# EM77950

## **BB** Controller

# Product Specification

DOC. VERSION 1.0

ELAN MICROELECTRONICS CORP. October 2007

### **Trademark Acknowledgments:**

IBM is a registered trademark and PS/2 is a trademark of IBM. Windows is a trademark of Microsoft Corporation.

ELAN and ELAN logo

### Copyright © 2007 by ELAN Microelectronics Corporation All Rights Reserved

Printed in Taiwan

The contents of this specification are subject to change without further notice. ELAN Microelectronics assumes no responsibility concerning the accuracy, adequacy, or completeness of this specification. ELAN Microelectronics makes no commitment to update, or to keep current the information and material contained in this specification. Such information and material may change to conform to each confirmed order.

In no event shall ELAN Microelectronics be made responsible for any claims attributed to errors, omissions, or other inaccuracies in the information or material contained in this specification. ELAN Microelectronics shall not be liable for direct, indirect, special incidental, or consequential damages arising from the use of such information or material.

The software (if any) described in this specification is furnished under a license or nondisclosure agreement, and may be used or copied only in accordance with the terms of such agreement.

ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of ELAN Microelectronics product in such applications is not supported and is prohibited. NO PART OF THIS SPECIFICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS WITHOUT THE EXPRESSED WRITTEN PERMISSION OF ELAN MICROELECTRONICS.

## ELAN

### Headquarters: No. 12, Innovation Road 1 Hsinchu Science Park Hsinchu, Taiwan 308 Tel: +886 3 563-9977 Fax: +886 3 563-9966 http://www.emc.com.tw

Hong Kong: Elan (HK) Microelectronics Corporation, Ltd. Flat A, 19F., World Tech Centre 95 How Ming Street, Kwun Tong Kowloon, HONG KONG Tel: +852 2723-3376 Fax: +852 2723-7780 elanhk@emc.com.hk

#### Shenzhen:

ELAN MICROELECTRONICS CORPORATION

#### Elan Microelectronics Shenzhen, Ltd.

3F, SSMEC Bldg., Gaoxin S. Ave. I Shenzhen Hi-tech Industrial Park (South Area), Shenzhen CHINA 518057 Tel: +86 755 2601-0565 Fax: +86 755 2601-0500

## USA: Elan Information Technology Group (USA)

P.O. Box 601 Cupertino, CA 95015 USA Tel: +1 408 366-8225 Fax: +1 408 366-8225

#### Shanghai: Elan Microelectronics Shanghai, Ltd.

#23, Zone 115, Lane 572, Bibo Rd. Zhangjiang Hi-Tech Park Shanghai, CHINA 201203 Tel: +86 21 5080-3866 Fax: +86 21 5080-4600

# Contents

| 1      | Gen  | eral Description                                                     | .1   |  |  |  |  |  |  |  |  |
|--------|------|----------------------------------------------------------------------|------|--|--|--|--|--|--|--|--|
| 2      | Feat | ures                                                                 | res1 |  |  |  |  |  |  |  |  |
|        | 2.1  | Core                                                                 | .1   |  |  |  |  |  |  |  |  |
|        | 2.2  | Oscillators/System Clocks                                            | .2   |  |  |  |  |  |  |  |  |
|        | 2.3  | Input and Output (I/O) Pins                                          | .2   |  |  |  |  |  |  |  |  |
|        | 2.4  | Timers and Counters                                                  | .2   |  |  |  |  |  |  |  |  |
|        | 2.5  | Interrupt Sources and Features                                       |      |  |  |  |  |  |  |  |  |
|        | 2.6  | Baseband (BB)                                                        |      |  |  |  |  |  |  |  |  |
|        | 2.7  | Serial Peripheral Interface (SPI)                                    |      |  |  |  |  |  |  |  |  |
|        | 2.8  | Pulse Width Modulation (PWM)                                         |      |  |  |  |  |  |  |  |  |
|        | 2.0  | Analog to Digital Converter (ADC)                                    |      |  |  |  |  |  |  |  |  |
| •      |      |                                                                      |      |  |  |  |  |  |  |  |  |
| 3      |      | Assignment                                                           |      |  |  |  |  |  |  |  |  |
| 4<br>5 |      | Description<br>k Diagram                                             |      |  |  |  |  |  |  |  |  |
| -      |      | •                                                                    |      |  |  |  |  |  |  |  |  |
| 6      |      | Nory                                                                 |      |  |  |  |  |  |  |  |  |
|        | 6.1  | Program Memory                                                       |      |  |  |  |  |  |  |  |  |
|        | 6.2  | RAM–Register                                                         |      |  |  |  |  |  |  |  |  |
| 7      |      | ction Description                                                    |      |  |  |  |  |  |  |  |  |
|        | 7.1  | Special Purpose Registers                                            |      |  |  |  |  |  |  |  |  |
|        |      | 7.1.1 Accumulator – ACC                                              |      |  |  |  |  |  |  |  |  |
|        |      | 7.1.2 Indirect Addressing Contents – IAC0 and IAC1                   |      |  |  |  |  |  |  |  |  |
|        |      | 7.1.3 High Byte Program Counter HPC and Low Byte Program Counter LPC |      |  |  |  |  |  |  |  |  |
|        |      | 7.1.4 Status Register – SR                                           |      |  |  |  |  |  |  |  |  |
|        |      | 7.1.5 RAM Bank Selector – RAMBS0 and RAMBS1                          |      |  |  |  |  |  |  |  |  |
|        |      | 7.1.6 ROM Page Selector – ROMPS                                      |      |  |  |  |  |  |  |  |  |
|        |      | 7.1.7 Indirect Addressing Pointers – IAP0 and IAP1                   |      |  |  |  |  |  |  |  |  |
|        |      | 7.1.8 Indirect Address Pointer Direction Control Register – IAPDR    |      |  |  |  |  |  |  |  |  |
|        |      | 7.1.9 Table Look-up Pointer – LTBL and HTBL                          |      |  |  |  |  |  |  |  |  |
|        |      | 7.1.10 Stack Pointer – STKPTR                                        |      |  |  |  |  |  |  |  |  |
|        |      | 7.1.11 Repeat Counter – RPTC                                         |      |  |  |  |  |  |  |  |  |
|        |      | 7.1.12 Prescaler Counter – PRC                                       |      |  |  |  |  |  |  |  |  |
|        |      | 7.1.13 Real Time Clock Counter – RTCC                                |      |  |  |  |  |  |  |  |  |
|        |      | 7.1.14 Interrupt Flag Register – INTF                                |      |  |  |  |  |  |  |  |  |
|        |      | 7.1.15 Key Wake-up Flag Register – KWUAIF & KWUBIF                   |      |  |  |  |  |  |  |  |  |
|        |      | 7.1.16 I/O Port Registers – PTA ~ PTF                                |      |  |  |  |  |  |  |  |  |
|        |      | 7.1.17 16-bit Free Run Counter (FRC) – LFRC HFRC & LFRCB             |      |  |  |  |  |  |  |  |  |
|        |      | 7.1.18 Serial Peripheral Interface Read Register – SPIRB             |      |  |  |  |  |  |  |  |  |
|        |      | 7.1.19 Serial Peripheral Interface Write Register – SPIWB            | 29   |  |  |  |  |  |  |  |  |

