

ISSUED 01/31/2006

EPA018BV-70SC

High Efficiency Heterojunction Power FET

FEATURES

- None-Hermetic Low Cost Ceramic 70mil Package
- +20.0 dBm Output Power at 1dB Compression
- 11.0 dB Power Gain at 18GHz
- Typical 0.75 dB Noise Figure and 12.5 dB Associated Gain at 12GHz
- 0.3 x 180 Micron Recessed "Mushroom" Gate
- Si₃N₄ Passivation
- Advanced Epitaxial Heterojunction Profile Provides Extra High Power Efficiency, and High Reliability

ELECTRICAL CHARACTERISTICS ($T_a = 25^{\circ}C$)

Caution! ESD sensitive device.

SYMBOL	PARAMETERS/TEST CONDITIONS ¹	MIN	ТҮР	MAX	UNITS
P _{1dB}	$\begin{array}{ll} \text{Output Power at 1dB Compression} & \text{f} = 12\text{GHz} \\ \text{V}_{\text{DS}} = 6\text{V}, \ \text{I}_{\text{DS}} \approx 50\% \ \text{I}_{\text{DSS}} & \text{f} = 18\text{GHz} \end{array}$	18.5	20.0 20.0		dBm
G _{1dB}		12.0	14 12		dB
PAE	Power Added Efficiency at 1dB Compression $V_{DS} = 6V$, $I_{DS} \approx 50\% I_{DSS}$ f = 12GHz		45		%
NF	Noise Figure V_{DS} = 2V, I_{DS} = 15mA f = 12GHz		0.75		dB
GA	Associate Gain V_{DS} = 2V, I_{DS} = 15mA f = 12GHz		12.5		dB
I _{DSS}	Saturated Drain Current $V_{DS} = 3 V, V_{GS} = 0 V$	40	55	90	mA
G _M	Transconductance $V_{DS} = 3 V, V_{GS} = 0 V$	35	60		mS
V _P	Pinch-off Voltage $V_{DS} = 3 \text{ V}, \text{ I}_{DS} = 1.0 \text{ mA}$		-1.0	-2.5	V
BV_{GD}	Drain Breakdown Voltage I _{GD} = 1.0mA	-9	-15		V
BV _{GS}	Source Breakdown Voltage I _{GS} = 1.0mA	-6	-14		V
R _{TH}	Thermal Resistance		480*		°C/W
S ₂₁	$ Insersion Gain in dB V_{DS} = 6V, I_{DS} \approx 50\% I_{DSS} $	2.5			dB

Notes: * Overall Rth depends on case mounting.

ABSOLUTE MAXIMUM RATINGS FOR CONTINUOUS OPERATION^{1,2}

SYMBOL	CHARACTERISTIC	VALUE	
V _{DS}	Drain to Source Voltage	6 V	
V _{GS}	Gate to Source Voltage	-3 V	
I _{DS}	Drain Current	40 mA	
I _{GSF}	Forward Gate Current	1.5 mA	
P _{IN}	Input Power	@ 3dB compression	
PT	Total Power Dissipation	240 mW	
Т _{сн}	Channel Temperature	150°C	
T _{STG}	Storage Temperature	-65/+150°C	

1. Exceeding any of the above ratings may result in permanent damage.

2. Exceeding any of the above ratings may reduce MTTF below design goals.

Specifications are subject to change without notice. Excelics Semiconductor, Inc. 310 De Guigne Drive, Sunnyvale, CA 94085 Phone: 408-737-1711 Fax: 408-737-1868 Web: <u>www.excelics.com</u>

page 1of 1 Revised January 2006