CMP2 register	RW
		IRF3	Interrupt Cause Determination Flag 3	0: The G0DR register (receive data register) does not match the G0CMP3 register 1: The G0DR register matches the G0CMP3 register	RW

Figure 21.25 G0IRF Register

b7 b6 b5 b4 b3 b2 b1 b0	Symbo G1IR			
	Bit Symbol	Bit Name	Function	RW
	(b1 - b0)	Reserved Bit	Set to "0"	RW
· · · · · · · · · · · · · · · · · · ·	BSERR	Bit Stuffing Error Detect Flag	0 : Not detected 1 : Detected	RW
	ABT	Arbitration Lost Detect Flag	0 : Not detected 1 : Detected	RW
	IRF0	Interrupt Cause Determination Flag 0	0: The G1DR register (receive data register) does not match the G1CMP0 register 1: The G1DR register (receive data register) matches the G1CMP0 register	RW
	IRF1	Interrupt Cause Determination Flag 1	0: The G1DR register (receive data register) does not match the G1CMP1 register 1: The G1DR register (receive data register) matches the G1CMP1 register	RW
	IRF2	Interrupt Cause Determination Flag 2	0: The G1DR register (receive data register) does not match the G1CMP2 register 1: The G1DR register (receive data register) matches the G1CMP2 register	RW
<u>.</u>	IRF3	Interrupt Cause Determination Flag 3	0: The G1DR register (receive data register) does not match the G1CMP3 register 1: The G1DR register (receive data register) matches the G1CMP3 register	RW
be in a reset state or	set to "001 IIO4IR regis Receive Symb G0TI	s" in clock synchro ster is also set to " Data) Reg	After Reset Indeterminate	
	Gill	5, GIDK UIZA	Function	RV
	Set data	to be transmitted.	node, the receive data register is read by	RV

b7 b0	Symbol G0CMP0 to G0CMP3 G1CMP0 to G1CMP3	Address 00F016, 00F116, 00F216 013016, 013116, 013216,		
	Functio	n	Setting Range	R۱
	Data to be compared		0016 to FF16	R۱
-	ister to use the GiCMP0 reg ister to use the GiCMP1 reg Pr ij (i=0,1, j=0,1)			
b7 b0	Symbol G0MSK0, G0MSK1 G1MSK0, G1MSK1	Address 00F416, 00F516 013416, 013516	After Rese Indetermin Indetermin	ate
	Functio	n	Setting Range	RV
	Masked data for received Set incomparable bit to "1"		0016 to FF16	RV
[Function		RV
	Result of the transmit CRC			-
The CRCV bit in the 2. Transmit CRC calcul the GiETC register is Receive CRC Cod	is reset by setting the TE bi GiEMR register selects a de ation is performed with each s set to "1" (used).	C calculation ^(1, 2) t in the GiCR register to ofault value.	while the TCRCE bit i	d).
 The calculated result The CRCV bit in the Transmit CRC calcul the GiETC register is 	is reset by setting the TE bi GiEMR register selects a de ation is performed with each s set to "1" (used). e Register i (i=0,1) Symbol	C calculation ^(1, 2) t in the GiCR register to fault value. h bit of data transmitted Address	while the TCRCE bit i	R(). n
 The calculated result The CRCV bit in the Transmit CRC calcul the GiETC register is 	is reset by setting the TE bi GiEMR register selects a de ation is performed with each s set to "1" (used). e Register i (i=0,1) Symbol	C calculation ^(1, 2) t in the GiCR register to fault value. b bit of data transmitted Address 00F916-00F816, 013916-0 Function	while the TCRCE bit i	d).

Figure 21.27 G0CMP0 to G0CMP3 Registers and G1CMP0 to G1CMP3 Registers G0MSK0 and G0MSK1 Registers, G1MSK0 and G1MSK1 Registers G0TCRC and G1TCRC Registers, G0RCRC and G1RCRC Registers

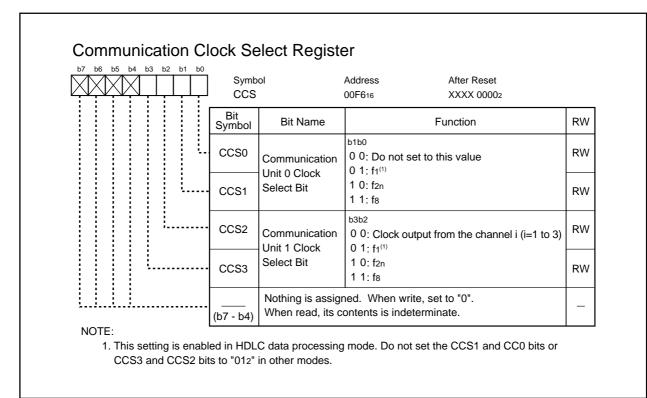


Figure 21.28 CCS Register

21.4.1 Clock Synchronous Serial I/O Mode (Communication Units 0 and 1)

In clock synchronous serial I/O mode, data is transmitted and received with the transfer clock. f8 or f2n can be selected as the communication unit 0 transfer clock. f8, f2n or the clock generated in channels 0 and 3 can be selected as the communication unit 1 transfer clock.

Table 21.12 lists specifications of clock synchronous serial I/O mode for the communication units 0 and 1. Tables 21.13 and 21.14 list clock settings. Table 21.15 lists register settings. Tables 21.16 to 21.19 list pin settings. Figure 21.29 shows an example of transmit and receive operation.

Table 21.12 Clock S	vnchronous Serial I/O Mode	Specifications ((Communication Units 0 and 1)
	,	opeenieanene	

Item	Specification				
Transfer Data Format	Transfer data : 8 bits long				
Transfer Clock ⁽¹⁾	See Tables 21.13 and 21.14				
Transmit Start Condition	Set registers associated with the waveform generating function, the GiMR and GiERC registers (i=0,1). Then, set as is written below after at least one transfer clock cycle. • Set the TE bit in the GiCR register to "1" (transmit enabled) • Set the TI bit in the GiCR register to "0" (data in the GiTB register)				
Receive Start Condition	Set registers associated with the waveform generating function, the GiMR and GiERC registers. Then, set as is written below after at least one transfer clock cycle. • Set the RE bit in the GiCR register to "1" (receive enabled) • Set the TE bit to "1" (transmit enabled) • Set the TI bit to "0" (data in the GiTB register)				
Interrupt Request	 While transmitting, one of the following conditions can be selected to set the SIOiTR bit to "1" (interrupt requested) (see Figure 11.14): The IRS bit in the GiMR register is set to "0" (no data in the GiTB register) and data is transferred to the transmit register from the GiTB register The IRS bit is set to "1" (transmission completed) and data transfer from the transmit register is completed While receiving, the following condition can be selected to set SIOiRR bit is set to "1" (data reception is completed): Data is transferred from the receive register to the GiRB register 				
Error Detection	Overrun error ⁽²⁾ This error occurs, when the next data reception is started and the 8th bit of the next data is received before reading the GiRB register				
Selectable Function	 LSB first or MSB first Select either bit 0 or bit 7 to transmit or receive data ISTxDi and ISRxDi I/O polarity inverse ISTxDi pin output level and ISRxDi pin input level are inversed 				

NOTES:

- 1. In clock synchronous serial I/O mode, set the RSHTE bit in the GiERC register (i=0, 1) to "1" (receive shift operation enabled).
- 2. When an overrun error occurs, the GiRB register is indeterminate.

When the OPOL bit in the GiCR register is set to "0" (ISTxD output polarity not inversed), the ISTxDi pin puts in a high-level ("H") signal output after selecting operating mode until transfer starts. When the OPOL bit is set to "1" (ISTxD output polarity inversed), the ISTxDi pin puts in a low-level ("L") signal output.

Table 21.13	Clock Settings	(Communication Unit 0)
-------------	----------------	------------------------

Transfer Clock	G0MR Register	CCS R	egister
Transfer Clock	CKDIR Bit	CCS0 Bit	CCS1 Bit
f8	0	1	1
f2n ⁽¹⁾	0	0	1
Input from ISCLK0	1	-	-

NOTE:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (*n*=0) or divide-by-2*n* (*n*=1 to 15).

Table 21.14 Clock Settings (Communication Unit 1)

Transfer Clock ⁽³⁾	G1MR Register	CCS Re	egister
	CKDIR Bit	CCS2 Bit	CCS3 Bit
<u>fBT1(1)</u>	0	0	0
2(<i>n</i> +2)	-	-	-
f8	0	1	1
f2n ⁽²⁾	0	0	1
Input from ISCLK1	1	-	-

n. Setting value of the G1PO0 register, 000116 to FFFD16

NOTES:

- 1. The transfer clock is generated in phase-delayed waveform output mode of the channel 3 waveform generating function.
- 2. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).
- 3. The transfer clock must be fBT1 divided by six or more.

Table 21.15 Register Settings in Clock Synchronous Seria	al I/O Mode (Communication Units 0 and 1)
--	---

Register	Bit	Function			
		Communication Unit 1	Communication Unit 0		
CCS	CCS1, CCS0	Setting not required when using the	Select transfer clock		
		communication unit 1 only			
ĺ	CCS3, CSS2	Select transfer clock	Setting not required when using the		
G1BCR0 ⁽²⁾ BCK1, BCK0		Set to "112" (f1)	communication unit 0 only		
	DIV4 to DIV0	Select divide ratio of count source			
	IT	Set to "0"			
G1BCR1 ⁽²⁾	7 to 0	Set to "0001 00102"			
G1POCR0 ⁽²⁾	7 to 0	Set to "0000 01112"			
G1POCR1 ⁽²⁾	7 to 0	Set to "0000 01112"			
G1POCR3 ⁽²⁾	MOD2 to MOD0	Set to "0102" ⁽¹⁾			
	IVL	Select default ISCLKi output value ⁽¹⁾			
	RLD	Set to "0"			
	INV	Select whether ISCLKi puts in an			
		inversed signal or not ⁽¹⁾			
G1PO0 ⁽²⁾	15 to 0	Set bit rate			
		$\frac{\text{fBT1}}{\text{BT1}}$ = transfer clock			
		2 x (setting value + 2) frequency			
G1PO3 ⁽²⁾	15 to 0	Set to a value smaller than the G1PO0			
		register ⁽¹⁾			
G1FS ⁽²⁾	FSC3,FSC1,FSC0	Set to "0" ⁽¹⁾			
G1FE ⁽²⁾	IFE3,IFE1,IFE0	Set to "1" ⁽¹⁾			
GiERC	7 to 0	Set to "0010 00002"			
GiMR	GMD1, GMD0	Set to "012"			
	CKDIR	Select the internal clock or external clo	ck		
	STPS	Set to "0"			
	UFORM	Select either LSB first or MSB first			
	IRS	Select what cause the transmit interrup	t to be generated		
GiCR	TI	Transmit buffer empty flag			
	TXEPT	Transmit register empty flag			
	RI	Receive complete flag			
	TE	Set to "1" to enable transmission and re	eception		
	RE	Set to "1" to enable reception			
	IPOL	Select ISRxDi input polarity (usually se			
	OPOL	Select ISTxDi output polarity (usually se	et to "0")		
GiTB	_	Write data to be transmitted			
GiRB					

i = 0 to 1

NOTES:

1. The CKDIR bit in the GiMR register is set to "0" (internal clock).

2. These registers must be set, when f8 or f2n is selected as transfer clock source notwithstanding.

Table 21.16 Pin Settings in Clock Synchronous Serial I/O Mode (Communication Units 0 and 1)(1)

Port		Setting						
Name	Function	PS1 Register	PSL1 Register	PSC Register	PSD1 Register	PD7 Register	IPS Register	Register (1)
P73	ISTxD1 Output	PS1_3=1	PSL1_3=0	PSC_3=1	-	-	-	G1POCR0
P74	ISCLK1 Input	PS1_4=0	-	-	-	PD7_4=0	IPS1=0	-
	ISCLK1 Output	PS1_4=1	PSL1_4=0	PSC_4=1	-	-	-	G1POCR1
P75	ISRxD1 Input	PS1_5=0	-	-	-	PD7_5=0	IPS1=0	-
p76	ISTxD0 Output	PS1_6=1	PSL1_6=0	PSC_6=0	PSD1_6=0	-	-	-
p77	ISCLK0 Input	PS1_7=0	-	-	-	PD7_7=0	IPS0=0	-
	ISCLK0 Output	PS1_7=1	PSL1_7=0	-	-	-	-	-

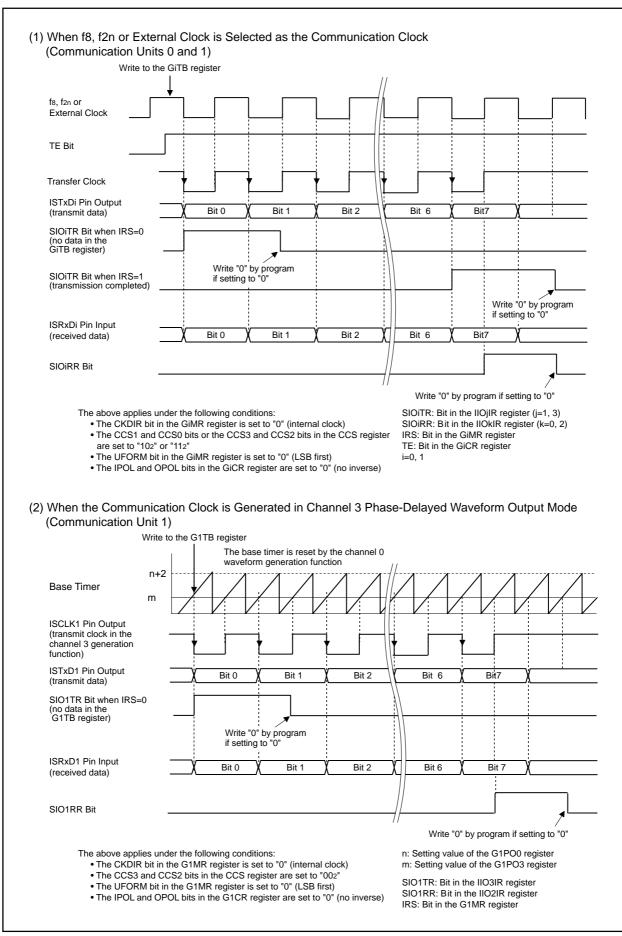
NOTE:

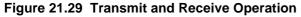
1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output from the communication function used).

Table 21.17 Pin Settings (2)

Port	Function	Setting			
Name		PS2 Register	PD8 Register	IPS Register	
P80	ISRxD0 input	PS2_0 = 0	PD8_0 = 0	IPS0 = 0	

Table 21.18 Pin Settings (3)


Function		Register ⁽¹⁾		
	PS5 Register	PD11 Register	IPS Register	
ISTxD1 output	PS5_0 = 1	-	-	G1POCR0
ISCLK1 input	PS5_1 = 0	PD11_1 = 0	IPS1 = 1	-
ISCLK1 output	PS5_1 = 1	-	-	G1POCR1
ISRxD1 input	PS5_2 = 0	PD11_2 = 0	IPS1 = 1	-
	ISTxD1 output ISCLK1 input ISCLK1 output	PS5 RegisterISTxD1 outputPS5_0 = 1ISCLK1 inputPS5_1 = 0ISCLK1 outputPS5_1 = 1	PS5 Register PD11 Register ISTxD1 output PS5_0 = 1 - ISCLK1 input PS5_1 = 0 PD11_1 = 0 ISCLK1 output PS5_1 = 1 -	PS5 Register PD11 Register IPS Register ISTxD1 output PS5_0 = 1 - - ISCLK1 input PS5_1 = 0 PD11_1 = 0 IPS1 = 1 ISCLK1 output PS5_1 = 1 - -


NOTE:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output from communication function used).

Table 21.19 Pin Settings (4)

Port	Function	Setting		
Name		PS9 Register	PD15 Register	IPS Register
P150	ISTxD0 output	PS9_0 = 1	-	-
P151	ISCLK0 input	PS9_1 = 0	PD15_2 = 0	IPS0 = 1
	ISCLK0 output	PS9_1 = 1	-	-
P152	ISRxD0 input	-	PD15_2 = 0	IPS0 = 1

21.4.2 Clock Asynchronous Serial I/O (UART) Mode (Communication Unit 1)

In clock asynchronous serial I/O (UART) mode, data is transmitted at a desired bit rate and in a desired transfer data format. Table 21.20 lists specifications of UART mode in the communication unit 1. Table 21.21 lists clock settings. Table 21.22 lists register settings. Tables 21.23 and 21.24 list pin settings. Figure 21.30 shows an example of transmit operation. Figure 21.31 shows an example of receive operation.

or none			
or 2 bits			
the G1MR and G1ERC			
clock cycle:			
)			
G1TB register)			
the G1MR and G1ERC			
clock cycle:			
Set the RE bit in the G1CR register to "1" (receive enabled)Detect the start bit			
• While transmitting, one of the following conditions can be selected to set the			
SIO1TR bit to "1" (interrupt requested) (See Figure 10.14.) :			
- The IRS bit in the G1MR register is set to "0" (no data in the G1TB register) and data			
is transferred to the transmit register from the G1TB register.			
- The IRS bit is set to "1" (transmission completed) and data transfer from the			
transmit register is completed			
• While receiving, the following condition can be selected to set the SIO1RR bit is set to "1":			
Data is transferred from the receive register to the G1RB register (data reception			
is completed)			
This error occurs, when the next data reception is started and the final stop bit of the			
next data is received before reading the G1RB register			
Parity error			
While parity is enabled, this error occurs when the number of "1" in parity and char-			
acter bits does not match the number of "1" set			
• Framing error			
This error occurs when the number of the stop bits set is not detected			
Stop bit length			
The length of the stop bit is selected from 1 bit or 2 bits			
LSB first or MSB first			
Select either bit 0 or bit 7 to transmit or receive data			
 While receiving, the following condition can be selected to set the SIO1RR bit is set to "1": Data is transferred from the receive register to the G1RB register (data reception is completed) Overrun error⁽²⁾ This error occurs, when the next data reception is started and the final stop bit of the next data is received before reading the G1RB register Parity error While parity is enabled, this error occurs when the number of "1" in parity and char acter bits does not match the number of "1" set Framing error This error occurs when the number of the stop bits set is not detected Stop bit length The length of the stop bit is selected from 1 bit or 2 bits LSB first or MSB first 			

Table 21.20 UART Mode Specifications	(Communication Unit 1)
--------------------------------------	------------------------

NOTES:

1. The transfer clock must be fBT1 divided by six or more.

2. When an overrun error occurs, the G1RB register is indeterminate.

Table 21.21 Clock Settings (Communication Unit 1)

Transfer Clock ⁽³⁾	G1MR Register	CCS Register	
	CKDIR Bit	CCS2 Bit	CCS3 Bit
	0	0	0
2(<i>n</i> +2)	-	-	-

n. Setting value of the G1PO0 register 000116 to FFFD16

- NOTES:
 - 1. Transmit clock is generated in phase-delayed waveform output mode of the channel 3 waveform generating function.
 - 2. Received clock is generated when phase-delayed waveform mode of the channel 2 waveform generating function and the channel 2 time measurement function is simultaneously performed.
 - 3. The transfer clock must be fBT1 divided by six or more.

Register	Bit	Function
G1BCR0	BCK1, BCK0	Set to "112" (f1)
	DIV4 to DIV0	Select divide ratio of count source
	IT	Set to "0"
G1BCR1	7 to 0	Set to "0001 00102"
G1POCR0	7 to 0	Set to "0000 01112"
G1POCR2	7 to 0	Set to "0000 01102"
G1POCR3	7 to 0	Set to "0000 00102"
G1TMCR2	7 to 0	Set to "0000 00102"
G1PO0	15 to 0	Set bit rate
		fBT1
		$\overline{2 \times (\text{setting value + 2})}$ = transfer clock frequency
G1PO3	15 to 0	Set to a value smaller than the G1PO0 register
G1FS	FSC3 to FSC0	Set to "01002"
G1FE	IFE3 to IFE0	Set to "11012"
G1MR	GMD1, GMD0	Set to "002"
	CKDIR	Set to "0"
	STPS	Select stop bit length
	PRY, PRYE	Select either parity enabled or disabled and either odd parity or even parity
	UFORM	Select either the LSB first or MSB first
	IRS	Select what causes the receive interrupt to be generated
G1CR	TI	Transmit buffer empty flag
	TXEPT	Transmit register empty flag
	RI	Receive complete flag
	TE	Set to "1" to enable transmission and reception
	RE	Set to "1" to enable reception
	IPOL	Set to "1"
	OPOL	Set to "1"
G1TB	7 to 0	Write data to be transmitted
G1RB	15 to 0	Received data and error flag are stored
CCS	CCS3, CCS2	Set to "002"

Table 21.23 Pin Settings in UART Mode

Port	Function		Setting				Register ⁽¹⁾
Name		PS1 Register	PSL1 Register	PSC Register	PD7 Register	IPS Register	
P73	ISTxD1 output	PS1_3 = 1	PSL1_3 = 0	PSC_3 = 1	-	-	G1POCR0
P75	ISRxD1 input	PS1_5 = 0	-	-	PD7_5 = 0	IPS1 = 0	-
NOTE							

NOTE:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output from communication function used).

Table 21.24 Pin Settings (Continued)

Port	Function	Setting			Register ⁽¹⁾
Name		PS5 Register	PD11 Register	IPS Register	
P110	ISTxD1 output	PS5_0 = 1	-	-	G1POCR0
P112	ISRxD1 input	PS5_2 = 0	PD11_2 = 0	IPS1 = 1	-

NOTE:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output from the communication function used).

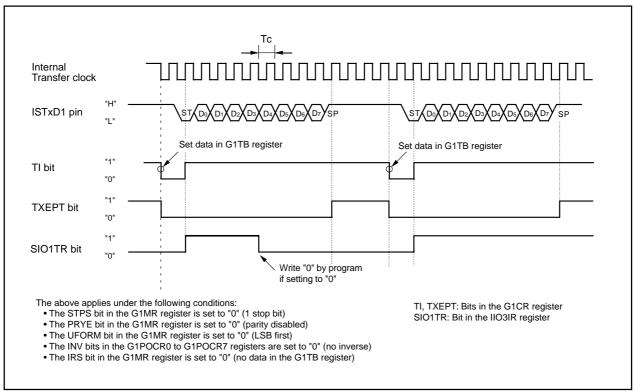


Figure 21.30 Transmit Operation

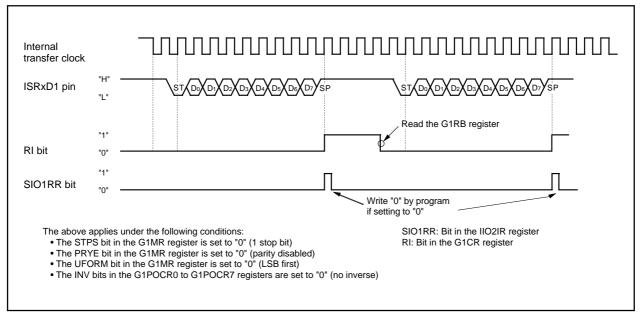


Figure 21.31 Receive Operation

21.4.3 HDLC Data Processing Mode (Communication Units 0 and 1)

In HDLC data processing mode, bit stuffing, flag detection, abort detection and CRC calculation are available for HDLC control. f1, f8 or f2n can be selected as the communication unit 0 transfer clock. f1, f8, f2n or clock, generated in the channel 0 or 1, can be selected as the communication unit 1 transfer clock. No pin is used. To convert data, data to be transmitted is written to the GiTB register (i=0,1) and the data conversion result is restored after data conversion. If any data are in the GiTO register after data conversion, the conversion is terminated. If no data is in the GiTO register, bit stuffing processing is executed regardless of no data available in the transmit output buffer. A CRC value is calculated every time one bit is converted. If no data is in the GiRI register, received data conversion is terminated.

Table 21.25 list specifications of the HDLC data processing mode. Tables 21.26 and 21.27 list clock settings. Table 21.28 lists register settings.

Item	Specification		
Input Data Format	8-bit data fixed, bit alignment is optional		
Output Data Format	8-bit data fixed		
Transfer Clock	See Tables 21.26 and 21.27		
I/O Method	During transmit data processing,		
	value set in the GiTB register is converted in HDLC data processing mode and		
	transferred to the GiTO register.		
	During received data processing,		
	value set in the GiRI register is converted in HDLC data processing mode and		
	transferred to the GiRB register. The value in the GiRI register is also transferred to		
	the GiTB register (received data register).		
Bit Stuffing	During transmit data processing, "0" following five continuous "1" is inserted.		
	During received data processing, "0" following five continuous "1" is deleted.		
Flag Detection	Write the flag data "7E16" to the GiCMPj register (j=0 to 3) to use the special commu-		
	nication interrupt (the SRTiR bit in the IIO4IR register)		
Abort Detection	Write the masked data "0116" to the GiMSKj register		
CRC	The CRC1 and CRC0 bits are set to "112" $(X^{16}+X^{12}+X^{5}+1)$.		
	The CRCV bit is set to "1" (set to "FFFF16").		
	During transmit data processing,		
	CRC calculation result is stored into the GiTCRC register. The TCRCE bit in the		
	GiETC register is set to "1" (transmit CRC used).		
	The CRC calculation result is reset when the TE bit in the GiCR register is set to "0"		
	(transmit disabled).		
	During received data processing,		
	CRC calculation result is stored into the GiRCRC register. The RCRCE bit in the		
	GiERC register is set to "1" (receive CRC used).		
	The CRC calculation result is reset by comparing the flag data "7E16" and matching		
	the result with the value in the GiCMP3 register. The ACRC bit in the GiEMR regis-		
	ter is set to "1" (CRC reset).		
Data Processing Start	The following conditions are required to start transmit data processing:		
Condition	 The TE bit in the GiCR register is set to "1" (transmit enabled) Data is written to the GiTB register 		
	The following conditions are required to start receive data processing:		
	• The RE bit in the GiCR register is set to "1" (receive enabled)		
	Data is written to the GiRI register		

 Table 21.25
 HDLC Processing Mode Specifications (Communication Units 0 and 1)

Table 21.25 HDLC Processing Mode Specifications (Continued)

Item	em Specification		
Interrupt Request	During transmit data processing,		
	• One of the following conditions can be selected to set the GiTOR bit ⁽¹⁾ in the		
	interrupt request register to "1" (interrupt requested).		
	– When the IRS bit in the GiMR register is set to "0" (no data in the GiTB		
	register) and data is transferred from the GiTB register to the transmit regis- ter (transmit start).		
	- When the IRS bit is set to "1" (transmission completed) and data transfer from		
	the transmit register to the GiTO register is completed.		
	When data, which is already converted to HDLC data, is transferred from the		
	receive register of the GiTO register to the transmit buffer, the GiTOR bit is set to "1"		
	During received data processing,		
	• When data is transferred from the GiRI register to the GiRB register (reception completed), the GiRIR bit ⁽¹⁾ is set to "1".		
	 When received data is transferred from the receive buffer of the GiRI register to the receive register, the GiRIR bit is set to "1". 		
	• When the GiTB register is compared to the GiCMPj register (j=0 to 3), the SRTiR bit ⁽¹⁾ is set to "1".		

NOTE:

1. See **Figure 10.14** for details on the GiTOR bit, GiRIR bit and SRTiR bit.

Table 21.26 Clock Settings (Communication Unit 0)

Transfer Clock ⁽¹⁾	CCS Register		
	CCS0 Bit CCS1 Bit		
f1	1	0	
f8	1	1	
f2n ⁽²⁾	0	1	

NOTES:

- 1. The transfer clock for reception is generated when the RSHTE bit in the G0ERC register is set to "1" (receive shift operation enabled).
- 2. The CNT3 to CNT0 bits in the TCSPR register select no division (*n*=0) or divide-by-2*n* (*n*=1 to 15).

Table 21.27	Clock Settings	(Communication	Unit 1)
-------------	-----------------------	----------------	---------

Transfer Clock ⁽¹⁾	CCS Regi	ster
	CCS2 Bit	CCS3 Bit
<u>fBT1</u> (2) 2x(<i>n</i> +2)	0	0
f1	1	0
f8	1	1
f2n ⁽³⁾	0	1

n: Setting value of the G1PO0 register, 000116 to FFFD16 NOTES:

- 1. The transfer clock for reception is generated when the RSHTE bit in the G1ERC register is set to "1" (receive shift operation enabled).
- 2. The transfer clock is generated in single-phase waveform output mode of the channel 1.
- 3. The CNT3 to CNT0 bits in the TCSPR register select no division (*n*=0) or divide-by-2*n* (*n*=1 to 15).

Register	Bit	Function
G1BCR0	BCK1, BCK0	Select count source
	DIV4 to DIV0	Select divide ratio of count source
	IT	Select the base timer interrupt
G1BCR1 ⁽¹⁾	7 to 0	Set to "0001 00102"
G1POCR0 ⁽¹⁾	7 to 0	Set to "0000 00002"
G1POCR1 ⁽¹⁾	7 to 0	Set to "0000 00002"
G1PO0 ⁽¹⁾	15 to 0	Set bit rate
G1PO1 ⁽¹⁾	15 to 0	Set the timing of the rising edge of the transfer clock.
		Timing of the falling edge ("H" width of the transfer clock) is fixed.
		Setting value of the G1PO1 register ≤ Setting value of the G1PO0 register
G1FS ⁽¹⁾	FSC1, FSC0	Set to "002"
G1FE ⁽¹⁾	IFE1, IFE0	Set to "112"
GiMR	GMD1, GMD0	Set to "112"
	CKDIR	Set to "0"
	UFORM	Set to "0"
	IRS	Select what causes the transmit interrupt to be generated
GiEMR	7 to 0	Set to "1111 01102"
GiCR	TI	Transmit buffer empty flag
	TXEPT	Transmit register empty flag
	RI	Receive complete flag
	TE	Transmit enable bit
	RE	Receive enable bit
GiETC	SOF	Set to "0"
	TCRCE	Select whether transmit CRC is used or not
	ABTE	Set to "0"
	TBSF1, TBSF0	Transmit bit stuffing
GiERC	CMP2E to CMP0E	Select whether received data is compared or not
	CMP3E	Set to "1"
	RCRCE	Select whether receive CRC is used or not
	RSHTE	Set to "1" to use it in the receiver
	RBSF1, RBSF0	Receive bit stuffing
GilRF	BSERR, ABT	Set to "0"
	IRF3 to IRF0	Select what causes an interrupt to be generated
GiCMP0,	7 to 0	Write "FE16" to abort processing
GiCMP1		
GiCMP2	7 to 0	Data to be compared
GiCMP3	7 to 0	Write "7E16"
GiMSK0,	7 to 0	Write "0116" to abort processing
GiMSK1		
GiTCRC	15 to 0	Transmit CRC calculation result can be read
GiRCRC	15 to 0	Receive CRC calculation result can be read
GiTO	7 to 0	Data, which is output from a transmit data generation circuit, can be read
GiRI	7 to 0	Set data input to a receive data generation circuit
GiRB	7 to 0	Received data is stored
GiTB	7 to 0	For transmission: write data to be transmitted
	0001 0000	For reception : received data for comparison is stored
CCS	CCS1, CCS0	Select the HDLC processing clock
	CCS3, CCS2	Select the HDLC processing clock

Table 21.28 Register Settings in HDLC Processing Mode (Communication Units 0 and 1)

i=0, 1 NOTE:

1. These register settings are required when the CCS3 and CCS2 bit in the CCS register are set to "002" (clock output from channel j (j=1 to 3)).

22. CAN Module

The CAN (Controller Area Network) module included in the M32C/88 Group (M32C/88T) is a Full CAN module, compatible with CAN Specification 2.0 Part B. Three channels, CAN0, CAN1, and CAN2, can be used. Table 22.1 lists specifications of the CAN module.

Item	Specification
Protocol	CAN Specification 2.0 Part B
Message Slots	16 slots
Polarity	Dominant: "L"
	Recessive: "H"
Acceptance Filter	Global mask: 1 (for message slots 0 to 13)
	Local mask: 2 (for message slots 14 and 15 respectively)
Baud Rate	Baud rate = <u>1</u> Tq clock cycle x Tq per bit Max. 1 Mbps
	Tq clock cycle = <u>BRP + 1</u> CAN clock
	Tq per bit = SS + PTS +PBS1+PBS2
	Tq: Time quantum
	BRP: Setting value of the C0BRP and C1BRP registers, 1-255
	SS: Synchronization Segment; 1 Tq
	PTS: Propagation Time Segment; 1 to 8 Tq
	PBS1: Phase Buffer Segment 1; 2 to 8 Tq
	PBS2: Phase Buffer Segment 2; 2 to 8 Tq
Remote Frame Automatic	Message slot that receives the remote frame transmits the data frame
Answering Function	automatically
Time Stamp Function	Time stamp function with a 16-bit counter. Count source can be selected
	from the CAN bus bit clock divided by 1, 2, 3 or 4
	CAN bus bit clock = $\frac{1}{CAN \text{ bit time}}$
BasicCAN Mode	BasicCAN function can be used with the CANi message slots 14 and 15
Transmit Abort Function	Transmit request is aborted
Loopback Function	Frame transmitted by the CAN module is received by the same CAN module
Forcible Error Active	The CAN module is forced into an error active state by resetting an error
Transition Function	counter.
Single-Shot Transmit Function	The CAN module does not transmit data again even if arbitration lost or
	transmission error causes a transmission failure
Self-Test Function	The CAN module communicates internally and diagnoses its CAN module
	state

Table 22.1 C	CAN Modul	e Specifications
--------------	-----------	------------------

NOTE:

1. Use an oscillator with maximum 1.58% oscillator tolerance.

Figure 22.1 shows a block diagram of the CAN module. Figure 22.2 shows CANi message slot (the message slot) j (j = 0 to 15) and CANi message slot buffer (i=0 to 2). Table 22.2 lists pin settings of the CAN module.

The message slot cannot be accessed directly from the CPU. Allocate the message slot j to be used to the message slot buffer 0 or 1. The message slot j is accessed via the message slot buffer address. The CiSBS register selects the message slot j to be allocated. Figure 22.2 shows the 16-byte message slot buffer and message slot.

Figure 22.1 CAN Module Block Diagram

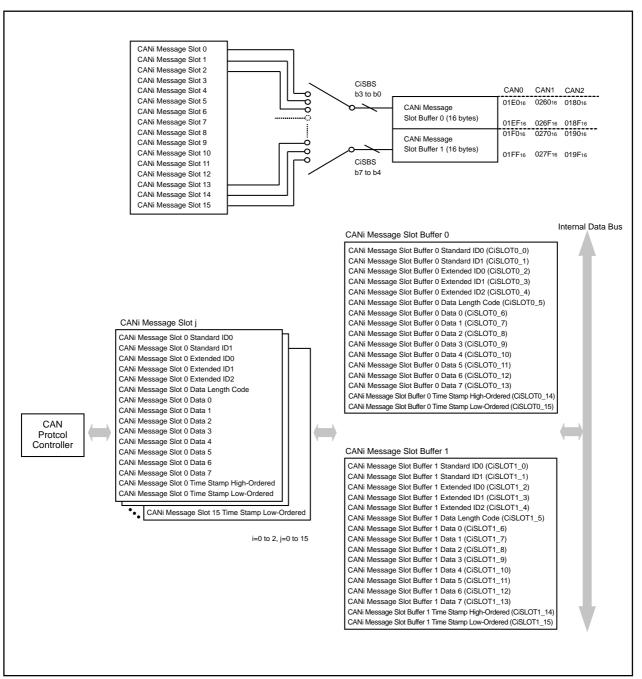


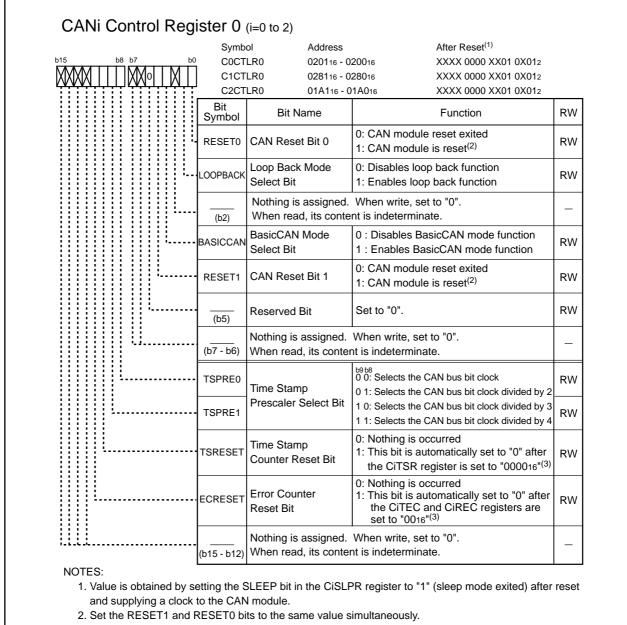
Figure 22.2 CANi Message Slot and CANi Message Slot Buffer

		-				
Port	Function	Bit and Setting ⁽²⁾				
		IPS, IPSA Registers	PS0, PS1, PS2, PS3 Registers	PSL0, PSL1, PSL2, PSL3 Registers	PSC, PSC2, PSC3 Registers	PD6, PD7, PD8, PD9 ⁽¹⁾ Regsiters
P60	CAN2out	-	PS0_0=1	PSL0_0=1	-	-
P61	CAN2IN	IPSA_7=0	PS0_1=0		-	PD6_1=0
P76	CAN0out	IPSA_7=0	PS1_6=1	PSL1_6=0	PSC_6=1	-
	CAN02out	IPSA_7=1	PS1_6=1	PSL1_6=0	PSC_6=1	-
P77	CAN0IN	IPS_3=0	PS1_7=0	-	-	PD7_7=0
	CAN02IN	IPS_3=0, IPSA_7=1	PS1_7=0	-	-	PD7_7=0
P82	CAN0out	-	PS2_2=1	PSL2_2=1	PSC2_2=0	-
	CAN1out	-	PS2_2=1	PSL2_2=1	PSC2_2=1	-
P83	CAN0IN	IPS_3=1	-	-	-	PD8_3=0
	CAN1IN	IPSA_3=1	-	-	-	PD8_3=0
P9₅	CAN1IN	IPSA_3=0	PS3_5=0	PSL3_5=0	-	PD9_5=0
P96	CAN1out	-	PS3_6=1	-	PSC3_6=1	-

Table 22.2 Pin Settings

NOTE:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enabled). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.



22.1 CAN-Associated Registers

Figures 22.3 to 22.18, and Figures 22.20 to 22.33 show registers associated with CAN. To access the CAN-associated registers, set the CM21 bit in the CM2 register to "0" (main clock or PLL clock as CPU clock) and the MCD4 to MCD0 bits in the MCD register to "100102" (no division mode). Or, set the PM24 bit in the PM2 register to "1" (main clock direct mode) and the PM25 bit in the PM2 register to "1" (CAN clock). Two wait states are added into the bus cycle.