Product Specification (V1.0) 10.09.2007

• iii

|      | 7.1.20  | ADC Converting Value – ADDATA                                  | .29 |
|------|---------|----------------------------------------------------------------|-----|
|      | 7.1.21  | PWM Duty – DT0L/DT0H & DT1L/DT1H                               | .29 |
|      | 7.1.22  | PWM Period – PRD0L/PRD0H & PRD1L/PRD1H                         | .29 |
|      | 7.1.23  | PWM Duty Latch – DL0L/DL0H & DL1L/DL1H                         | .30 |
|      | 7.1.24  | BB Address Register – RFAAR                                    | .30 |
|      | 7.1.25  | BB Data Buffer Register – RFDB                                 | .30 |
|      | 7.1.26  | BB Data Read/Write Control Register – RFACR                    | .30 |
|      | 7.1.27  | BB Interrupt Flag Register – RFINTF                            | .30 |
| 7.2  | Dual P  | ort Register                                                   | 31  |
| 7.3  | Systen  | n Status, Control and Configuration Registers                  | 31  |
|      | 7.3.1   | Peripherals Enable Control – PRIE                              | .31 |
|      | 7.3.2   | Interrupts Enable Control – INTE                               | .31 |
|      | 7.3.3   | Key Wake-up Enable Control – KWUAIE & KWUBIE                   | .32 |
|      | 7.3.4   | External Interrupts Edge Control – EINTED                      |     |
|      | 7.3.5   | Serial Peripheral Serial (SPI) Enable Control Register - SPIC  | .33 |
|      | 7.3.6   | I/O Control Registers – IOCA~IOCF                              | .33 |
|      | 7.3.7   | Pull-up Resistance Control Registers for Ports A~F – PUCA~PUCF | .34 |
|      | 7.3.8   | Open Drain Control Registers of Port B/Port C – ODCB/ODCC      | .34 |
|      | 7.3.9   | Timer Clock Counter Controller – TCCC                          | .34 |
|      | 7.3.10  | Free Run Counter Controller – FRCC                             | .35 |
|      | 7.3.11  | Watchdog Timer Controller – WDTC                               | .35 |
|      | 7.3.12  | ADC Analog Input Pin Select – ADCAIS                           | .36 |
|      | 7.3.13  | ADC Configuration Register – ADCCR                             | .36 |
|      | 7.3.14  | PWM Control Register – PWMCR                                   | .37 |
|      | 7.3.15  | BB Interrupt Control Register – RFINTE                         | .37 |
| 7.4  | Code (  | Option (ROM-0x2FFF)                                            | 38  |
| Base | eband ( | ВВ)                                                            | 39  |
| 8.1  | BB: Sta | andard Interface for the RFW102 Series                         | 39  |
|      | 8.1.1   | Features                                                       | .39 |
|      | 8.1.2   | Description                                                    | .39 |
|      | 8.1.3   | I/O and Package Description                                    | .40 |
|      | 8.1.4   | BB Architecture                                                | .42 |
| 8.2  | BB De   | scription                                                      | 42  |
|      | 8.2.1   | Reset                                                          | .42 |
|      | 8.2.2   | Power Saving Modes                                             | .42 |
|      |         | 8.2.2.1 Power-Down Mode                                        | .42 |
|      |         | 8.2.2.2 Idle Mode                                              | .43 |
|      | 8.2.3   | Preamble Correlation                                           | .43 |
|      | 8.2.4   | Refresh Bit                                                    | .44 |
|      | 8.2.5   | Bit Structure                                                  | .44 |
|      | 8.2.6   | CRC                                                            | .45 |
|      |         |                                                                |     |

Product Specification (V1.0) 10.09.2007

CLAN

8



|   |       | 8.2.7    | RX FIFO                                  | 46   |
|---|-------|----------|------------------------------------------|------|
|   |       | 8.2.8    | TX FIFO                                  | 47   |
|   |       | 8.2.9    | Interrupt Driver                         | 47   |
|   |       | 8.2.10   | Packet Size                              | 49   |
|   |       | 8.2.11   | NET_ID and NODE_ID Filters               | 49   |
|   |       | 8.2.12   | Carrier-Sense                            | 50   |
|   |       |          | 8.2.12.1 RFWaves Carrier-Sense Algorithm | 50   |
|   |       | 8.2.13   | Receiver Reference Capacitor Discharge   | 51   |
|   |       | 8.2.14   | Changing BB Configuration                | 52   |
|   |       | 8.2.15   | Input Synchronizer                       | 52   |
|   | 8.3   | Registe  | er Description                           | . 52 |
|   |       | 8.3.1    | Bit Length Register (BLR)                | 53   |
|   |       | 8.3.2    | Preamble Low Register (PRE-L)            | 53   |
|   |       | 8.3.3    | Preamble High Register (PRE-H)           | 53   |
|   |       | 8.3.4    | Packet Parameter Register (PPR)          | 53   |
|   |       | 8.3.5    | System Control Register1 (SCR1)          | 55   |
|   |       | 8.3.6    | System Control Register 2 (SCR2)         | 55   |
|   |       | 8.3.7    | System Control Register 3 (SCR3)         |      |
|   |       | 8.3.8    | System Control Register 4 (SCR4)         | 58   |
|   |       | 8.3.9    | Transmit FIFO Status Register (TFSR)     | 59   |
|   |       |          | Receive FIFO Status Register (RFSR)      |      |
|   |       | 8.3.11   | Location Control Register (LCR)          | 59   |
|   |       |          | Node Identity Register (BIR)             |      |
|   |       | 8.3.13   | Net Identity Register (NIR)              | 60   |
|   |       |          | System Status Register (SSR)             |      |
|   |       |          | Packet Size Register (PSR)               |      |
|   |       |          | Carrier Sense Register (CSR)             |      |
|   | 8.4   | Interru  | pt Registers                             |      |
|   |       | 8.4.1    | Interrupt Enable Register (IER)          |      |
|   |       | 8.4.2    | Interrupt Identification Register (IIR)  | 64   |
|   | 8.5   | List of  | BB Register Mapping                      | .65  |
|   | 8.6   | MCU E    | 3B Control Registers                     | .65  |
|   |       | 8.6.1    | Control Registers List                   | 65   |
|   |       | 8.6.2    | BB Control Example                       | 66   |
| 9 | Direc | ction Se | erial Peripheral Interface (SPI)         | . 68 |
|   | 9.1   | Introdu  | lction                                   | .68  |
|   | 9.2   | Featur   | es                                       | .68  |
|   | 9.3   | Block [  | Diagram                                  | .68  |
|   | 9.4   |          | eiver Timing                             |      |
|   | 9.5   |          | d Registers with SPI                     |      |
|   |       |          | U                                        |      |

Product Specification (V1.0) 10.09.2007

• v

Contents

|    | 9.6 Function Description                                | 70 |
|----|---------------------------------------------------------|----|
|    | 9.6.1 Block Diagram Description                         | 70 |
|    | 9.6.2 Signal & Pin Description                          |    |
| 10 | Analog to Digital Converter (ADC)                       | 71 |
|    | 10.1 ADC Control Registers                              | 72 |
|    | 10.2 Programming Steps/Considerations                   | 74 |
| 11 | Dual Pulse Width Modulations (PWM0 and PWM1)            | 75 |
|    | 11.1 Overview                                           | 75 |
|    | 11.2 PWM Control Registers                              | 76 |
|    | 11.3 PWM Programming Procedures/Steps                   | 78 |
| 12 | Interrupts                                              | 78 |
|    | 12.1 Introduction                                       | 78 |
| 13 | Circuitry of Input and Output Pins                      | 80 |
|    | 13.1 Introduction                                       | 80 |
| 14 | Timer/Counter System                                    | 80 |
|    | 14.1 Introduction                                       | 80 |
|    | 14.2 Time Clock Counter (TCC)                           | 80 |
|    | 14.2.1 Block Diagram of TCC                             | 80 |
|    | 14.2.2 TCC Control Registers                            |    |
|    | 14.2.3 TCC Programming Procedures/Steps                 |    |
|    | 14.3 Free Run Counter                                   |    |
|    | 14.3.1 Block Diagram of FRC                             |    |
|    | 14.3.2 FRC Control Registers                            |    |
|    | 14.3.3 FRC Programming Procedures/Steps                 |    |
| 15 | Reset and Wake up                                       |    |
|    | 15.1 Reset                                              |    |
|    | 15.2 The Status of RST, T, and P of the STATUS Register |    |
|    | 15.3 System Set-up Time (SST)                           |    |
|    | 15.4 Wake-up Procedure on Power-on Reset                |    |
| 16 | Oscillators                                             |    |
|    | 16.1 Introduction                                       |    |
|    | 16.2 Clock Signal Distribution                          |    |
|    | 16.3 PLL Oscillator                                     |    |
|    | 16.4 Selected PLL Oscillation out                       |    |
| 17 | Low-Power Mode                                          |    |
|    | 17.1 Introduction                                       |    |
|    | 17.2 Green Mode                                         | 87 |
|    | 17.3 Sleep Mode                                         |    |
|    |                                                         |    |

Product Specification (V1.0) 10.09.2007

CLAN



| 18 | Instruction Description                         |  |
|----|-------------------------------------------------|--|
|    | 18.1 Instruction Set Summary                    |  |
| 19 | Electrical Specification                        |  |
|    | 19.1 Absolute Maximum Ratings                   |  |
|    | 19.2 DC Electrical Characteristic               |  |
|    | 19.3 Voltage Detector Electrical Characteristic |  |
|    | 19.4 AC Electrical Characteristic               |  |
|    | 19.4.1 MCU                                      |  |
|    | 19.4.2 BB                                       |  |
| 20 | Application Circuit                             |  |

## APPENDIX

| Α | Package Type        | . 94 |
|---|---------------------|------|
|   | Package Information |      |

## **Specification Revision History**

| Doc. Version | Revision Description     | Date       |
|--------------|--------------------------|------------|
| 1.0          | Initial released version | 2007/10/09 |

• vii



Product Specification (V1.0) 10.09.2007



## **1** General Description

The EM77950 from ELAN Electronics is a low-cost and high performance 8-bit CMOS advance RISC architecture microcontroller device. It has an on-chip 1-Mbps RF driver module/Base Band (BB), Serial Peripheral Interface (SPI), dual Pulse Width Modulation (PWM) with 16-bit resolution, an 8-bit Timer Clock Counter (TCC) and a 16-bit Free Run Timer, multi-channel Analog to Digital Converter (ADC) with 8-bit resolution, Key Wake-up function (KWU), Power-on Reset (POR), Watchdog Timer (WDT), and power saving Sleep Mode. All these features combine to ensure applications require the least external components, hence, not only reduce system cost, but also have the advantage of low power consumption and enhanced device reliability.

The 52-pin EM77950 is available in a very cost-effective version that provides a single chip solution in designing wireless products.

## 2 Features

## 2.1 Core

- Operating Voltage Range: 2.2V ~ 3.6V DC (ADC reference volt 3V)
- Operating Temperature Range: 0°C ~ 70°C
- Operating Frequency Range: DC ~ 48MHz (1 clock/cycle)
  - 6MHz external clock source
  - 6/12/24/48 MHz to Core clock
  - 6/12/24/48 MHz to clock
- Internal Memory
  - 12K x 16 bits of on-chip Program ROM
  - 896 x 8 bits of on-chip Register (SRAM)
- Watchdog Timer (WDT)
- 32 level stacks for both CALL and interrupt subroutine
- Internal Power-on Reset (POR) function
- Code protection function available
- All single cycle (1 clock) instruction except for conditional branches which are two or three cycles.
- Direct, indirect and relative addressing modes
- Low power, high speed CMOS technology



- Power consumption:
  - < 4 mA @ 3.3V, 6 MHz
  - < 60 µA @ 3.0V, (RC = 32.768 kHz)
  - < 1 µA standby current
- 52/44-pin QFP package

## 2.2 Oscillators/System Clocks

- Three oscillator options:
  - Crystal/Resonate oscillator of high frequency
  - PLL oscillator: 6MHz, 12 MHz, 24 MHz, and 48 MHz (External crystal should be 6 MHz)
  - External RC oscillator
- Three modes of system clocks:
  - Sleep mode
  - Green mode
  - Normal mode
- Internal RC oscillator for Power-on Reset (POR) and Watchdog Timer (WDT)

## 2.3 Input and Output (I/O) Pins

- 40 I/O pins max.
- Pull-up resistor options
- Key Wake-up function
- Open drain output options

## 2.4 Timers and Counters

- Programmable 8-bit real Time Clock/Counter (TCC) with prescaler and overflow interrupt
- 16-bit Free Run Counter (FRC) with overflow interrupt