Refer to 7. Processor Mode and 8. Clock Generation Circuit.

22.1.1 CANi Control Register 0 (CiCTLR0 Register) (i=0 to 2)

3. These bits can only be set to "1", not "0", by program.

Figure 22.3 C0CTLR0, C1CTLR0 and C2CTLR0 Registers

22.1.1.1 RESET1 and RESET0 Bits

When both RESET1 and RESET0 bits are set to "1" (CAN module reset), the CAN module is immediately initialized regardless of ongoing CAN communication.

After the RESET1 and RESET0 bits are set to "1" and the CAN module reset is completed, the CiTSR register (i=0 to 2) is set to "000016". The CiTEC and CiREC registers are set to "0016" and the STATE_ERRPAS and STATE_BUSOFF bits in the CiSTR register are set to "0" as well.

When both RESET1 and RESET0 bit settings are changed "1" to "0", the CiTSR register starts counting. CAN communication is available after 11 continuous recessive bits are detected. NOTES:

- 1. Set the same value in both RESET1 and RESET0 bits simultaneously.
- 2. Confirm that the STATE_RESET bit in the CiSTR register is set to "1" (CAN module reset completed) after setting the RESET1 and RESET0 bits to "1".
- 3. The CANOUT pin puts in a high-level ("H") signal as soon as the RESET1 and RESET0 bits are set to "1". CAN bus error may occur when the RESET1 and RESET0 bits are set to "1" while the CAN frame is transmitting.
- For CAN communication, set the PS0, PS1, PS2, PS3, PSL0, PSL1, PSL2, PSL3, PSC, PSC2, PSC3, IPS, IPSA, PD6, PD7, PD8, and PD9 registers when the STATE_RESET bit is set to "1" (CAN module reset completed).

22.1.1.2 LOOPBACK Bit

When the LOOPBACK bit is set to "1" (loopback function enabled) and the receive message slot has a matched ID and frame format with a transmitted frame, the transmitted frame is stored to the receive message slot.

NOTES:

- 1. No ACK for the transmitted frame is returned.
- 2. Change the LOOPBACK bit setting only when the STATE_RESET bit is set to "1" (CAN module reset completed).

22.1.1.3 BASICCAN Bit

When the BASICCAN bit is set to "1", the message slots 14 and 15 enter BasicCAN mode.

In BasicCAN mode, the message slots 14 and 15 are used as dual-structured buffers. The message slots 14 and 15 alternately store a received frame having matched ID detected by acceptance filtering. ID in the message slot 14 and the CiLMAR0 to CiLMAR4 registers are used for acceptance filtering when the message slot 14 is active (the next received frame is to be stored in the message slot 14). ID in the message slot 15 and the CiLMBR0 to CiLMBR4 registers are used when the message slot 15 and the CiLMBR0 to CiLMBR4 registers are used when the message slot 15 and the CiLMBR0 to CiLMBR4 registers are used when the message slot 15 is active. Both data frame and remote frame can be received.

Use the following procedure to enter BasicCAN mode.

- (1) Set the BASICCAN bit to "1".
- (2) Set the same value into IDs in the message slots 14 and 15.
- (3) Set the same value in the CiLMAR0 to CiLMAR4 registers and CiLMBR0 to CiLMBR4 registers.
- (4) Set the IDE14 and IDE15 bits in the CiIDR register to select a frame format (standard or extended) for the message slots 14 and 15. (Set to the same format.)
- (5) Set the CiMCTL14 and CiMCTL15 registers in the message slots 14 and 15 to receive the data frame.

NOTES:

- 1. Change the BASICCAN bit setting only when the STATE_RESET bit is set to "1" (CAN module reset completed).
- 2. The message slot 14 is the first slot to become active after the RESET1 and RESET0 bits are set to "0".
- 3. The message slots 0 to 13 are not affected by entering BasicCAN mode.

22.1.1.4 TSPRE1, TSPRE0 Bits

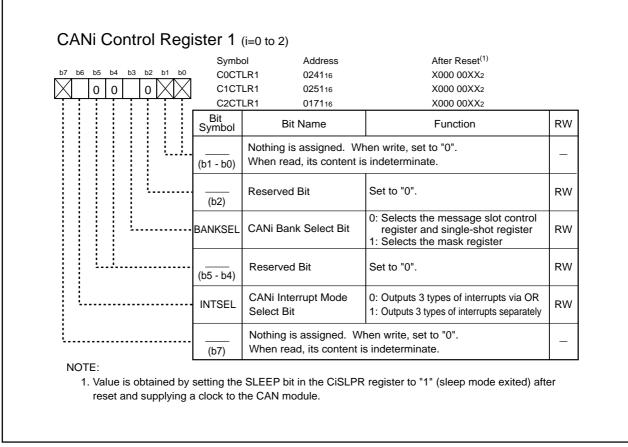
The TSPRE1 and TSPRE0 bits determine which count source is used for the time stamp counter. NOTE:

1. Change the TSPRE1 and TSPRE0 bit settings only when the STATE_RESET bit is set to "1" (CAN module reset completed).

22.1.1.5 TSRESET Bit

When the TSRESET bit is set to "1", the CiTSR register is set to "000016". The TSRESET bit is automatically set to "0" after the CiTSR register is set to "000016".

22.1.1.6 ECRESET Bit


When the ECRESET bit is set to "1", the CiTEC and CiREC registers are set to "0016". The CAN module forcibly goes into an error active state.

The ECRESET bit is automatically set to "0" after the CAN module enters an error active state. NOTES:

- 1. In an error active state, the CAN module is ready to communicate when 11 continuous recessive bits are detected on the CAN bus.
- 2. The CANIOUT pin provides an "H" signal output as soon as the ECRESET bit is set to "1". The CAN bus error may occur when setting the ECRESET bit to "1" during CAN frame transmission.

22.1.2 CANi Control Register 1 (CiCTLR1 Register) (i=0 to 2)

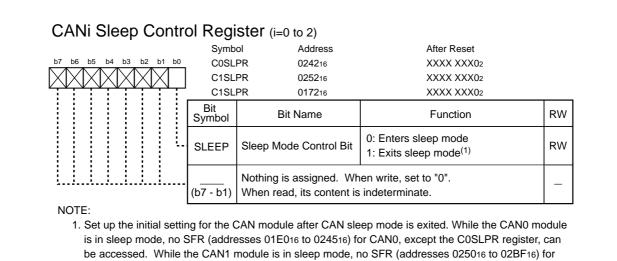
Figure 22.4 C0CTLR1, C1CTLR1 and C2CTLR1 Registers

22.1.2.1 BANKSEL Bit

The BANKSEL bit in the C0CTLR1 register selects the registers allocated to addresses 022016 to 023F16. The BANKSEL bit in the C1CTLR1 register selects registers allocated to addresses 02A016 to 02BF16. The BANKSEL bit in the C2CTLR1 register selects registers allocated to addresses 01C016 to 01DF16.

The CiSSCTLR register, CiSSSTR register, and the CiMCTL0 to CiMCTL15 registers can be accessed by setting the BANKSEL bit to "0". The CiGMR0 to CiGMR4 registers, CiLMAR0 to CiLMAR4 registers and CiLMBR0 to CiLMBR4 registers can be accessed by setting the BANKSEL bit to "1".

22.1.2.2 INTSEL Bit


The INTSEL bit determines whether the three types of interrupt outputs (CANi transmit interrupt, CANi receive interrupt and CANi error interrupt) are provided via OR or is separately.

Refer to 22.4 CAN Interrupts for details.

NOTE:

1. Change the INTSEL bit setting when the STATE_RESET bit is set to "1" (CAN module reset completed).

22.1.3 CANi Sleep Control Register (CiSLPR Register) (i=0 to 2)

is in sleep mode, no SFR (addresses 01E016 to 024516) for CAN0, except the C0SLPR register, can be accessed. While the CAN1 module is in sleep mode, no SFR (addresses 025016 to 02BF16) for CAN1, except the C1SLPR register, can be accessed. While the CAN2 module is in sleep mode, no SFR (addresses 017016 to 017516, 018016 to 01DF16) for CAN2, except the C2SLPR register, can be accessed.

Figure 22.5 C0SLPR, C1SLPR and C2SLPR Registers

22.1.3.1 SLEEP Bit

When the SLEEP bit is set to "0", the clock supplied to the CAN module stops running and the CAN module enters sleep mode.

When the SLEEP bit is set to "1", the clock supplied to the CAN module starts running and the CAN module exits sleep mode.

NOTE:

1. Enter sleep mode after the STATE_RESET bit in the CiSTR register is set to "1" (CAN module reset completed).

22.1.4 CANi Status Register (CiSTR Register) (i=0 to 2)

		Symbol C0STR C1STR C2STR	Address 020316 - 020216 028316 - 028216 01A316 - 01A216	After Reset ⁽¹⁾ X000 0X01 0000 00002 X000 0X01 0000 00002 X000 0X01 0000 00002	
		Bit Symbol	Bit Name	Function	RW
		MBOX0		^{b3 b2 b1 b0} 0 0 0 0: Message slot 0	RO
	· · · · · · · · · · · · · · · · · · ·	MBOX1	Active Slot	0 0 0 1: Message slot 1 0 0 1 0: Message slot 2 0 0 1 1: Message slot 3	RO
		MBOX2	Determination Bit	1 1 0 1: Message slot 13	RO
		MBOX3		1 1 1 0: Message slot 14 1 1 1 1: Message slot 15	RO
		TRMSUCC	Transmit Complete State Flag	0: Transmission is not completed 1: Transmission is completed	RO
		RECSUCC	Receive Complete State Flag	0: Reception is not completed 1: Reception is completed	RO
· · · · · · · · · · · · · · · · · · ·	<u>.</u>	TRMSTATE	Transmit State Flag	0: Not transmitting 1: During transmission	RO
		RECSTATE	Receive State Flag	0: Not receiving 1: During reception	RO
· · · · · · · · · · · · · · · · · · ·		STATE_RESET	CAN Reset State Flag	0: CAN module is operating 1: CAN module reset is completed	RO
· · · · · · · · · · · · · · · · · · ·		STATE_LOOPBACK	Loop Back State Flag	0: Mode except Loop back mode 1: Loop back mode	RO
		(b10)	Nothing is assigned. Wh When read, its content is	-	_
		STATE_BASICCAN	BasicCAN State Flag	0: Mode except BasicCAN mode 1: BasicCAN mode	RO
		STATE_BUSERROR	CAN Bus Error State Flag	0: No error occurs 1: Error occurs	RO
		STATE_ERRPAS	Error Passive State Flag	0: No error passive state 1: Error passive state	RO
		STATE_BUSOFF	Bus-Off State Flag	0: No bus-off state 1: Bus-off state	RO
		(b15)	Nothing is assigned. Wh When read, its content is		_

1. Value is obtained by setting the SLEEP bit in the CiSLPR register to "1" (sleep mode exited) after reset and supplying a clock to the CAN module after reset.

22.1.4.1 MBOX3 to MBOX0 Bits

The MBOX3 to MBOX0 bits store relevant slot numbers when the CAN module has completed transmitting data or storing received data.

22.1.4.2 TRMSUCC Bit

The TRMSUCC bit is set to "1" when the CAN module has transmitted data as expected. The TRMSUCC bit is set to "0" when the CAN module has received data as expected.

22.1.4.3 RECSUCC Bit

The RECSUCC bit is set to "1" when the CAN module has received data as expected. (Whether received message has been stored in the message slot or not is irrelevant.) If the received message is transmitted in loopback mode, the TRMSUCC bit is set to "1" and the RECSUCC bit is set to "0". The RECSUCC bit is set to "0" when the CAN module has transmitted data as expected.

22.1.4.4 TRMSTATE Bit

The TRMSTATE bit is set to "1" when the CAN module is performing as a transmit node. The TRMSTATE bit is set to "0" when the CAN module is in a bus-idle state or starts performing as a receive node.

22.1.4.5 RECSTATE Bit

The RECSTATE bit is set to "1" when the CAN module is performing as a receive node. The RECSTATE bit is set to "0" when the CAN module is in a bus-idle state or starts performing as a transmit node.

22.1.4.6 STATE_RESET Bit

After both RESET1 and RESET0 bits are set to "1" (CAN module reset), the STATE_RESET bit is set to "1" as soon as the CAN module is initialized.

The STATE_RESET bit is set to "0" when the RESET1 and RESET0 bits are set to "0".

22.1.4.7 STATE_LOOPBACK Bit

The STATE_LOOPBACK bit is set to "1" when the CAN module is in loopback mode.

The STATE_LOOPBACK bit is set to "1" when the LOOPBACK bit in the CiCTLR0 register is set to "1" (loop back function enabled).

The STATE_LOOPBACK bit is set to "0" when the LOOPBACK bit is set to "0" (loop back function disabled).

22.1.4.8 STATE_BASICCAN Bit

The STATE_BASICCAN bit is set to "1" when the CAN module is in BasicCAN mode.

Refer to 22.1.1.3 BASICCAN bit for BasicCAN mode.

The STATE_BASICCAN bit is set to "0" when the BASICCAN bit is set to "0" (BasicCAN mode function disabled).

The STATE_BASICCAN bit is set to "1" when the BASICCAN bit is set to "1" (BasicCAN mode function enabled), the REMACTIVE bits in the CiMCTL14 and CiMCTL15 registers in the message slots 14 and 15 are set to "0" (data frame received).

22.1.4.9 STATE_BUSERROR Bit

The STATE_BUSERROR bit is set to "1" when an CAN communication error is detected.

The STATE_BUSERROR bit is set to "0" when the CAN module has transmitted or received data as expected. Whether a received message has been stored into the message slot or not is irrelevant. NOTE:

1. When the STATE_BUSERROR bit is set to "1", the STATE_BUSERROR bit remains unchanged even if both RESET1 and RESET0 bits are set to "1" (CAN module reset).

22.1.4.10 STATE_ERRPAS Bit

The STATE_ERRPAS bit is set to "1" when the value of the CiTEC or CiREC register (i=0, 1) exceeds 127 and the CAN module is placed in an error-passive state.

The STATE_ERRPAS bit is set to "0" when the CAN module in an error-passive state is placed in another error state.

The STATE_ERRPAS bit is set to "0" when both RESET1 and RESET0 bits are set to "1" (CAN module is reset).

22.1.4.11 STATE_BUSOFF Bit

The STATE_BUSOFF bit is set to "1" when the value of the CiTEC register exceeds 255 and the CAN module is placed in a bus-off state.

The STATE_BUSOFF bit is set to "0" when the CAN module in a bus-off state is placed in an erroractive state.

The STATE_BUSOFF bit is set to "0" when both RESET1 and RESET0 bits are set to "1" (CAN module reset).

22.1.5 CANi Extended ID Register (CiIDR Register) (i=0 to 2)

	Symbo		After Reset ⁽²⁾	
b15 b8 b7 b0	COIDF		000016	
	C1IDF C2IDF		000016	
	-	R 01A516 - 01A416	000016	-
	Bit Symbol	Bit Name	Function	RW
	IDE15	Extended ID15 (Message Slot 15)	Set corresponding	RW
	IDE14	Extended ID14 (Message Slot 14)	message slot to standard	RW
	IDE13	Extended ID13 (Message Slot 13)	or extended format	RW
	IDE12	Extended ID12 (Message Slot 12)	0: Standard format 1: Extended format	RW
	IDE11	Extended ID11 (Message Slot 11)	1. Extended format	RW
	IDE10	Extended ID10 (Message Slot 10)		RW
	IDE9	Extended ID9 (Message Slot 9)		RW
	IDE8	Extended ID8 (Message Slot 8)		RW
	IDE7	Extended ID7 (Message Slot 7)		RW
	IDE6	Extended ID6 (Message Slot 6)		RW
	IDE5	Extended ID5 (Message Slot 5)		RW
	IDE4	Extended ID4 (Message Slot 4)		RW
	IDE3	Extended ID3 (Message Slot 3)		RW
	IDE2	Extended ID2 (Message Slot 2)		RW
	IDE1	Extended ID1 (Message Slot 1)		RW
	IDE0	Extended ID0 (Message Slot 0)		RW
NOTES: 1. Change the CilDR to be changed, is s	-	etting while the CiMCTLj (j=0 to 15) re 6".	egister, corresponding to th	ie bit

Figure 22.7 COIDR, C1IDR and C2IDR Registers

Bits in the CiIDR register determine the frame format in the message slot corresponding to each bit. The standard format is selected when the bit is set to "0".

The extended format is selected when the bit is to set "1".

22.1.6 CANi Configuration Register (CiCONR Register) (i=0 to 2)

b15 b8 b7 b0	Symbo C0CO		After Reset ⁽¹⁾ 0000 0000 0000 XXXX2	
	C1C0			
└ _{┙╹┙╹┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙╸}	C2CO	NR 01A716 - 01A6	16 0000 0000 0000 XXX22	
	Bit Symbol	Bit Name	Function	RW
	(b3 - b0)	Nothing is assigned. Wh When read, its content is		-
	(00 - 00)	When read, its content is	0: Sampled once	
· · · · · · · · · · · · · · · · · · ·	SAM	Sampling Number	1: Sampled three times	RV
	PTS0		b7 b6 b5 0 0 0:1Tq 0 0 1:2Tg	RW
	PTS1	Propagation Time Segment	0 1 0:3Tq 0 1 1:4Tq 1 0 0:5Tq	RW
· · · · · · · · · · · · · · · · · · ·	PTS2		1 0 1:6Tq 1 1 0:7Tq 1 1 1:8Tq	RV
	PBS10		b10b9 b8 0 0 0: Do not set to this value 0 0 1:2Tg	RV
	PBS11	Phase Buffer Segment 1	0 1 0:3Tq 0 1 1:4Tq 1 0 0:5Tq	RV
· · · · · · · · · · · · · · · · · · ·	PBS12		1 0 1:6Tq 1 1 0:7Tq 1 1 1:8Tq	RV
	PBS20		b13b12b11 0 0 0 : Do not set to this value 0 0 1 : 2Tg	RV
	PBS21	Phase Buffer Segment 2	0 1 0:3Tq 0 1 1:4Tq 1 0 0:5Tq	RV
<u>.</u>	PBS22		1 0 1:6Tq 1 1 0:7Tq 1 1 1:8Tq	RV
<u>.</u>	SJW0	reSynchronization	b15 b14 0 0:1Tq	
	SJW1	Jump Width	0 1:2Tq 1 0:3Tq 1 1:4Tq	RV

Figure 22.8 C0CONR, C1CONR and C2CONR Registers

22.1.6.1 SAM Bit

The SAM bit determines the number of sample points to be taken per bit.

When the SAM bit is set to "0", only one sample is taken per bit at the end of the Phase Buffer Segment 1 (PBS1) to determine the value of the bit.

When the SAM bit is set to "1", three samples per bit are taken; one time quantum and two time quanta before the end of PBS1, and at the end of PBS1. The sample result value which is detected more than twice becomes the value of the bit sampled.

22.1.6.2 PTS2 to PTS0 Bits

The PTS2 to PTS0 bits determine PTS width.

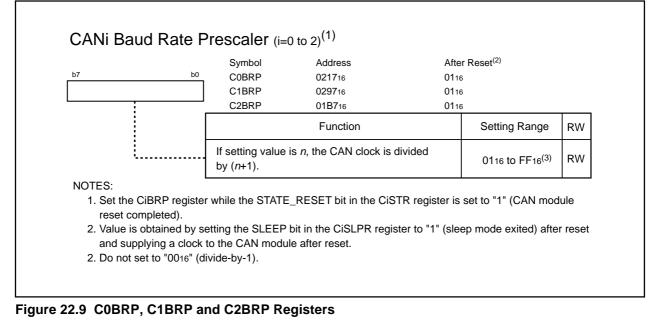
22.1.6.3 PBS12 to PBS10 Bits

The PBS12 to PBS10 bits determine PBS1 width. Set the PBS12 to 10 bits to "0012" or more.

22.1.6.4 PBS22 to PBS20 Bits

The PBS22 to PBS20 bits determine PBS2 width. Set the PBS22 to PBS20 bits to "0012" or more.

22.1.6.5 SJW1 and SJW0 Bits


The SJW1 and SJW0 bits determine SJW width. Set the SJW1 and SJW0 bits to values less than or equal to the PBS12 to PBS10 bit settings and the PBS22 to PBS20 bit settings.

Baud Rate	BRP	Tq Clock Cycles (ns)	Tq Per Bit	PTS+PBS1	PBS2	Sample Point
1Mbps	1	66.7	15	12	2	87%
	1	66.7	15	11	3	80%
	1	66.7	15	10	4	73%
	2	100	10	7	2	80%
	2	100	10	6	3	70%
	2	100	10	5	4	60%
500Kbps	2	100	20	16	3	85%
	2	100	20	15	4	80%
	2	100	20	14	5	75%
	3	133.3	15	12	2	87%
	3	133.3	15	11	3	80%
	3	133.3	15	10	4	73%
	4	166.7	12	9	2	83%
	4	166.7	12	8	3	75%
	4	166.7	12	7	4	67%
	5	200	10	7	2	80%
	5	200	10	6	3	70%
	5	200	10	5	4	60%

Table 22.3 Bit Timing when CAN Clock = 30 MHz

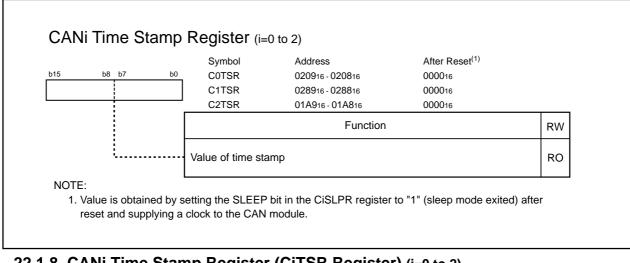
22.1.7 CANi Baud Rate Prescaler (CiBRP Register) (i=0 to 2)

The CiBRP register determines the Tq clock cycle of the CAN bit time. The baud rate is obtained from Tq clock cycle x Tq per bit.

Tq clock cycle = (BRP+1) / CAN clock

Baud rate = $\frac{1}{\text{Tq clcok cycle x Tq per bit}}$

Tq per bit = SS + PTS + PBS1 + PBS2


```
Tq: Time quantum
```

SS: Synchronization Segment; 1 Tq

PBS1: Phase Buffer Segment 1; 2 to 8 Tq

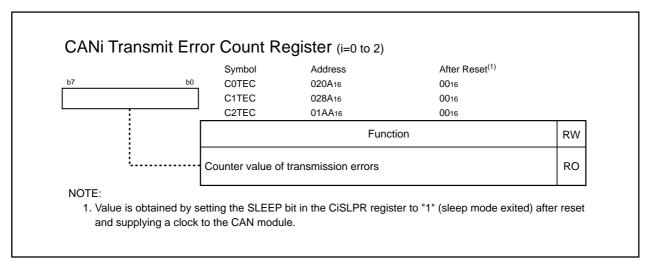
BRP: Setting value of the CiBPR register; 1-255 PTS: Propagation Time Segment; 1 to 8 Tq PBS2: Phase Buffer Segment 2; 2 to 8 Tq

22.1.8 CANi Time Stamp Register (CiTSR Register) (i=0 to 2) Figure 22.10 C0TSR, C1TSR and C2TSR Registers

The CiTSR register is a 16-bit counter. The TSPRE1 and TSPRE0 bits in the CiCTLR0 register select the CAN bus bit clock divided by 1, 2, 3 or 4 as the count source for the CiTSR register.

When data transmission or reception is completed, the value of the CiTSR register is automatically stored into the message slot.

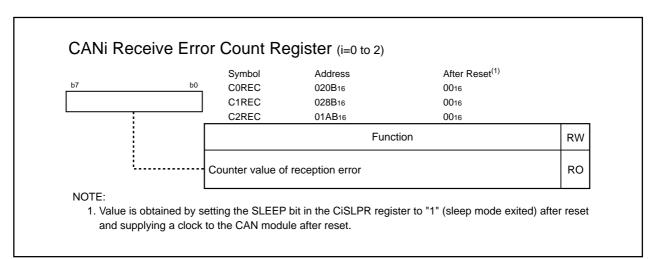
In loopback mode, when either data frame receive message slot or remote frame receive message slot is available to store the message, the value of the CiTSR register is also stored into the message slot when data reception is completed. The value of the CiTSR register is not stored when data transmission is completed.


The CiTSR register starts a counter increment when the RESET1 and RESET0 bits in the CiCTLR0 register are set to "0".

The CiTSR register is set to "000016":

- at the next count timing after the CiTSR register is set to "FFFF16";
- when the RESET1 and RESET0 bits are set to "1" (CAN module reset) by program; or
- when the TSRESET bit is 1 to "1" (CiTSR register reset) by program. CAN bit time

CAN bus bit clock =



22.1.9 CANi Transmit Error Count Register (CiTEC Register) (i=0 to 2) Figure 22.11 COTEC, C1TEC and C2TEC Registers

In an error active or an error passive state, the counting value of a transmission error is stored into the CiTEC register. The counter is decremented when the CAN module has transmitted data as expected or is incremented when an transmit error occurs.

In a bus-off state, an indeterminate value is stored into the CiTEC register. The CiTEC register is set to "0016" when the CAN module is placed in an error active state again.

22.1.10 CANi Receive Error Count Register (CiREC Register) (i=0 to 2) Figure 22.12 COREC, C1REC and C2REC Registers

In an error active or an error passive state, a counting value of the reception error is stored into the CiREC register. The counter is decremented when the CAN module has received data as expected or it is incremented when a receive error occurs.

The CiREC register is set to 127 when the CiREC register is 128 (error passive state) or more and the CAN module has received as expected.

In a bus-off state, an indeterminate value is stored into the CiREC register. The CiREC register is set to "0016" when the CAN module is placed in an error active state again.

22.1.11 CANi Slot Interrupt Status Register (CiSISTR Register) (i=0 to 2)

	Symb C0SIS C1SIS C2SIS	STR 020D16 - 020C STR 028D16 - 028C	000016	
	Bit Symbol	Bit Name	Function	RW
	SIS15	Message Slot 15 Interrupt Request Status Bit	Determines whether an interrupt of a corresponding message slot is	RW
· · · · · · · · · · · · · · · · · · ·	SIS14	Message Slot 14 Interrupt Request Status Bit	requested or not. 0: Interrupt not requested (Note 2)	RW
· · · · · · · · · · · · · · · · · · ·	· SIS13	Message Slot 13 Interrupt Request Status Bit	1: Interrupt requested	RW
· · · · · · · · · · · · · · · · · · ·	SIS12	Message Slot 12 Interrupt Request Status Bit		RW
, , , , , , , , , , , , , , , , , , ,	SIS11	Message Slot 11 Interrupt Request Status Bit		RW
· · · · · · · · · · · · · · · · · · ·	SIS10	Message Slot 10 Interrupt Request Status Bit		RW
	SIS9	Message Slot 9 Interrupt Request Status Bit	-	RW
· · · · · · · · · · · · · · · · · · ·	SIS8	Message Slot 8 Interrupt Request Status Bit		RW
	SIS7	Message Slot 7 Interrupt Request Status Bit		RW
	SIS6	Message Slot 6 Interrupt Request Status Bit	-	RW
	SIS5	Message Slot 5 Interrupt Request Status Bit		RW
	· SIS4	Message Slot 4 Interrupt Request Status Bit		RW
	SIS3	Message Slot 3 Interrupt Request Status Bit		RW
L	SIS2	Message Slot 2 Interrupt Request Status Bit]	RW
	SIS1	Message Slot 1 Interrupt Request Status Bit]	RW
	SIS0	Message Slot 0 Interrupt Request Status Bit		RW

1. Value is obtained by setting the SLEEP bit in the CiSLPR register to "1" (sleep mode exited) after reset and supplying a clock to the CAN module.

2. Set to "0" by program. If it is set to "1", the value before setting to "1" remains.

When using the CAN interrupt, the CiSISTR register (i=0 to 2) indicates which message slot is requesting an interrupt. The SISj bits (j=0 to 15) are not automatically set to "0" (no interrupt requested) when an interrupt is acknowledged. Set the SISj bits to "0" by program.

Use the MOV instruction, instead of the bit clear instruction, to set the SISj bits to "0". The SISj bits, which are not being changed to "0", must be set to "1".

For example: To set the SIS0 bit to "0"

Assembly language: mov.w #07FFFh, C0SISTR

C language: c0sistr = 0x7FFF;

Refer to 22.4 CAN Interrupt for details.

22.1.11.1 Message Slot for Transmission

The SISj bit is set to "1" (interrupt requested) when the CiTSR register is stored into the message slot j after data transmission is completed.

22.1.11.2 Message Slot for Reception

The SISj bit is set to "1" (interrupt requested) when the received message is stored in the message slot j after data reception is completed.

NOTES:

- 1.If the automatic answering function is enabled in the remote frame receive message slot, the SISj bit is set to "1" after the remote frame is received and the data frame is transmitted.
- 2.In the remote frame transmit message slot, the SISj bit is set to "1" after the remote frame is transmitted and the data frame is received.
- 3. The SISj bit is set to "1" if the SISj bit is set to "1" by an interrupt request and "0" by program simultaneously.

22.1.12 CANi Slot Interrupt Mask Register (CiSIMKR Register) (i=0 to 2)

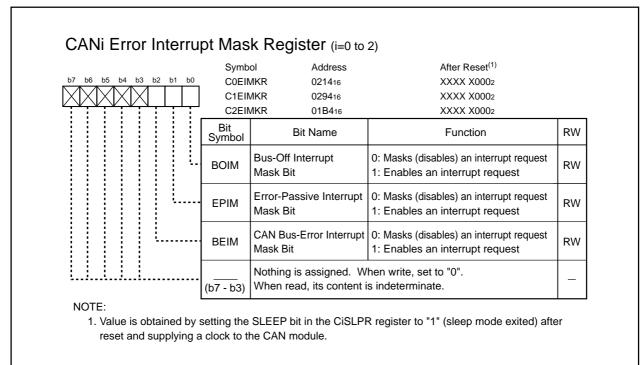

	Symb COSIN C1SIN C2SIN	IKR021116 - 021016IKR029116 - 029016	After Reset ⁽²⁾ 000016 000016 000016				
[Bit Symbol	Bit Name	Function	RW			
	SIM15	Message Slot 15 Interrupt Request Mask Bit	Controls whether the interrupt request of the corresponding	RW			
	SIM14	Message Slot 14 Interrupt Request Mask Bit	message slot is enabled or masked. 0: Masks (disables) an interrupt request	RW			
	SIM13	Message Slot 13 Interrupt Request Mask Bit	1. Enables on interrupt request				
	SIM12	Message Slot 12 Interrupt Request Mask Bit		RW			
	SIM11	Message Slot 11 Interrupt Request Mask Bit	-			^{ot}	RW
	SIM10	Message Slot 10 Interrupt Request Mask Bit					
	SIM9	Message Slot 9 Interrupt Request Mask Bit		RW			
	SIM8	Message Slot 8 Interrupt Request Mask Bit		RW			
	SIM7	Message Slot 7 Interrupt Request Mask Bit	=	RW			
	SIM6	Message Slot 6 Interrupt Request Mask Bit		RW			
	SIM5	Message Slot 5 Interrupt Request Mask Bit		RW			
	SIM4	Message Slot 4 Interrupt Request Mask Bit		RW			
	SIM3	Message Slot 3 Interrupt Request Mask Bit	-				
	SIM2	Message Slot 2 Interrupt Request Mask Bit		RW			
	SIM1	Message Slot 1 Interrupt Request Mask Bit		RW			
	SIM0	Message Slot 0 Interrupt Request Mask Bit		RW			

Figure 22.14 COSIMKR, C1SIMKR and C2SIMKR Registers

and supplying a clock to the CAN module.

The CiSIMKR register determines whether an interrupt request, generated by a data transmission or reception in the corresponding message slot is enabled or disabled. When the SIMj bit (j=0 to 15) is set to "1" (no interrupt requested), an interrupt request generated by a data transmission or reception in the corresponding message slot is enabled. Refer to **22.4 CAN Interrupt** for details.

22.1.13 CANi Error Interrupt Mask Register (CiEIMKR Register) (i=0 to 2)

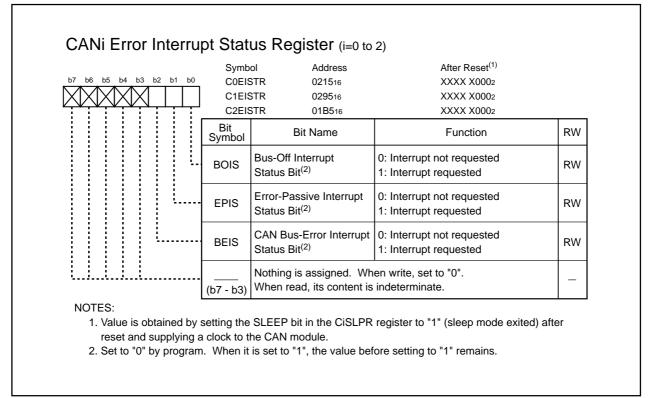
Figure 22.15 C0EIMKR, C1EIMKR and C2EIMKR Registers

Refer to 22.4 CAN Interrupt for details.

22.1.13.1 BOIM Bit

The BOIM bit determines whether an interrupt request is enabled or disabled when the CAN module is placed in a bus-off state. When the BOIM bit is set to "1", the bus-off interrupt request is enabled.

22.1.13.2 EPIM Bit


The EPIM bit determines whether an interrupt request is enabled or disabled when the CAN module is placed in an error passive state. When the EPIM bit is set to "1", the error passive interrupt request is enabled.

22.1.13.3 BEIM Bit

The BEIM bit determines whether an interrupt request is enabled or disabled when a CAN bus error occurs. When the BEIM bit is set to "1", the CAN bus error interrupt request is enabled.

22.1.14 CANi Error Interrupt Status Register (CiEISTR Register) (i=0 to 2)

Figure 22.16 C0EISTR, C1EISTR and C2EISTR Registers

When using the CAN interrupt, the CiEISTR register indicates the source of the generated error interrupt. The BOIS, EPIS and BEIS bits are not automatically set to "0" (no interrupt requested) even if an interrupt is acknowledged. Set these bits to "0" by program.

Use the MOV instruction, instead of the bit clear instruction, to set each bit in the CiEISTR register to "0". Bits not being changed to "0" must be set to "1".

For example: To set the BOIS bit for CAN0 to "0"

Assembly language: mov.b#006h, C0EISTR

C language: c0eistr = 0x06;

Refer to 22.4 CAN Interrupt for details.

22.1.14.1 BOIS Bit

The BOIS bit is set to "1" when the CAN module is placed in a bus-off state.

22.1.14.2 EPIS Bit

The EPIS bit is set to "1" when the CAN module is placed in an error passive state.

22.1.14.3 BEIS Bit

The BEIS bit is set to "1" when a CAN bus error is detected.

22.1.15 CANi Error Factor Register (CiEFR Register) (i=0 to 2)

		Symb		After Reset ⁽¹⁾	
b7 b6 b5 b4	b3 b2 b1 b0	C0EF		0016	
		C1EF		0016	
		C2EF	R 01B616	0016	
		Bit Symbol	Bit Name	Function	RW
		ACKE	ACK Error Detect Bit ⁽²⁾	0: Detects no ACK error 1: Detects an ACK error	RW
		CRCE	CRC Error Detect Bit ⁽²⁾	0: Detects no CRC error 1: Detects a CRC error	RW
		FORME	FORM Error Detect Bit ⁽²⁾	0: Detects no form error 1: Detects a form error	RW
		STFE	Stuff Error Detect Bit ⁽²⁾	0: Detects no stuff error 1: Detects a stuff error	RW
· · · ·		BITE0	Bit Error Detect Bit 0 ⁽²⁾	0: Detects no bit error while transmitting "H" 1: Detects a bit error while transmitting "H"	RW
		BITE1	Bit Error Detect Bit 1 ⁽²⁾	0: Detects no bit error while transmitting "L" 1: Detects a bit error while transmitting "L"	RW
		RCVE	Receive Error Detect Bit ⁽²⁾	0: Detects no error while receiving data 1: Detects an error while receiving data	RW
		TRE	Transmit Error Detect Bit ⁽²⁾	0: Detects no error while transmitting data 1: Detects an error while transmitting data	RW
NOTES:				register to "1" (sleep mode exited) afte	

Figure 22.17 C0EFR, C1EFR and C2EFR Registers

The CiEFR register indicates the cause of error when a communication error is detected. Set the following bits to "0" by program because they are not changed "1" to "0" automatically.

Use the MOV instruction, instead of the bit clear instruction, to set each bit in the CiEFR register to "0". Bits not being changed to "0" must be set to "1".

For example: To set the ACKE bit for CAN0 to "0" Assembly language: mov.b#0FEh, C0EFR C language: c0efr = 0xFE;

22.1.15.1 ACKE Bit

The ACKE bit is set to "1" when an ACK error is detected.

22.1.15.2 CRCE Bit

The CRC bit is set to "1" when a CRC error is detected.

22.1.15.3 FORME Bit

The FORME bit is set to "1" when a form error is detected.

22.1.15.4 STFE Bit

The STFE bit is set to "1" when a stuff error is detected.

22.1.15.5 BITE0 Bit

The BITE0 bit is set to "1" when a bit error is detected while transmitting recessive "H".

22.1.15.6 BITE1 Bit

The BITE1 bit is set to "1" when a bit error is detected while transmitting dominant "L".

22.1.15.7 RCVE Bit

The RCVE bit is set to "1" when an error is detected while receiving data.

22.1.15.8 TRE Bit

The TRE bit is set to "1" when an error is detected while transmitting data.

22.1.16 CANi Mode Register (CiMDR Register) (i=0 to 2)

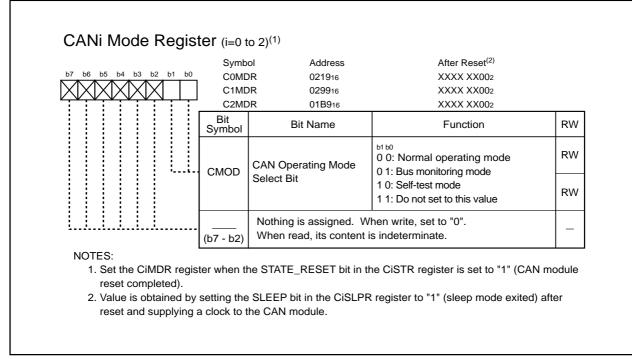


Figure 22.18 C0MDR, C1MDR and C2MDR Registers

22.1.16.1 CMOD Bit

The CMOD bit selects a CAN operating mode.