## 2.5 Interrupt Sources and Features

- Hardware priority check
- Different interrupt vectors
- Interrupts
  - Key Wake-up function
  - External pin interrupt
  - 16-bit Free Run Counter Overflow
  - TCC (time-base) overflow;
  - Read Buffer Full Interrupt in Serial Peripheral Interface (SPI)
  - · An analog to digital converting (ADC) complete
  - One period of Pulse Width Modulation (PWM) complete



- Base Band (BB) function interrupts:
  - CSD: carrier sense detection
  - TX\_AE: TX\_FIFO almost full
  - RX\_AF: RX\_FIFO almost full
  - TX\_EMPTY: finish a transmitting a package
  - RX\_OF: RX\_FIFO overflow
  - LINK\_DIS: zero counter capacitor discharge mechanism
  - LOCK\_OUT: finish receiving a package
  - LOCK\_IN: start receiving a package

## 2.6 Baseband (BB)

- Serial to Parallel conversion of RFW102 interface
- Parallel interface to RFW102 modem
- Serial to Parallel conversion of RFW102 interface
- Input FIFO (RX\_FIFO)
- Output FIFO (TX\_FIFO)
- Preamble Correlation
- Packet Address Filter (Network and unique)
- CRC calculation
- Inter-RFWAVES networks Carrier-sense
- Discharge of RFW-102 reference capacitor
- Compensate for clock drifts between the transmitting EM77950 and the receiving EM77950 up to 1000ppm. Hence, the EM77950 requires low performance crystal.
- Interrupt Driver connected to the EM77950's internal interrupt and informs the EM77950 about BB events.

## 2.7 Serial Peripheral Interface (SPI)

- Either MSB or LBS can be transmitted/received first
- Both Master and Slave modes available

## 2.8 Pulse Width Modulation (PWM)

Dual Pulse Width Modulation (PWM) with 16-bit resolution

## 2.9 Analog to Digital Converter (ADC)

• 16 multi-channel Analog to Digital Converter with 8-bit resolution



## 3 Pins Assignment

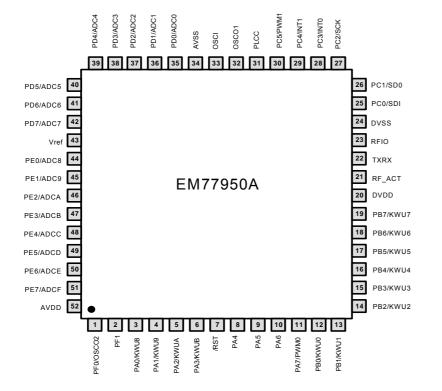



Fig. 3-1 Pin Configuration of EM77950A

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)

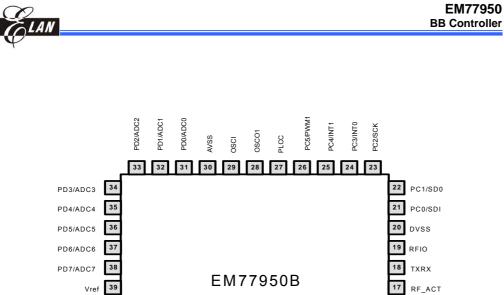





Fig. 3-2 Pins Configuration of EM77950B

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



## 4 Pin Description

The Table below shows the corresponding relationship between the pad and pins of EM77950A

| Pin # | Symbol           | Туре | Schmitt<br>Trigger | Pull High<br>/50KΩ | Open<br>Drain | Function Description                                                                                          |
|-------|------------------|------|--------------------|--------------------|---------------|---------------------------------------------------------------------------------------------------------------|
| 1     | PTF0/OSCO2       | I/O  | -                  | $\checkmark$       | _             | Pin 0 of Port F<br>Selected PLL clock out                                                                     |
| 2     | PF1              | I/O  | -                  | $\checkmark$       | -             | Pin 1 of Port F                                                                                               |
| 3~6   | KWU8~B,<br>PA0~3 | I/O  | -                  | $\checkmark$       | -             | Pins 0~3 of Port A (default).<br>Key Wake-up 8~B                                                              |
| 7     | /RST             | Ι    | $\checkmark$       | -                  | Ι             | Reset pin                                                                                                     |
| 8~10  | PTA4~6           | I/O  | -                  | $\checkmark$       | I             | Pins 4~6 of Port A.                                                                                           |
| 11    | PWM0/PTA7        | I/O  | -                  | $\checkmark$       | _             | Pin 7 of Port A.<br>PWM0 output                                                                               |
| 12~19 | PB0 ~ PB7        | I/O  | -                  | $\checkmark$       | $\checkmark$  | Pins 0~7 of Port B (default).<br>Key Wake-up 0~7                                                              |
| 20    | DVDD             | -    | -                  | -                  | -             | Power supply for digital circuit. The power source value should be within the range of the operating voltage. |
| 21    | RF_ACT           | 0    | -                  | -                  | -             | BB/RF Active                                                                                                  |
| 22    | TXRX             | 0    | -                  | -                  | -             | Transceiver modes control                                                                                     |
| 23    | RFIO             | I/O  | -                  | -                  | -             | Transceiver to/from RF modem                                                                                  |
| 24    | DVSS             | I    | -                  | 1                  | -             | Ground Pin for Digital circuit                                                                                |
| 25    | SDI/PTC0         | I/O  | $\checkmark$       | $\checkmark$       | $\checkmark$  | Data in of SPI<br>Pin 0 of Port C                                                                             |
| 26    | SDO/PTC1         | I/O  | $\checkmark$       | $\checkmark$       | $\checkmark$  | Data out of SPI<br>Pin 1 of Port C                                                                            |
| 27    | SCK/PTC2         | I/O  | $\checkmark$       | $\checkmark$       | $\checkmark$  | Clock of SPI<br>Pin 2 of Port C                                                                               |
| 28    | EINT0/ PTC3      | I/O  | _                  | $\checkmark$       | $\checkmark$  | External interrupt Pin 0<br>Pin 3 of Port C                                                                   |
| 29    | EINT1/ PTC4      | I/O  | -                  | $\checkmark$       | $\checkmark$  | External interrupt Pin 1<br>Pin 4 of Port C                                                                   |
| 30    | PWM1/PTC5        | I/O  | _                  | $\checkmark$       | $\checkmark$  | Pin 5 of Port C.<br>PWM1 output                                                                               |
| 31    | PLLC             | -    | -                  | -                  | -             | External capacitor for PLL circuit                                                                            |
| 32    | OSCO1            | 0    | -                  | -                  | -             | Output of crystal oscillator                                                                                  |
| 33    | OSCI             | Ι    | _                  | -                  | I             | Input of crystal oscillator                                                                                   |
| 34    | AVSS             | -    | -                  | -                  | -             | Ground Pin for Analog circuit                                                                                 |