- Normal operating mode: The CAN module transmits and receives data as expected.
- Bus monitoring mode⁽¹⁾: The CAN module receives data. Output signal from the CANiOUT pin is fixed as a high-level ("H") signal in bus monitoring mode. The CAN mod ule transmits neither ACK nor error frame.
- Self-test mode: The CAN module connects the CANiout pin to the CANin pin internally.

The CAN module can communicate without additional device in loop back mode. Output signal from the CANiOUT pin is fixed as an "H" signal in self-test mode while transmitting data. Figure 22.19 shows an image diagram in self-test mode.

NOTE:

1. Do not generate a transmit request in bus monitoring mode.

The CAN module assumes the ACK bit is set to dominant "L" regardless of the ACK bit setting. Therefore, when the CRC delimiter is received as expected, the CAN module determines the data is received with no error regardless of the ACK bit setting.

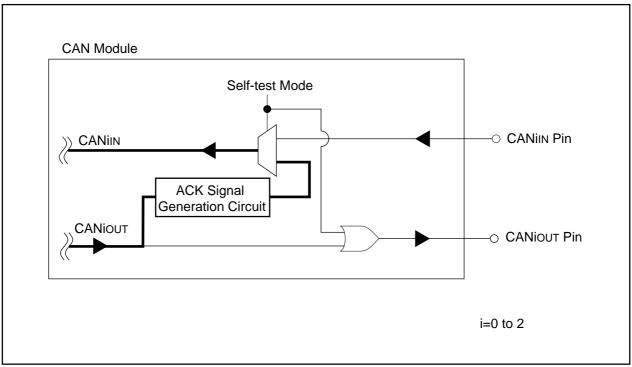


Figure 22.19 Self-Test Mode

22.1.17 CANi Single-Shot Control Register (CiSSCTLR Register) (i=0 to 2)

5 b8 b7	ЬО	C1SS	ol CTLR CTLR CTLR	Address 022116 - 022016 02A116 - 02A016 01C116 - 01C016	After Reset ⁽³⁾ 000016 000016 000016	
		Bit Symbol	В	it Name	Function	RW
		SSC15	Message S Control Bit	lot 15 Single-Shot	0: Single-shot mode not used 1: Use single-shot mode	RW
	,	SSC14	Message S Control Bit	lot 14 Single-Shot		RW
		SSC13	Message S Control Bit	lot 13 Single-Shot		RV
		SSC12	Message S Control Bit	lot 12 Single-Shot		RV
		SSC11	Message S Control Bit	lot 11 Single-Shot		RV
· · · · · · · · · · · · · · · · · · ·		SSC10	Message S Control Bit	lot 10 Single-Shot		RV
· · · · · · · · · · · · · · · · · · ·		SSC9	Message S Control Bit	lot 9 Single-Shot	_	RV
· · · · · · · · · · · · · · · · · · ·			Message S Control Bit	lot 8 Single-Shot		RV
		SSC7	Message S Control Bit	lot 7 Single-Shot		RV
		SSC6	Message S Control Bit	lot 6 Single-Shot		RV
		SSC5	Message S Control Bit	lot 5 Single-Shot		RW
			Message S Control Bit	lot 4 Single-Shot		RW
		SSC3	Message S Control Bit	lot 3 Single-Shot		RV
l			Message S Control Bit	lot 2 Single-Shot		RV
		SSC1	Message S Control Bit	lot 1 Single-Shot		RV
		SSC0	Message S Control Bit	lot 0 Single-Shot		RV

1. Set the CiSSCTLR register after the CiMCTLj register (j=0 to 15) in a slot corresponding to the bit to be changed is set to "0016".

2. The CiSSCTLR register can be accessed only when the BANKSEL bit in the CiCTLR1 register is set to "0" (message slot control register and single-shot register selected).

3. Value is obtained by setting the SLEEP bit in the CiSLPR register to "1" (sleep mode exited) after reset and supplying a clock to the CAN module, and setting the BANKSEL bit to "0".

Figure 22.20 C0SSCTLR, C1SSCTLR and C2SSCTLR Registers

According to the CAN Specification 2.0 Part B, if the arbitration lost or transmission error causes a transmit failure, the microcomputer continues transmitting data until the transmission is completed. The CiSSCTLR register determines whether or not, and from which slot, data is re-transmitted.

In single-shot mode, if the arbitration lost or transmission error causes a transmission failure, data is not transmitted again. When the SSCj bit (j=0 to 15) is set to "1", the corresponding message slot j is in single-shot mode.

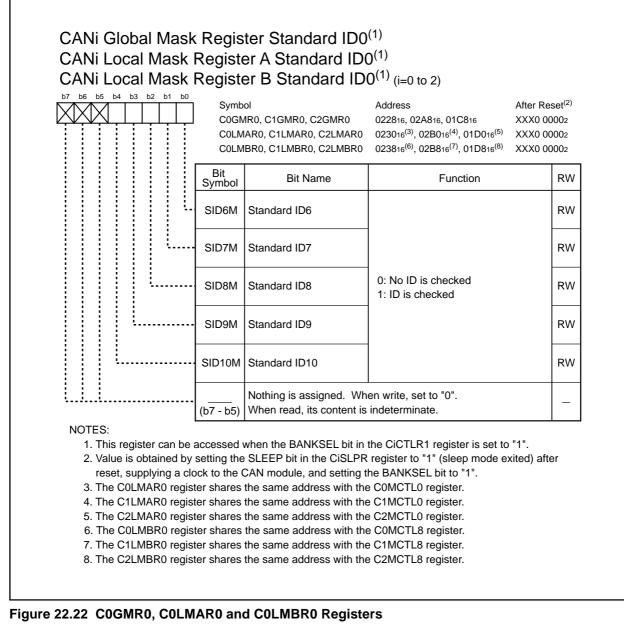
22.1.18 CANi Single-Shot Status Register (CiSSSTR Register) (i=0 to 2)

	Symb 50 C0SS C1SS C2SS	STR 022516 - 022416 STR 02A516 - 02A41	6 000016	
	Bit Symbol	Bit Name	Function	RW
	SSS15	Message Slot 15 Single-Shot Status Bit ⁽³⁾	0: No arbitration is lost, or no transmit error occurs	RW
	SSS14	Message Slot 14 Single-Shot Status Bit ⁽³⁾	1: Arbitration is lost, or transmit error occurs	RW
····	SSS13	Message Slot 13 Single-Shot Status Bit ⁽³⁾		RW
· · · · · · · · · · · · · · · · · · ·	SSS12	Message Slot 12 Single-Shot Status Bit ⁽³⁾	_	RW
· · · · · · · · · · · · · · · · · · ·	·· SSS11	Message Slot 11 Single-Shot Status Bit ⁽³⁾		RW
· · · · · · · · · · · · · · · · · · ·	SSS10	Message Slot 10 Single-Shot Status Bit ⁽³⁾	-	RW
	··· SSS9	Message Slot 9 Single-Shot Status Bit ⁽³⁾		RW
	·· SSS8	Message Slot 8 Single-Shot Status Bit ⁽³⁾		RW
	SSS7	Message Slot 7 Single-Shot Status Bit ⁽³⁾		RW
	SSS6	Message Slot 6 Single-Shot Status Bit ⁽³⁾	-	RW
	SSS5	Message Slot 5 Single-Shot Status Bit ⁽³⁾	-	RW
	SSS4	Message Slot 4 Single-Shot Status Bit ⁽³⁾	_	RW
	SSS3	Message Slot 3 Single-Shot Status Bit ⁽³⁾		RW
<u>.</u>	SSS2	Message Slot 2 Single-Shot Status Bit ⁽³⁾		RW
	SSS1	Message Slot 1 Single-Shot Status Bit ⁽³⁾		RW
	SSS0	Message Slot 0 Single-Shot Status Bit ⁽³⁾		RW

The CiSSSTR register can be accessed when the BANKSEL bit in the CiCTLR1 is set to "0".
 Value is obtained by setting the SLEEP bit in the CiSLPR register to "1" (sleep mode exited) after reset and supplying a clock to the CAN module, and setting the BANKSEL bit to "0".
 Set to "0" by program. When it is set it to "1", the value before setting to "1" remains.

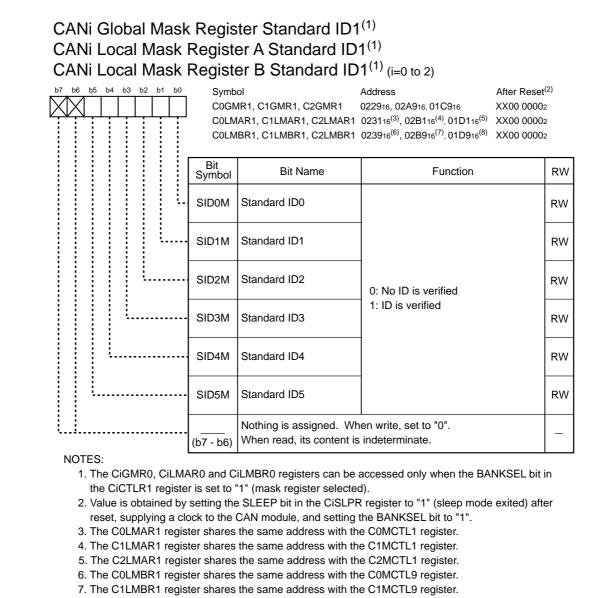
Figure 22.21 COSSSTR, C1SSSTR and C2SSSTR Registers

If the arbitration lost or transmission error causes a transmission failure, the bit corresponding to message slot j (j=0 to 15) is set to "1". The SSSj bit is set to "0" by program because it is not set to "0" automatically.


Use the MOV instruction, instead of the bit clear instruction, to set the SSSj bit to "0". Bits not being changed to "0" must be set to "1".

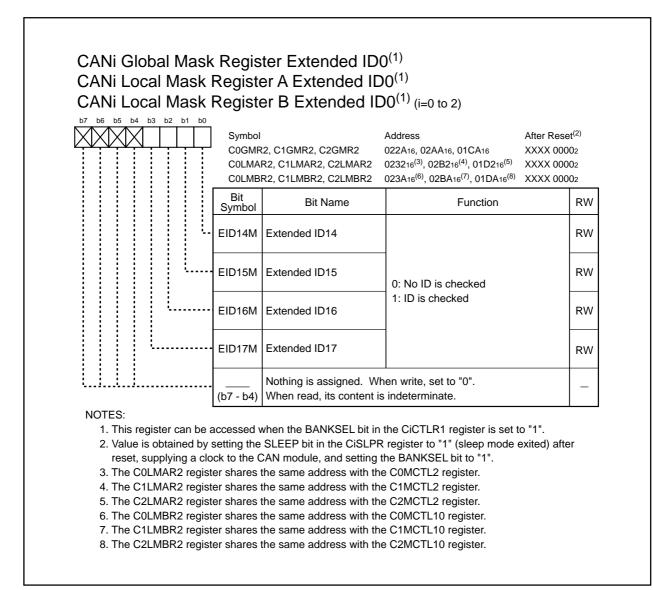
For example: To set the SSS0 bit for CAN0 to "0"

Assembly language: mov.w #07FFFh, C0SSSTR


C language: cOssstr = 0x7FFF;

22.1.19 CANi Global Mask Register, CANi Local Mask Register A and CANi Local Mask Register B (CiGMRk, CiLMARk and CiLMBRk Registers) (i=0 to 2, k=0 to 4)

C1GMR0, C1LMAR0 and C1LMBR0 Registers C2GMR0, C2LMAR0 and C2LMBR0 Registers



8. The C2LMBR1 register shares the same address with the C2MCTL9 register.

Figure 22.23 C0GMR1, C0LMAR1 and C0LMBR1 Registers C1GMR1, C1LMAR1 and C1LMBR1 Registers C2GMR1, C2LMAR1 and C2LMBR1 Registers

Figure 22.24 C0GMR2, C0LMAR2 and C0LMBR2 Registers C1GMR2, C1LMAR2 and C1LMBR2 Registers C2GMR2, C2LMAR2 and C2LMBR2 Registers

				Registe	er B Extended ID)1 ⁽¹⁾ (i=0 to 2)	
b7 b6	b5 b4	b3 b2 b	1 b0	COLMA	N R3, C1GMR3, C2GMR3 AR3, C1LMAR3, C2LMAR3 BR3, C1LMBR3, C2LMBR3	Address 022B16, 02AB16, 01CB16 023316 ⁽³⁾ , 02B316 ⁽⁴⁾ , 01D316 ⁽⁵⁾ 023B16 ⁽⁶⁾ , 02BB16 ⁽⁷⁾ , 01DB16 ⁽⁸⁾	After Rese 0016 0016 0016
				Bit Symbol	Bit Name	Function	
				EID6M	Extended ID6		
				EID7M	Extended ID7		
		ļ		EID8M	Extended ID8		
				EID9M	Extended ID9	0: No ID is checked	
				EID10M	Extended ID10	1: ID is checked	
				EID11M	Extended ID11		
				EID12M	Extended ID12		
l				EID13M	Extended ID13		

reset, supplying a clock to the CAN module, and setting the BANKSEL bit to "1".

- 3. The C0LMAR3 register shares the same address with the C0MCTL3 register.
- 4. The C1LMAR3 register shares the same address with the C1MCTL3 register.
- 5. The C2LMAR3 register shares the same address with the C2MCTL3 register.
- 6. The C0LMBR3 register shares the same address with the C0MCTL11 register.

7. The C1LMBR3 register shares the same address with the C1MCTL11 register.

8. The C2LMBR3 register shares the same address with the C2MCTL11 register.

Figure 22.25 C0GMR3, C0LMAR3 and C0LMBR3 Registers C1GMR3, C1LMAR3 and C1LMBR3 Registers C2GMR3, C2LMAR3 and C2LMBR3 Registers

b7 b6 b5 b4	COLM	ool MR4, C1GMR4, C2GMR4 IAR4, C1LMAR4, C2LMAR4 IBR4, C1LMBR4, C2LMBR4	Address 022C16, 02AC16, 01CC16 023416 ⁽³⁾ , 02B416 ⁽⁴⁾ , 01D416 ⁽⁵⁾ 023C16 ⁽⁶⁾ , 02BC16 ⁽⁷⁾ , 01DC16 ⁽⁸⁾	After Reset ⁽² XX00 00002 XX00 00002 XX00 00002
	Bit Symbol	Bit Name	Function	RV
	EID0M	Extended ID0		RV
	 EID1M	Extended ID1		RV
	 EID2M	Extended ID2	0: No ID is checked	RV
	 EID3M	Extended ID3	1: ID is checked	RV
	 EID4M	Extended ID4		RV
	 EID5M	Extended ID5		RV
	 (b7 - b6)	Nothing is assigned. Wh When read, its content is		-

5. The C2LMAR4 register shares the same address with the C2MCTL4 register.

6. The C0LMBR4 register shares the same address with the C0MCTL12 register.

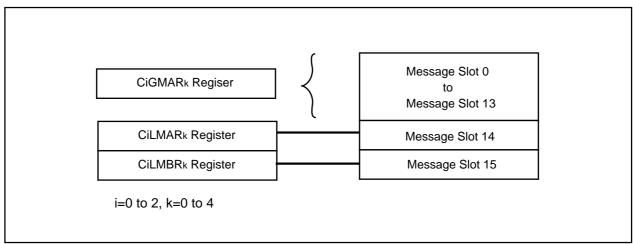
7. The C1LMBR4 register shares the same address with the C1MCTL12 register.

8. The C2LMBR4 register shares the same address with the C2MCTL12 register.

Figure 22.26 C0GMR4, C0LMAR4 and C0LMBR4 Registers C1GMR4, C1LMAR4 and C1LMBR4 Registers C2GMR4, C2LMAR4 and C2LMBR4 Registers

The CiGMRk, CiLMARk and CiLMBRk registers are used for acceptance filtering. The users can select and receive user-desired messages.

The CiGMRk register determines whether IDs in the message slots 0 to 13 are verified. The CiLMARk register determines whether ID in the message slot 14 is verified. The CiLMBRk register determines whether ID in the message slot 15 is verified.


- When bits in these registers are set to "0", each standard ID0 and standard ID1 bits (ID bit) and extended ID0 to extended ID2 bits in the CANi message slots j (j=0 to 15) corresponding to the bits in the above registers, is masked while acceptance filtering. (The corresponding bits are assumed to have matching IDs.)
- When bits in these registers are set to "1", corresponding ID bits are compared with received IDs while acceptance filtering. If the received ID matches the ID in the message slot j, the received data having the matched ID is stored into that message slot.

NOTES:

- 1. Change the CiGMRk register setting only when the message slots 0 to 13 have no receive request.
- 2. Change the CiLMARk register setting only when the message slot 14 has no receive request.
- 3. Change the CiLMBRk register setting only when the message slot 15 has no receive request.
- 4. More than two message slots are able to store a receive message ID, the ID is stored into the message slot, having the smallest slot number.

Figure 22.27 shows each mask register and corresponding message slot. Figure 22.28 shows the acceptance filtering.

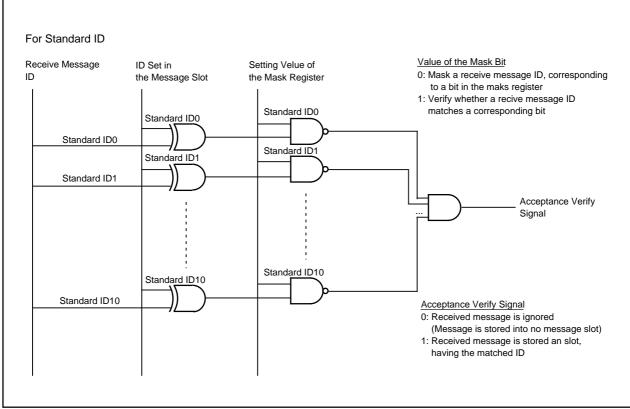


Figure 22.28 Acceptance Filtering

22.1.20 CANi Message Slot j Control Register (CiMCTLj Register) (i=0 to 2, j=0 to 15)

b7 b6 b5 b4 b3 b2 b1 b0	C1MCTL	0 to C0MCTL15 0 to C1MCTL15 0 to C2MCTL15	Address 023016 to 023F16 ⁽³⁾ 02B016 to 02BF16 ⁽⁴⁾ 01D016 to 01DF16 ⁽⁵⁾	After Reset 0016 0016 0016	(2)
	Bit Symbol	Bit Name	Func	tion	R٧
	When receive, NEWDATA When transmit, SENTDATA	Receive Complete Flag ⁽⁶⁾ Transmit Complete Flag ⁽⁶⁾	When transmitting 0: Not transmitted 1: Transmit completed	When receiving 0: Not received 1: Receive completed	RW
· · · · · · · · · · · · · · · · · · ·	When receive, INVALDATA When transmit, TRMACTIVE	Receiving Flag Transmitting Flag	When transmitting 0: Except transmitting 1: Transmitting	When receiving 0: Except storing received data 1: Storing received data	RC
	MSGLOST	Overwrite Flag ⁽⁶⁾	0: No overrun error occ 1: Overrun error occurs		RV
	REMACTIVE	Remote Frame Transmit/Receive Status Flag	In modes other than B 0: Data frame 1: Remote frame In BasicCan mode 0: Receives the data fr 1: Receives the remote	ame (status)	RC
	RSPLOCK	Automatic Answering Disable Mode Select Bit	0: Enables automatic ar frame1: Disables automatic a frame	-	RW
	REMOTE	Remote Frame Set Bit	0: Transmits/receives tl 1: Transmits/receives tl		RW
	RECREQ	Receive Request Bit	0: No request to receive 1: Request to receive the total section of total		RW
	TRMREQ	Transmit Request Bit	0: No request to transm 1: Request to transmit		RW
 The COMCTL0 to Col respectively. The COM COLMBR4 registers in The C1MCTL0 to C11 respectively. The C1M C1LMBR4 registers in The C2MCTL0 to C21 	setting the ne clock to MCTL4 reg MCTL8 to espectivel MCTL4 reg MCTL8 to espectivel MCTL4 reg	SLEEP bit in the o the CAN module gisters share addr COMCTL12 regist y. gisters share addr C1MCTL12 regist y. gisters share addr	CISLPR register to "1" (, and setting the BANKS resses with the COLMAR ers share addresses wit resses with the C1LMAR ers share addresses wit resses with the C2LMAR	Sleep mode exited) afte SEL bit to "0" . R0 to C0LMAR4 registe h the C0LMBR0 to R0 to C1LMAR4 registe h the C1LMBR0 to R0 to C2LMAR4 registe	rs
respectively. The C2M C2LMBR4 registers r 6. Set to "0" by program	espectivel	у.	ers share addresses wit		

Figure 22.29 C0MCTL0 to C0MCTL15 Registers, C1MCTL0 to C1MCTL15 Registers and C2MCTL0 to C2MCTL15 Registers

		Set	tings for t	he CiMCTLj	Register			
TRMREQ	RECREQ	REMOTE	RSPLOCK	REMACTIVE	MSGLOST	TRMACTIVE	SENTDATA	Transmit/Receive Mode
						INVALDATA	NEWDATA	
0	0	0	0	0	0	0	0	No frame is transmitted or received
0	1	0	0	0	0	0	0	Data frame is received
0	1	1	1	0	0	0	0	Remote frame is received
			or					(The data frame is transmitted
			0					after receiving the remote frame.)
1	0	0	0	0	0	0	0	Data frame is transmitted
1	0	1	0	0	0	0	0	Remote frame is transmitted
								(The data frame is received after
								transmitting the remote frame)

Table 22.4 CiMCTLj register(i=0 to 2, j= 0 to 15) Settings and Transmit/Receive Mode

22.1.20.1 SENTDATA/NEWDATA Bit

The SENTDATA/NEWDATA bit indicates that the CAN module has transmitted or received the CAN message. Set the SENTDATA/NEWDATA bit to "0 " (not transmitted or not received) by program before data transmission and reception is started. The SENTDATA/NEWDATA bit is not set to "0" automatically. When the TRMACTIVE/INVALDATA bit is set to "1" (during transmission or storing received data), the SENTDATA/NEWDATA bit cannot be set to "0".

SENTDATA : The SENTDATA bit is set to "1" (transmit complete) when data transmission is completed in the transmit message slot.

NEWDATA : The NEWDATA bit is set to "1" (receive complete) when the message to be stored into the message slot j (j=0 to 15) is received in the receive message slot as expected.

NOTES:

- 1. To read a received data from the message slot j, set the NEWDATA bit to "0" before reading. If the NEWDATA bit is set to "1" immediately after reading, this indicates that new received data has been stored into the message slot while reading and the read data contains an indeterminate value. In this case, discard the data with indeterminate value and then read the message slot again after the NEWDATA bit is set to "0".
- 2. When the remote frame is transmitted or received, the SENTDATA/NEWDATA bit remains unchanged after the remote frame transmission or reception is completed. The SENTDATA/ NEWDATA bit is set to "1" when a subsequent data frame transmission or reception is completed.

22.1.20.2 TRMACTIVE/INVALDATA Bit

The TRMACTIVE/INVALDATA bit indicates that the CAN protocl controller is transmitting or receiving a message and accessing the message slot j. The TRMACTIVE/INVALDATA bit is set to "1" when the CAN module is accessing the message slot and to "0 " when not accessing the message slot.

- TRMACTIVE : The TRMACTIVE bit is set to "1" (except transmitting) when a data transmission is started in the message slot. If the CAN module loses in bus arbitration, the TRMACTIVE bit is set to "0" (stops transmitting) when a CAN bus error occurs or when a data transmission is completed.
- INVALDATA : The INVALDATA bit is set to "1" (storing received data) when receiving a received message into the message slot j, after a message reception is completed. Then the INVALDATA bit is set to "0" after a message storage is completed. Data, if read from the message slot j while this bit is set to "1", is indeterminate.

22.1.20.3 MSGLOST Bit

The MSGLOST bit is enabled only when the message slot is set for reception. The MSGLOST bit is set to "1" (overrun error occurred) when the message slot j is overwritten by a new received message while the NEWDATA bit set to "1" (already received).

The MSGLOST bit is not automatically set to "0". Set to "0" (no overrun error occurred) by program.

22.1.20.4 REMACTIVE Bit

The CiMCTL0 to CiMCTL15 registers all have the same function when the STATE_BASICCAN bit is set to "0" (other than BasicCAN mode).

The REMACTIVE bit is set to "1" (remote frame) when the message slot j is set to transmit or receive the remote frame. The REMACTIVE bit is set to "0" (data frame) after the remote frame has been transmitted or received.

The functions of the CiMCTL14 and CiMCTL15 registers change when the STATE_BASICCAN bit is set to "1" (BasicCAN mode). When the REMACTIVE bit is set to "0", this indicates that a message stored into the message slot is the data frame. When the REMACTIVE bit is set to "1", this indicates a message stored into the message slot is the remote frame.

22.1.20.5 RSPLOCK Bit

The RSPLOCK bit is enabled only when remote frame reception shown in Table 22.4 is selected. The RSPLOCK bit determines whether the received remote frame is processed or not.

When the RSPLOCK bit is set to "0" (automatic answering of the remote frame enabled), the slot automatically changes to a transmit slot after the remote frame is received and the message stored into the message slot is automatically transmitted as the data frame.

When the RSPLOCK bit is set to "1" (automatic answering of the remote frame disabled), message is not automatically transmitted upon receiving the remote frame.

Set the RSPLOCK bit to "0" to select any transmit/receive mode other than the remote frame reception.

22.1.20.6 REMOTE Bit

The REMOTE bit selects transmit/receive mode shown in Table 22.4. Set the REMOTE bit to "0" to transmit or receive data frame. Set to "1" to transmit or receive remote frame.

The followings occur during remote frame transmission or reception.

• Transmitting the remote frame

A message stored into the message slot j (j=0 to 15) is transmitted as the remote frame. After transmission, the slot automatically becomes ready to receive data frame.

If the data frame is received before the remote frame is transmitted, the data frame is stored into the message slot j. The remote frame is not transmitted.

• Receiving the remote frame

The message slot receives the remote frame. The RSPLOCK bit determines whether or not to process the received remote frame.

22.1.20.7 RECREQ Bit

The RECREQ bit selects transmit/receive mode shown in Table 22.4. Set the RECREQ bit to "1" (receive requested) when data frame or remote frame is received. Set the RECREQ bit to "0" (no receive requested) when data frame or remote frame is transmitted.

When a data frame is automatically transmitted after a remote frame is received, the RECREQ bit remains set to "1". Set the RECREQ bit to "0" to transmit a remote frame. After a remote frame is transmitted, a data frame is automatically received while the RECREQ bit remains set to "0".

When setting the TRMREQ bit to "1" (transmit requested), do not set the RECREQ bit to "1" (receive requested).

22.1.20.8 TRMREQ Bit

The TRMREQ bit selects transmit/receive mode shown in Table 22.4. Set the TRMREQ bit to "1" (transmit requested) when data frame or remote frame is transmitted.

Set the TRMREQ bit to "0" (no request to transmit the frame) when data frame or remote frame is received.

When the data frame is automatically received after the remote frame is transmitted, the TRMREQ bit remains set to "1". Set the TRMREQ bit to "0" to receive the remote frame. After the remote frame is received, data frame is automatically transmitted while the TRMREQ bit remains set to "0".

If the RECREQ bit is set to "1" (request to receive the frame), do not set the TRMREQ bit to "1" (request to transmit the frame).

NOTES:

- 1. If some message slots are requested to transmit the data frame or remote frame, the message slot, having the smallest slot number starts transmitting.
- 2. In single-shot mode, the CiMCTLj register is set to "0016" when data transmission is failed, due to the arbitration lost or transmission error.

22.1.21 CANi Slot Buffer Select Register (CiSBS Register) (i=0 to 2)

7 b6 b5 b4 b3	3 b2 b1 b0	Symbo C0SB		After Reset ⁽²⁾ 0016			
		C1SB	S 025016	0016			
		C2SB	S 017016	0016			
		Bit Symbol	Bit Name	Function	RW		
		SBS00		b3 b2 b1 b0 0 0 0 0: Message slot 0 0 0 0 1: Message slot 1	RW		
		SBS01	CANi Message	0 0 1 0: Message slot 1 0 0 1 0: Message slot 2 0 0 1 1: Message slot 3			
		SBS02	Slot Buffer 0 Number Select Bit	(Note 1) 1 1 0 0: Message slot 12	RW		
		SBS03	-	1 1 0 1: Message slot 13 1 1 1 0: Message slot 14 1 1 1 1: Message slot 15	RW		
		SBS10		b3 b2 b1 b0 0 0 0 0: Message slot 0 0 0 0 1: Message slot 1	RW		
		SBS11	CANi Message Slot Buffer 1	0 0 1 0: Message slot 2 0 0 1 1: Message slot 3			
		SBS12	Number Select Bit	(Note 1) 1 1 0 0: Message slot 12	RW		
		SBS13		1 1 0 1: Message slot 13 1 1 1 0: Message slot 14 1 1 1 1: Message slot 15			

slot.

 Value is obtained by setting the SLEEP bit in the CiSLPR register to "1" (sleep mode exited) after reset and supplying a clock to the CAN module.

Figure 22.30 C0SBS, C1SBS and C2SBS Registers

22.1.21.1 SBS03 to SBS00 Bits

If the SBS03 to SBS00 bits select a number j (j=0 to 15), the message slot j is allocated to the CANi message slot buffer 0. The message slot j can be accessed via addresses 01E016 to 01EF16, and 026016 to 026F16.

22.1.21.2 SBS13 to SBS10 Bits

If the SBS13 to SBS10 bits select a number j, the message slot j is allocated to the CANi message slot buffer 1. The message slot j can be accessed via addresses 01F016 to 01FF16, and 027016 to 027F16.

22.1.22 CANi Message Slot Buffer j (i=0 to 2, j=0,1)

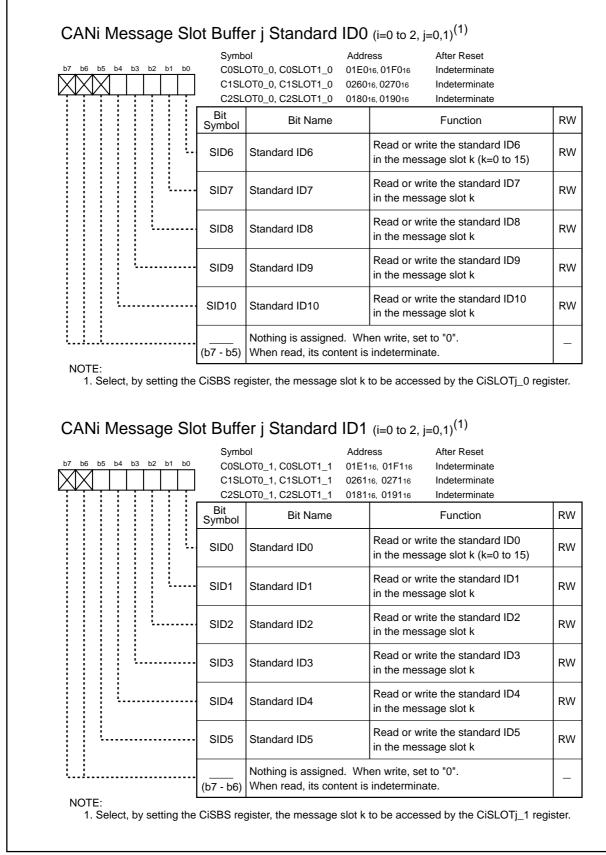


Figure 22.31 C0SLOT0_0, C0SLOT1_0, C0SLOT0_1 and C0SLOT1_1 Registers C1SLOT0_0, C1SLOT1_0, C1SLOT0_1 and C1SLOT1_1 Registers C2SLOT0_0, C2SLOT1_0, C2SLOT0_1 and C2SLOT1_1 Registers

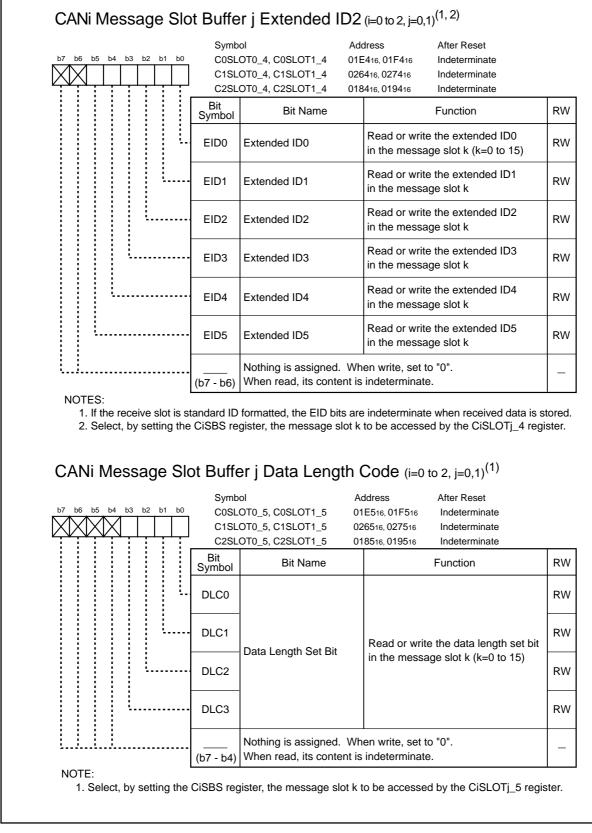
CANi Message Slot Buffer j Extended ID0 (i=0 to 2, j=0,1)^(1, 2)

b7 b6 b5 b4 b3 b2 b1 b0	Symbol C0SLOT0_2, C0SLOT1_2 C1SLOT0_2, C1SLOT1_2 C2SLOT0_2, C2SLOT1_2		Address 01E216, 01F216 026216, 027216 018216, 019216		After Reset Indeterminate Indeterminate Indeterminate	
	Bit Symbol	Bit Name			Function	RW
	EID14	Extended ID14	Read or write the extended ID14 in the message slot k (k=0 to 15)			RW
	EID15	Extended ID15		Read or write the extended ID15 in the message slot k		RW
	EID16	Extended ID16		Read or write the extended ID16 in the message slot k		RW
	EID17	Extended ID17		Read or write the extended ID17 in the message slot k		RW
	(b7 - b4)	Nothing is assigned When read, its con		-		-

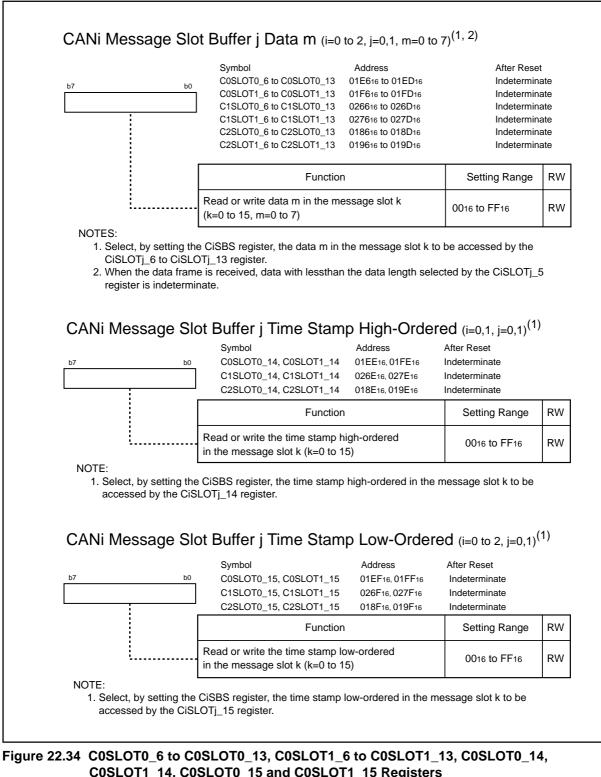
NOTES:

1. If the receive slot is standard ID formatted, the EID bits are indeterminate when received data is stored.

2. Select, by setting the CiSBS register, the message slot k to be accessed by the CiSLOTj_2 register.


CANi Message Slot Buffer j Extended ID1 (i=0 to 2, j=0,1)^(1, 2)

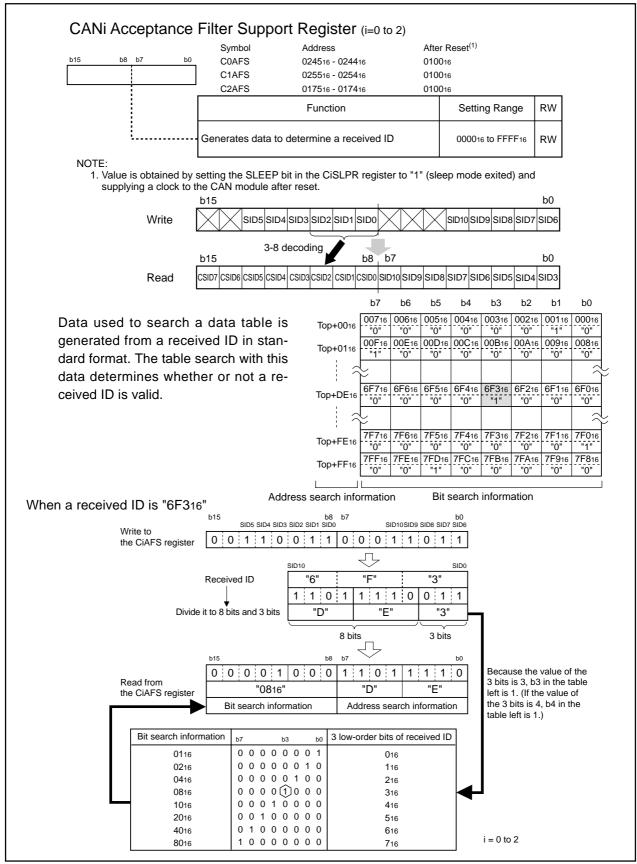
b7 b6 b5 b4 b3 b2 b1 b0	Symbol C0SLOT0_3, C0SLOT1_3 C1SLOT0_3, C1SLOT1_3 C2SLOT0_3, C2SLOT1_3		01E 026	ressAfter Reset316, 01F316Indeterminate316, 027316Indeterminate316, 019316Indeterminate	
	Bit Symbol	Bit Name		Function	RW
	EID6	Extended ID6		Read or write the extended ID6 in the message slot k (k=0 to 15)	RW
· · · · · · · · · · · · · · · · · · ·	EID7	Extended ID7		Read or write the extended ID7 in the message slot k	RW
	EID8	Extended ID8		Read or write the extended ID8 in the message slot k	RW
	EID9	Extended ID9		Read or write the extended ID9 in the message slot k	RW
	EID10	Extended ID10		Read or write the extended ID10 in the message slot k	RW
	EID11	Extended ID11		Read or write the extended ID11 in the message slot k	RW
	EID12	Extended ID12		Read or write the extended ID12 in the message slot k	RW
	EID13	Extended ID13		Read or write the extended ID13 in the message slot k	RW


NOTES:

If the receive slot is standard ID formatted, the EID bits are indeterminate when received data is stored.
 Select, by setting the CiSBS register, the message slot k to be accessed by the CiSLOTj_3 register.

Figure 22.32 C0SLOT0_2, C0SLOT1_2, C0SLOT0_3 and C0SLOT1_3 Registers C1SLOT0_2, C1SLOT1_2, C1SLOT0_3 and C1SLOT1_3 Registers C2SLOT0_2, C2SLOT1_2, C2SLOT0_3 and C2SLOT1_3 Registers

Figure 22.33 C0SLOT0_4, C0SLOT1_4, C0SLOT0_5 and C0SLOT1_5 Registers C1SLOT0_4, C1SLOT1_4, C1SLOT0_5 and C1SLOT1_5 Registers C2SLOT0_4, C2SLOT1_4, C2SLOT0_5 and C2SLOT1_5 Registers



C0SLOT1_14, C0SLOT0_15 and C0SLOT1_15 Registers C1SLOT0_6 to C1SLOT0_13, C1SLOT1_6 to C1SLOT1_13, C1SLOT0_14, C1SLOT1_14, C1SLOT0_15 and C1SLOT1_15 Registers C2SLOT0_6 to C2SLOT0_13, C2SLOT1_6 to C2SLOT1_13, C2SLOT0_14, C2SLOT1_14, C2SLOT0_15 and C2SLOT1_15 Registers

The message slot, selected by setting the CiSBS register, is read by reading the message slot buffer. A message can be written in the message slot selected by the CiSBS register if the message is written to the message slot buffer.

Write to the message slot k (k=0 to 15) while the corresponding CiMCTLk register is set to "0016".

22.1.23 CANi Acceptance Filter Support Register (CiAFS Register) (i=0 to 2)

Figure 22.35 C0AFS, C1AFS and C2AFS Registers

The CiAFS register enables prompt performance of the table search to determine the varidity of a received ID. This function is for standard-formatted ID only.

22.2 CAN Clock

The CAN clock is the operating clock for the CAN module. f1 or fCAN can be selected as the CAN clock. fCAN has the same frequency as the main clock. The PM25 bit in the PM2 register determines the CAN clock. Refer to **8. Clock Generation Circuit** for details.

22.2.1 Main Clock Direct Mode

fCAN becomes the CAN clock in main clock direct mode. The CAN module must enter main clock direct mode while the PM25 bit is set to "1" (main clock). Set the PM25 bit in CAN sleep mode. Set the PM24 bit in the PM2 register to "1" (main clock) before accessing CAN-associated registers in main clock direct mode. Do not enter wait mode or stop mode when the PM24 bit is set to "1". Table 22.5 lists CAN clock settings. Figure 22.36 shows a flow chart of accessing procedure for CAN-associated registers.

Table 22.5 CAN Clock Settings

CAN	Clock Source	CM0 Register	CM1 Register	CM2 Register	PM2 Register		MCD Register
Clock	Clock Source	CM07 Bit	CM17 Bit	CM21 Bit	PM24 Bit	PM25 Bit	MCD4 to MCD0 bits
fcan	Main Clock (Main Clock Direct Mode)	0	1	0	1	1	
f1	Main Clock	0	0	0	0	0	100102
	PLL Clock	0	1	0	0	0	100102

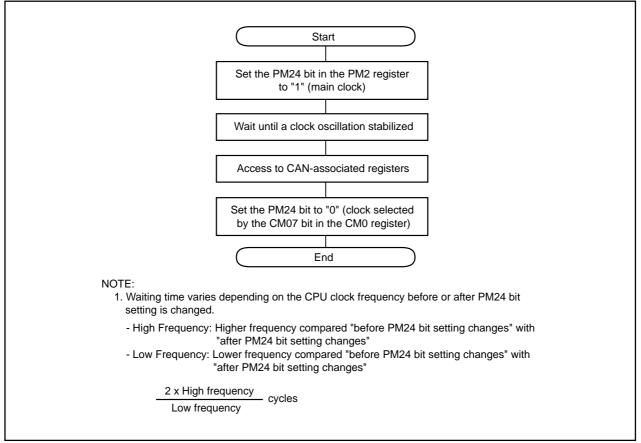


Figure 22.36 Accessing Procedure for CAN-Associated Registers

22.3 Timing with CAN-Associated Registers

22.3.1 CAN Module Reset Timing

Figure 22.37 shows an operation example of when the CAN module is reset.

- (1) The CAN module can be reset when the STATE_RESET bit in the CiSTR register (i=0 to 2) is set to "1" (CAN module reset completed) after the RESET1 and RESET0 bits in the CiCTLR0 register are set to "1" (CAN module reset).
- (2) Set necessary CAN-associated registers.
- (3) CAN communication can be established after the STATE_RESET bit is set to "0" (resetting) after the RESET1 and RESET0 bits are set to "0" (CAN module reset exited).

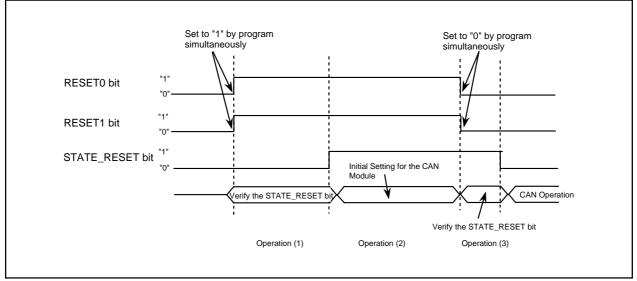


Figure 22.37 Example of CAN Module Reset Operation

22.3.2 CAN Transmit Timing

Figure 22.38 shows an operation example of when the CAN transmits a frame.

- (1) When the TRMREQ bit in the CiMCTLj register (j=0 to 15) is set to "1" (request to transmit the data frame) while the CAN bus is in an idle state, the TRMACTIVE bit in the CiMCTLj register is set to "1" (during transmission) and the TRMSTATE bit in the CiSTR register is set to "1" (during transmission). The CAN starts transmitting the frame.
- (2) After a CAN frame transmission is completed, the SENTDATA bit in the CiMCTLj register is set to "1" (already transmitted), the TRMSUCC bit in the CiSTR register to "1" (transmission completed) and the SISj bit in the CiSISTR register to "1" (interrupt requested). The MBOX3 to MBOX0 bits in the CiSTR register store transmitted message slot numbers.

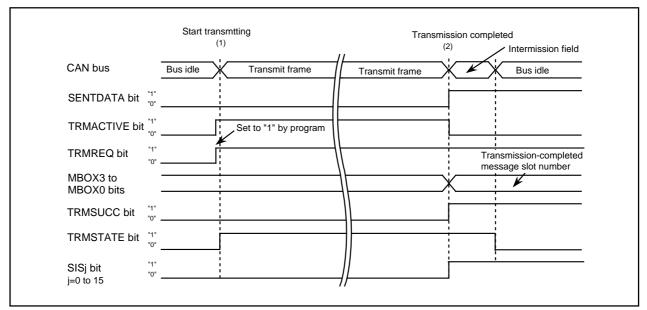


Figure 22.38 Example of CAN Data Frame Transmit Operation

22.3.3 CAN Receive Timing

Figure 22.39 shows an operation example of when the CAN receives a frame.

- (1) When the RECREQ bit in the CiMCTLj register (i=0 to 2, j= 0 to 15) is set to "1" (receive requested), the CAN is ready to receive the frame at anytime.
- (2) When the CAN starts receiving the frame, the RECSTATE bit in the CiSTR register is set to "1" (during reception).
- (3) After the CAN frame reception is completed, the INVALDATA bit in the CiMCTLj register is set to "1" (storing received data), the NEWDATA bit in the CiMCTLj register is set to "1" (receive complete) and the RECSUCC bit in the CiSTR register is set to "1" (reception completed).
- (4) After data is written to the message slot, the INVALDATA bit is set to "0" (storing receiving data) and the SISj bit in the CiSISTR register is set to "1" (interrupt requested). The MBOX3 to MBOX0 bits in the CiSTR register store received message slot numbers.

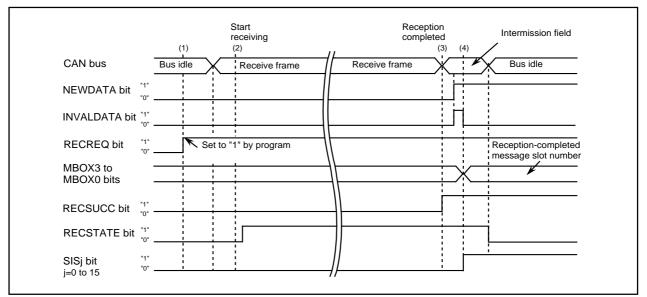


Figure 22.39 Example of CAN Data Frame Receive Operation

22.3.4 CAN Bus Error Timing

Figure 22.40 shows an operation example of when a CAN bus error occurs.

(1) When a CAN bus error is detected, the STATE_BUSERROR bit in the CiSTR register is set to "1", (error occurred) and the BEIS bit in the CiEISTR register is set to "1" (interrupt requested). The CAN starts transmitting the error frame.

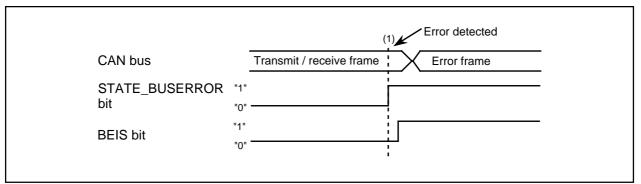


Figure 22.40 Operation Timing when CAN Bus Error Occurs

22.4 CAN Interrupts

The CANi wake-up interrupt and CANij interrupts (i=0 to 2, j=0 to 2) are provided as the CAN interrupt.

22.4.1 CANi Wake-Up Interrupt

22.4.1.1 CAN0 Wake-Up Interrupt

If P77 (CAN0IN/CAN02IN) is used as a CAN input port, the CAN0 wake-up interrupt is available by using event counter mode of the timer A3 (TA3IN) that shares a pin with CAN0.

If P83 (CAN0IN/CAN1IN) is used as a CAN input port, the CAN0 and CAN1 wake-up interrupts are available by using INT1 that shares a pin with CAN0IN/CAN1IN.

22.4.1.2 CAN1 Wake-Up Interrupt

When a signal applied to the CAN1WU pin is on the falling edge, the CAN1WUR bit in the IIO5IR register is set to "1" (interrupt requested). At this time, the IR bit in the CAN5IC register is set to "1" (interrupt requested) if the CAN1WUE bit in the IIO5IE register is set to "1" (interrupt enabled). If P83 (CAN0IN/CAN1IN) is used as a CAN input port, the CAN0 and CAN1 wake-up interrupts are available by using INT1 that shares a pin with CAN0IN/CAN1IN.

22.4.1.3 CAN2 Wake-Up Interrupt

When a signal applied to the CAN2WU pin is on the falling edge, the CAN2WUR bit in the IIO6IR register is set to "1" (interrupt requested). At this time, the IR bit in the CAN8IC register is set to "1" (interrupt requested) if the CAN2WUE bit in the IIO6IE register is set to "1" (interrupt enabled).

22.4.2 CANij Interrupts

Figure 22.41 shows a block diagram of the CANij interrupts. The followings cause the CAN-associated interrupt request to be generated.

- The CANi slot k (k=0 to 15) completes a transmission
- The CANi slot k completes a reception
- The CANi module detects a bus error
- The CANi module moves into an error-passive state
- The CANi module moves into a bus-off state

The INTSEL bit in the CiCTLR1 register determines how an interrupt request is generated. When the INTSEL bit is set to "0", one of the above CANi interrupt request sources cause the CANij interrupts to be generated by the OR circuit. When the INTSEL bit is set to "1", CANi transmission completed, CANi reception completed and CANi errors (CANi bus error detection, CANi module into error-passive state and CANi module into bus-off state) cause the CANij interrupt corresponding to each source to be generated.

22.4.2.1 When the INTSEL Bit is Set to "0"

If the CAN-associated interrupt is generated by one of the interrupt request sources listed in **22.4.2 CANij Interrupts**, the corresponding bit in the CiSISTR register (i=0 to 2) is set to "1" (interrupt requested) when the CANi slot k completes a transmission or a reception. The corresponding bit in the CiEISTR register (i=0 to 2) is set to "1" (interrupt requested) when the CANi module detects a bus error, moves into an error-passive state, or moves into a bus-off state.

The CANi interrupt request signal is set to "1" when the corresponding bit in the CiSISTR or CiEISTR is set to "1" and the corresponding bit in the CiSIMKR or CiEIMKR is set to "1"

When the CAN0 interrupt request signal changes "0" to "1", all CAN0jR bits (j=0 to 2) in the IIO9IR to IIO11IR registers are set to "1" (interrupt requested).

If at least one of the CAN0jE bits in the IIO9IE to IIO11IE registers is set to "1" (interrupt enabled), the IR bits in the corresponding CAN0IC to CAN2IC registers are set to "1" (interrupt requested). The CAN0 interrupt request signal remains set to "1" if another interrupt request causes a corresponding bit in the COSISTR or COEISTR to be set to "1" and the corresponding bit in the COSIMKR or COEIMKR to be set to "1" after the CAN0 interrupt request signal changes "0" to "1". The CAN0jR and IR bits also remain unchanged.

When the CAN1 interrupt request signal changes "0" to "1", all three CAN1jR bits in the IIO0IR to IIO1IR and IIO5IR registers are set to "1" (interrupt requested).

If at least one of the CAN1jE bits in the IIO0IE to IIO1IE and IIO5IE registers is set to "1", the IR bits in the corresponding CAN3IC to CAN5IC registers are set to "1". The CAN1 interrupt request signal remains set to "1" if another interrupt request causes the corresponding bit in the C1SISTR or C1EISTR to be set to "1" and the corresponding bit in the C1SIMKR or C1EIMKR to be set to "1" after the CAN1 interrupt request signal changes "0" to "1". The CAN1jR and IR bits also remain unchanged.

When the CAN2 interrupt request signal changes "0" to "1", all three CAN2jR bits in the IIO2IR to IIO3IR and IIO6IR registers are set to "1" (interrupt requested).

If at least one of the CAN2jE bits in the IIO2IE to IIO3IE and IIO6IE registers is set to "1", the IR bits in the corresponding CAN6IC to CAN8IC registers are set to "1". The CAN2 interrupt request signal remains set to "1" if another interrupt request causes the corresponding bit in the C2SISTR or C2EISTR to be set to "1" and the corresponding bit in the C2SIMKR or C2EIMKR to be set to "1" after the CAN2 interrupt request signal changes "0" to "1". The CAN2jR and IR bits also remain unchanged.

Bits in the CiSISTR or CiEISTR register and CANijR bits (i=0 to 2, j=0 to 2) in the IIO0IR to IIO1IR, IIO5IR, IIO9IR to IIO11IR, IIO2IR to IIO3IR and IIO6IR registers are not set to "0" automatically, interrupt acknowledgment notwithstanding. Set these bits to "0" by program.

The CANi interrupts are acknowledged when the CANijR bit in the IIO0IR to IIO1IR, IIO5IR, IIO9IR to IIO11R, IIO2IR to IIO3IR or IIO6IR register and the corresponding bit in the CiSISTR or CiEISTR register are set to "0". If these bits remain set to "1", all CAN-associated interrupt request sources become invalid.

22.4.2.2 When the INTSEL Bit is Set to "1"

If the CAN-associated interrupt is generated by one of the interrupt request sources listed in **22.4.2 CANij Interrupts**, the corresponding bit in the CiSISTR register (i=0 to 2) is set to "1" (interrupt requested) when the CANi slot k(k=0 to 15) completes a transmission or a reception. The corresponding bit in the CiEISTR registe is set to "1" (interrupt requested) when the CANi module detects a bus error, moves into an error-passive state, or moves into a bus-off state.

The CANi receive interrupt request signal is set to "1" if the corresponding bit in the CiSIMKR is set to "1" and the corresponding bit in the CiSISTR register is set to "1" when the CANi module completes a reception.

The CANi transmit interrupt request signal is set to "1" if the corresponding bit in the CiSIMKR is set to "1" and the corresponding bit in the CiSISTR register is set to "1" when the CANi module completes a transmission.

The CANi error interrupt request signal is set to "1" if corresponding bits in the CiEIMKR are set to "1" and the corresponding bit in the CiEISTR register is set to "1" when the CANi module detects a bus error, moves into an error-passive state, or moves into a bus-off state.

When the CANi receive interrupt request signal changes "0" to "1", the CAN00R bit in the IIO9IR register, the CAN10R bit in the IIO0IR register and the CAN20R bit in the IIO2IR register are set to "1" (interrupt requested). If the CAN00E in the IIO9IE register is set to "1" (interrupt enabled), the IR bit in the CAN0IC register is set to "1" (interrupt requested). If the CAN3IC register is set to "1" (interrupt requested). If the CAN3IC register is set to "1" (interrupt requested). If the CAN20E bit in the IIO9IE register is set to "1" (interrupt requested). If the CAN3IC register is set to "1" (interrupt requested). If the CAN20E bit in the IIO9IE register is set to "1" (interrupt requested). If the CAN20E bit in the IIO9IE register is set to "1" (interrupt requested). If the CAN20E bit in the IIO9IE register is set to "1" (interrupt requested). If the CAN20E bit in the IIO9IE register is set to "1" (interrupt requested). If the CAN20E bit in the IIO9IE register is set to "1" (interrupt requested). If the CAN20E bit in the IIO9IE register is set to "1" (interrupt requested). If the CAN20E bit in the IIO9IE register is set to "1" (interrupt requested). If the CAN20E bit in the IIO9IE register is set to "1" (interrupt requested).

When the CANi transmit interrupt request signal changes "0" to "1", the CAN01R bit in the IIO10IR register, the CAN11R bit in the IIO1IR register and the CAN21R bit in the IIO3IR register are set to "1" (interrupt requested). If the CAN01E in the IIO10IE register is set to "1" (interrupt enabled), the IR bit in the CAN1IC register is set to "1" (interrupt requested). If the CAN1IC register is set to "1" (interrupt enabled), the IR bit in the CAN4IC register is set to "1" (interrupt requested). If the CAN21E bit in the IIO3IE register is set to "1" (interrupt requested). If the CAN21E bit in the IIO3IE register is set to "1" (interrupt requested). If the CAN21E bit in the IIO3IE register is set to "1" (interrupt requested). If the CAN21E bit in the IIO3IE register is set to "1" (interrupt requested). If the CAN21E bit in the IIO3IE register is set to "1" (interrupt requested). If the CAN21E bit in the IIO3IE register is set to "1" (interrupt requested).

When the CANi error interrupt request signal changes "0" to "1", the CAN02R bit in the IIO11IR register, the CAN12R bit in the IIO5IR register and the CAN22R bit in the IIO6IR register are set to "1" (interrupt requested). If the CAN02E in the IIO11IE register is set to "1" (interrupt enabled), the IR bit in the CAN2IC register is set to "1" (interrupt requested). If the CAN5IC register is set to "1" (interrupt requested). If the CAN5IC register is set to "1" (interrupt requested). If the CAN22E bit in the IIO5IE register is set to "1" (interrupt requested). If the CAN22E bit in the IIO5IE register is set to "1" (interrupt requested). If the CAN22E bit in the IIO5IE register is set to "1" (interrupt requested). If the CAN22E bit in the IIO6IE register is set to "1" (interrupt requested). If the CAN22E bit in the IIO6IE register is set to "1" (interrupt requested). If the CAN22E bit in the IIO6IE register is set to "1" (interrupt requested). If the CAN22E bit in the IIO6IE register is set to "1" (interrupt requested).

The CANi error interrupt request signal remains set to "1" if another interrupt request causes the corresponding bit in the CiEIMKR register is set to "1" and the corresponding bit in the CiEISTR to be set to "1" after the CANi interrupt request signal changes "0" to "1". The CAN02R, CAN12R, CAN22R and IR bits also remain unchanged.

Bits in the CiSISTR or CiEISTR register and CANijR bits (i=0 to 2, j=0 to 2) in the IIO0IR to IIO1IR, IIO5IR, IIO9IR to IIO11IR, IIO2IR to IIO3IR or IIO6IR registers are not set to "0" automatically, interrupt acknowledgment notwithstanding. Set these bits to "0" by program.

The CANi receive interrupt and CANi transmit interrupt are acknowledged when the CAN00R bit in the IIO9IR register, the CAN01R bit in the IIO10IR register, the CAN10R bit in the IIO0IR register, the CAN11R bit in the IIO1IR register, the CAN20R bit in the IIO2IR register and the CAN21R bit in the IIO3IR register are set to "0". Corresponding bits in the CISISTR register can be set to either "0" or "1". The CANi error interrupt is acknowledged when the CAN02R bit in the IIO11IR register, the CAN12R bit in the IIO5IR register, the CAN22R bit in the IIO6IR register and corresponding bits in the CISISTR register are set to "0".

If these bits remain set to "1", all CAN- associated interrupt request sources become invalid.

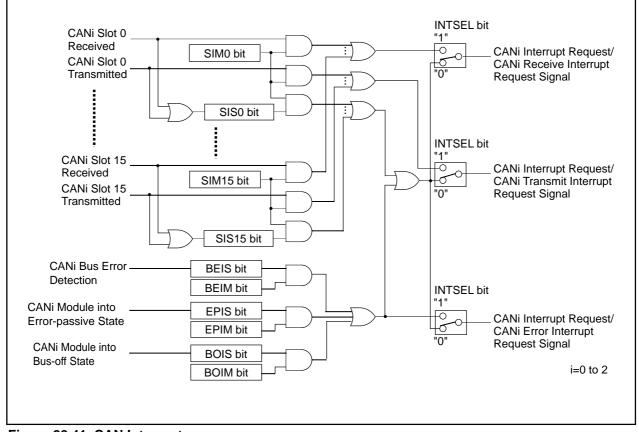


Figure 22.41 CAN Interrupts

22.5 CAN0/CAN2 Combination Mode

In CAN0/CAN2 combination mode, CAN0 and CAN2 are combined for input/ output.

Signals output from CAN0 and CAN2 are combined and provided from the CAN020UT pin. Signal applied to the CAN02IN pin is applied to CAN0 and CAN2.

When using CAN0/CAN2 combination mode, refer to **Table 22.2 CAN Pin Settings** for pin settings. Figure 22.42 shows a block diagram of CAN0/CAN2 combination mode.

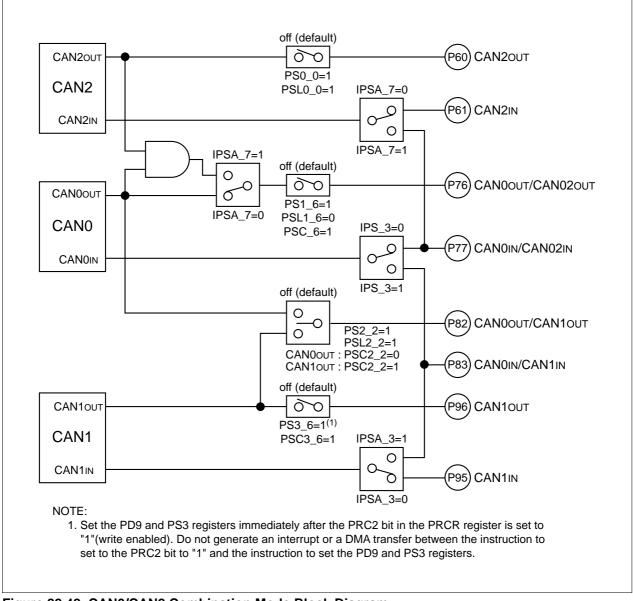


Figure 22.42 CAN0/CAN2 Combination Mode Block Diagram

22.5.1 Notes for CAN0/CAN2 Combination Mode

It is important to note the following information to use CAN0/CAN2 combination mode:

22.5.1.1 Transmission

Do not transmit frames with the same ID from CAN0 and CAN2.

When transmitting frames with different IDs simultaneously from CAN0 and CAN2, they are arbitrated. As a result, the frame with higher priority gains the right to transmit.

22.5.1.2 Reception

When CAN0 transmits, ACK for the transmitted frame is transmitted from CAN2 even if other nodes are not connected to the CAN bus. The same applies to CAN2 transmission.

22.5.1.3 Interrupts

CAN0 and CAN2 have different completed transmission or reception interrupts.

When CAN0 completes a transmission or reception, the IR bits in the corresponding CAN0IC to CAN2IC registers are set to "1" (interrupt requested). When CAN2 completes a transmission or reception, the IR bits in the corresponding CAN6IC to CAN8IC registers are set to "1" (interrupt requested). Use the CAN0 wake-up interrupt when operating in CAN0/CAN2 combination mode.

22.5.1.4 Errors

The count value of the error counter and the error status may differ between CAN0 and CAN2 depending on where the error has been generated.

When using CAN0/CAN2 combination mode, an error frame longer than the length noted in the specification may be transmitted.

22.4.1.5 Configuration

Set CAN configuration to both CAN0 and CAN2. Set CAN baud rates and bit timings of both CAN 0 and CAN2 to the same values.

23. Programmable I/O Ports

87 programmable I/O ports from P0 to P10 (excluding P85) are available in the 100-pin package and 123 programmable I/O ports from P0 to P15 (excluding P85) are in the 144-pin package. The direction registers determine each port status, input or output. The pull-up control registers determine whether the ports, divided into groups of four ports, are pulled up or not. P85 is an input port and no pull-up for this port is allowed. The P8_5 bit in the P8 register indicates an $\overline{\text{NMI}}$ input level since P85 shares pins with $\overline{\text{NMI}}$. Figures 23.1 to 23.4 show programmable I/O port configurations.

Each pin functions as the programmable I/O port or an I/O pin for internal peripheral functions.

To use pins as input or output pins for internal peripheral functions, refer to the explanations for each fuction.

The registers associated with the programmable I/O ports are as follows.

23.1 Port Pi Direction Register (PDi Register, i=0 to 15)

Figure 23.5 shows the PDi register.

The PDi register selects input or output status of a programmable I/O port. Each bit in the PDi register corresponds to a port.

No bit controlling P85 is provided in the direction registers.

23.2 Port Pi Register (Pi Register, i=0 to 15)

Figure 23.6 shows the Pi register.

The Pi register writes and reads data to communicate with external devices. The Pi register consists of a port latch to hold output data and a circuit to read pin states. Each bit in the Pi register corresponds to a port.

23.3 Function Select Register Aj (PSj Register) (j=0 to 3, 5, 8, 9)

Figures 23.7 to 23.10 show the PSj registers.

The PSj register selects either I/O port or peripheral function output if an I/O port shares pins with a peripheral function output (excluding DA0 and DA1.)

When multiple peripheral function outputs are assigned to a pin, set the PSL0 to PSL3, PSC, PSC2, PSC3 and PSD1 registers to select which function is used.

Tables 23.2 to 23.9 list peripheral function output control settings for each pin.

23.4 Function Select Register B0 to B3 (PSL0 to PSL3 Registers)

Figures 23.11 and 23.12 show the PSL0 to PSL3 registers.

When multiple peripheral function outputs are assigned to a pin, the PSL0 to PSL3 registers select which peripheral function output is used.

Refer to **23.10** Analog Input and Other Peripheral Function Input for the PSL3_6 to PSL3_3 bits in the PSL3 register.

23.5 Function Select Register C, C2, C3 (PSC, PSC2, PSC3 Registers)

Figures 23.13 and 23.14 show the PSC, PSC2 and PSC3 registers.

When multiple peripheral function outputs are assigned to a pin, the PSC, PSC2 and PSC3 registers select which peripheral function output is used.

Refer to 23.10 Analog Input and Other Peripheral Function Input for the PSC_7 bit in the PSC register.

23.6 Function Select Register D (PSD1 Register)

Figure 23.14 shows the PSD1 register.

When multiple peripheral function outputs are assigned to a pin, the PSD1 register selects which peripheral function output is used.

23.7 Pull-up Control Register 0 to 4 (PUR0 to PUR4 Registers)

Figures 23.15 and 23.16 show the PUR0 to PUR4 registers.

The PUR0 to PUR4 registers select whether the ports, divided into groups of four ports, are pulled up or not. Ports with bits in the PUR0 to PUR4 registers set to "1" (pull-up) and the direction registers set to "0" (input mode) are pulled up.

23.8 Port Control Register (PCR Register)

Figure 23.17 shows the PCR register.

The PCR register selects either CMOS output or N-channel open drain output as the P1 output format. If the PCR0 bit is set to "1", N-channel open drain output is selected because the P-channel in the CMOS port is turned off. This is, however, not a perfect open drain. Therefore, the absolute maximum rating of the input voltage is between -0.3V and Vcc + 0.3V.

23.9 Input Function Select Register (IPS and IPSA Registers)

Figures 23.17 and 23.18 show the IPS and IPSA registers.

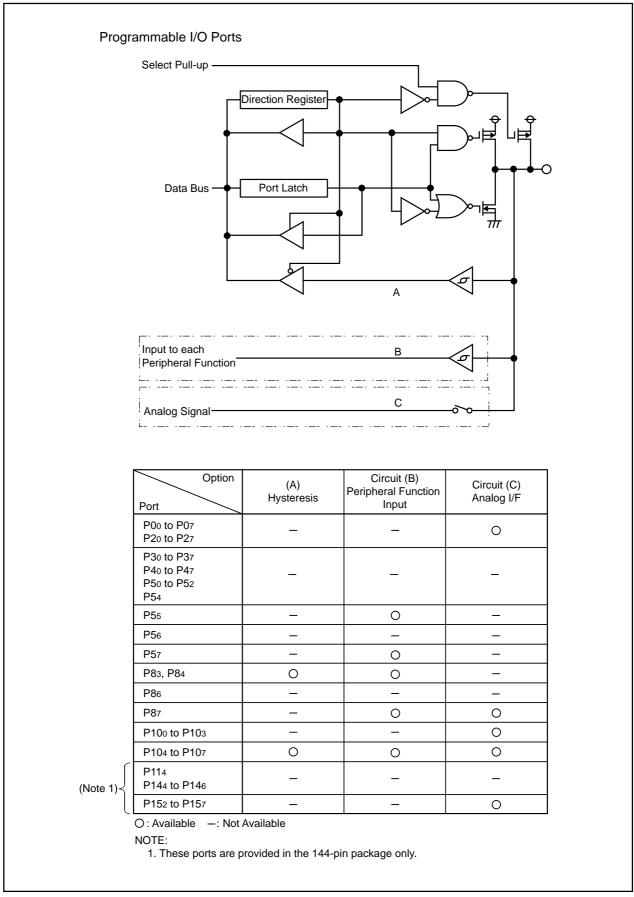
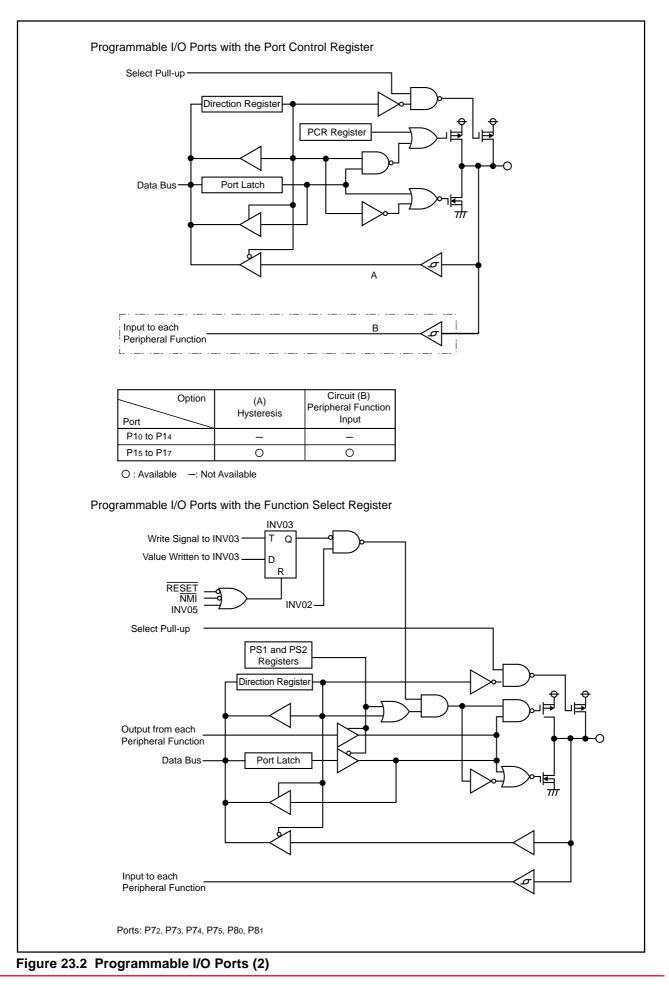
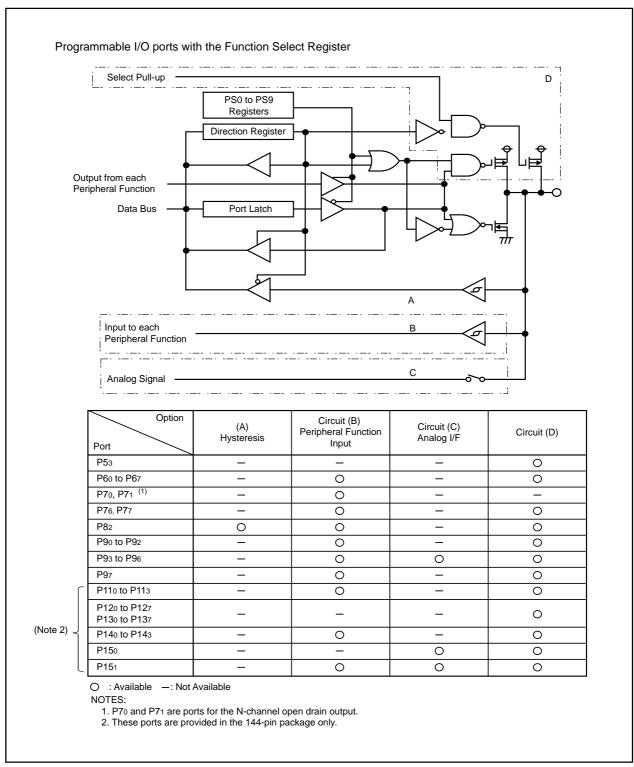
The IPS3, IPS1 and IPS0 bits in the IPS register and the IPSA_3 and IPSA_0 bits in the IPSA register select which pin is assigned for the intelligent I/O or CAN input functions.

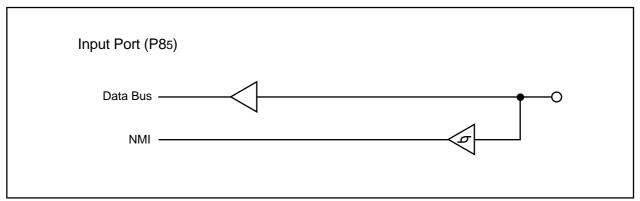
Refer to 23.10 Analog Input and Other Peripheral Function Input for the IPS2 bit.

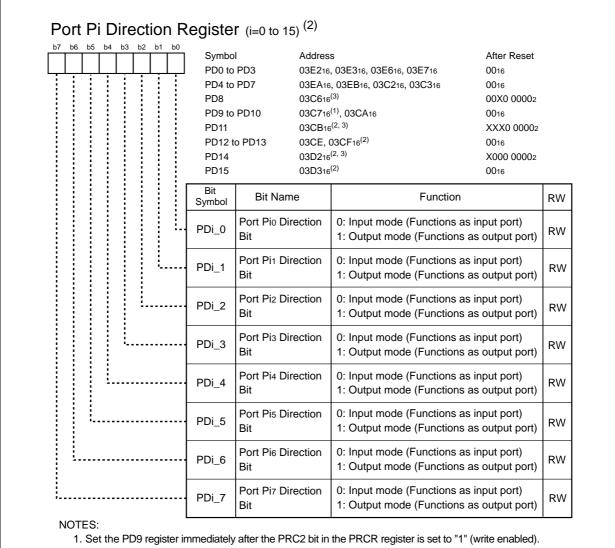
23.10 Analog Input and Other Peripheral Function Input

The PSL3_6 to PSL3_3 bits in the PSL3 register, the PSC_7 bit in the PSC register and the IPS2 bit in the IPS register each separate analog I/O ports from other peripheral functions. Setting the corresponding bit to "1" (analog I/O) to use the analog I/O port (DA0, DA1, ANEX0, ANEX1, AN4 to AN7 or AN150 to AN157) prevents an intermediate potential from being impressed to other peripheral functions. The impressed intermediate potential may cause increase in power consumption.

Set the corresponding bit to "0" (except analog I/O) when analog I/O is not used. All peripheral function inputs except the analog I/O port are available when the corresponding bit is set to "0". These inputs are indeterminate when the bit is set to "1". When the PSC_7 bit is set to "1", key input interrupt request remains unchanged regardless of \overline{Klo} to \overline{Klo} pin input level change.


Figure 23.1 Programmable I/O Ports (1)



Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the instruction to set the PD9 register.

- 2. Set the PD11 to PD15 registers to "FF16" in the 100-pin package.
- 3. Nothing is assigned in the PD8_5 bit in the PD8 register, the PD11_7 to PD11_5 bits in the PD11 register (144-pin package only) and the P14_7 bit in the PD14 register (144-pin package only). If write, set these bits to "0". When read, their contents are indeterminate.