6•

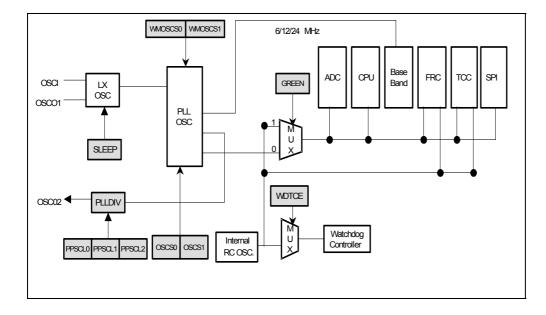


| Pin # | Symbol            | Туре | Schmitt<br>Trigger | Pull High<br>/50KΩ | Open<br>Drain | Function Description                                                                                         |
|-------|-------------------|------|--------------------|--------------------|---------------|--------------------------------------------------------------------------------------------------------------|
| 35~42 | PTD0~7,<br>ADC0~7 | I/O  | -                  | $\checkmark$       | -             | Pins 0~7 of Port D<br>Inputs 0~7 of ADC                                                                      |
| 43    | VREF              | I    | -                  | -                  | -             | Reference voltage for ADC                                                                                    |
| 44~51 | PTE0~7,<br>ADC8~F | I/O  | -                  | $\checkmark$       | -             | Pins 0~7 of Port E<br>Inputs 8~F of ADC                                                                      |
| 52    | AVDD              | -    | -                  | -                  | -             | Power supply for analog circuit. The power source value should be within the range of the operating voltage. |

The Table below shows the corresponding relationship between the pad and pins of EM77950B

| Pin # | Symbol           | Туре | Schmitt<br>Trigger | Pull High<br>/50KΩ | Open<br>Drain | Function Description                                                                                          |
|-------|------------------|------|--------------------|--------------------|---------------|---------------------------------------------------------------------------------------------------------------|
| 1     | PTF0/OSCO2       | I/O  | _                  | $\checkmark$       | _             | Pin 0 of Port F                                                                                               |
|       |                  |      |                    |                    |               | Selected PLL clock out                                                                                        |
| 2     | PF1              | I/O  | -                  | $\checkmark$       | -             | Pin 1 of Port F                                                                                               |
| 3~6   | KWU8~B,<br>PA0~3 | I/O  | -                  | $\checkmark$       | -             | Pins 0~3 of Port A (default)<br>Key Wake-up 8~B                                                               |
| 7     | /RST             | Ι    | $\checkmark$       | Ι                  | I             | Reset pin                                                                                                     |
| 8~10  | PTA4~6           | I/O  | -                  | $\checkmark$       | Ι             | Pins 4~6 of Port A                                                                                            |
| 11    | PWM0/PTA7        | 1/0  | -                  |                    | -             | Pin 7 of Port A.                                                                                              |
|       |                  |      |                    |                    |               | PWM0 output                                                                                                   |
| 12~15 | PB0 ~ PB3        | I/O  |                    |                    |               | Pins 0~3 of Port B (default)                                                                                  |
| 12.10 | F 60 % F 65      | 1/0  | _                  | v                  | v             | Key Wake-up 0~7                                                                                               |
| 16    | DVDD             | _    | _                  | _                  | _             | Power supply for digital circuit. The power source value should be within the range of the operating voltage. |
| 17    | RF_ACT           | 0    | _                  | -                  | _             | BB/RF Active                                                                                                  |
| 18    | TXRX             | 0    | -                  | -                  | _             | Transceiver modes control                                                                                     |
| 19    | RFIO             | I/O  | -                  | -                  | _             | Transceiver to/from RF modem                                                                                  |
| 20    | DVSS             | -    | -                  | -                  | -             | Ground Pin for Digital circuit                                                                                |
| 04    |                  | 1/0  | .1                 | .1                 | .1            | Data in of SPI                                                                                                |
| 21    | SDI/PTC0         | I/O  | $\checkmark$       | $\checkmark$       | $\checkmark$  | Pin 0 of Port C                                                                                               |
| 22    | SDO/PTC1         | 1/0  |                    |                    |               | Data out of SPI                                                                                               |
| ~~~   | 3D0/F101         | 1/0  | N                  | N                  | N             | Pin 1 of Port C                                                                                               |




| Pin # | Symbol            | Туре | Schmitt<br>Trigger | Pull High<br>/50KΩ | Open<br>Drain | Function Description                                                                                         |
|-------|-------------------|------|--------------------|--------------------|---------------|--------------------------------------------------------------------------------------------------------------|
| 23    | SCK/PTC2          | I/O  | $\checkmark$       | $\checkmark$       | $\checkmark$  | Clock of SPI<br>Pin 2 of Port C                                                                              |
| 24    | EINT0/ PTC3       | I/O  | -                  | $\checkmark$       | $\checkmark$  | External interrupt Pin 0<br>Pin 3 of Port C                                                                  |
| 25    | EINT1/ PTC4       | I/O  | _                  | $\checkmark$       | $\checkmark$  | External interrupt Pin 1<br>Pin 4 of Port C                                                                  |
| 26    | PWM1/PTC5         | I/O  | _                  | $\checkmark$       | $\checkmark$  | Pin 5 of Port C<br>PWM1 output                                                                               |
| 27    | PLLC              | -    | -                  | -                  | -             | External capacitor for PLL circuit                                                                           |
| 28    | OSCO1             | 0    | -                  | -                  | -             | Output of crystal oscillator                                                                                 |
| 29    | OSCI              | I    | -                  | -                  | -             | Input of crystal oscillator                                                                                  |
| 31~38 | PTD0~7,<br>ADC0~7 | I/O  | _                  | $\checkmark$       | _             | Pins 0~7 of Port D<br>Inputs 0~7 of ADC                                                                      |
| 39    | VREF              | I    | -                  | -                  | -             | Reference voltage for ADC                                                                                    |
| 40~43 | PTE0~3,<br>ADC8~B | I/O  | _                  | $\checkmark$       | -             | Pins 0~3 of Port E<br>Inputs 8~B of ADC                                                                      |
| 44    | AVDD              | -    | -                  | -                  | _             | Power supply for analog circuit. The power source value should be within the range of the operating voltage. |

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)

LAN



## 5 Block Diagram



Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)

## 6 Memory

## 6.1 Program Memory

The EM77950 has a 14-bit program counter (PC). The space of program memory, which is partitioned into 2 pages can address up to 12K. One page has 8K in length, and the other is 4K. Fig. 6-1 depicts the profile of the program memory and stack. The initial address is 0x0000. The table of interrupt-vectors starts from 0x10 to 0x80 with every other eight-address space.