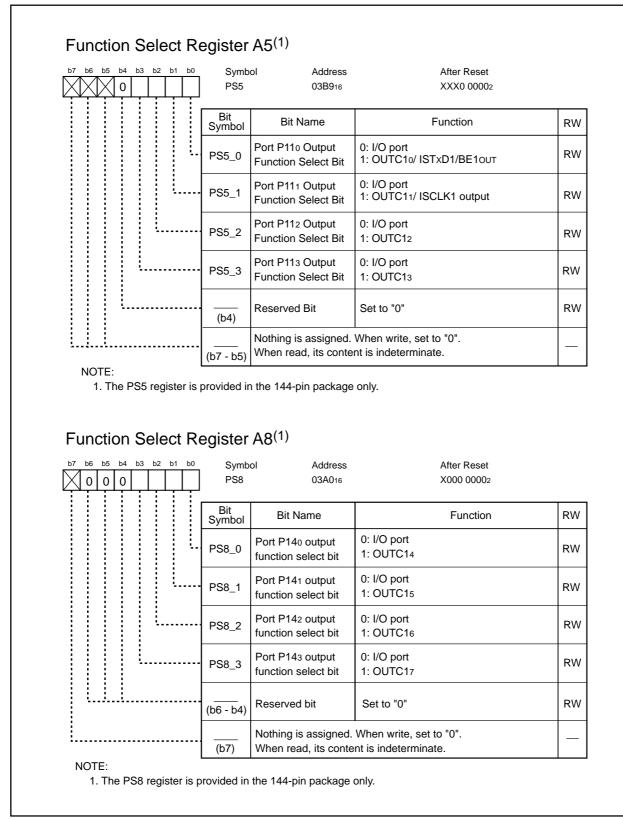
Figure 23.5 PD0 to PD15 Registers

b7 b6 b5 t	b4 b3 b2 b1 b0	Symbol P0 to P P6 to P P11 to F	5 03E016, 03E116, 03I 10 03C016, 03C116 ⁽²⁾ , 0	After R E416, 03E516, 03E816, 03E916 Indeter 03C416 ⁽³⁾ , 03C516, 03C816 Indeter 03CD16, 03D016 ⁽⁴⁾ , 03D116 Indeter	minate minate
		Bit Symbol	Bit Name	Function	RW
		Pi_0	Port Pio Bit	Pin levels can be read by reading bits corresponding to programmab ports in input mode.	le RW
		Pi_1	Port Pi1 Bit	Pin levels can be controlled by writing to bits corresponding to programmable ports in output mod	e.
		Pi_2	Port Pi2 Bit	0: "L" level	RW
		Pi_3	Port Pi3 Bit		RW
		Pi_4	Port Pi4 Bit		RW
		Pi_5	Port Pis Bit		RW
l		Pi_6	Port Pi6 Bit		RW
[Pi_7	Port Piz Bit		RW
2. P70 a whei 3. The	and P71 are ports n P70 and P71 out P8_5 bit is for rea	for the N tput "H" s d only.	ignal.	ackage only. htput. The pins go into high-impedance P11 register and the P14_7 bit in the P ⁷	

4. Nothing is assigned in the P11_7 to P11_5 bits in the P11 register and the P14_7 bit in the register. If write, set these bits to "0". When read, their contents are indeterminate.

Figure 23.6 P0 to P15 Registers

b7 b6 b5 b4	4 b3 b2 b1	^{b0} Symb PS0	Address 03B016	After Reset 0016	
		Bit Symbol	Bit Name	Function	R\
		PS0_0	Port P60 Output Function Select Bit	0: I/O port 1: Selected by the PSL0_0 bit	R
		···· PS0_1	Port P61 Output Function Select Bit	0: I/O port 1: CLK0 output	R
		PS0_2	Port P62 Output Function Select Bit	0: I/O port 1: Selected by the PSL0_2 bit	R
		···· PS0_3	Port P63 Output Function Select Bit	0: I/O port 1: TxD0/SDA0 output	R
		PS0_4	Port P64 Output Function Select Bit	0: I/O port 1: Selected by the PSL0_4 bit	R
		PS0_5	Port P65 Output Function Select Bit	0: I/O port 1: CLK1 output	RV
		PS0_6	Port P66 Output Function Select Bit	0: I/O port 1: Selected by the PSL0_6 bit	R\
		PS0_7	Port P67 Output Function Select Bit	0: I/O port	RV
-unctior	n Select	Register		1: TxD1/SDA1 output	
		Register	A1	After Reset 0016	
		b0 Symb	A1 Nol Address	After Reset	R
		^{b0} Symb PS1 Bit	A1 ool Address 03B116	After Reset 0016	
		b0 Symb PS1 Bit Symbol	A1 Address 03B116 Bit Name Port P70 Output	After Reset 0016 Function 0: I/O port	R\
		Bit Symbol PS1 PS10	A1 Address 03B116 Bit Name Port P70 Output Function Select Bit Port P71 Output	After Reset 0016 Function 0: I/O port 1: Selected by the PSL1_0 bit 0: I/O port	R\
		Bit Symbol PS1 PS10 PS11	A1 Address 03B116 Bit Name Port P70 Output Function Select Bit Port P71 Output Function Select Bit Port P72 Output	After Reset 0016 Function 0: I/O port 1: Selected by the PSL1_0 bit 0: I/O port 1: Selected by the PSL1_1 bit 0: I/O port	R\ R\ R\
		b0 Symb PS1 Bit Symbol PS1_0 PS1_1 PS1_2	A1 Address 03B116 Bit Name Port P70 Output Function Select Bit Port P71 Output Function Select Bit Port P72 Output Function Select Bit Port P73 Output	After Reset 0016 Function 0: I/O port 1: Selected by the PSL1_0 bit 0: I/O port 1: Selected by the PSL1_1 bit 0: I/O port 1: Selected by the PSL1_2 bit 0: I/O port	
		^{b0} Symb PS1 Bit Symbol PS1_0 PS1_1 PS1_2 PS1_3	Address 03B116 Bit Name Port P70 Output Function Select Bit Port P71 Output Function Select Bit Port P72 Output Function Select Bit Port P73 Output Function Select Bit Port P74 Output	After Reset 0016 Function 0: I/O port 1: Selected by the PSL1_0 bit 0: I/O port 1: Selected by the PSL1_1 bit 0: I/O port 1: Selected by the PSL1_2 bit 0: I/O port 1: Selected by the PSL1_3 bit 0: I/O port	
		^{b0} Symb PS1 Bit Symbol PS1_0 PS1_1 PS1_2 PS1_3 PS1_4	A1 Address 03B116 Bit Name Port P70 Output Function Select Bit Port P71 Output Function Select Bit Port P72 Output Function Select Bit Port P73 Output Function Select Bit Port P74 Output Function Select Bit Port P75 Output	After Reset 0016 Function 0: I/O port 1: Selected by the PSL1_0 bit 0: I/O port 1: Selected by the PSL1_1 bit 0: I/O port 1: Selected by the PSL1_2 bit 0: I/O port 1: Selected by the PSL1_3 bit 0: I/O port 1: Selected by the PSL1_4 bit 0: I/O port 1: Selected by the PSL1_4 bit	


Figure 23.7 PS0 Register and PS1 Register

b7 b6 b5 b4	b3 b2 b1 b0	Syml PS2	ool Address 03B416	After Reset 00X0 00002	
		Bit Symbol	Bit Name	Function	R
		PS2_0	Port P80 Output Function Select Bit	0: I/O port 1: Selected by the PSL2_0 bit	R
		• PS2_1	Port P81 Output Function Select Bit	0: I/O port 1: Selected by the PSL2_1 bit	R\
		PS2_2	Port P82 Output Function Select Bit	0: I/O port 1: Selected by the PSL2_2 bit	R\
		(b4 - b3)	Reserved Bit	Set to "0"	R\
		(b5)	Nothing is assigned. When read, its conte	. When write, set to "0". ent is indeterminate.	_
		(b7 - b6)	Reserved Bit	Set to "0"	R۱
		egister _{Symb} PS3		After Reset 0016	
		Symb PS3	ol Address		
		Symb	ol Address 03B516 Bit Name Port P90 Output	0016 Function 0: I/O port	
		Symb PS3 Bit Symbol	Address 03B516 Bit Name Port P90 Output Function Select Bit	0016 Function 0: I/O port 1: CLK3 output	
		Symb PS3 Bit Symbol	ol Address 03B516 Bit Name Port P90 Output	0016 Function 0: I/O port	RV
		Symb PS3 Bit Symbol PS3_0	Address 03B516 Bit Name Port P90 Output Function Select Bit Port P91 Output	0016 Function 0: I/O port 1: CLK3 output 0: I/O port	RV
		Symb PS3 Bit Symbol PS3_0 PS3_1	Address 03B516 Bit Name Port P90 Output Function Select Bit Port P91 Output Function Select Bit Port P92 Output	0016 Function 0: I/O port 1: CLK3 output 0: I/O port 1: Selected by the PSL3_1 bit 0: I/O port	RW RW RW RW
		Symb PS3 Bit Symbol PS3_0 PS3_1 PS3_2	Address 03B516 Bit Name Port P90 Output Function Select Bit Port P91 Output Function Select Bit Port P92 Output Function Select Bit	0016 Function 0: I/O port 1: CLK3 output 0: I/O port 1: Selected by the PSL3_1 bit 0: I/O port 1: Selected by the PSL3_2 bit 0: I/O port	RW RW RW
		Symb PS3 Bit Symbol PS3_0 PS3_1 PS3_2 PS3_3	Address 03B516 Bit Name Port P90 Output Function Select Bit Port P91 Output Function Select Bit Port P92 Output Function Select Bit Port P93 Output Function Select Bit	0016 Function 0: I/O port 1: CLK3 output 0: I/O port 1: Selected by the PSL3_1 bit 0: I/O port 1: Selected by the PSL3_2 bit 0: I/O port 1: RTS3 0: I/O port	RV RV RV RV
		Symb PS3 Bit Symbol PS3_0 PS3_1 PS3_2 PS3_3 PS3_4	Address 03B516 Bit Name Port P90 Output Function Select Bit Port P91 Output Function Select Bit Port P92 Output Function Select Bit Port P94 Output Function Select Bit Port P95 Output	0016 Function 0: I/O port 1: CLK3 output 0: I/O port 1: Selected by the PSL3_1 bit 0: I/O port 1: Selected by the PSL3_2 bit 0: I/O port 1: RTS3 0: I/O port 1: RTS4 0: I/O port 1: RTS4	RV RV RV RV RV

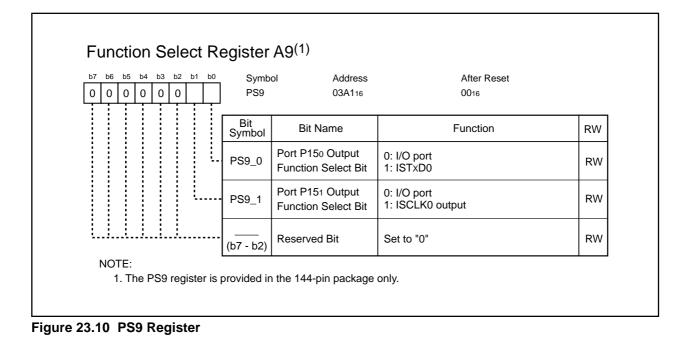

 Set the PS3 register immediately after the PRC2 bit in the PRCR register is set to "1" (write enabled). Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the instruction to set the PS3 register.

Figure 23.8 PS2 Register and PS3 Register

07 b6 b5 b4 b3 b2 b1 b0	Symb	ol Address	After Reset	
	PSL0	03B216	0016	
	Bit Symbol	Bit Name	Function	R۱
	PSL0_0	Port P60 Output Peripheral Function Select Bit	0: RTS0 1: CAN2OUT	RV
	(b1)	Reserved Bit	Set to "0"	R
	PSL0_2	Port P62 Output Peripheral Function Select Bit	0: SCL0 output 1: STxD0	R\
	(b3)	Reserved Bit	Set to "0"	R\
	PSL0_4	Port P64 Output Peripheral Function Select Bit	0: RTS1 1: Do not set to this value	R\
	(b5)	Reserved Bit	Set to "0"	R\
	PSL0_6	Port P66 Output Peripheral Function Select Bit	0: SCL1 output 1: STxD1	R۱
Function Select R	(b7) egister		Set to "0"	R\
	egister	B1 ol Address		R\
	egister	B1 ol Address	After Reset	
	egister ^{Symb} PSL1	B1 vol Address 03B316	After Reset 0016	R
	egister Symb PSL1	B1 Address 03B316 Bit Name Port P7o Output Peripheral	After Reset 0016 Function 0: Selected by the PSC_0 bit	R\ R\
	egister Symb PSL1 Bit Symbol PSL1_0	B1 Address 03B316 Bit Name Port P70 Output Peripheral Function Select Bit Port P71 Output Peripheral	After Reset 0016 Function 0: Selected by the PSC_0 bit 1: TA0ouT output ⁽¹⁾ 0: Selected by the PSC_1 bit	R\ R\ R\ R\ R\
	egister Symb PSL1 Symbol PSL1_0 PSL1_1	B1 Address 03B316 Bit Name Port P70 Output Peripheral Function Select Bit Port P71 Output Peripheral Function Select Bit Port P72 Output Peripheral	After Reset 0016 Function 0: Selected by the PSC_0 bit 1: TA0ouT output ⁽¹⁾ 0: Selected by the PSC_1 bit 1: STxD2 ⁽¹⁾ 0: Selected by the PSC_2 bit	R\ R\ R\ R\
	egister Symb PSL1 Bit Symbol PSL1_0 PSL1_1 PSL1_2	B1 Address 03B316 Bit Name Port P70 Output Peripheral Function Select Bit Port P71 Output Peripheral Function Select Bit Port P72 Output Peripheral Function Select Bit Port P73 Output Peripheral	After Reset 0016 Function 0: Selected by the PSC_0 bit 1: TA00UT output ⁽¹⁾ 0: Selected by the PSC_1 bit 1: STxD2 ⁽¹⁾ 0: Selected by the PSC_2 bit 1: TA10UT output ⁽¹⁾ 0: Selected by the PSC_3 bit	R\ R\ R\ R\ R\ R\
	egister Symb PSL1 PSL1_0 PSL1_1 PSL1_2 PSL1_3	B1 Address 03B316 Bit Name Port P70 Output Peripheral Function Select Bit Port P71 Output Peripheral Function Select Bit Port P72 Output Peripheral Function Select Bit Port P73 Output Peripheral Function Select Bit Port P74 Output Peripheral	After Reset 00_{16} Function 0: Selected by the PSC_0 bit 1: TA00UT output ⁽¹⁾ 0: Selected by the PSC_1 bit 1: STxD2 ⁽¹⁾ 0: Selected by the PSC_2 bit 1: TA10UT output ⁽¹⁾ 0: Selected by the PSC_3 bit 1: $\sqrt{(1)}$ 0: Selected by the PSC_4 bit	R\ R\ R\ R\ R\ R\ R\ R\
	egister Symbol PSL1_0 PSL1_0 PSL1_0 PSL1_1 PSL1_2 PSL1_3 PSL1_4	B1 Address 03B316 Bit Name Port P70 Output Peripheral Function Select Bit Port P71 Output Peripheral Function Select Bit Port P72 Output Peripheral Function Select Bit Port P73 Output Peripheral Function Select Bit Port P74 Output Peripheral Function Select Bit Port P75 Output Peripheral	After Reset 0016 Function 0: Selected by the PSC_0 bit 1: TA00UT output ⁽¹⁾ 0: Selected by the PSC_1 bit 1: STxD2 ⁽¹⁾ 0: Selected by the PSC_2 bit 1: TA10UT output ⁽¹⁾ 0: Selected by the PSC_3 bit 1: $\nabla^{(1)}$ 0: Selected by the PSC_4 bit 1: $\nabla^{(1)}$ 0: Selected by the PSC_4 bit 0: \overline{W}	R\ R\ R\

to "0".

Figure 23.11 PSL0 Register and PSL1 Register

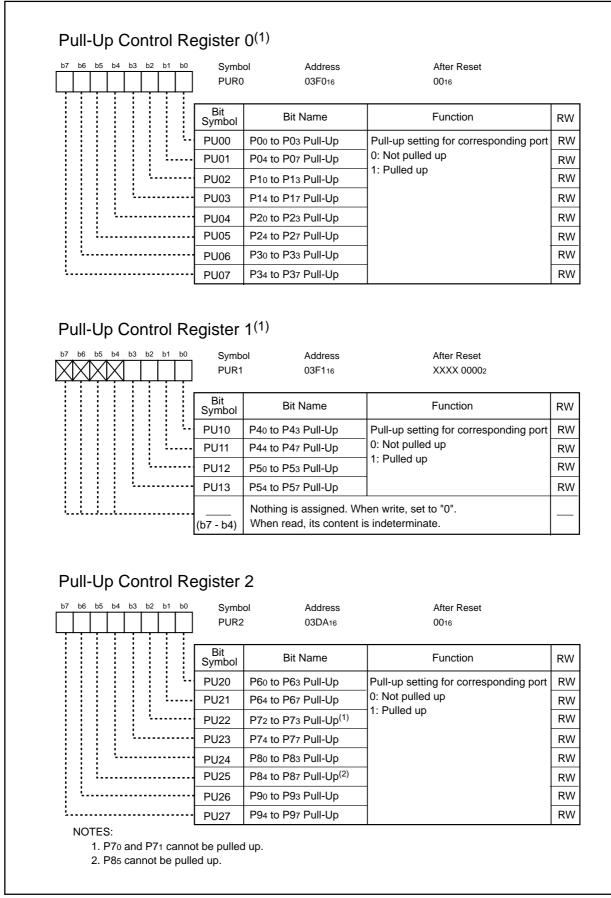
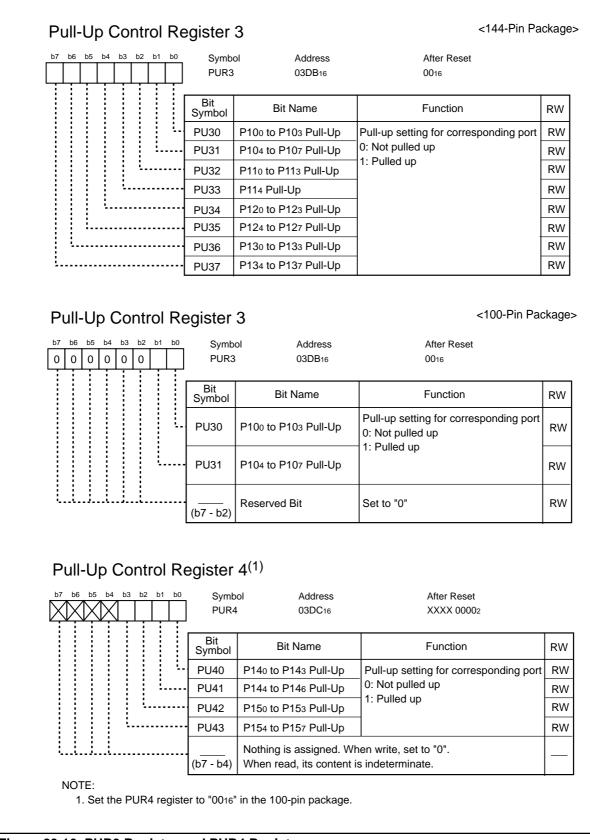
b7 b6 b5 b4 0 0 0 0	b3 b2 b1 b0	Symb PSL2		After Reset 00X0 00002	
		Bit Symbol	Bit Name	Function	R
		PSL2_0	Port P80 Output Peripheral Function Select Bit	0: TA4out output 1: U	R
		PSL2_1	Port P81 Output Peripheral Function Select Bit	0: U 1: Selected by the PSC2_1 bit	R
		PSL2_2	Port P82 Output Peripheral Function Select Bit	0: Do not set to this value 1: Selected by the PSC2_2 bit	R
		(b4 - b3)	Reserved Bit	Set to "0"	R
		(b5)	Nothing is assigned. Whe When read, its content is		-
		(b7 - b6)	Reserved Bit	Set to "0"	R
		Symb PSL3 Bit		After Reset 0016 Function	R
	b3 b2 b1 b0	Symb PSL3	ol Address 03B716 Bit Name	0016 Function	R
	b3 b2 b1 b0	Symb PSL3 Bit	ol Address 03B716 Bit Name Reserved Bit	0016 Function Set to "0"	
	b3 b2 b1 b0	Symb PSL3 Bit Symbol	ol Address 03B716 Bit Name	0016 Function	R
	b3 b2 b1 b0	Symb PSL3 Bit Symbol (b0)	ol Address 03B716 Bit Name Reserved Bit Port P91 Output Peripheral	0016 Function Set to "0" 0: SCL3 output	
	b3 b2 b1 b0	Symb PSL3 Bit Symbol (b0) PSL3_1	ol Address 03B716 Bit Name Reserved Bit Port P91 Output Peripheral Function Select Bit Port P92 Output Peripheral	0016 Function Set to "0" 0: SCL3 output 1: STxD3 0: TxD3/SDA3 output	R\ R\
	b3 b2 b1 b0	Symb PSL3 Bit Symbol (b0) PSL3_1 PSL3_2	ol Address 03B716 Bit Name Reserved Bit Port P91 Output Peripheral Function Select Bit Port P92 Output Peripheral Function Select Bit	0016 Function Set to "0" 0: SCL3 output 1: STxD3 0: TxD3/SDA3 output 1: Do not set to this value 0: Except DA0	R\ R\ R\
	b3 b2 b1 b0	Symb PSL3 Bit Symbol (b0) PSL3_1 PSL3_2 PSL3_3	ol Address 03B716 Bit Name Reserved Bit Port P91 Output Peripheral Function Select Bit Port P92 Output Peripheral Function Select Bit Port P93 Output Peripheral Function Select Bit	0016 Function Set to "0" 0: SCL3 output 1: STxD3 0: TxD3/SDA3 output 1: Do not set to this value 0: Except DA0 1: DA0 ⁽¹⁾ 0: Except DA1	
	b3 b2 b1 b0	Symb PSL3 Bit Symbol (b0) PSL3_1 PSL3_2 PSL3_3 PSL3_4	ol Address 03B716 Bit Name Reserved Bit Port P91 Output Peripheral Function Select Bit Port P92 Output Peripheral Function Select Bit Port P93 Output Peripheral Function Select Bit Port P94 Output Peripheral Function Select Bit	0016 Function Set to "0" 0: SCL3 output 1: STxD3 0: TxD3/SDA3 output 1: Do not set to this value 0: Except DA0 1: DA0 ⁽¹⁾ 0: Except DA1 1: DA1 ⁽¹⁾ 0: Except ANEX0	R' R' R' R'

Figure 23.12 PSL2 Register and PSL3 Register

b7 b6 b5	b4 b3	b2 b1 b0	Symb PSC	ol Address 03AF16	After Reset 00X0 00002	
			Bit Symbol	Bit Name	Function	RW
			PSC_0	Port P70 Output Peripheral Function Select Bit	0: TxD2/SDA2 output 1: Selected by the PSD1_0 bit	RW
		ļ	PSC_1	Port P71 Output Peripheral Function Select Bit	0: SCL2 output 1: Selected by the PSD1_1 bit	RW
			PSC_2	Port P72 Output Peripheral Function Select Bit	0: CLK2 output 1: V	RW
			PSC_3	Port P73 Output Peripheral Function Select Bit	0: RTS2 1: OUTC10/ISTxD1/BE1out	RW
			PSC_4	Port P74 Output Peripheral Function Select Bit	0: TA2out output 1: OUTC11/ISCLK1	RW
			(b5)	Nothing is assigned. When When read, its content is i		_
			PSC_6	Port P76 Output Peripheral	0: Selected by the PSD1_6 bit	
:				Function Select Bit	1: CAN0out	RW
NOTE: 1. S		ILVL2 to IL	PSC_7	Key Input Interrupt Disabled Select Bit	1: CAN0out 0: P104 to P107 or Klo to Kl3 1: AN4 to AN7 ⁽¹⁾ 0002" (interrupt disabled) when cha	RW
1. S tł A	Set the I he PSC Although O N Se	_7 bit setti	VL0 bits in ng. N7 can be u	Key Input Interrupt Disabled Select Bit the the KUPIC register to " used when this bit is set to ' C2 ol Address	0: P104 to P107 or Klo to Kl3 1: AN4 to AN7 ⁽¹⁾	
1. s	Set the I he PSC Although O N Se	E_7 bit setti n AN4 to Al elect R	PSC_7 VL0 bits in ng. V7 can be u egister	Key Input Interrupt Disabled Select Bit the the KUPIC register to " used when this bit is set to ' C2 ol Address	0: P104 to P107 or Klo to Kl3 1: AN4 to AN7 ⁽¹⁾ 0002" (interrupt disabled) when cha '0", power consumption may increa	RW
1. s	Set the I he PSC Although O N Se	:_7 bit setti n AN₄ to Al elect R	PSC_7 VL0 bits in ng. V7 can be u egister Symb PSC2	Key Input Interrupt Disabled Select Bit the the KUPIC register to " used when this bit is set to ' C2 ol Address 03AC16	0: P104 to P107 or Klo to Kl3 1: AN4 to AN7 ⁽¹⁾ 0002" (interrupt disabled) when cha '0", power consumption may increa After Reset XXXX X00X2 Function n write, set to "0".	RW anging se.
1. s	Set the I he PSC Although O N Se	E_7 bit setti n AN4 to Al elect R	PSC_7 VL0 bits in ng. V7 can be u egister Symbol Bit Symbol	Key Input Interrupt Disabled Select Bit the the KUPIC register to " used when this bit is set to ' C2 ol Address 03AC16 Bit Name Nothing is assigned. When	0: P104 to P107 or Klo to Kl3 1: AN4 to AN7 ⁽¹⁾ 0002" (interrupt disabled) when cha '0", power consumption may increa After Reset XXXX X00X2 Function n write, set to "0". ndeterminate.	RW
1. S tt A	Set the I he PSC Although O N Se	E_7 bit setti n AN4 to Al elect R	PSC_7 VL0 bits in ng. V7 can be u egister Symbol Symbol (b0)	Key Input Interrupt Disabled Select Bit the the KUPIC register to " used when this bit is set to ' C2 ol Address 03AC16 Bit Name Nothing is assigned. When When read, its content is i Port P81 Output Peripheral	0: P104 to P107 or Klo to Kl3 1: AN4 to AN7 ⁽¹⁾ 0002" (interrupt disabled) when cha '0", power consumption may increa After Reset XXXX X00X2 Function n write, set to "0". ndeterminate. 0: Do not set to this value 1: OUTC15	RW anging se.

b7 b6 b5 b4 b3 b2 b1 b0	Symb PSC3		After Reset X0XX XXXX2	
	Bit Symbol	Bit Name	Function	RW
	(b5 - b0)	Nothing is assigned. When When read, its content is i		
	PSC3_6	Port P96 Output Peripheral Function Select Bit	0: TxD4/SDA4 output 1: CAN1out	RW
	(b7)	Nothing is assigned. When When read, its content is i		
Function Select R	Symb PSD1		After Reset X0XX XX002	
	Symb PSD1 Bit	ol Address		RW
	Symbo PSD1	ol Address 03A716	X0XX XX002	
	Symb PSD1 Bit Symbol	ol Address 03A716 Bit Name Port P70 Output Peripheral	X0XX XX002 Function 0: Do not set to this value	RW RW RW
	Symb PSD1 Bit Symbol PSD1_0	ol Address 03A716 Bit Name Port P70 Output Peripheral Function Select Bit Port P71 Output Peripheral	X0XX XX002 Function 0: Do not set to this value 1: OUTC16 0: Do not set to this value 1: OUTC17 n write, set to "0".	RW
	Symb PSD1 Bit Symbol PSD1_0 PSD1_1	ol Address 03A716 Bit Name Port P70 Output Peripheral Function Select Bit Port P71 Output Peripheral Function Select Bit Nothing is assigned. When	X0XX XX002 Function 0: Do not set to this value 1: OUTC16 0: Do not set to this value 1: OUTC17 n write, set to "0". ndeterminate.	RW

Figure 23.14 PSC3 Register and PSD1 Register

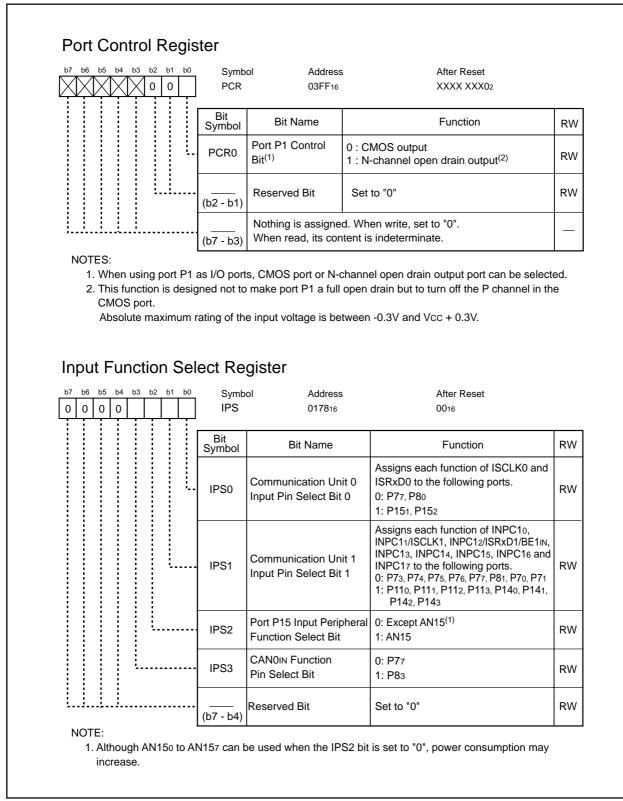
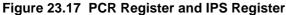



Figure 23.15 PUR0 Register, PUR1 Register and PUR2 Register

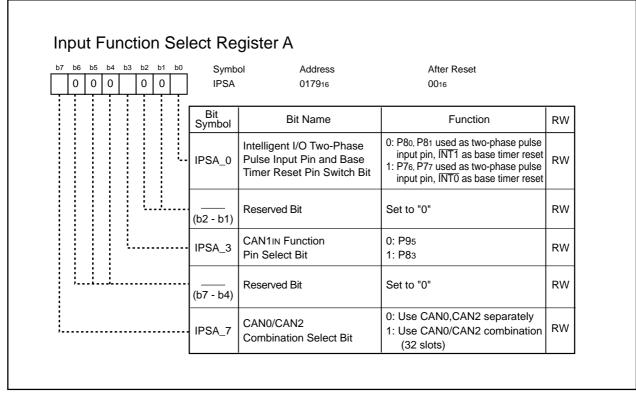


Figure 23.18 IPSA Register

Table 23.1	Unassigned Pi	n Settings in	Single-Chip Mode
------------	---------------	---------------	------------------

Pin Name	Setting
P0 to P15	Enter input mode and connect each pin to Vss via a resistor (pull-down);
(excluding P85) ^(1,2,3.4,6)	or enter output mode and leave the pins open
Xout ⁽⁵⁾	Leave pin open
NMI(P85)	Connect pin to Vcc via a resistor (pull-up)
AVcc	Connect pin to Vcc
AVSS, VREF, BYTE	Connect pins to Vss

NOTES:

- 1. Ports P11 to P15 are provided in the 144-pin package only.
- 2. If the port enters output mode and is left open, it is in input mode before output mode is entered by program after reset. While the port is in input mode, voltage level on the pins is indeterminate and power consumption may increase.

Direction register settings may be changed by noise or failure caused by noise. Configure direction register settings regulary to increase the reliability of the program.

- 3. Use the shortest possible wiring to connect the microcomputer pins to unassigned pins (within 2 cm).
- 4. Ports P70 and P71 must output low-level ("L") signals if they are in output mode. They are ports for the N-channel open drain output.
- 5. When the external clock is applied to the XIN pin, set the pin as written above.
- 6. In the 100-pin package, set "FF16" in the following addresses, in addition to the above settings: Addresses 0003CB16, 0003CE16, 0003CF16, 0003D216, 0003D316

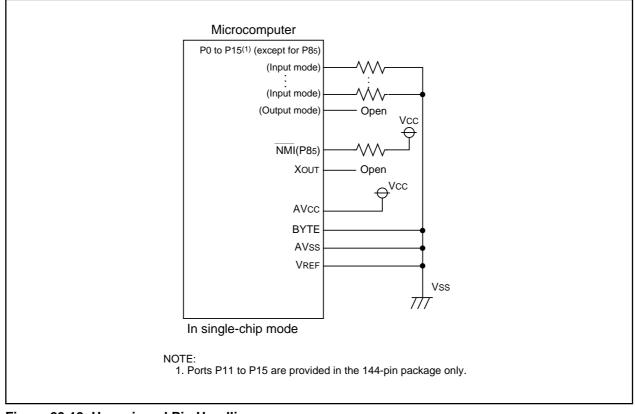


Figure 23.19 Unassigned Pin Handling

Table 23.2 Port P6 Peripheral Function Output Control

•	
PS0 Register	PSL0 Register
0: P60/CTS0/SS0	0: RTS0
1: Selected by the PSL0 register	1: CAN2out
0: P61/CLK0(input)/CAN2IN/CAN2WU	Set to "0"
1: CLK0(output)	
0: P62/RxD0/SCL0(input)	0: SCL0(output)
1: Selected by the PSL0 register	1: STxD0
0: P63/SRxD0/SDA0(input)	Set to "0"
1: TxD0/SDA0 (output)	
0: P64/CTS1/SS1	0: RTS1
1: Selected by the PSL0 register	1: Do not set this value
0: P65/CLK1(input)	Set to "0"
1: CLK1(output)	
0: P66/RxD1/SCL1(input)	0: SCL1(output)
1: Selected by the PSL0 register	1: STxD1
0: P67/SRxD1/SDA1(input)	Set to "0"
1: TxD1/SDA1(output)	
	0: P60/CTS0/SS0 1: Selected by the PSL0 register 0: P61/CLK0(input)/CAN2IN/CAN2WU 1: CLK0(output) 0: P62/RxD0/SCL0(input) 1: Selected by the PSL0 register 0: P63/SRxD0/SDA0(input) 1: TxD0/SDA0 (output) 0: P64/CTS1/SS1 1: Selected by the PSL0 register 0: P65/CLK1(input) 1: CLK1(output) 0: P66/RxD1/SCL1(input) 1: Selected by the PSL0 register 0: P67/SRxD1/SDA1(input)

Table 23.3 Port P7 Peripheral Function Output Control

	PS1 Register	PSL1 Register	PSC Register ⁽¹⁾	PSD1 Register
Bit 0	0: P70/TA0OUT(input)/SRxD2 INPC16/SDA2 (input)	0: Selected by the PSC register	0: TxD2/SDA2(output)	0: Do not set to this value
	1: Selected by the PSL1 register	1: TA0o∪⊤(output)	1: Selected by the PSD1 register	1: OUTC16
Bit 1	0: P71/TB5IN/TA0IN/RxD2/ INPC17/SCL2 (input)	0: Selected by the PSC register	0: SCL2(output)	0: Do not set to this value
	1: Selected by the PSL1 register	1: STxD2	1: Selected by the PSD1 register	1: OUTC17
Bit 2	0: P72/TA1out(input)/ CLK2(input)	0: Selected by the PSC register	0: CLK2(output)	Set to "0"
	1: Selected by the PSL1 register	1: TA1out(output)	1: V	
Bit 3	0: P73/TA1IN/CTS2/SS2/ INPC10	0: Selected by the PSC register	0: RTS2	Set to "0"
	1: Selected by the PSL1 register	1: V	1: OUTC10/ISTxD1/BE10UT	
Bit 4	0: P74/INPC11/ISCLK1(input)/ TA20UT(input)	0: Selected by the PSC register	0: TA2out(output)	Set to "0"
	1: Selected by the PSL1 register	1: W	1: OUTC11/ISCLK1(output)	
Bit 5	0: P75/TA2IN/INPC12/ ISRxD1/BE1IN	0: ₩	Set to "0"	Set to "0"
	1: Selected by the PSL1 register	1: OUTC12		
Bit 6	0: P76/INPC13/TA3OUT(input) 1: Selected by the PSL1 register		0: Selected by the PSD1 register 1: CAN00∪⊤	0: ISTxD0 1: OUTC13
Bit 7	0: P77/TA3IN/CAN0IN/ ISCLK0(input)/INPC14	0: ISCLK0(output)	0: P104 to P107 or KI0 to KI3	Set to "0"
	1: Selected by the PSL1 register	1: OUTC14	1: AN4 to AN7 (No relation to P77)	

NOTE:

1. When setting the PSL1_i bit (i=0 to 4, 6) to "1", set the corresponding PSC_i bit to "0".

Table 23.4 Port P8 Peripheral Function Output Control

	PS2 Register	PSL2 Register	PSC2 Register
Bit 0	0: P80/ISRxD0/TA40UT(input)	0: TA4out(output)	Set to "0"
	1: Selected by the PSL2 register	1: U	
Bit 1	0: P81/TA4IN/INPC15	0: U	0: Do not set to this value
	1: Selected by the PSL2 register	1: Selected by the PSC2 register	1: OUTC15
Bit 2	0: P82/INT0	0: Do not set to this value	0: CAN0out
	1: Selected by the PSL2 register	1: Selected by the PSC2 register	1: CAN1out
Bit 3 to 7	Set to "000002"		

Table 23.5 Port P9 Peripheral Function Output Control

	PS3 Register	PSL3 Register	PSC3 Register
Bit 0	0: P90/TB0IN/CLK3(input) 1: CLK3(output)	Set to "0"	Set to "0"
Bit 1	0: P91/TB1IN/RxD3/SCL3(input) 1: Selected by the PSL3 register	0: SCL3(output) 1: STxD3	Set to "0"
Bit 2	0: P92/TB2IN/SRxD3/SDA3(input) 1: Selected by the PSL3 register	0: TxD3/SDA3(output) 1: Do not set to this value	Set to "0"
Bit 3	0: P93/TB3IN/CTS3/SS3/DA0(output) 1: RTS3	0: Except DA0 1: DA0	Set to "0"
Bit 4	0: P94/TB4ɪN/CTS4/SS4/DA1(output) 1: RTS4	0: Except DA1 1: DA1	Set to "0"
Bit 5	0: P95/ANEX0/CLK4(input)/CAN1IN/ CAN1WU 1: CLK4(output)	0: Except ANEX0 1: ANEX0	Set to "0"
Bit 6	0: P96/SRxD4/ANEX1/SDA4(input) 1: Selected by the PSC3 register	0: Except ANEX1 1: ANEX1	0: TxD4/SDA4 1: CAN1out
Bit 7	0: P97/RxD4/ADTRG/SCL4(input) 1: Selected by the PSL3 register	0: SCL4(output) 1: STxD4	Set to "0"

Table 23.6 Port P10 Peripheral Function Output Control

	PSC Register
Bit [·]	7 0: P104 to P107 or KI0 to KI3
	1: AN4 to AN7

Table 23.7 Port P11 Peripheral Function Output Control

	PS5 Register		
Bit 0	0: P110/INPC10		
	1: OUTC10/ISTxD1/BE1OUT		
Bit 1	0: P111/INPC11/ISCLK1(input)		
	1: OUTC11/ISCLK1(output)		
Bit 2	0: P112/INPC12/ISRxD1/BE1IN		
	1: OUTC12		
Bit 3	0: P113/INPC13		
	1: OUTC13		
Bit 4 to 7	7 Set to "00002"		

Table 23.8 Port P14 Peripheral Function Output Control

	PS8 Register
Bit 0	0: P140/INPC14
	1: OUTC14
Bit 1	0: P141/INPC15
	1: OUTC15
Bit 2	0: P142/INPC16
	1: OUTC16
Bit 3	0: P143/INPC17
	1: OUTC17
Bit 4 to 7	Set to "00002"

Table 23.9 Port P15 Peripheral Function Output Control

	PS9 Register	
Bit 0	0: P150/AN150	
	1: ISTxD0	
Bit 1	0: P151/AN151/ISCLK0(input)	
	1: ISCLK0(output)	
Bit 2 to 7	Set to "0000002"	

24. Flash Memory Version

Aside from the built-in flash memory, the flash memory version microcomputer has the same functions as the masked ROM version.