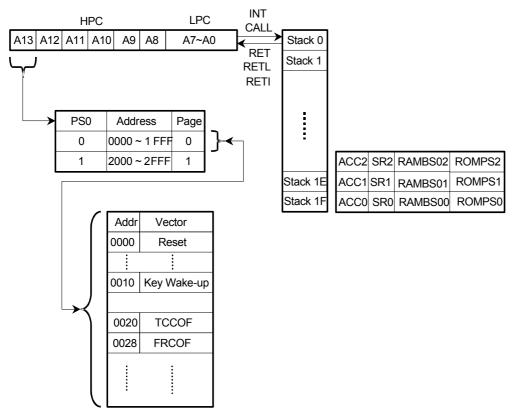



Fig. 6-1 Configuration of Program Memory (ROM) for EM77950

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)

## 6.2 RAM-Register

A total of 896 accessible bytes of data memory are available for the EM77950. By function, they are classified into general purpose registers, system control/configuration registers, specific purpose registers, Baseband (BB) control/status registers, SPI control/status registers, timer/counter registers, and IO port status/control registers. All of the mentioned registers except I/O ports and their related control registers are implemented as static RAM. The RAM configurations are shown in Fig. 6-2.

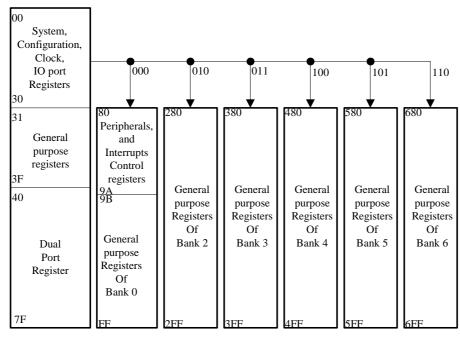



Fig. 6-2 of Data Memory (RAM) Configuration



EM77950 BB Controller



The table is a summary of all registers except general purpose registers.

| Addr  | Name  | Reset Type         | Bit 7      | Bit 6       | Bit 5      | Bit 4      | Bit 3      | Bit 2      | Bit 1       | Bit 0     |
|-------|-------|--------------------|------------|-------------|------------|------------|------------|------------|-------------|-----------|
|       |       | Full Name          |            | Inc         | lirect Add | Iressing F | Register c | ontents    |             |           |
|       |       | Bit Name           | IAC07      | IAC06       | IAC05      | IAC04      | IAC03      | IAC02      | IAC01       | IAC00     |
| 0x00  | IAC0  | Read / Write (R/W) | R/W        | R/W         | R/W        | R/W        | R/W        | R/W        | R/W         | R/W       |
| 0x00  | IACU  | Power-on           | 0          | 0           | 0          | 0          | 0          | 0          | 0           | 0         |
|       |       | /RESET and WDT     | 0          | 0           | 0          | 0          | 0          | 0          | 0           | 0         |
|       |       | Wake-up from Int   | Р          | Р           | Р          | Р          | Р          | Р          | Р           | Р         |
|       |       | Full Name          |            | Most S      | ignificant | Byte of F  | rogramm    | ning Cour  | nter        |           |
|       |       | Bit Name           | PC7        | PC6         | PC5        | PC4        | PC3        | PC2        | PC1         | PC0       |
| 0x01  | HPC   | Read / Write (R/W) | R          | R           | R          | R          | R          | R          | R           | R         |
| 0x01  |       | Power-on           | 0          | 0           | 0          | 0          | 0          | 0          | 0           | 0         |
|       |       | /RESET and WDT     | 0          | 0           | 0          | 0          | 0          | 0          | 0           | 0         |
|       |       | Wake-up from Int   | Jump to co | rresponding | g interrup | t vector o | r continue | e to execu | ute next ir | struction |
|       |       | Full Name          |            | Least S     | ignificant | Byte of F  | Programn   | ning Cour  | nter        |           |
|       |       | Bit Name           | PCF        | PCE         | PCD        | PCC        | PCB        | PCA        | PC9         | PC8       |
| 0x02  | LPC   | Read / Write (R/W) | R/W        | R/W         | R/W        | R/W        | R/W        | R/W        | R/W         | R/W       |
| 0x02  | LPC   | Power-on           | 0          | 0           | 0          | 0          | 0          | 0          | 0           | 0         |
|       |       | /RESET and WDT     | 0          | 0           | 0          | 0          | 0          | 0          | 0           | 0         |
|       |       | Wake-up from Int   | Jump to co | rresponding | g interrup | t vector o | r continue | e to execu | ute next ir | struction |
|       |       | Full Name          |            |             | 5          | Status Re  | gister     |            |             |           |
|       |       | Bit Name           | -          | -           | RST        | Т          | Р          | Z          | DC          | С         |
| 0x03  | SR    | Read / Write (R/W) | -          | -           | R/W        | R/W        | R/W        | R/W        | R/W         | R/W       |
| 0.005 | SK -  | Power-on           | -          | -           | 0          | 1          | 1          | U          | U           | U         |
|       |       | /RESET and WDT     | -          | -           | Р          | Т          | Т          | Р          | Р           | Р         |
|       |       | Wake-up from Int   | -          | -           | Р          | Т          | Т          | Р          | Р           | Р         |
|       |       | Full Name          |            |             | RAM        | VI Bank S  | elector 0  |            |             |           |
|       |       | Bit Name           | -          | -           | -          | -          | -          | RBS02      | RBS01       | RBS00     |
| 0x04  | RAMBS | Read / Write (R/W) | -          | -           | -          | -          | -          | R          | R           | R         |
| 0x04  | 0     | Power-on           | -          | -           | -          | -          | -          | 0          | 0           | 0         |
|       |       | /RESET and WDT     | -          | -           | -          | -          | -          | 0          | 0           | 0         |
|       |       | Wake-up from Int   | -          | -           | -          | -          | -          | Р          | Р           | Р         |
|       |       | Full Name          |            |             | RC         | M Page     | Selector   |            |             |           |
|       |       | Bit Name           | -          | -           | -          | -          | -          | -          | -           | RPS0      |
| 0205  | ROMPS | Read / Write (R/W) | -          | -           | -          | -          | -          | -          | -           | R/W       |
| 0x05  | RUNPS | Power-on           | -          | -           | -          | -          | -          | -          | -           | 0         |
|       |       | /RESET and WDT     | -          | -           | -          | -          | -          | -          | -           | 0         |
|       |       | Wake-up from Int   | -          | -           | -          | -          | -          | -          | -           | Р         |

| Addr | Name      | Reset Type         | Bit 7 | Bit 6   | Bit 5      | Bit 4       | Bit 3      | Bit 2     | Bit 1    | Bit 0    |
|------|-----------|--------------------|-------|---------|------------|-------------|------------|-----------|----------|----------|
|      |           | Full Name          |       |         | Indire     | ect Addres  | ssing Poir | nter 0    |          |          |
|      |           | Bit Name           | IAP07 | IAP06   | IAP05      | IAP04       | IAP03      | IAP02     | IAP01    | IAP00    |
| 0x06 | IAP0      | Read / Write (R/W) | R/W   | R/W     | R/W        | R/W         | R/W        | R/W       | R/W      | R/W      |
| 0,00 | IAFU      | Power-on           | 0     | 0       | 0          | 0           | 0          | 0         | 0        | 0        |
|      |           | /RESET and WDT     | 0     | 0       | 0          | 0           | 0          | 0         | 0        | 0        |
|      |           | Wake-up from Int   | Р     | Р       | Р          | Р           | Р          | Р         | Р        | Р        |
|      |           | Full Name          |       |         | F          | RAM Bank    | Selector   | 1         |          |          |
|      |           | Bit Name           | -     | -       | -          | -           | -          | RBS12     | RBS11    | RBS10    |
| 0x07 | RAMBS1    | Read / Write (R/W) | -     | -       | -          | -           | -          | R/W       | R/W      | R/W      |
| 0.07 | RAIVIDS I | Power-on           | -     | -       | -          | -           | -          | 0         | 0        | 0        |
|      |           | /RESET and WDT     | -     | -       | -          | -           | -          | 0         | 0        | 0        |
|      |           | Wake-up from Int   | -     | -       | -          | -           | -          | Р         | Р        | Р        |
|      |           | Full Name          |       |         | Indire     | ect Addres  | ssing Poir | nter 1    |          |          |
|      |           | Bit Name           | IAP17 | IAP16   | IAP15      | IAP14       | IAP13      | IAP12     | IAP11    | IAP10    |
| 0x08 | IAP1      | Read / Write (R/W) | R/W   | R/W     | R/W        | R/W         | R/W        | R/W       | R/W      | R/W      |
| 0,00 |           | Power-on           | 0     | 0       | 0          | 0           | 0          | 0         | 0        | 0        |
|      |           | /RESET and WDT     | 0     | 0       | 0          | 0           | 0          | 0         | 0        | 0        |
|      |           | Wake-up from Int   | Р     | Р       | Р          | Р           | Р          | Р         | Р        | Р        |
|      |           | Full Name          |       |         | Indire     | ct Addres   | sing Cont  | ents 1    |          |          |
|      |           | Bit Name           | IAC17 | IAC16   | IAC15      | IAC14       | IAC13      | IAC12     | IAC11    | IAC10    |
| 0x09 | IAC1      | Read / Write (R/W) | R/W   | R/W     | R/W        | R/W         | R/W        | R/W       | R/W      | R/W      |
| 0,09 | IACT      | Power-on           | 0     | 0       | 0          | 0           | 0          | 0         | 0        | 0        |
|      |           | /RESET and WDT     | 0     | 0       | 0          | 0           | 0          | 0         | 0        | 0        |
|      |           | Wake-up from Int   | Р     | Р       | Р          | Р           | Р          | Р         | Р        | Р        |
|      |           | Full Name          |       | Indired | ct Address | s Pointer I | Direction  | Control R | egister  |          |
|      |           | Bit Name           | -     | -       | -          | -           | IAP1_D     | IAP0_D    | IAP1_D_E | IAP0_D_E |
| 0x0A | IAPDR     | Read / Write (R/W) | -     | -       | -          | -           | R/W        | R/W       | R/W      | R/W      |
| 0,07 |           | Power-on           | -     | -       | -          | -           | 0          | 0         | 0        | 0        |
|      |           | /RESET and WDT     | -     | -       | -          | -           | 0          | 0         | 0        | 0        |
|      |           | Wake-up from Int   | -     | -       | -          | -           | Р          | Р         | Р        | Р        |
|      |           | Full Name          |       | I       | _east Sigr | nificant By | te of Tabl | e Look-u  | C        |          |
|      |           | Bit Name           | TBL7  | TBL6    | TBL5       | TBL4        | TBL3       | TBL2      | TBL1     | TBL0     |
| 0x0B | LTBL      | Read / Write (R/W) | R/W   | R/W     | R/W        | R/W         | R/W        | R/W       | R/W      | R/W      |
| UXUB | LIBL      | Power-on           | 0     | 0       | 0          | 0           | 0          | 0         | 0        | 0        |
|      |           | /RESET and WDT     | 0     | 0       | 0          | 0           | 0          | 0         | 0        | 0        |
|      |           | Wake-up from Int   | Р     | Р       | Р          | Р           | Р          | Р         | Р        | Р        |