In the flash memory version, rewrite operation to the flash memory can be performed in three modes: CPU rewrite mode, standard serial I/O mode and parallel I/O mode.

Table 24.1 lists specifications of the flash memory version. See **Tables 1.1 and 1.2** for the items not listed in Table 24.1.

Item		Specification	
Flash Memory Operating Mode		3 modes (CPU rewrite, standard serial I/O, parallel I/O)	
Erase Block User ROM Area		See Figure 24.1	
	Boot ROM Area	1 block (4 Kbytes) ⁽¹⁾	
Program Method		Per word (16 bytes), per byte (8 bits) ⁽²⁾	
Erase Method		All block erase, erase per block	
Program and Erase Control Method		Software commands control programming and erasing on the flash memory	
Protect Method		The lock bit protects each block in the flash memory	
Number of Commands		8 commands	
Program and Erase Endurance		100 times ⁽³⁾	
Data Retention		10 years	
ROM Code Protection		Standard serial I/O mode and parallel I/O mode supported	
NOTES:			

Table 24.1 Flash Memory Version Specifications

NOTES:

- 1. The rewrite control program for standard serial I/O mode is stored in the boot ROM area before shipment. This space can be rewritten in parallel I/O mode only.
- 2. Programming per byte is available in parallel I/O mode only.
- 3. Program and erase endurance refers to the number of times a block erase can be performed. Every block erase performed after writing data of one word or more counts as one program and erase operation.

Flash Memory Rewrite Mode CPU Rewrite Mode		Standard Serial I/O Mode	Parallel I/O Mode	
Function	Software command execution by CPU rewrites the user ROM area. EW mode 0: Rewritable in areas other than flash memory EW mode 1: Rewritable in flash memory	A dedicated serial programmer rewrites the user ROM area. Standard serial I/O mode 1: Clock synchronous serial I/O Standard serial I/O mode 2: UART Standard serial I/O mode 3: CAN	A dedicated parallel programmer rewrites the boot ROM area and user ROM area.	
Rewritable Space	User ROM area	User ROM area	User ROM area Boot ROM area	
Operating Mode Single-chip mode Memory expansion mode (EW mode 0) Boot mode (EW mode 0)		Boot mode	Parallel I/O mode	
Programmer None		Serial programmer	Parallel programmer	

24.1 Memory Map

The flash memory includes the user ROM area and the boot ROM area. The user ROM area has space to store the microcomputer operating programs in single-chip mode and a separate 4-kbyte space as the block A. Figure 24.1 shows a block diagram of the flash memory.

The user ROM area is divided into several blocks, each of which can be protected (locked) from program or erase. The user ROM area can be rewritten in CPU rewrite mode, standard serial I/O mode and parallel I/O mode.

The boot ROM area is located at the same addresses as the user ROM area. It can only be rewritten in parallel I/O mode. A program in the boot ROM area is executed after a hardware reset occurs while a high-level ("H") signal is applied to the CNVss and P50 pins and a low-level ("L") signal is applied to the P55 pin. A program in the user ROM area is executed after a hardware reset occurs while an "L" signal is applied to the CNVss pin. Consequently, the boot ROM area cannot be read.

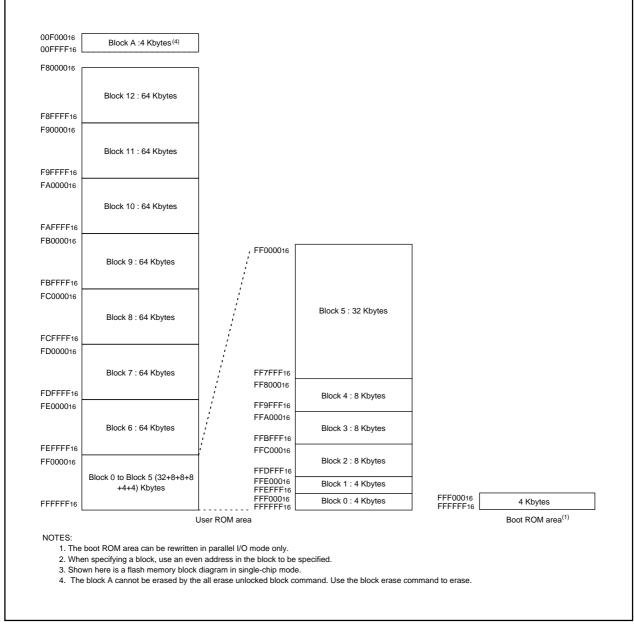


Figure 24.1 Flash Memory Block Diagram

24.1.1 Boot Mode

The microcomputer enters boot mode when a hardware reset is performed while a high-level ("H") signal is applied to the CNVss and P50 pins and a low-level ("L") signal is applied to the P55 pin. A program in the boot ROM area is executed.

In boot mode, the FMR05 bit in the FMR0 register selects access to either the boot ROM area or the user ROM area.

In the factory setting, the rewrite control program for standard serial I/O mode is stored into the boot ROM area.

The boot ROM area can be rewritten in parallel I/O mode only. If any rewrite control program using erasewrite mode 0 (EW mode 0) is written in the boot ROM area, the flash memory can be rewritten according to the system implemented.

24.2 Functions to Prevent Rewriting of Flash Memory

The flash memory has the ROM code protect function for parallel I/O mode and the ID code verify function for standard I/O mode to prevent the flash memory from reading or rewriting.

24.2.1 ROM Code Protect Function

The ROM code protect function prevents the flash memory from reading and rewriting in parallel I/O mode.

Figure 24.2 shows the ROMCP register. The ROMCP register is located in the user ROM area. The ROM code protect function is enabled when the ROMCP1 bit is set to "002", "012" or "102".

24.2.2 ID Code Verify Function

Use the ID code verify function in standard serial I/O mode. The ID code sent from the serial programmer is compared with the ID code written in the flash memory for a match. If the ID codes do not match, commands sent from the serial programmer are not accepted. However, if the four bytes of the reset vector are "FFFFFFF16", ID codes are not compared, allowing all commands to be accepted.

The ID codes are 7-byte data stored consecutively, starting with the first byte, into addresses 0FFFDF16, 0FFFFE316, 0FFFFEB16, 0FFFFEF16, 0FFFFF316, 0FFFFF716 and 0FFFFFB16. The flash memory must have a program with the ID codes set in these addresses.

b7 b6 b5 b4 b3 b2 b1 b0 1 1 1 1 1 1 1 1 1 1 1	Symbol ROMO		Factory Setting FF16 ⁽⁴⁾	
	Bit Symbol	Bit Name	Function	RW
	(b5 - b0)	Reserved Bit	Set to "1"	RW
	ROMCP1	ROM Code Protect Level 1 Set Bit ^(1, 2, 3)	 b7 b6 0 0: ROM code protection active 0 1: ROM code protection active 1 0: ROM code protection active 1 1: ROM code protection inactive 	RW

- If the bit 5 to bit 0 are set to values other than "1111112", the ROM code protection may not become active by setting the ROMCP1 bit to a value other than "112".
- 3. To make the ROM code protection inactive, erase a block including the ROMCP address in standard serial I/O mode or CPU rewrite mode.
- 4. The ROMCP address is set to "FF16" when a block, including the ROMCP address, is erased.
- 5. When a value of the ROMCP address is "0016" or "FF16", the ROM code protect function is disabled.

Figure 24.2 ROMCP Address

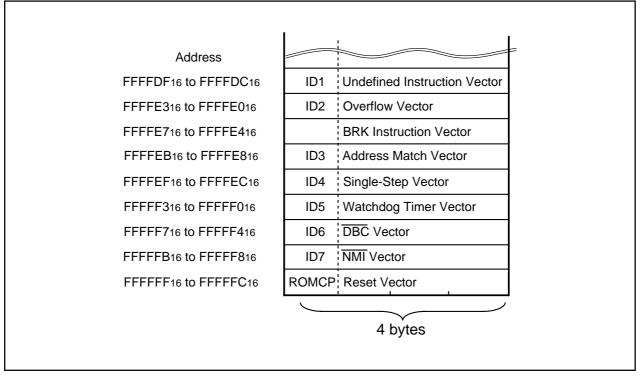


Figure 24.3 Address for ID Code Stored

24.3 CPU Rewrite Mode

In CPU rewrite mode, the user ROM area can be rewritten when the CPU executes software commands. The user ROM area can be rewritten with the microcomputer mounted on a board without using a parallel or serial programmer.

In CPU rewrite mode, only the user ROM area shown in Figure 24.1 can be rewritten. The boot ROM area cannot be rewritten. The program and block erase commands are executed only for each block in the user ROM area.

Erase-write (EW) mode 0 and erase-write mode 1 are provided as CPU rewrite mode. Table 24.3 lists differences between EW mode 0 and EW mode 1.

Item	EW mode 0	EW mode 1	
Operating Mode	Single-chip modeBoot mode	Single-chip mode	
Space where the rewrite control program can be placed	User ROM areaBoot ROM area	User ROM area	
Space where the rewrite control program can be executed	The rewrite control program must be transferred to any space other than the flash memory (e.g.,RAM) before being executed	The rewrite control program can be executed in the user ROM area	
Space which can be rewritten	User ROM area	User ROM area However, this excludes blocks with the rewrite control program	
Software Command Restriction	None	 Program and block erase commands cannot be executed in a block having the rewrite control program. Erase all unlocked block command cannot be executed when the lock bit in a block having the rewrite control program is set to "1"(unlocked) or when the FMR02 bit in the FMR0 register is set to "1"(lock bit disabled). Read status register command cannot be used. 	
Mode after Programming or Erasing	Read status register mode	Read array mode	
CPU State during Auto Program and Erase Operation	Operating	In a hold state (I/O ports maintains the state before the command was executed) ⁽¹⁾	
Flash Memory State Detection	 Read the FMR00, FMR06 and FMR07 bits in the FMR0 register by program Execute the read status register command to read the SR7, SR5 and SR4 bits in the SRD register 	Read the FMR00, FMR06 and FMR07 bits in the FMR0 register by program	

Table 24.3 EW Mode 0 and EW Mode 1

NOTE:

1. Do not generate an interrupt (except NMI interrupt) or a DMA transfer.

24.3.1 EW Mode 0

The microcomputer enters CPU rewrite mode by setting the FMR01 bit in the FMR0 register to "1" (CPU rewrite mode enabled) and is ready to accept commands. EW mode 0 is selected by setting the FMR11 bit in the FMR1 register to "0". To set the FMR01 bit to "1", set to "1" after first writing "0".

The software commands control programming and erasing. The FMR0 register or the SRD register indicates whether a program or erase operation is completed as expected or not.

24.3.2 EW Mode 1

EW mode 1 is selected by setting the FMR11 bit to "1" after the FMR01 bit is set to "1". (Both bits must be set to "0" first before setting to "1".)

The FMR0 register indicates whether or not a program or erase operation has been completed as expected. The SRD register cannot be read in EW mode 1.

24.3.3 Flash Memory Control Register (FMR0 Register and FMR1 Register)

	b3 b2 b1 b0	Symb	ol Addre	ss After Reset	
		FMRC	0 00571	6 0000 00012	
		Bit Symbol	Bit Name	Function	RV
		FMR00	RY/BY Status Flag	0: BUSY (programming or erasing) ⁽⁶⁾ 1: READY	RC
		FMR01	CPU Rewrite Mode Select Bit ^(1, 7)	0: Disables CPU rewrite mode 1: Enables CPU rewrite mode	RV
		FMR02	Lock Bit Disable Select Bit ⁽²⁾	0: Enables lock bit 1: Disables lock bit	RV
		FMSTP	Flash Memory Stop Bit ^(3, 5)	0: Starts the flash memory 1: Stops the flash memory (Enters low power consumption state and flash memory is reset)	R٧
		(b4)	Reserved Bit	Set to "0"	R٧
L		FMR05	User ROM Area Select Bit ⁽³⁾ (Available in boot mode only)	0: Boot ROM area is accessed 1: User ROM area is accessed	RV
		FMR06	Program Status Flag ⁽⁴⁾	0: Successfully completed 1: Terminated by error	RC
		FMR07	Erase Status Flag ⁽⁴⁾	0: Successfully completed 1: Terminated by error	RC
memo 2. Set the "1". D to "1". 3. Set the	ry in EW mode e FMR02 bit to o not generate e FMSTP and F MR07 and FMR P bit setting is e MSTP bit can be	0. '1" in 8-bit an interrup MR05 bits 06 bits is s enabled wh e set to "1" on state no	unit immediately after sett t or a DMA transfer betwe by program in a space ot tet to "0" by executing the en the FMR01 bit is set to when the FMR01 bit is set r is reset.	program in a space other than the flash ing it first to "0" while the FMR01 bit is en setting the FMR02 bit to "0" and set her than the flash memory. clear status command. "1" (CPU rewrite mode enabled). et to "0", but the flash memory does not and and read lock bit status command a	set t ting ente
5. FMST The Fl low-po 6. Write a include 7. To ch first to "0" and To ch	ed. ange a FMR01 "0" in 8-bit unit. d setting it to "1' ange a FMR01	bit setting Do not ge bit setting	nerate an interrupt or a DI	MR01 bit to "1" immediately after settir MA transfer between setting the FMR0 and array mode to write to addresses 00	l bit

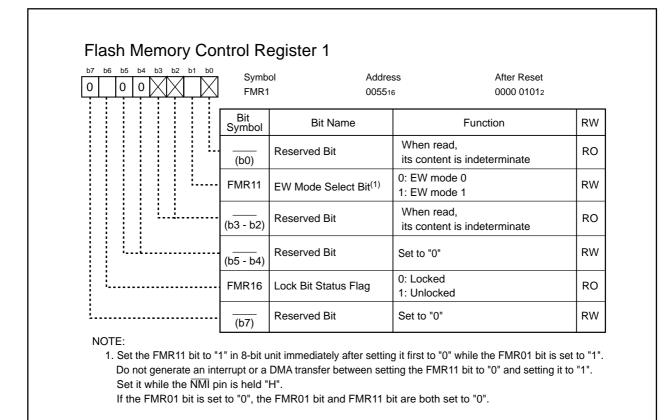


Figure 24.5 FMR1 Register

24.3.3.1 FMR00 Bit

The FMR00 bit indicates the flash memory operating state. It is set to "0" while the program, block erase, erase all unlocked block, lock bit program, or read lock bit status command is being executed; otherwise, it is set to "1".

24.3.3.2 FMR01 Bit

The microcomputer can accept commands when the FMR01 bit is set to "1" (CPU rewrite mode). Set the FMR05 bit to "1" (user ROM area access) as well if in boot mode.

24.3.3.3 FMR02 Bit

The lock bit is invalid by setting the FMR02 bit to "1" (lock bit disabled). (Refer to **24.3.6 Data Protect Function**.) The lock bit is valid by setting the FMR02 bit to "0" (lock bit enabled).

The FMR02 bit does not change the lock bit status but disables the lock bit function. If the block erase or erase all unlocked block command is executed when the FMR02 bit is set to "1", the lock bit status changes "0" (locked) to "1" (unlocked) after command execution is completed.

24.3.3.4 FMSTP Bit

The FMSTP bit initializes the flash memory control circuits and minimizes power consumption in the flash memory. Access to the flash memory is disabled when the FMSTP bit is set to "1". Set the FMSTP bit by program in a space other than the flash memory.

Set the FMSTP bit to "1" if one of the followings occurs:

- A flash memory access error occurs while erasing or programming in EW mode 0 (FMR00 bit does not switch back to "1" (ready)).
- Low-power consumption mode or on-chip low-power consumption mode is entered.

Use the following the procedure to change the FMSTP bit setting.

- (1) Set the FMSTP bit to "1"
- (2) Set tps (the wait time to stabilize flash memory circuit)
- (3) Set the FMSTP bit to "0"
- (4) Set tps (the wait time to stabilize flash memory circuit)

Figure 24.8 shows a flow chart illustrating how to start and stop the flash memory before and after entering low power mode. Follow the procedure on this flow chart.

When entering stop or wait mode, the flash memory is automatically turned off. When exiting stop or wait mode, the flash memory is turned back on. The FMR0 register does not need to be set.

24.3.3.5 FMR05 Bit

The FMR05 bit selects the boot ROM or user ROM area in boot mode. Set to "0" to access (read) the boot ROM area or to "1" (user ROM access) to access (read, write or erase) the user ROM area.

24.3.3.6 FMR06 Bit

The FMR06 bit is a read-only bit indicating an auto program operation state. The FMR06 bit is set to "1" when a program error occurs; otherwise, it is set to "0". Refer to **24.3.8 Full Status Check**.

24.3.3.7 FMR07 Bit

The FM07 bit is a read-only bit indicating the auto erase operation state. The FMR07 bit is set to "1" when an erase error occurs; otherwise, it is set to "0". For details, refer to **24.3.8 Full Status Check**.

Figure 24.6 shows how to enter and exit EW mode 0. Figure 24.7 shows how to enter and exit EW mode 1.

24.3.3.8 FMR11 Bit

EW mode 0 is entered by setting the FMR11 bit to "0" (EW mode 0). EW mode 1 is entered by setting the FMR11 bit to "1" (EW mode 1).

24.3.3.9 FMR16 Bit

The FMR16 bit is a read-only bit indicating the execution result of the read lock bit status command. When the block, where the read lock bit status command is executed, is locked, the FMR16 bit is set to "0". When the block, where the read lock bit status command is executed, is unlocked, the FMR16 bit is set to "1".

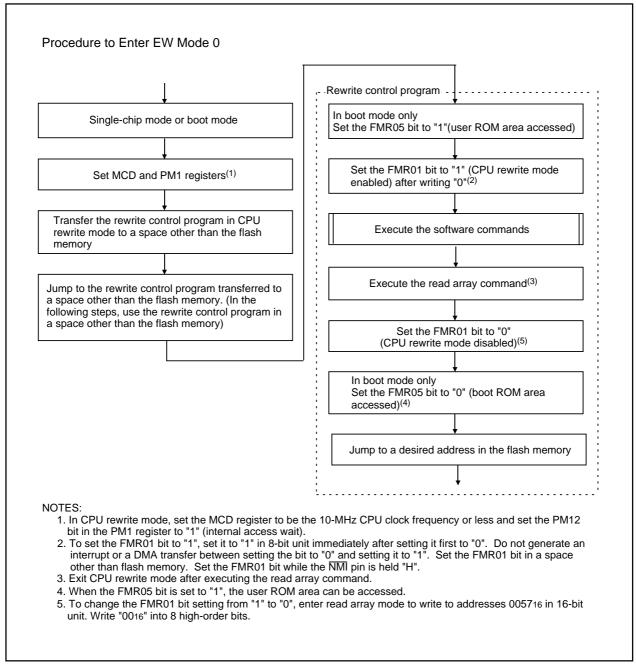


Figure 24.6 How to Enter and Exit EW Mode 0

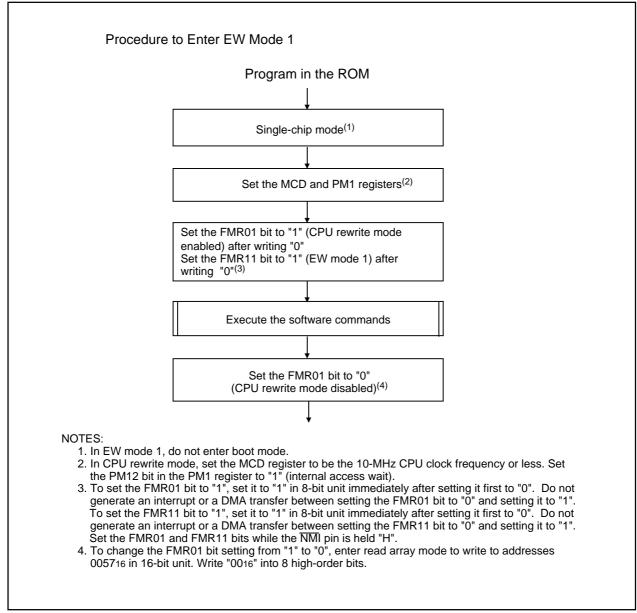


Figure 24.7 How to Enter and Exit EW Mode 1

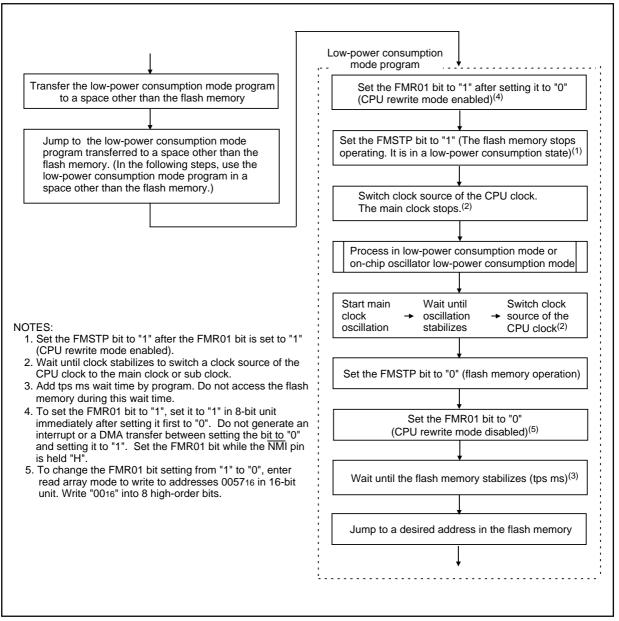


Figure 24.8 Handling Before and After Low Power Consumption Mode

24.3.4 Precautions in CPU Rewrite Mode

24.3.4.1 Operating Speed

Set the MCD4 to MCD0 bits in the MCD register to CPU clock frequency of 10 MHz or less before entering CPU rewrite mode (EW mode 0 or EW mode 1). Also, set the PM12 bit in the PM1 register to "1" (wait state).

24.3.4.2 Prohibited Instructions

The following instructions cannot be used in EW mode 0 because the CPU tries to read data in the flash memory: the UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction.

24.3.4.3 Interrupts (EW Mode 0)

- To use interrupts having vectors in a relocatable vector table, the vectors must be relocated to the RAM area.
- The NMI and watchdog timer interrupts are available since the FMR0 and FMR1 registers are forcibly reset when either interrupt occurs. Allocate the forward addresses for each interrupt routine to the fixed vector table. Flash memory rewrite operation is aborted when the NMI or watchdog timer interrupt occurs. Execute the rewrite program again after exiting the interrupt routine.
- The address match interrupt is not available since the CPU tries to read data in the flash memory.

24.3.4.4 Interrupts (EW Mode 1)

- Do not acknowledge any interrupts with vectors in the relocatable vector table or address match interrupt during the auto program or auto erase period.
- Do not use the watchdog timer interrupt.
- The NMI interrupt is available since the FMR0 and FMR1 registers are forcibly reset when either interrupt occurs. Allocate the forward address for the interrupt routine to the fixed vector table. Flash memory rewrite operation is aborted when the NMI interrupt occurs. Execute the rewrite program again after exiting the interrupt routine.

24.3.4.5 How to Access

To set the FMR01, FMR02 in the FMR0 register or FMR11 bit in the FMR1 register to "1", set to "1" in 8-bit units immediately after setting to "0". Do not generate an interrupt or a DMA transfer between the instruction to set the bit to "0" and the instruction to set the bit to "1". Set the bit while a high-level ("H") signal is applied to the $\overline{\rm NMI}$ pin.

To change the FMR01 bit from "1" to "0", enter read array mode first, and write into address 005716 in 16-bit units. Eight high-order bits must be set to "0016".

24.3.4.6 Rewriting in the User ROM Area (EW Mode 0)

If the supply voltage drops while rewriting the block where the rewrite control program is stored, the flash memory cannot be rewritten because the rewrite control program is not rewritten as expected. If this error occurs, rewrite the user ROM area while in standard serial I/O mode or parallel I/O mode.

24.3.4.7 Rewriting in the User ROM Area (EW Mode 1)

Do not rewrite the block where the rewrite control program is stored.

24.3.4.8 DMA Transfer

In EW mode 1, do not generate a DMA transfer while the FMR00 bit in the FMR0 register is set to "0" (busy-programming or erasing).

24.2.4.9 Writing Command and Data

Write commands and data to even addresses in the user ROM area.

24.3.4.10 Wait Mode

When entering wait mode, set the FMR01 bit in the FMR0 register to "0" (CPU rewrite mode disabled) before executing the WAIT instruction.

24.3.4.11 Stop Mode

When entering stop mode, the following settings are required:

- Set the FMR01 bit to "0" (CPU rewrite mode disabled). Disable a DMA transfer before setting the CM10 bit to "1" (stop mode).
- Execute the instruction to set the CM10 bit to "1" (stop mode) and then the JMP.B instruction.

e.g.,

BSET 0, CM1 ; Stop mode JMP.B L1

L1:

Program after exiting stop mode

24.3.4.12 Low-Power Consumption Mode and On-Chip Oscillator Low-Power Consumption Mode

If the CM05 bit is set to "1" (main clock stopped), do not execute the following commands:

- Program
- Block erase
- Erase all unlocked blocks
- Lock bit program
- Read lock bit status

24.3.5 Software Commands

Read or write 16-bit commands and data from or to even addresses in the user ROM area, in 16-bit units. When writing a command code, 8 high-order bits (D15 to D8) are ignored.

		First Bus Cyc	le	Second Bus Cycle			
Command	Mode	Address	Data (D15 to D0)	Mode	Address	Data (D15 to D0)	
Read Array	Write	Х	xxFF16				
Read Status Register	Write	Х	xx70 16	Read	Х	SRD	
Clear Status Register	Write	Х	xx5016				
Program	Write	WA	xx4016	Write	WA	WD	
Block Erase	Write	Х	xx2016	Write	BA	xxD016	
Erase All Unlocked Block ⁽¹⁾	Write	Х	xxA716	Write	Х	xxD016	
Lock Bit Program	Write	BA	xx77 16	Write	BA	xxD016	
Read Lock Bit Status	Write	Х	xx7116	Write	BA	xxD016	

NOTE:

1. Blocks 0 to 12 can be erased by the erase all unlocked block command.

Block A cannot be erased. The block erase command must be used to erase the block A.

SRD: Data in the SRD register (D7 to D0)

WA: Address to be written (The address specified in the the first bus cycle is the same even address as the address specified in the second bus cycle.)

WD: 16-bit write data

BA: Highest-order block address (must be an even address)

X: Any even address in the user ROM space

xx: 8 high-order bits of command code (ignored)

24.3.5.1 Read Array Command

The read array command reads the flash memory.

Read array mode is entered by writing command code "xxFF16" in the first bus cycle. Content of a specified address can be read in 16-bit units after the next bus cycle.

The microcomputer remains in read array mode until another command is written. Therefore, contents from multiple addresses can be read consecutively.

24.3.5.2 Read Status Register Command

The read status register command reads the SRD register (refer to **24.3.7 Status Register** for detail). By writing command code "xx7016" in the first bus cycle, the SRD register can be read in the second bus cycle. Read an even address in the user ROM area.

Do not execute this command in EW mode 1.

24.3.5.3 Clear Status Register Command

The clear status register command clears the SRD register. By writing "xx5016" in the first bus cycle, the FMR07 and FMR06 bits in the FMR0 register are set to "002" and the SR5 and SR4 bits in the SRD register are set to "002".

24.3.5.4 Program Command

The program command writes 1-word, or 2-byte, data to the flash memory.

Auto program operation (data program and verify) will start by writing command code "xx4016" in the first bus cycle and data to the write address in the second bus cycle. The address value specified in the first bus cycle must be the same even address as the write address specified in the second bus cycle.

The FMR00 bit in the FMR0 register indicates whether or not an auto program operation has been completed. The FMR00 bit is set to "0" (busy) during auto program and to "1" (ready) when the auto program operation is completed.

After the completion of auto program operation, the FMR06 bit in the FMR0 register indicates whether or not the auto program operation has been completed as expected. (Refer to **24.3.8 Full Status Check**.)

An address that is already written cannot be altered or rewritten.

Figure 24.9 shows a flow chart of the program command programming.

The lock bit can protect each block from being programmed inadvertently. (Refer to **24.3.6 Data Protect Function**.)

In EW mode 1, do not execute this command on the block where the rewrite control program is allocated. In EW mode 0, the microcomputer enters read status register mode as soon as an auto program operation starts. The SRD register can be read. The SR7 bit in the SRD register is set to "0" at the same time an auto program operation starts. It is set to "1" when an auto program operation is completed. The microcomputer remains in read status register mode until the read array command is written. After completion of an auto program operation, the SRD register indicates whether or not the auto program operation has been completed as expected.

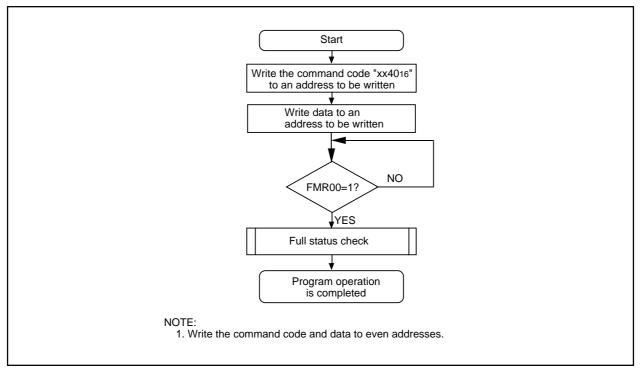


Figure 24.9 Program Command

24.3.5.5 Block Erase Command

The block erase command erases each block.

Auto erase operation (erase and verify) will start in the specified block by writing command code "xx2016" in the first bus cycle and "xxD016" to the highest-order even address of a block in the second bus cycle.

The FMR00 bit in the FMR0 register indicates whether or not an auto erase operation has been completed. The FMR00 bit is set to "0" (busy) during auto erase and to "1" (ready) when the auto erase operation is completed.

After the completion of an auto erase operation, the FMR07 bit in the FMR0 register indicates whether or not the auto erase operation has been completed as expected. (Refer to **24.3.8 Full Status Check**.)

Figure 24.10 shows a flow chart of the block erase command programming.

The lock bit can protect each block from being programmed inadvertently. (Refer to **24.3.6 Data Protect Function**.)

In EW mode 1, do not execute this command on the block where the rewrite control program is allocated. In EW mode 0, the microcomputer enters read status register mode as soon as an auto erase operation starts. The SRD register can be read. The SR7 bit in the SRD register is set to "0" at the same time an auto erase operation starts. It is set to "1" when an auto erase operation is completed. The microcomputer remains in read status register mode until the read array command or read lock bit status command is written.

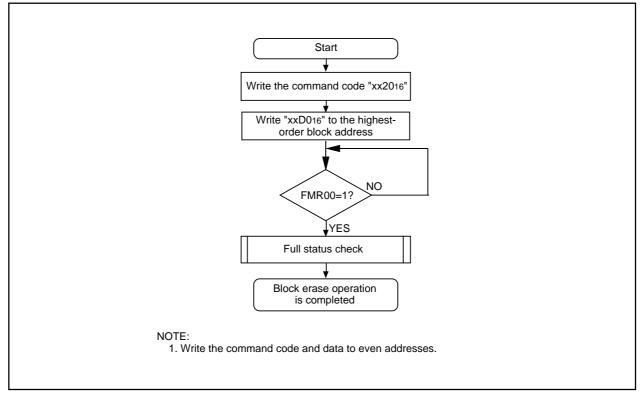


Figure 24.10 Block Erase Command

24.3.5.6 Erase All Unlocked Block Command

The erase all unlocked block command erases all blocks except the block A.

By writing command code "xxA716" in the first bus cycle and "xxD016" in the second bus cycle, auto erase (erase and verify) operation will run continuously in all blocks except the block A.

The FMR00 bit in the FMR0 register indicates whether or not an auto erase operation has been completed.

After the completion of an auto erase operation, the FMR07 bit in the FMR0 register indicates whether or not the auto erase operation has been completed as expected.

The lock bit can protect each block from being programmed inadvertently. (Refer to **24.3.6 Data Protect Function**.)

In EW mode 1, do not execute this command when the lock bit for any block storing the rewrite control program is set to "1" (unlocked) or when the FMR02 bit in the FMR0 register is set to "1" (lock bit disabled).

In EW mode 0, the microcomputer enters read status register mode as soon as an auto erase operation starts. The SRD register can be read. The SR7 bit in the SRD register is set to "0" (busy) at the same time an auto erase operation starts. It is set to "1" (ready) when an auto erase operation is completed. The microcomputer remains in read status register mode until the read array command or read lock bit status command is written.

Only blocks 0 to 12 can be erased by the erase all unlocked block command. The block A cannot be erased. Use the block erase command to erase the block A.

24.3.5.7 Lock Bit Program Command

The lock bit program command sets the lock bit for a specified block to "0" (locked).

By writing command code "xx7716" in the first bus cycle and "xxD016" to the highest-order even address of a block in the second bus cycle, the lock bit for the specified block is set to "0". The address value specified in the first bus cycle must be the same highest-order even address of a block specified in the second bus cycle.

Figure 24.11 shows a flow chart of the lock bit program command programming. Execute read lock bit status command to read lock bit state (lock bit data).

The FMR00 bit in the FMR0 register indicates whether a lock bit program operation is completed.

Refer to **24.3.6 Data Protect Function** for details on lock bit functions and how to set it to "1" (unlocked).

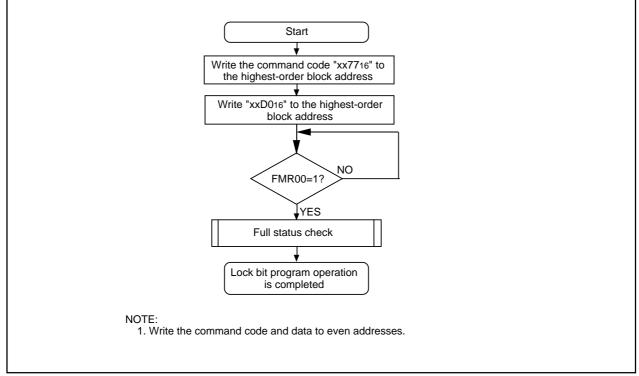


Figure 24.11 Lock Bit Program Command

24.3.5.8 Read Lock Bit Status Command

The read lock bit status command reads the lock bit state (the lock bit data) of a specified block. By writing command code "xx7116" in the first bus cycle and "xxD016" to the highest-order even address of a block in the second bus cycle, the FMR16 bit in the FMR1 register stores information on whether or not the lock bit of a specified block is locked. Read the FMR16 bit after the FMR00 bit in the FMR0 register is set to "1" (ready).

Figure 24.12 shows a flow chart of the read lock bit status command programming.

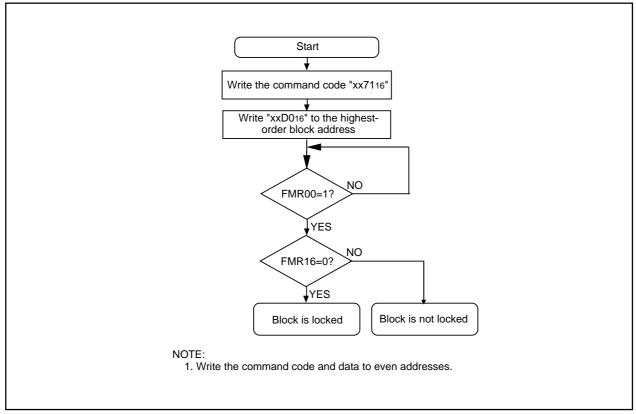


Figure 24.12 Read Lock Bit Status Command

24.3.6 Data Protect Function

Each block in the flash memory has a nonvolatile lock bit. The lock bit is enabled by setting the FMR02 bit to "0" (lock bit enabled). The lock bit individually protects (locks) each block against program and erase. This prevents data from being inadvertently written to or erased from the flash memory.

- When the lock bit status is set to "0", the block is locked (block is protected against program and erase).
- When the lock bit status is set to "1", the block is not locked (block can be programmed or erased).

The lock bit status is set to "0" (locked) by executing the lock bit program command and to "1" (unlocked) by erasing the block. The lock bit status cannot be set to "1" by any commands.

The lock bit status can be read by the read lock bit status command.

The lock bit function is disabled by setting the FMR02 bit to "1". All blocks are unlocked. However, individual lock bit status remains unchanged. The lock bit function is enabled by setting the FMR02 bit to "0". Lock bit status is retained.

If the block erase or erase all unlocked block command is executed while the FMR02 bit is set to "1", the target block or all blocks are erased regardless of lock bit status. The lock bit status of each block are set to "1" after an erase operation is completed.

Refer to 24.3.5 Software Commands for details on each command.

24.3.7 Status Register (SRD Register)

The SRD register indicates the flash memory operating state and whether or not an erase or program operation is completed as expected. The FMR00, FMR06 and FMR07 bits in the FMR0 register indicate SRD register states.

Table 24.5 shows the SRD register.

In EW mode 0, the SRD register can be read when the followings occur.

- Any even address in the user ROM area is read after writing the read status register command
- Any even address in the user ROM area is read from when the program, block erase, erase all unlocked block, or lock bit program command is executed until when the read array command is executed.

24.3.7.1 Sequencer Status (SR7 and FMR00 Bits)

The sequencer status indicates the flash memory operating state. It is set to "0" while the program, block erase, erase all unlocked block, lock bit program, or read lock bit status command is being executed; otherwise, it is set to "1".

24.3.7.2 Erase Status (SR5 and FMR07 Bits)

Refer to 24.3.8 Full Status Check.

24.3.7.3 Program Status (SR4 and FMR06 Bits)

Refer to 24.3.8 Full Status Check.

Bits in SRD	Bits in FMR0	Status	Defir	Value	
register	Register	Name	"0"	"1"	after Reset
SR7 (D7)	FMR00	Sequencer status	BUSY	READY	1
SR6 (D6)	_	Reserved bit	-	-	-
SR5 (D5)	FMR07 ⁽¹⁾	Erase status	Successfully completed	Error	0
SR4 (D4)	FMR06 ⁽¹⁾	Program status	Successfully completed	Error	0
SR3 (D3)		Reserved bit	-	-	-
SR2 (D2)	_	Reserved bit	-	-	-
SR1 (D1)		Reserved bit	-	-	-
SR0 (D0)		Reserved bit	-	-	_

Table 24.5 Status Register

D0 to D7: These data buses are read when the read status register command is executed. NOTE:

1. The FMR07 (SR5) and FMR06 (SR4) bits are set to "0" by executing the clear status register command. When the FMR07 (SR5) or FMR06 (SR4) bit is set to "1", the program, block erase, erase all unlocked block and lock bit program commands are not accepted.

24.3.8 Full Status Check

If an error occurs when a program or erase operation is completed, the FMR07 and FMR06 bits in the FMR0 register are set to "1", indicating a specific error. Therefore, execution results can be confirmed by verifying these bits (full status check).

Table 24.6 lists errors and FMR0 register state. Figure 24.13 shows a flow chart of the full status check and handling procedure for each error.

Table 24.6	Errors and	FMR0	Register	State
------------	------------	------	----------	-------

FMR0 Register (SRD Register)					
s	state	Error	Error Occurrence Conditions		
FMR07					
(SR5)	(SR4)				
1	1	Command	An incorrect command is written		
		sequence error	• A value other than "xxD016" or "xxFF16" is written in the second		
			bus cycle of the lock bit program, block erase or erase all u locked block command ⁽¹⁾		
1	0	Erase error	• The block erase command is executed on a locked block ⁽²⁾		
			• The block erase or erase all unlocked block command is ex-		
			ecuted on an unlock block, but the erase operation is not suc- cessfully completed		
0	0 1 Program error		The program command is executed on locked blocks ⁽²⁾		
0	I	Program error			
			• The program command is executed on an unlocked block, but the		
			program operation is not completed as expected		
			• The lock bit program command is executed but the program op-		
			eration is not successfully completed		

NOTES:

1. The flash memory enters read array mode when command code "xxFF16" is written in the second bus cycle of these commands. The command code written in the first bus cycle is ignored.

2. When the FMR02 bit is set to "1" (lock bit disabled), no error occurs even under the conditions above.

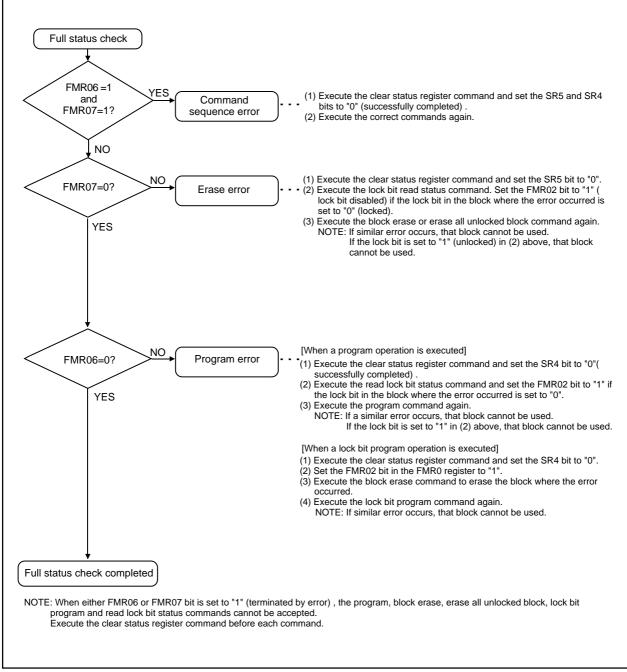


Figure 24.13 Full Status Check and Handling Procedure for Each Error

24.4 Standard Serial I/O Mode

In standard serial I/O mode, the serial programmer supporting the M32C/88 Group (M32C/88T) can be used to rewrite the flash memory user ROM area, while the microcomputer is mounted on a board. For more information about the serial programmer, contact your serial programmer manufacturer. Refer to the user's manual included with your serial programmer for instructions.

Table 24.7 lists pin descriptions (flash memory standard serial I/O mode). Figures 24.14 to 24.16 show pin connections in serial I/O mode.

24.4.1 ID Code Verify Function

The ID code verify function determines whether or not the ID codes sent from the serial programmer matches those written in the flash memory. (Refer to **24.2 Functions to Prevent Rewriting of Flash Memory**.)

Table 24.7 Pin Description (Flash Memory Standard Serial I/O Mode)

Symbol	Function	I/O Type	Description
Vcc	Power supply	Ι	Apply the guaranteed program/erase supply voltage to the Vcc pin.
Vss	input		Apply 0 V to the Vss pin
CNVss	CNVss	I	Connect this pin to Vcc
RESET	Reset input	I	Reset input pin. Apply 20 or more clock cycles to the XIN pin while "L" is
			applied to the RESET pin
Xin	Clock input	1	Connect a ceramic resonator or crystal oscillator between XIN and XOUT
Хоит	Clock output	0	To use the external clock, input the clock from XIN and leave XOUT open
BYTE	BYTE input	I	Connect this pin to Vss or Vcc
AVcc	Analog power	I	Connect AVcc to Vcc
AVss	supply input		Connect AVss to Vss
Vref	Reference	I	Reference voltage input pin for the A/D converter
	voltage input		
P00 to P07	Input port P0	1	Apply "H" or "L" to this pin, or leave open
P10 to P17	Input port P1	I	Apply "H" or "L" to this pin, or leave open
P20 to P27	Input port P2	1	Apply "H" or "L" to this pin, or leave open
P30 to P37	Input port P3	1	Apply "H" or "L" to this pin, or leave open
P40 to P47	Input port P4	I	Apply "H" or "L" to this pin, or leave open
P50	CE input	I	Apply "H" to this pin
P55	EPM input		Apply "L" to this pin
P51 to P54	Input port P5		Apply "H" or "L" to this pin, or leave open
P56, P57			
P60 to P63	Input port P6		Apply "H" or "L" to this pin, or leave open
P64	BUSY output	- <u>-</u>	Standard serial I/O mode 1: BUSY signal output pin
			Standard serial I/O mode 2: Program running verify monitor
			Standard serial I/O mode 3: Leave open
P65	SCLK input		Standard serial I/O mode 1: Serial clock input pin
			Standard serial I/O mode 2, 3: Apply "L" to this pin
P66	RxD		Standard serial I/O mode 1, 2: Serial data input pin
	Data input		Standard serial I/O mode 3: Apply "H" to this pin
P67		- <u>-</u>	Standard serial I/O mode 1, 2: Serial data output pin
	Data output		Standard serial I/O mode 3: Leave open
P70 to P75	Input port P7	1	Apply "H" or "L" to this pin, or leave open
P76	CAN output		Standard serial I/O mode 1, 2: Apply "H" or "L" to this pin, or leave open
			Standard serial I/O mode 3: CAN output pin
P77	CAN input		Standard serial I/O mode 1, 2: Apply "H" or "L" to this pin, or leave open
			Standard serial I/O mode 3: CAN input pin
P80 to P84	Input port P8	1	Apply "H" or "L" to this pin, or leave open
P86, P87			
P85	NMI input		Connect this pin to Vcc
P90 to P97	Input port P9		Apply "H" or "L" to this pin, or leave open
P100 to P107	Input port P10		Apply "H" or "L" to this pin, or leave open
P110 to P114	Input port P11	1	Apply "H" or "L" to this pin, or leave open ⁽¹⁾
P120 to P127	Input port P12	· ·	Apply "H" or "L" to this pin, or leave open ⁽¹⁾
P130 to P137	Input port P13	· ·	Apply "H" or "L" to this pin, or leave open ⁽¹⁾
P140 to P146	Input port P14		Apply "H" or "L" to this pin, or leave open ⁽¹⁾
P150 to P157	Input port P15	· ·	Apply "H" or "L" to this pin, or leave open ⁽¹⁾

NOTE:

1. These pins are provided in the 144-pin package only.

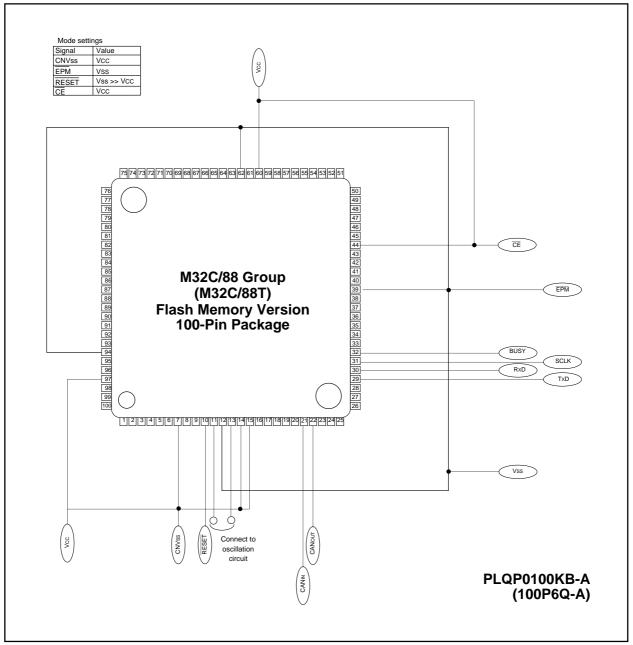


Figure 24.14 Pin Connections in Standard Serial I/O Mode (1)

RENESAS

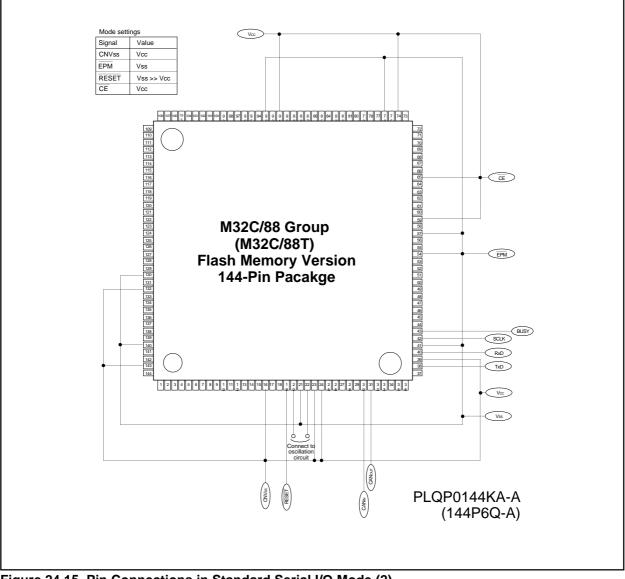


Figure 24.15 Pin Connections in Standard Serial I/O Mode (2)

24.4.2 Circuit Application in Standard Serial I/O Mode

Figure 24.16 shows an example of a circuit application in standard serial I/O mode 1. Figure 24.17 shows an example of a circuit application serial I/O mode 2. Figure 24.18 shows an example of a circuit application serial I/O mode 3. Refer to the user's manual of your serial programmer to handle pins controlled by the serial programmer.

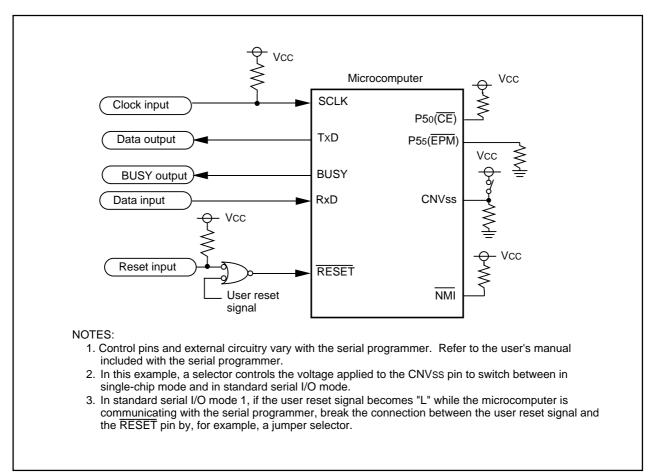


Figure 24.16 Circuit Application in Standard Serial I/O Mode 1

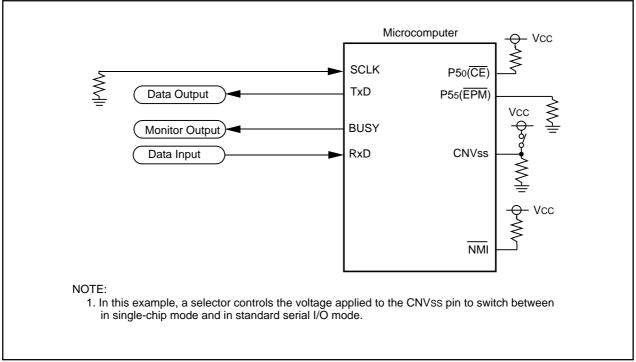


Figure 24.17 Circuit Application in Standard Serial I/O Mode 2

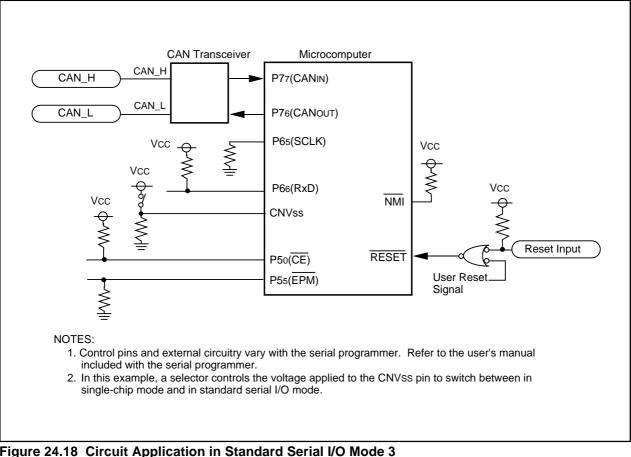


Figure 24.18 Circuit Application in Standard Serial I/O Mode 3

24.5 Parallel I/O Mode

In parallel I/O mode, the user ROM area and the boot ROM area can be rewritten by a parallel programmer supporting the M32C/88 Group (M32C/88T). Contact your parallel programmer manufacturer for more information on the parallel programmer. Refer to the user's manual included with your parallel programmer for instructions.

24.5.1 Boot ROM Area

An erase block operation in the boot ROM area is applied to only one 4-Kbyte block. The rewrite control program in standard serial I/O mode is written in the boot ROM area before shipment. Do not rewrite the boot ROM area if using the serial programmer.

In parallel I/O mode, the boot ROM area is located in addresses FFF00016 to FFFFF16. Rewrite this address range only if rewriting the boot ROM area. (Do not access addresses other than addresses FFF00016 to FFFFF16.)

24.5.2 ROM Code Protect Function

The ROM code protect function prevents the flash memory from being read and rewritten in parallel I/O mode. (Refer to **24.2 Functions to Prevent Rewriting of Flash Memory**.)

25. Electrical Characteristics

Symbol		Parameter		Condition	Value	Unit
Vcc	Supply Voltage			Vcc=AVcc	-0.3 to 6.0	V
AVcc	Analog Supply	Voltage		Vcc=AVcc	-0.3 to 6.0	V
Vi	Input Voltage	RESET, CNVss, BYTE, P00-P	07, P10-P17, P20-		-0.3 to 6.0 -0.3 to 6.0 -0.3 to Vcc+0.3 -0.3 to Vcc+0.3 -0.3 to Vcc+0.3 -0.3 to Vcc+0.3 -0.3 to 6.0 -0.3 to 6.0 2 500 400 -40 to 85 -40 to 105 0 to 60	V
		P27, P30-P37, P40-P47, P50-P5				
		P77, P80-P87, P90-P97, P100-F				
		P120-P127, P130-P137, P140-F	P146, P150-P157 ⁽¹⁾ ,			
		Vref, Xin				
		P70, P71			-0.3 to 6.0	1
Vo	Output Voltage	P00-P07, P10-P17, P20-P27, P3		-0.3 to Vcc+0.3	V	
		P50-P57, P60-P67, P72-P77, P8				
		P90-P97, P100-P107, P110-P11				
		P130-P137, P140-P146, P150-F				
		P70, P71			-0.3 to 6.0	1
Pd	Power Dissipati	on	T version	Topr=25° C	500	mW
			U version		400	1
Topr	Operating	during CPU operation	T version		-40 to 85	°C
	Ambient Temperature		U version		-40 to 105	1
	Temperature	during flash memory program and erase operation			0 to 60	
Tstg	Storage Tempe	rature			-65 to 150	°C

Table 25.1 Absolute Maximum Ratings

1. P11 to P15 are provided in the 144-pin package only.

Table 25.2 Recommended Operating Conditions

(Vcc=4.2 to 5.5V, Vss=0V at Topr = -40 to 85° C (T version)/-40 to 105° C (U version) unless otherwise specified)

Symbol	Parameter			Standard			
Symbol		Falanielei	Min.	Тур.	Max.	Unit	
Vcc	Supply Voltage		4.2	5.0	5.5	V	
AVcc	Analog Supply Vo	Analog Supply Voltage				V	
Vss	Supply Voltage			0		V	
AVss	Analog Supply Vo	Itage		0		V	
ViH	Input High ("H") Voltage	P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60-P67, P72-P77, P80-P87 ⁽³⁾ , P90-P97, P100-P107, P110- P114, P120-P127, P130-P137 ⁽⁴⁾ , P140-P146, P150-P157 ⁽⁴⁾ ,	0.8Vcc		Vcc	V	
		XIN, RESET, CNVss, BYTE P70, P71	0.8Vcc		6.0	-	
VIL	Input Low ("L") Voltage	P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60-P67, P72-P77, P80-P87 ⁽³⁾ , P90-P97, P100-P107, P110- P114, P120-P127, P130-P137 ⁽⁴⁾ , P140-P146, P150-P157 ⁽⁴⁾ , XIN, RESET, CNVss, BYTE	0		0.2Vcc	V	
IOH(peak)	Peak Output High ("H") Current ⁽²⁾	P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60- P67, P72-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110- P114, P120-P127, P130-P137, P140-P146, P150-P157 ⁽⁴⁾			-10.0	mA	
IOH(avg)	Average Output High ("H") Current ⁽¹⁾	P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60- P67, P72-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110- P114, P120-P127, P130-P137, P140-P146, P150-P157 ⁽⁴⁾			-5.0	mA	
IOL(peak)	Peak Output Low ("L") Current ⁽²⁾	P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60- P67, P70-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110- P114, P120-P127, P130-P137, P140-P146, P150-P157 ⁽⁴⁾			10.0	mA	
IOL(avg)	Average Output Low ("L") Current ⁽¹⁾	P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60- P67, P70-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110- P114, P120-P127, P130-P137, P140-P146, P150-P157 ⁽⁴⁾			5.0	mA	

NOTES:

1. Typical values when average output current is 100 ms.

2. Total $I_{OL(peak)}$ for P0, P1, P2, P86, P87, P9, P10, P11, P14 and P15 must be 80 mA or less.

Total IoL(peak) for P3, P4, P5, P6, P7, P80 to P84, P12 and P13 must be 80 mA or less.

Total IOH(peak) for P0, P1, P2, and P11 must be -40mA or less.

Total IOH(peak) for P86, P87, P9, P10, P14 and P15 must be -40 mA or less.

Total IOH(peak) for P3, P4, P5, P12 and P13 must be -40 mA or less.

Total IOH(peak) for P6, P7, and P80 to P84 must be -40 mA or less.

3. VIH and VIL reference for P87 applies when P87 is used as a programmable input port. It does not apply when P87 is used as XcIN.

4. Ports P11 to P15 are provided in the 144-pin package only.

Table 25.3 Recommended Operating Conditions (Continued)(Vcc=4.2 to 5.5V, Vss=0V at Topr = -40 to 85°C (T version)/-40 to 105°C (U version)unless otherwise specified)

Symbol	Parameter			Standar	Max. 32 24 38 50 2 32 32	Unit
Symbol	r alameter		Min.	Тур.		
f(вськ)	CPU Operation Frequency	Vcc=4.2 to 5.5 V	0		32	MHz
f(Xin)	Main Clock Input Frequency	Vcc=4.2 to 5.5 V	0		24	MHz
f(Xcin)	Sub Clock Frequency			32.768	50	kHz
f(Ring)	On-chip Oscillator Frequency (Vcc=5.0V, Topr=25°	C)	0.5	1	2	MHz
f(PLL)	PLL Clock Frequency	Vcc=4.2 to 5.5 V	10		32	MHz
tsu(pll)	Wait Time to Stabilize PLL Frequency Synthesizer	Vcc=5.0 V			5	ms

Table 25.4 Electrical Characteristics

(Vcc=4.2 to 5.5V, Vss=0V at Topr = -40 to 85° C (T version)/-40 to 105° C (U version),
f(BCLK)=32MHz unless otherwise specified)

Symbol		Condition	St	Unit				
		Parameter		Min.	Тур.	Max.		
	Output High ("H") Voltage	P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60-P67, P72-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110-P114, P120-		Іон=-5 mA	Vcc-2.0		Vcc	V
		P127, P130-P137, P140- P00-P07, P10-P17, P20-F P50-P57, P60-P67, P72-F P87, P90-P97, P100-P10	27, P30-P37, P40-P47, 277, P80-P84, P86, 7, P110-P114, P120-	Іон=-200 μА	Vcc-0.3		Vcc	V
		P127, P130-P137, P140- XOUT	P146, P150-P157(')	Іон=-1 mA	3.0			V
		Хсоит	High Power	No load applied	3.0	2.5		V
			Low Power	No load applied		1.6		
Vol	Output Low ("L") Voltage	P00-P07, P10-P17, P20-F P50-P57, P60-P67, P70-F P87, P90-P97, P100-P10 P127, P130-P137, P140-I	P77, P80-P84, P86, 7, P110-P114, P120-	lo∟=5mA			2.0	V
		P00-P07, P10-P17, P20-F P50-P57, P60-P67, P70-F P87, P90-P97, P100-P10 P127, P130-P137, P140-I	P77, P80-P84, P86, 7, P110-P114, P120-	Ιοι=200 μΑ			0.45	V
		Хоит		lo∟=1 mA			2.0	V
		Хсоит	High Power	No load applied		0		V
			Low Power	No load applied		0		
Vt+-Vt-	Hysteresis	HOLD, RDY, TA0IN-TA4 INT0-INT5, ADTRG, CTS TA0out-TA4out, NMI, K SCL0-SCL4, SDA0-SDA	0- <u>CTS</u> 4, CLK0-CLK4, 10-KI3, RxD0-RxD4,		0.2		1.0	V
		RESET			0.2		1.8	V
Ін	Input High ("H") Current	P00-P07, P10-P17, P20-F P50-P57, P60-P67, P70-F P100-P107, P110-P114, I P137, P140-P146, P150-I CNVss, BYTE	P77, P80-P87, P90-P97, P120-P127, P130-	VI=5 V			5.0	μA
lı.	Input Low ("L") Current	P00-P07, P10-P17, P20-F P50-P57, P60-P67, P70-F P100-P107, P110-P114, I P137, P140-P146, P150-I CNVss, BYTE	P77, P80-P87, P90-P97, P120-P127, P130-	Vi=0 V			-5.0	μΑ
Rpullup	Pull-up Resistance	P00-P07, P10-P17, P20-F P50-P57, P60-P67, P72-F P87, P90-P97, P100-P10 P127, P130-P137, P140-	P77, P80-P84, P86, 7, P110-P114, P120-	Vi=0 V	30	50	167	kΩ
Rfxin	Feedback Resistance	XIN		·		1.5		MΩ
Rfxcin	Feedback Resistance	Xcin				10		MΩ
Vram	RAM Standby Voltage	In stop mode			2.0			V

NOTE:

1. Ports P11 to P15 are provided in the 144-pin package only.

VCC=5V

Table 25.4 Electrical Characteristics (Continued) (Vcc=4.2 to 5.5V, Vss=0V at Topr = -40 to 85°C (T version)/-40 to 105°C (U version), f(BCLK)=32MHz unless otherwise specified)

Symbol	Deremeter	Parameter Measurement Condition		Standard			Unit
Symbol	Parameter	ivieasur			Min. Typ.		
lcc	Power Supply Current	In single-chip mode, output pins are left open and other	f(BCLK)=32 MHz, Square wave, No division		28	50	mA
		pins are connected to Vss.	f(BCLK)=32 kHz, In low-power consumption mode, Program running on ROM		430		μA
			f(BCLK)=32 kHz, In low-power consumption mode, Program running on RAM ⁽¹⁾		25		μA
			f(BCLK)=32 kHz, In wait mode, Topr=25° C		10		μA
			While clock stops, Topr=25° C		0.8	5	μA
			While clock stops, Topr=85° C			50	μA
			While clock stops, Topr=105° C			100	μA
			While clock stops, Topr=125° C			200	μA

NOTE:

1. Value is obtained when setting the FMSTP bit in the FMR0 register to "1" (flash memory stopped).

Table 25.5 A/D Conversion Characteristics

(Vcc=4.2 to 5.5V, Vss=0V at Topr = -40 to 85°C (T version)/-40 to 105°C (U version), f(BCLK)=32MHz unless otherwise specified)

Symbol	Parameter	Measu	Measurement Condition		Standard			
Gymbol	i urumotor	Micabl			Тур.	Max.	Unit	
-	Resolution	Vref=Vcc				10	Bits	
			AN0 to AN7, AN00 to AN07, AN20 to AN27,			±3	LSB	
INL	Integral Nonlinearity Error	Vref=Vcc=5V	AN150 to AN157, ANEX0, ANEX1			±0	LSB	
			External op-amp				LSB	
		connection mode			±1	LSB		
DNL	Differential Nonlinearity Error					±1	LSB	
-	Offset Error					±3	LSB	
-	Gain Error					±3	LSB	
Rladder	Resistor Ladder	VREF=VCC		8		40	kΩ	
t CONV	10-bit Conversion Time ^(1, 2)			2.06			μs	
t CONV	8-bit Conversion Time ^(1, 2)			1.75			μs	
t SAMP	Sampling Time ⁽¹⁾			0.188			μs	
Vref	Reference Voltage			2		Vcc	V	
Via	Analog Input Voltage			0		Vref	V	

NOTES:

1. Divide f(XIN), if exceeding 16 MHz, to keep ϕ AD frequency at 16 MHz or less.

2. With using the sample and hold function.

Table 25.6 D/A Conversion Characteristics

(Vcc=4.2 to 5.5V, Vss=0V at Topr = -40 to 85°C (T version)/-40 to 105°C (U version), f(BCLK)=32MHz unless otherwise specified)

Symbol	Parameter	Measurement Condition	Ś	Unit		
			Min.	Тур.	Max.	
-	Resolution				8	Bits
-	Absolute Accuracy				1.0	%
tsu	Setup Time				3	μs
Ro	Output Resistance		4	10	20	kΩ
Ivref	Reference Power Supply Input Current	(Note 1)			1.5	mA

NOTE:

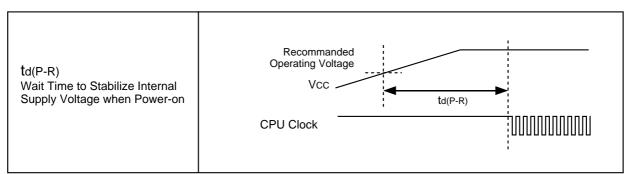
1. Measurement when using one D/A converter. The DAi register (i=0, 1) of the D/A converter, not being used, is set to "0016". The resistor ladder in the A/D converter is excluded.

IVREF flows even if the VCUT bit in the AD0CON1 register is set to "0" (no VREF connection).

Table 25.7 Flash Memory Version Electrical Characteristics (Vcc=4.5 to 5.5V at Topr= 0 to 60°C unless otherwise specified)

Symbol	Parameter			Standard		
Symbol	Faraniete	Min.	Тур.	Max.	– Unit	
-	Program and Erase Endurance ⁽²⁾	gram and Erase Endurance ⁽²⁾				cycles
-	Vord Program Time (Vcc=5.0V, Topr=25° C)			25	200	μs
-	Lock Bit Program Time			25	200	μs
-	Block Erase Time	4-Kbyte Block		0.3	4	s
	(Vcc=5.0V, Topr=25° C)	8-Kbyte Block		0.3	4	S
		32-Kbyte Block		0.5	4	S
	64-Kbyte Block			0.8	4	S
-	All-Unlocked-Block Erase Time ⁽¹⁾				4 x <i>n</i>	s
PS	Wait Time to Stabilize Flash Memory C	Fircuit			15	μs
-	Data Hold Time (Topr=-40 to 85 ° C)		10			years

NOTES:


1. *n* denotes the number of block to be erased.

2. Number of program-erase cycles per block.

If Program and Erase Endurance is n cycle (n=100), each block can be erased and programmed n cycles. For example, if a 4-Kbyte block A is erased after programming a word data 2,048 times, each to a different address, this counts as one program and erase endurance. Data can not be programmed to the same address more than once without erasing the block. (rewrite prohibited).

Table 25.8 Power Supply Timing

Symbol	Parameter	Measurement Condition	5	Unit		
Cymbol			Min.	Тур.	Max.	01
td(P-R)	Wait Time to Stabilize Internal Supply Voltage when Power-on	Vcc=4.2 to 5.5V			2	ms

Figure 25.1	Power	Supply	Timing	Diagram
J				

RENESAS

Timing Requirements

(Vcc=4.2 to 5.5V, Vss=0V at Topr = -40 to 85°C (T version)/-40 to 105°C (U version) unless otherwise specified)

Table 25.9 External Clock Input

Symbol	Parameter		Standard		
Symbol	Falantelei		Max.	Unit	
tc	External Clock Input Cycle Time	31.25		ns	
tw(H)	External Clock Input High ("H") Width	13.75		ns	
tw(L)	External Clock Input Low ("L") Width	13.75		ns	
tr	External Clock Rise Time		5	ns	
tf	External Clock Fall Time		5	ns	

Timing Requirements

(Vcc=4.2 to 5.5V, Vss=0V at Topr = -40 to 85°C (T version)/-40 to 105°C (U version) unless otherwise specified)

Table 25.10 Timer A Input (Count Source Input in Event Counter Mode)

Symbol	Parameter		Standard		
		Min.	n. Max.	Unit	
tc(ta)	TAin Input Cycle Time	100		ns	
tw(tah)	TAiıℕ Input High ("H") Width	40		ns	
tw(TAL)	TAin Input Low ("L") Width	40		ns	

Table 25.11 Timer A Input (Gate Input in Timer Mode)

Symbol	Decomptor		Standard		
	Parameter	Min.		Unit	
tc(ta)	TAin Input Cycle Time	400		ns	
tw(tah)	TAin Input High ("H") Width	200		ns	
tw(tal)	TAin Input Low ("L") Width	200		ns	

Table 25.12 Timer A Input (External Trigger Input in One-Shot Timer Mode)

Symbol	Parameter		Standard		
Symbol	raianielei	Min. Max.	Unit		
tc(ta)	TAin Input Cycle Time	200		ns	
tw(tah)	TAiı∧ Input High ("H") Width	100		ns	
tw(TAL)	TAin Input Low ("L") Width	100		ns	

Table 25.13 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter		Standard		
Symbol	Falameter	Min.	Max.	Unit	
tw(tah)	TAiı∧ Input High ("H") Width	100		ns	
tw(TAL)	TAin Input Low ("L") Width	100		ns	

Table 25.14 Timer A Input (Counter Increment/Decrement Input in Event Counter Mode)

Symbol Paramet	Deromotor		Standard		
	Falameter	Min.	Max.	- Unit	
tC(UP)	TAiout Input Cycle Time	2000		ns	
tw(UPH)	TAiout Input High ("H") Width	1000		ns	
tw(UPL)	TAiout Input Low ("L") Width	1000		ns	
tsu(UP-TIN)	TAiout Input Setup Time	400		ns	
th(TIN-UP)	TAiout Input Hold Time	400		ns	

Timing Requirements

(Vcc=4.2 to 5.5V, Vss=0V at Topr = -40 to 85°C (T version)/-40 to 105°C (U version) unless otherwise specified)

Table 25.15	Timer B Input	(Count Source In	put in Event Counter Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
tC(TB)	TBin Input Cycle Time (counted on one edge)	100		ns
tw(твн)	TBin Input High ("H") Width (counted on one edge)	40		ns
tw(TBL)	TBin Input Low ("L") Width (counted on one edge)	40		ns
tC(TB)	TBin Input Cycle Time (counted on both edges)	200		ns
tw(твн)	TBin Input High ("H") Width (counted on both edges)	80		ns
tw(TBL)	TBin Input Low ("L") Width (counted on both edges)	80		ns

Table 25.16 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	Unit
tc(tb)	TBin Input Cycle Time	400		ns
tw(твн)	TBi⊪ Input High ("H") Width	200		ns
tw(TBL)	TBin Input Low ("L") Width	200		ns

Table 25.17 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Standard		Linit
		Min.	Max.	Unit
tc(tb)	TBin Input Cycle Time	400		ns
tw(твн)	TBi⊪ Input High ("H") Width	200		ns
tw(TBL)	TBin Input Low ("L") Width	200		ns

Table 25.18 A/D Trigger Input

Symbol	Parameter	Standard		Unit
		Min.	Max	
tC(AD)	ADTRG Input Cycle Time (required for trigger)	1000		ns
tw(ADL)	ADTRG Input Low ("L") Pulse Width	125		ns

Table 25.19 Serial I/O

Symbol	Parameter	Standard		Unit
		Min.	Max.	Onit
tC(CK)	CLKi Input Cycle Time	200		ns
tw(скн)	CLKi Input High ("H") Width	100		ns
tw(CKL)	CLKi Input Low ("L") Width	100		ns
td(C-Q)	TxDi Output Delay Time		80	ns
th(C-Q)	TxDi Hold Time	0		ns
tsu(D-C)	RxDi Input Setup Time	30		ns
th(C-Q)	RxDi Input Hold Time	90		ns

Table 25.20 External Interrupt INTi Input

Symbol	Parameter	Standard		Unit
		Min.	Max.	
tw(INH)	INTi Input High ("H") Width	250		ns
tw(INL)	INTi Input Low ("L") Width	250		ns

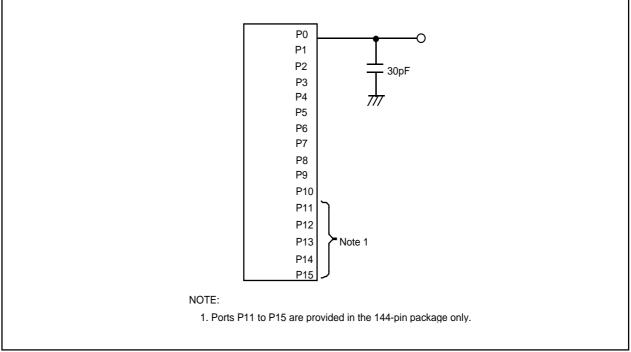


Figure 25.2 P0 to P15 Measurement Circuit

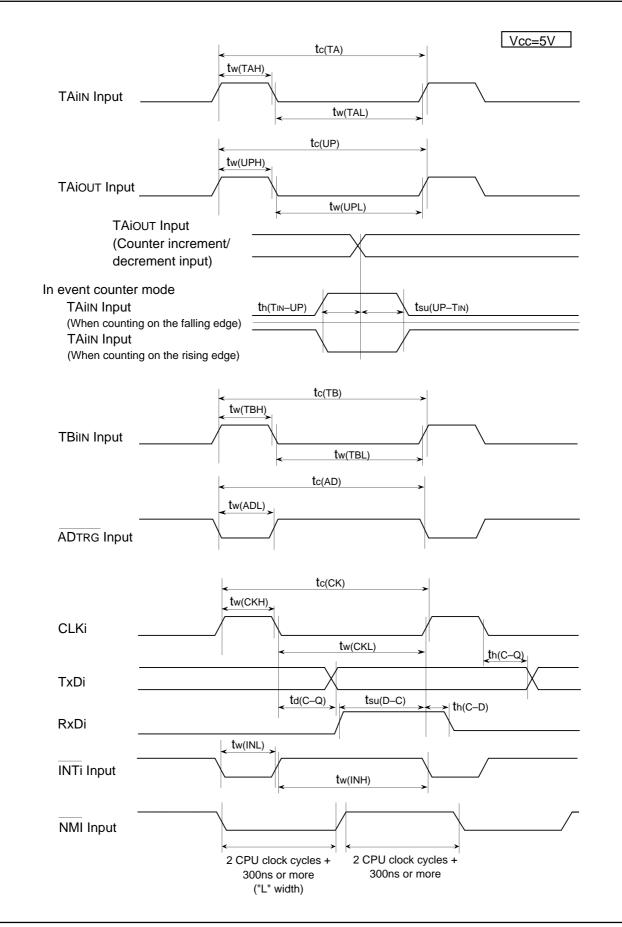


Figure 25.3 Vcc=5V Timing Diagram

26. Precautions

26.1 Special Function Registers (SFRs)

26.1.1 100-Pin Package

Set address spaces 03CB16, 03CE16, 03CF16, 03D216, 03D316 to "FF16" after reset when using the 100pin package. Address space 03DC16 must be set to "0016" after reset.

26.1.2 Register Settings

Table 26.2 lists registers containing bits which can only be written to. Set these registers with immediate values. When establishing the next value by altering the present value, write the present value to the RAM as well as to the register. Transfer the next value to the register after making changes in the RAM.

Register	Address	Register	Address
WDTS Register	000E16	U3BRG Register	032916
G0RI Register	00EC16	U3TB Register	032B16, 032A16
G1RI Register	012C16	U2BRG Register	033916
U1BRG Register	02E916	U2TB Register	033B16, 033A16
U1TB Register	02EB16, 02EA16	UDF Register	034416
U4BRG Register	02F916	TA0 Register ⁽¹⁾	034716, 034616
U4TB Register	02FB16, 02FA16	TA1 Register ⁽¹⁾	034916, 034816
TA11 Register	030316, 030216	TA2 Register ⁽¹⁾	034B16, 034A16
TA21 Register	030516, 030416	TA3 Register ⁽¹⁾	034D16, 034C16
TA41 Register	030716, 030616	TA4 Register ⁽¹⁾	034F16, 034E16
DTT Register	030C16	U0BRG Register	036916
ICTB2 Register	030D16	U0TB Register	036B16, 36A16

Table 26.1 Registers with Write-only Bits

NOTE:

1. In one-shot timer mode and pulse width modulation mode only.

26.2 Clock Generation Circuit

26.2.1 CPU Clock

- When the CPU operating frequency is 24 MHz or more, use the following procedure for better EMC (Electromagnetic Compatibility) performance.
 - 1) Oscillator connected between the XIN and XOUT pins, or external clock applied to the XIN pin, has less than 24 MHz frequency.
 - 2) Use the PLL frequency synthesizer to multiply the main clock.
- The main clock frequency must be 24 MHz or less.

26.2.2 Sub Clock

Set the CM03 bit to "0" (XCIN-XCOUT drive capacity "LOW") when selecting the sub clock (XCIN-XCOUT) as the CPU clock, or Timer A or Timer B count source (fC32).

26.2.2.1 Sub Clock Oscillation

When oscillating the sub clock, set the CM04 bit in the CM0 register to "1" (XCIN-XCOUT oscillation function) after setting the CM07 bit in the CM0 register to "0" (clock other than sub clock) and the CM03 bit to "1" (XCIN-XCOUT drive capacity "HIGH"). Set the CM03 bit to "0" after sub clock oscillation stabilizes.

Set the sub clock as the CPU clock, or Timer A or Timer B count source (fC32) after the above settings are completed.

26.2.2.2 Using Stop Mode

When the microcomputer enters stop mode, the CM03 bit is automatically set to "1" (XCIN-XCOUT drive capacity "HIGH"). Use the following procedure to select the main clock as the CPU clock when entering stop mode.

- 1) Set the CM17 bit in the CM1 register to "0" (main clock).
- 2) Set the CM21 bit in the CM2 register to "0" (clock selected by the CM17 bit).
- 3) Set the CM07 bit in the CM0 register to "0" (clock selected by the CM21 bit divided by the MCD register setting).

After exiting stop mode, wait for the sub clock oscillation to stabilize. Then set the CM03 bit to "0" and the CM07 bit to "1" (sub clock).

26.2.2.3 Oscillation Parameter Matching

If the sub slock oscillation parameters have only been evaluated with the drive capacity "HIGH", the parameters should be reevaluated for drive capacity "LOW".

Contact your oscillator manufacturer for details on matching parameters.

26.2.3 PLL Frequency Synthesizer

Stabilize supply voltage to meet the power supply standard when using the PLL frequency synthesizer.

Table 26.2 Power Supply Ripple

Symbol	Parameter			Standard		
Cymbol				Тур.	Max.	Unit
f(ripple)	Power Supply Ripple Tolerable Frequency (Vcc)	Vcc=5V			10	kHz
VP-P(ripple)	Power Supply Ripple Voltage Fluctuation Range	Vcc=5V			0.5	V
	Power Supply Ripple Voltage Fluctuation Rate	Vcc=5V			1	V/ms

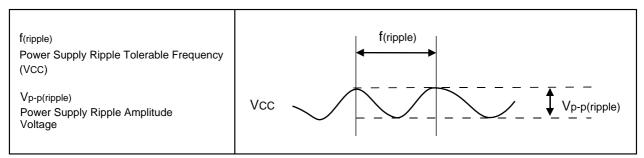


Figure 26.1 Power Supply Fluctuation Timing

26.2.4 External Clock

Do not stop an external clock running if the main clock is selected as the CPU clock while the external clock is applied to the XIN pin.

Do not set the CM05 bit in the CM0 register to "1" (main clock stopped) while the external clock input is used for the CPU clock.

26.2.5 Clock Divide Ratio

Set the PM12 bit in the PM1 register to "0" (no wait state) when changing the MCD4 to MCD0 bit settings in the MCD register.

26.2.6 Power Consumption Control

Stabilize the main clock, sub clock or PLL clock to switch the CPU clock source to each clock.

26.2.6.1 Wait Mode

When entering wait mode while the CM02 bit in the CM0 register is set to "1" (peripheral function stop in wait mode), set the MCD4 to MCD0 bits in the MCD register to maintain the 10-MHz CPU clock frequency or less.

When entering wait mode, the instruction queue reads ahead to instructions following the WAIT instruction, and the program stops. Write at least 4 NOP instructions after the WAIT instruction.

26.2.6.2 Stop Mode

- Use the following procedure to select the main clock as the CPU clock when entering stop mode.
 - 1) Set the CM17 bit in the CM1 register to "0" (main clock).
- 2) Set the CM21 bit in the CM2 register to "0" (clock selected by the CM17 bit).
- 3) Set the CM07 bit in the CM0 register to "0" (clock selected by the CM21 bit divided by the MCD register setting).

If the PLL clock is selected as the CPU clock source, set the CM17 bit to "0" (main clock) and the PLC07 bit in the PLC0 register to "0" (PLL off) before entering stop mode.

- The microcomputer cannot enter stop mode if a low-level signal ("L") is applied to the NMI pin. Apply a high-level ("H") signal instead.
- If stop mode is exited by any reset, apply an "L" signal to the RESET pin until a main clock oscillation is stabilized enough.
- If using the NMI interrupt to exit stop mode, use the following procedure to set the CM10 bit in the CM1 register (all clocks stopped).
 - 1) Exit stop mode with using the $\overline{\text{NMI}}$ interrupt.
 - 2) Generate a dummy interrupt.
 - 3) Set the CM10 bit to "1".

e.g.,	int	#63	; dummy interrupt
	bset	cm1	; all clocks stopped

/* dummy interrupt handling */ dummy reit

• When entering stop mode, the instruction queue reads ahead to instructions following the instruction setting the CM10 bit in the CM1 register to "1" (all clocks stopped), and the program stops. When the microcomputer exits stop mode, the instruction lined in the instruction queue is executed before the interrupt routine for recovery is done.

Write the JMP.B instruction, as follows, after the instruction setting the CM10 bit in the CM1 register to "1" (all clocks stopped).

e.g.,	bset 0, prcr bset 0, cm1 jmp.b LABEL_001	; protection removed ; all clocks stopped ; JMP.B instruction executed (no instuction between JMP.B ; and LABEL.)
LABEL_	001:	, and E. (DEE.)
	nop	; NOP (1)
	nop	; NOP (2)
	nop	; NOP (3)
	nop	; NOP (4)
	mov.b #0, prcr	; Protection set
	•	
	•	
	•	

26.2.6.3 Suggestions for Reducing Power Consumption

The followings are suggestions for reducing power consumption when programming or designing systems.

Ports: I/O ports maintains the same state despite the microcomputer entering wait mode or stop mode. Current flows through active output ports. Feedthrough current flows through input ports in a high-impedance state. Set unassigned ports as input ports and stabilize electrical potential before entering wait mode or stop mode.

A/D Converter: If the A/D conversion is not performed, set the VCUT bit in the AD0CON1 register to "0" (no VREF connection). Set the VCUT bit to "1" (VREF connection) and wait at least 1 μ s before starting the A/D conversion.

D/A Converter: Set the DAi bit (i=0, 1) in the DACON register to "0" (output disabled) and set the DAi register to "0016" when the D/A conversion is not performed.

Peripheral Function Stop: Set the CM02 bit in the CM0 register while in wait mode to stop unnecessary peripheral functions. However, this does not reduce power consumption because the peripheral function clock (fc32) generating from the sub clock does not stop. When in low-speed mode and low-power consumption mode, do not enter wait mode when the CM02 bit is set to "1" (peripheral clock stops in wait mode).

26.3 Protection

The PRC2 bit setting in the PRCR register is changed to "0" (write disabled) when an instruction is written to any address after the PRC2 bit is set to "1" (write enabled). Write instruction immediately after setting the PRC2 bit to "1" to change registers protected by the PRC2 bit. Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the next instruction.

26.4 Interrupts

26.4.1 ISP Setting

After reset, the ISP is set to "00000016". The program runs out of control if an interrupt is acknowledged before the ISP is set. Therefore, the ISP must be set before an interrupt request is generated. Set the ISP to an even address, which allows interrupt sequences to be executed at a higher speed.

To use $\overline{\text{NMI}}$ interrupt, set the ISP at the beginning of the program. The $\overline{\text{NMI}}$ interrupt can be acknowledged after the first instruction has been executed after reset.

26.4.2 NMI Interrupt

- $\overline{\text{NMI}}$ interrupt cannot be denied. Connect the $\overline{\text{NMI}}$ pin to Vcc via a resistor (pull-up) when not in use.
- The P8_5 bit in the P8 register indicates the NMI pin value. Read the P8_5 bit only to determine the pin level after a NMI interrupt occurs.
- "H" and "L" signals applied to the NMI pin must be over 2 CPU clock cycles + 300 ns wide.
- NMI interrupt request may not be acknowledged if this and other interrupt requests are generated simultaneously.

26.4.3 INT Interrupt

• Edge Sensitive

"H" and "L" signals applied to the INT0 to INT5 pins must be at least 250 ns wide, regardless of the CPU clock.

• Level Sensitive

"H" and "L" signals applied to the INT0 to INT5 pins must be at least 1 CPU clock cycle + 200 ns wide. For example, "H" and "L" must be at least 234ns wide if XIN=30MHz with no division.

• The IR bit setting may change to "1" (interrupt requested) when switching the polarity of the INT0 to INT5 pins. Set the IR bit to "0" (no interrupt requested) after selecting the polarity. Figure 26.3 shows an example of the switching procedure for the INT interrupt.

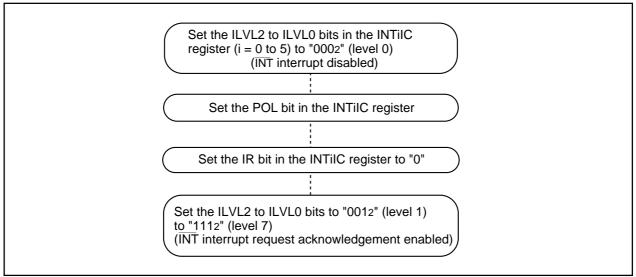


Figure 26.2 Switching Procedure for INT Interrupt

26.4.4 Watchdog Timer Interrupt

Reset the watchdog timer after a watchdog timer interrupt occurs.

26.4.5 Changing Interrupt Control Register

To change the interrupt control register while the interrupt request is denied, follow the instructions below.

Changing IR bit

The IR bit setting may not change to "0" (no interrupt requested) depending on the instructions written. If this is a problem, use the following instruction to change the register: MOV

Changing Bits Except IR Bit

When an interrupt request is generated while executing an instruction, the IR bit may not be set to "1" (interrupt requested) and the interrupt may be ignored. If this is a problem, use the following instructions to change the register: AND, OR, BCLR, BSET

26.4.6 Changing IIOiIR Register (i = 0 to 6, 8 to 11)

Use the following instructions to set bits 1 to 7 in the IIOiIR register to "0" (no interrupt requested): AND, BCLR

26.4.7 Changing RLVL Register

The DMAII bit is indeterminate after reset. When using the DMAII bit to generate an interrupt, set the interrupt control register after setting the DMAII bit to "0" (interrupt priority level 7 available for interrupts).

26.5 DMAC

- Set DMAC-associated registers while the MDi1 and MDi0 bits (i=0 to 3) in the channel to be used are set to "002" (DMA disabled). Set the MDi1 and MDi0 bits to "012" (single transfer) or "112" (repeat transfer) at the end of setup procedure to start DMA requests.
- Do not set the DRQ bit in the DMiSL register to "0" (no request).

If a DMA request is generated but the receiving channel is not ready to receive⁽¹⁾, the DMA transfer does not occur and the DRQ bit is set to "0".

NOTE:

- 1. The MDi1 and MDi0 bits are set to "002" or the DCTi register is set to "000016" (transferred 0 times).
- To start a DMA transfer by a software trigger, set the DSR bit and DRQ bit in the DMiSL register to "1" simultaneously.

e.g.,

OR.B #0A0h,DMiSL ; Set the DSR and DRQ bits to "1" simultaneously

- Do not generate a channel i DMA request when setting the MDi1 and MDi0 bits in the DMDj register (j=0,1) corresponding to channel i to "012" (single transfer) or "112" (repeat transfer), if the DCTi register of channel i is set to "1".
- Select the peripheral function which causes the DMA request after setting the DMA-associated registers. If none of the conditions above (setting INT interrupt as DMA request source) apply, do not write "1" to the DCTi register.
- Enable DMA⁽²⁾ after setting the DMiSL register (i=0 to 3) and waiting six BCLK cycles or more by program.

NOTE:

2. DMA is enabled when the values set in the MDi1 and MDi0 bits in the DMDj register are changed from "002" (DMA disabled) to "012" (single transfer) or "112" (repeat transfer).

26.6 Timer

26.6.1 Timers A and B

Timers stop after reset. Set the TAiS(i=0 to 4) bit or TBjS(j=0 to 5) bit in the TABSR register or TBSR register to "1" (starts counting) after setting operating mode, count source and counter.

The following registers and bits must be set while the TAiS bit or TBjS bit is set to "0" (stops counting).

- TAiMR, TBjMR register
- TAi, TBj register
- UDF register
- TAZIE, TA0TGL, TA0TGH bits in the ONSF register
- TRGSR register

26.6.2 Timer A

The TA10UT, TA20UT and TA40UT pins are placed in high-impedance states when a low-level ("L") signal is applied to the $\overline{\text{NMI}}$ pin while the INV03 and INV02 bits in the INVC0 register are set to "112" (forced cutoff of the three-phase output by an "L" signal applied to the $\overline{\text{NMI}}$ pin).

26.6.2.1 Timer A (Timer Mode)

- The TAiS bit (i=0 to 4) in the TABSR register is set to "0" (stops counting) after reset. Set the TAiS bit to "1" (starts counting) after selecting an operating mode and setting the TAi register.
- The TAi register indicates the counter value during counting at any given time. However, the counter is "FFFF16" when reloading. The setting value can be read after setting the TAi register while the counter stops and before the counter starts counting.

26.6.2.2 Timer A (Event Counter Mode)

- The TAiS (i=0 to 4) bit in the TABSR register is set to "0" (stops counting) after reset. Set the TAiS bit to "1" (starts counting) after selecting an operating mode and setting the TAi register.
- The TAi register indicates the counter values during counting at any given time. However, the counter will be "FFFF16" during underflow and "000016" during overflow, when reloading. The setting value can be read after setting the TAi register while the counter stops and before the counter starts counting.

26.6.2.3 Timer A (One-shot Timer Mode)

- The TAiS (i=0 to 4) bit in the TABSR register is set to "0" (stops counting) after reset. Set the TAiS bit to "1" (starts counting) after selecting an operating mode and setting the TAi register.
- The followings occur when the TABSR register is set to "0" (stops counting) while counting:
- The counter stops counting and the microcomputer reloads contents of the reload register.
- The TAIOUT pin becomes low ("L").
- The IR bit in the TAiIC register is set to "1" (interrupt requested) after one CPU clock cycle.
- The output of the one-shot timer is synchronized with an internal count source. When set to an external trigger, there is a delay of one count source cycle maximum, from trigger input to the TAIIN pin to the one-shot timer output.
- The IR bit is set to "1" when the following procedures are performed to set timer mode:
 - selecting one-shot timer mode after reset.
 - switching from timer mode to one-shot timer mode.
 - switching from event counter mode to one-shot timer mode.

Therefore, set the IR bit to "0" to generate a timer Ai interrupt (IR bit) after performing these procedures.

- When a trigger is generated while counting, the reload register reloads and continues counting after the counter has decremented once following a re-trigger. To generate a trigger while counting, wait at least 1 count source cycle after the previous trigger has been generated and generate a re-trigger.
- If an external trigger input is selected to start counting in timer A one-shot timer mode, do not provide another external trigger input again for 300 ns before the timer A counter value reaches "000016". One-shot timer may stop counting.

26.6.2.4 Timer A (Pulse Width Modulation Mode)

- The TAiS(i=0 to 4) bit in the TABSR register is set to "0" (stops counting) after reset. Set the TAiS bit to "1" (starts counting) after selecting an operating mode and setting the TAi register.
- The IR bit is set to "1" when the following procedures are performed to set timer mode:
 - Selecting PWM mode after reset
 - Switching from timer mode to PWM mode
 - Switching from event counter mode to PWM mode

Therefore, set the IR bit to "0" by program to generate a timer Ai interrupt (IR bit) after performing these procedures.

- The followings occur when the TAiS bit is set to "0" (stops counting) while PWM pulse is output:
- The counter stops counting
- Output level changes to low ("L") and the IR bit changes to "1" when the TAiout pin is held high ("H")
- The IR bit and the output level remain unchanged when TAiOUT pin is held "L"

26.6.3 Timer B

26.6.3.1 Timer B (Timer Mode, Event Counter Mode)

- The TBiS (i=0 to 5) bit is set to "0" (stops counting) after reset. Set the TBiS bit to "1" (starts counting) after selecting an operating mode and setting TBi register.
 The TB2S to TB0S bits are bits 7 to 5 in the TABSR register. The TB5S to TB3S bits are bits 7 to 5 in the TABSR register.
- The TBi register indicates the counter value during counting at any given time. However, the counter is "FFFF16" when reloading. The setting value can be read after setting the TBi register while the counter stops and before the counter starts counting.

26.6.3.2 Timer B (Pulse Period/Pulse Width Measurement Mode)

- The IR bit in the TBiIC (i=0 to 5) register is set to "1" (interrupt requested) when the valid edge of a pulse to be measured is input and when the timer Bi counter overflows. The MR3 bit in the TBiMR register determines the interrupt source within an interrupt routine.
- Use another timer to count how often the timer counter overflows when an interrupt source cannot be determined by the MR3 bit, such as when a pulse to be measured is input at the same time the timer counter overflows.
- To set the MR3 bit in the TBiMR register to "0" (no overflow), set the TBiMR register after the MR3 bit is set to "1" (overflow) and one or more cycles of the count source are counted, while the TBiS bits in the TABSR and TBSR registers are set to "1" (starts counting).
- The IR bit in the TBiIC register is used to detect overflow only. Use the MR3 bit only to determine interrupt source within an interrupt routine.
- Indeterminate values are transferred to the reload register during the first valid edge input after counting is started. Timer Bi interrupt request is not generated at this time.
- The counter value is indeterminate when counting is started. Therefore, the MR3 bit setting may change to "1" (overflow) and causes timer Bi interrupt requests to be generated until a valid edge is input after counting is started.
- The IR bit may be set to "1" (interrupt requested) if the MR1 and MR0 bits in the TBiMR register are set to a different value after a count begins. If the MR1 and MR0 bits are rewritten, but to the same value as before, the IR bit remains unchanged.
- Pulse width measurement measures pulse width continuously. Use program to determine whether measurement results are high (""H") or low ("L").

26.7 Serial I/O

26.7.1 Clock Synchronous Serial I/O Mode

The $\overline{\text{RTS2}}$ and CLK2 pins are placed in high-impedance states when a low-level ("L") signal is applied to the $\overline{\text{NMI}}$ pin while the INV03 to INV02 bits in the INVC0 register are set to "112" (forced cutoff of the three-phase output by an "L" signal applied to the $\overline{\text{NMI}}$ pin).

26.7.1.1 Transmission /Reception

When the RTS function is used while an external clock is selected, the output level of the RTSi pin is held "L" indicating that the microcomputer is ready for reception. The transmitting microcomputer is notified that reception is possible. The output level of the RTSi pin becomes high ("H") when reception begins. Therefore, connecting the RTSi pin to the CTSi pin of the transmitting microcomputer synchronizes transmission and reception. The RTS function is disabled if an internal clock is selected.

26.7.1.2 Transmission

When an external clock is selected while the CKPOL bit in the UiC0 (i=0 to 4) register is set to "0" (data is transmitted on the falling edge of the transfer clock and received on the rising edge) and the external clock is held "H", or when the CKPOL bit is set to "1" (data is transmitted on the rising edge of the transfer clock and received on the falling edge) and the external clock is held "L", meet the following conditions:

- Set the TE bit in the UiC1 register to "1" (receive enabled)
- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)
- Apply "L" signal to the $\overline{\text{CTSi}}$ pin if the $\overline{\text{CTS}}$ function is selected

26.7.1.3 Reception

Activating the transmitter in clock synchronous serial I/O mode generates the shift clock. Therefore, set for transmission even if the microcomputer is used for reception only. Dummy data is output from the TxDi pin while receiving.

If an internal clock is selected, the shift clock is generated when the TE bit in the UiC1 registers is set to "1" (receive enabled) and dummy data is set in the UiTB register. If an external clock is selected, the shift clock is generated when the external clock is input into CLKi pin while the TE bit is set to "1" (receive enabled) and dummy data is set in the UiTB register.

When receiving data consecutively while the RE bit in the UiC1 register is set to "1" (data in the UiRB register) and the next data is received by the UARTi reception register, an overrun error occurs and the OER bit in the UiRB register is set to "1" (overrun error). In this case, the UiRB register is indeterminate. When overrun error occurs, program both reception and transmission registers to retransmit earlier data. The IR bit in the SiRIC does not change when an overrun error occurs.

When receiving data consecutively, feed dummy data to the low-order byte in the UiTB register every time a reception is made.

When an external clock is selected while the CKPOL bit in the UiC0 register is set to "0" (data is transmitted on the falling edge of the transfer clock and received on the rising edge) and the external clock is held "H" or when the CKPOL bit is set to "1" (data is transmitted on the rising edge of the transfer clock and received on the falling edge) and the external clock is held "L", meet the following conditions:

- Set the RE bit in the UiC1 register to "1" (receive enabled)
- Set the TE bit in the UiC1 register to "1" (transmit enabled)
- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)

26.7.2 UART Mode

Set the UiERE bit (i=0 to 4) in the UiC1 register after setting the UiMR register.

26.7.3 Special Mode 1 (I²C Mode)

To generate the start condition, stop condition or restart condition, set the STSPSEL bit in the UiSMR4 register to "0" first. Then, change each condition generating bit (the STAREQ bit, STPREQ bit or RSTAREQ bit) setting from "0" to "1" after going through a half cycle of the transfer clock.

26.8 A/D Converter

- Set the AD0CON0 (bit 6 excluded), AD0CON1, AD0CON2, AD0CON3, and AD0CON4 registers while the A/D conversion is stopped (before a trigger is generated).
- Wait a minimum of 1µs before starting the A/D conversion when changing the VCUT bit setting in the AD0CON1 register from "0" (VREF no connection) to "1" (VREF connection).
 Change the VCUT bit setting from "1" to "0" after the A/D conversion is completed.
- Insert capacitors between the AVCC pin, VREF pin, analog input pin ANij (i=none, 0, 2, 15; j=0 to 7) and AVss pin to prevent latch-ups and malfunctions due to noise, and to minimize conversion errors. The same applies to the VCC and VSs pins. Figure 26.4 shows the use of capacitors to reduce noise.

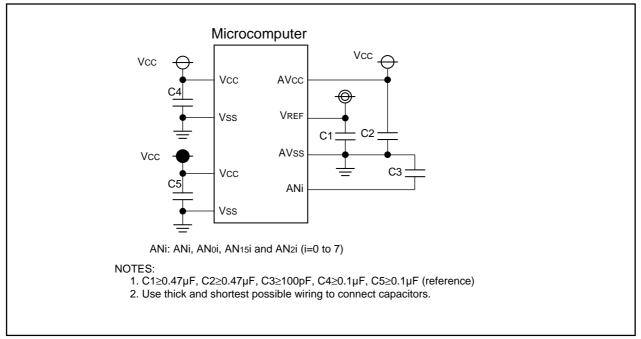


Figure 26.3 Use of Capacitors to Reduce Noise

- Set the bit in the port direction register, which corresponds to the pin being used as the analog input, to "0" (input mode). Set the bit in the port direction register, which corresponds to the ADTRG pin, to "0" (input mode) if the TRG bit in the AD0CON0 register is set to "1" (external trigger).
- When generating a key input interrupt, do not use the AN4 to AN7 pins as analog input pins (key input interrupt request is generated when the A/D input voltage becomes "L").
- The φAD frequency must be 16MHz or less. When the sample and hold function is not activated, the φAD frequency must be 250 kHz or more. If the sample and hold function is activated, the φAD frequency must be 1MHz or more.
- Set the CH2 to CH0 bits in the AD0CON0 register or the SCAN1 and SCAN0 bits in the AD0CON1 register to re-select analog input pins when changing A/D conversion mode.

• AVCC = VREF = VCC,

A/D input voltage (for AN₀ to AN₇, AN₀₀ to AN₀₇, and AN₂₀ to AN₂₇, AN₁₅₀ to AN₁₅₇, ANEX0, and ANEX1) \leq Vcc.

• Wrong values are stored in the AD0i register (i=0 to 7) if the CPU reads the AD0i register while the AD0i register stores results from a completed A/D conversion. This occurs when the CPU clock is set to a divided main clock or a sub clock.

In one-shot mode or single sweep mode, read the corresponding AD0i register after verifying that the A/D conversion has been completed. The IR bit in the AD0IC register determines the completion of the A/D conversion.

In repeat mode, repeat sweep mode 0, repeat sweep mode 1, multi-port single sweep mode, and multiport repeat sweep mode 0, use an undivided main clock as the CPU clock.

- Conversion results of the A/D converter are indeterminate if the ADST bit in the AD0CON0 register is set to "0" (A/D conversion stopped) and the conversion is forcibly terminated by program during the A/D conversion. The AD0i register not performing the A/D conversion may also be indeterminate.
 If the ADST bit is changed to "0" by program, during the A/D conversion, do not use any values obtained from the AD0i registers.
- External triggers cannot be used in DMAC operating mode. Do not read the AD00 register by program.
- Do not perform the A/D conversion in wait mode.
- Set the MCD4 to MCD0 bits in the MCD register to "100102" (no division) if using the sample and hold function.
- Do not acknowledge any interrupt requests, even if generated, before setting the ADST bit, if the A/D conversion is terminated by setting the ADST bit in the AD0CON0 register to "0" (A/D conversion stopped) while the microcomputer is A/D converting in single sweep mode.

26.9 Intelligent I/O

26.9.1 Register Setting

Operations, controlled by the values written to the G1BT, G1BCR1, G1TMCR0 to G1TMCR7, G1TPR6, G1TPR7, G1TM0 to G1TM7, G1POCR0 to G1POCR7, G1PO0 to G1PO7, G1FS and G1FE registers, are affected by the count source (fBT1) set in the BCK1 and BCK0 bits in the G1BCR0 register. Set the BCK1 and BCK0 bits before setting the G1BT, G1BCR1, G1TMCR0 to G1TMCR7, G1TPR6, G1TPR7, G1TM0 to G1TM7, G1POCR0 to G1POCR7, G1PO0 to G1PO7, G1FS and G1FE registers.

Operations, controlled by the values written to the G0RI and G1RI, G0TO and G1TO, G0CR and G1CR, G0RB and G1RB, G0MR and G1MR, G0EMR and G1EMR, G0ETC and G1ETC, G0ERC and G1ERC, G0IRF, G1IRF, G0TB and G1TB, G0CMP0 to G0CMP3, G1CMP0 to G1CMP3, G0MSK0 and G0MSK1, G1MSK0 and G1MSK1, G0TCRC and G1TCRC, G0RCRC and G1RCRC registers are affected by the transfer clock.

Set trasfer clock before setting the G0RI and G1RI, G0TO and G1TO, G0CR and G1CR, G0RB and G1RB, G0MR and G1MR, G0EMR and G1EMR, G0ETC and G1ECT, G0ERC and G1ERC, G0IRF and G1IRF, G0TB and G1TB, G0CMP0 to G0CMP3, G1CMP0 to G1CMP3, G0MSK0 and G0MSK1, G1MSK0 and G1MSK1, G0TCRC and G1TCRC, G0RCRC and G1RCRC registers.

26.10 Programmable I/O Ports

Because ports P72 to P75, P80, and P81 have three-phase PWM output forced cutoff function, they are
affected by the three-phase motor control timer function and the NMI pin when these ports are set for
output functions (port output, timer output, three-phase PWM output, serial I/O output, intelligent I/O
output).

Table 26.4 shows the INVC0 register setting, the \overline{NMI} pin input level and the state of output ports.

Table 26.3	INVC0	Register	and	the	NMI	Pin
------------	-------	----------	-----	-----	-----	-----

Setting Value of the INVC0 Register		Signal level Applied	P72 to P75, P80, P81 Pin States		
INV02 Bit	INV03 Bit	to the NMI Pin	(When Setting Them as Output Pin		
0 (Not Using the Three-Phase Motor Control Timer Functions)	-	-	Provides functions selected by the PS1, PSL1, PSC, PS2, PSL2 registers		
1 (Using the Three-Phase Motor Control Timer	0 (Three-Phase Motor Control Timer Output Disabled)	-	High-impedance state		
Functions)	1 (Three-Phase Motor Control Timer Output Enabled) ⁽¹⁾	Н	Provides functions selected by the PS1, PSL1, PSC, PS2, PSL2 registers		
		L (Forcibly Terminated)	High-impedance state		

NOTE:

1. The INV03 bit is set to "0" after a low-level ("L") signal is applied to the $\overline{\text{NMI}}$ pin.

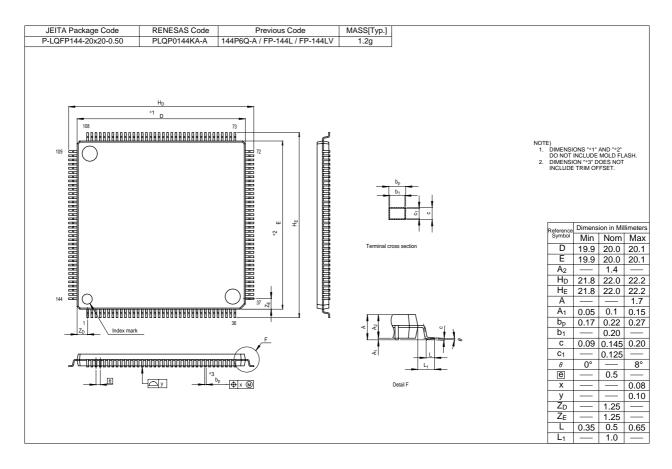
- The availability of pull-up resistors is indeterminate until internal power voltage stabilizes, if the RESET pin is held "L".
- The input threshold voltage varies between programmable I/O ports and peripheral functions. Therefore, if the lelvel of the voltage applied to a pin shared by both programmable I/O ports and peripheral functions is not within the recommended operating condition, VIH and VIL (neither "H" nor "L"), the level may vary depending on the programmable ports and peripheral functions.

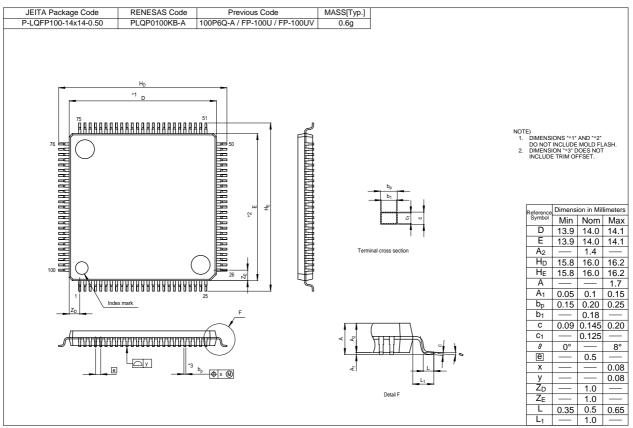
26.11 Flash Memory Version

26.11.1 Boot Mode

I/O pins may not be placed in high-impedance states until internal voltage stabilizes, when power is turned on in boot mode. Use the following procedure to turn on power in boot mode.

- 1) Apply an low-level ("L") signal to the RESET and the CNVss pin
- 2) Wait a minimum of 2 ms after VCC reaches 2.7V or above (until internal voltage stabilizes)
- 3) Apply a high-level ("H") signal to the CNVss pin
- 4) Apply an "H" signal to the RESET pin (reset exited)




26.12 Noise

Connect a bypass capacitor (0.1μ F or more) between VCC and VSS by shortest path, using thick wires.

Package Dimensions

Register Index

Α

AD00 to AD07 225 AD0CON0 221 AD0CON1 222 AD0CON2 223 AD0CON3 224 AD0CON4 225 AIER 98

С

COAFS 336 C0BPR 307 C0CONR 305 C0CTLR0 296 C0CTLR1 299 C0EFR 315 COEIMKR 313 **COEISTR** 314 C0GMR0 320 C0GMR1 321 C0GMR2 322 C0GMR3 323 C0GMR4 324 C0IDR 304 COLMAR0 320 C0LMAR1 321 C0LMAR2 322 COLMAR3 323 C0LMAR4 324 C0LMBR0 320 321 C0LMBR1 C0LMBR2 322 C0LMBR3 323 C0LMBR4 324 COMCTL0 to COMCTL15 327 COMDR 316 COREC 309 C0SBS 331 COSIMKR 312 COSISTR 310 COSLOT0_0 332 C0SLOT0_1 332 C0SLOT0_2 333

COSLOT0_3 333 COSLOT0_4 334 C0SLOT0_5 334 C0SLOT0_6 to C0SLOT0_13 335 COSLOT0_14 335 C0SLOT0_15 335 C0SLOT1_0 332 C0SLOT1_1 332 C0SLOT1_2 333 C0SLOT1_3 333 C0SLOT1 4 334 C0SLOT1_5 334 C0SLOT1_6 to C0SLOT1_13 335 C0SLOT1_14 335 C0SLOT1_15 335 C0SLPR 300 COSSCTLR 318 COSSSTR 319 C0STR 301 COTEC 309 C0TSR 308 C1AFS 336 C1BRP 307 C1CONR 305 C1CTLR0 296 C1CTLR1 299 C1EFR 315 C1EIMKR 313 C1EISTR 314 C1GMR0 320 C1GMR1 321 C1GMR2 322 C1GMR3 323 C1GMR4 324 C1IDR 304 C1LMAR0 320 C1LMAR1 321 C1LMAR2 322 C1LMAR3 323 C1LMAR4 324 C1LMBR0 320 C1LMBR1 321 C1LMBR2 322 C1LMBR3 323

C1LMBR4 324 C1MCTL0 to C1MCTL15 327 C1MDR 316 C1REC 309 C1SBS 331 C1SIMKR 312 C1SISTR 310 C1SLOT0_0 332 C1SLOT0_1 332 C1SLOT0_2 333 C1SLOT0_3 333 C1SLOT0_4 334 C1SLOT0_5 334 C1SLOT0_6 to C1SLOT0_13 335 C1SLOT0_14 335 C1SLOT0_15 335 C1SLOT1_0 332 C1SLOT1_1 332 C1SLOT1_2 333 C1SLOT1_3 333 C1SLOT1_4 334 C1SLOT1_5 334 C1SLOT1_6 to C1SLOT1_13 335 C1SLOT1_14 335 C1SLOT1_15 335 C1SLPR 300 C1SSCTLR 318 C1SSSTR 319 C1STR 301 C1TEC 309 C1TSR 308 C2AFS 336 C2BRP 307 C2CONR 305 C2CTLR0 296 C2CTLR1 299 C2EFR 315 C2EIMKR 313 C2EISTR 314 C2GMR0 320 C2GMR1 321 C2GMR2 322 C2GMR3 323 C2GMR4 324 C2IDR 304 C2LMAR0 320

C2LMAR1 321 C2LMAR2 322 C2LMAR3 323 C2LMAR4 324 C2LMBR0 320 C2LMBR1 321 C2LMBR2 322 C2LMBR3 323 C2LMBR4 324 C2MCTL0 to C2MCTL15 327 C2MDR 316 C2REC 309 C2SBS 331 C2SIMKR 312 C2SISTR 310 C2SLOT0_0 332 C2SLOT0_1 332 C2SLOT0_2 333 C2SLOT0_3 333 C2SLOT0_4, 334 C2SLOT0_5 334 C2SLOT0_6 to C2SLOT0_13 335 C2SLOT0_14 335 C2SLOT0 15 335 C2SLOT1_0 332 C2SLOT1_1 332 C2SLOT1_2 333 C2SLOT1_3 333 C2SLOT1_4 334 C2SLOT1_5 334 C2SLOT1_6 to C2SLOT1_13 335 C2SLOT1_14 335 C2SLOT1_15 335 C2SLPR 300 C2SSCTLR 318 C2SSSTR 319 C2STR 301 C2TEC 309 C2TSR 308 CCS 281 CM0 56, 105 CM1 57 CM2 59 CPSRF 60 CRCD 240 CRCIN 240

D

DA0, DA1 239 DACON 239 DCT0 to DCT3 112 DM0SL to DM3SL 109 DMA0 to DMA3 113 DMD0, DMD1 111 DRA0 to DRA3 113 DRC0 to DRC3 112 DSA0 to DSA3 113 DTT 159

F

FMR0 **374** FMR1 **375**

G

G0CMP0 to G0CMP3 280 G0CR, G1CR 273 G0DR, G1DR 279 G0EMR 275 G0ERC, G1ERC 277 G0ETC 276 G0IRF 278 G0MR 274 G0MSK0, G0MSK1 280 G0RB, G1RB 273 GORCRC, G1RCRC 280 G0RI, G1RI 272 G0TB, G1TB 279 G0TCRC, G1TCRC 280 G0TO, G1TO 272 G1BCR0 248 G1BCR1 249 G1BT 248 G1CMP0 to G1CMP3 280 G1EMR 275 G1ETC 276 G1FE 253 G1FS 252 G1IRF 279 G1MR 274 G1MSK0, G1MSK1 280 G1PO0 to G1PO7 252

REJ09B0162-0110

G1POCR0 to G1POCR7 251 G1TM0 to G1TM7 251 G1TMCR0 to G1TMCR7 250 G1TPR6, G1TPR7 250

I

ICTB2 160 IDB0, IDB1 159 IFSR 96, 174 IIO0IE to IIO6IE, IIO8IE to IIO11IE 102 IIO0IR to IIO6IR, IIO8IR to IIO11IR 101 Interrupt Control 87, 88 INVC0 157 INVC1 158 IPS 363 IPSA 364 Μ MCD 58 0 ONSF 131 Ρ P0 to P15 352 PCR 363 PD0 to PD15 351 PLC0 61 PLC1 61 PM0 51 PM1 52 PM2 62 PRCR 78 PS0 353 PS1 353 PS2 354 PS3 354 PS5 355 PS8 355 PS9 356 PSC 359 PSC2 359 PSC3 360 PSD1 360

Rev. 1.10 Oct. 18, 2005 Page 434 of 435

RENESAS

PSL0 357

 PSL1
 357

 PSL2
 358

 PUR0
 361

 PUR1
 361

 PUR2
 361

 PUR3
 362

 PUR4
 362

R

RLVL **89**, **119** RMAD0 to RMAD7 **98** ROMCP **372**

Т

TA0 to TA4 TA0MR to TA4MR **130**, **135**, **138**, **141**, TA1, TA2, TA4, TA11, TA21, TA41 TA1MR, TA2MR, TA4MR TABSR **130**, **146**, TB0 to TB5 TB0MR to TB5MR **146**, **148**, **150**, TB2 **161** TB2MR **162** TB2SC **160** TBSR **147** TCSPR **60**, TRGSR **132**,

U

U0BRG to U4BRG 168 U0C0 to U4C0 169 U0C1 to U4C1 170 U0MR to U4MR 168 U0RB to U4RB 167 U0SMR to U4SMR 170 U0SMR2 to U4SMR2 171 U0SMR3 to U4SMR3 172 U0SMR4 to U4SMR4 173 U0TB to U4TB 167 UDF 131

w

WDC **48**, **104** WDTS **104**

RENESAS

Х

Y

X0R to X15R 242

Y0R to Y15R 242

XYC 242

REVISION HISTORY

M32C/88 Group(M32C/88T) Hardware Manual

Rev. Date Description	Description				
	Summary				
1.10 Oct., 05 New Document I					

RENESAS 16/32-BIT SINGLE-CHIP MICROCOMPUTER HARDWARE MANUAL M32C/88 Group (M32C/88T)

Publication Data : Rev.1.10 Oct. 18, 2005

Published by : Sales Strategic Planning Div. Renesas Technology Corp.

© 2005. Renesas Technology Corp., All rights reserved. Printed in Japan.

M32C/88 Group (M32C/88T) Hardware Manual

RenesasTechnologyCorp. 2-6-2, Ote-machi, Chiyoda-ku, Tokyo, 100-0004, Japan