LAN





| Addr | Name   | Reset Type         | Bit 7  | Bit 6  | Bit 5  | Bit 4       | Bit 3     | Bit 2  | Bit 1     | Bit 0  |
|------|--------|--------------------|--------|--------|--------|-------------|-----------|--------|-----------|--------|
| Addi | Name   | Full Name          | Bit i  |        |        | nificant By |           |        |           | Bit V  |
|      |        | Bit Name           | TBLF   | TBLE   | TBLD   | TBLC        | TBLB      | TBLA   | ,<br>TBL9 | TBL8   |
|      |        | Read / Write (R/W) | R/W    | R/W    | R/W    | R/W         | R/W       | R/W    | R/W       | R/W    |
| 0x0C | HTBL   | Power-on           | 0      | 0      | 0      | 0           | 0         | 0      | 0         | 0      |
|      |        | /RESET and WDT     | 0      | 0      | 0      | 0           | 0         | 0      | 0         | 0      |
|      |        | Wake-up from Int   | P      | P      | P      | P           | P         | P      | P         | P      |
|      |        | Full Name          |        | •      | ·      |             | Pointer   |        |           | •      |
|      |        | Bit Name           | STKPT7 | STKPT6 | STKPT5 | STKPT4      |           | STKPT2 | STKPT1    | STKPT0 |
|      |        | Read / Write (R/W) | R      | R      | R      | R           | R         | R      | R         | R      |
| 0x0D | STKPTR | Power-on           | 1      | 1      | 1      | 1           | 1         | 1      | 1         | 1      |
|      |        | /RESET and WDT     | 1      | 1      | 1      | 1           | 1         | 1      | 1         | 1      |
|      |        | Wake-up from Int   | P      | P      | P      | P           | P         | P      | P         | P      |
|      |        | Full Name          | r      | I      | Г      |             | Pointer   |        | F         | r      |
|      |        | Bit Name           | RPTC7  | RPTC6  | RPTC5  | RPTC4       | RPTC3     | RPTC2  | RPTC1     | RPTC0  |
|      |        | Read / Write (R/W) | R/W    | R/W    | R/W    | R/W         | R/W       | R/W    | R/W       | R/W    |
| 0x0E | RPTC   | Power-on           | 0      | 0      | 0      | 0           | 0         | 0      | 0         | 0      |
|      |        | /RESET and WDT     | 0      | 0      | 0      | 0           | 0         | 0      | 0         | 0      |
|      |        | Wake-up from Int   | P      | P      | P      | P           | P         | P      | P         | P      |
|      |        | Full Name          | 1      |        | 1      | -           | r Counter | 1      | 1         | 1      |
|      |        | Bit Name           | PRC7   | PRC6   | PRC5   | PRC4        | PRC3      | PRC2   | PRC1      | PRC0   |
|      |        | Read / Write (R/W) | R/W    | R/W    | R/W    | R/W         | R/W       | R/W    | R/W       | R/W    |
| 0x0F | PRC    | Power-on           | 0      | 0      | 0      | 0           | 0         | 0      | 0         | 0      |
|      |        | /RESET and WDT     | 0      | 0      | 0      | 0           | 0         | 0      | 0         | 0      |
|      |        |                    | 0      | 0      | 0      | 0           | 0         | 0      | 0         | 0      |
|      |        | Wake-up from Int   | 0      | 0      | -      | -           | ũ         | -      | 0         | U      |
|      |        | Full Name          | T007   | TOOO   | 1      |             |           |        | TOOL      | TOOD   |
|      |        | Bit Name           | TCC7   | TCC6   | TCC5   | TCC4        | TCC3      | TCC2   | TCC1      | TCC0   |
| 0x10 | тсс    | Read / Write (R/W) | R/W    | R/W    | R/W    | R/W         | R/W       | R/W    | R/W       | R/W    |
|      |        | Power-on           | 0      | 0      | 0      | 0           | 0         | 0      | 0         | 0      |
|      |        | /RESET and WDT     | 0      | 0      | 0      | 0           | 0         | 0      | 0         | -      |
|      |        | Wake-up from Int   | 0      | 0      | 0      | -           | -         | 0      | 0         | 0      |
|      |        | Full Name          |        | DDEIE  |        | 1           | pt Flag   |        | TOOOF     | FDOOF  |
|      |        | Bit Name           | ADIF   | RBFIF  |        | PWM0IF      |           | EINTOF | TCCOF     | FRCOF  |
| 0x11 | INTF   | Read / Write (R/W) | R/W    | R/W    | R/W    | R/W         | R/W       | R/W    | R/W       | R/W    |
|      |        | Power-on           | 0      | 0      | 0      | 0           | 0         | 0      | 0         | 0      |
|      |        | /RESET and WDT     | 0      | 0      | 0      | 0           | 0         | 0      | 0         | 0      |
|      |        | Wake-up from Int   | Р      | Р      | Р      | Р           | Р         | Р      | Р         | Р      |

Bit 0

R/W

0

0

Ρ

R/W

0

0

Ρ

Bit 1

R/W

0

0

Ρ

R/W

0

0

Ρ

KWUBIF KWUAIF KWU9IF KWU8IF

KWU3IF KWU2IF KWU1IF KWU0IF

| 1 | E    | )<br>LAN |                    |        |        |          |           |               |          |
|---|------|----------|--------------------|--------|--------|----------|-----------|---------------|----------|
|   | Ψ    |          |                    |        |        |          |           |               |          |
|   | Addr | Name     | Reset Type         | Bit 7  | Bit 6  | Bit 5    | Bit 4     | Bit 3         | Bit 2    |
|   |      |          | Full Name          |        |        | Port A I | Key Wake  | up Interr     | upt Flag |
|   |      |          | Bit Name           | -      | -      | -        | -         | KWUBIF        | KWUAIF   |
|   | 0x12 | KWUAIF   | Read / Write (R/W) | -      | -      | -        | -         | R/W           | R/W      |
|   | 0.12 | NWOAII   | Power-on           | -      | -      | -        | -         | 0             | 0        |
|   |      |          | /RESET and WDT     | -      | -      | -        | -         | 0             | 0        |
|   |      |          | Wake-up from Int   | -      | -      | -        | -         | Р             | Р        |
|   |      |          | Full Name          |        |        | Port B I | Key Wake  | up Interr     | upt Flag |
|   |      |          | Bit Name           | KWU7IF | KWU6IF | KWU5IF   | KWU4IF    | <b>KWU3IF</b> | KWU2IF   |
|   | 0x13 | KWUBIF   | Read / Write (R/W) | R/W    | R/W    | R/W      | R/W       | R/W           | R/W      |
|   | 0.15 | RWOBI    | Power-on           | 0      | 0      | 0        | 0         | 0             | 0        |
|   |      |          | /RESET and WDT     | 0      | 0      | 0        | 0         | 0             | 0        |
|   |      |          | Wake-up from Int   | Р      | Р      | Р        | Р         | Р             | Р        |
|   |      |          | Full Name          |        |        | Genera   | al Purpos | e I/O port,   | Port A   |
|   |      |          | Bit Name           | PTA7   | PTA6   | PTA5     | PTA4      | PTA3          | PTA2     |
|   | 0x14 | РТА      | Read / Write (R/W) | R/W    | R/W    | R/W      | R/W       | R/W           | R/W      |
|   | 0,14 |          | Power-on           | U      | U      | U        | U         | U             | U        |
|   |      |          | /RESET and WDT     | U      | U      | U        | U         | U             | U        |
|   |      |          | Wake-up from Int   | Р      | Р      | Р        | Р         | Р             | Р        |
|   |      |          | Full Name          |        |        | Genera   | al Purpos | e I/O port,   | Port B   |
|   |      |          | Bit Name           | PTB7   | PTB6   | PTB5     | PTB4      | PTB3          | PTB2     |

~

|       |     | Bit Name           | PTA7 | PTA6 | PTA5   | PTA4       | PTA3        | PTA2   | PTA1 | PTA0 |
|-------|-----|--------------------|------|------|--------|------------|-------------|--------|------|------|
| 0x14  | ΡΤΑ | Read / Write (R/W) | R/W  | R/W  | R/W    | R/W        | R/W         | R/W    | R/W  | R/W  |
| UX 14 | PIA | Power-on           | U    | U    | U      | U          | U           | U      | U    | U    |
|       |     | /RESET and WDT     | U    | U    | U      | U          | U           | U      | U    | U    |
|       |     | Wake-up from Int   | Р    | Р    | Р      | Р          | Р           | Р      | Р    | Р    |
|       |     | Full Name          |      |      | Genera | al Purpose | e I/O port, | Port B |      |      |
|       |     | Bit Name           | PTB7 | PTB6 | PTB5   | PTB4       | PTB3        | PTB2   | PTB1 | PTB0 |
| 0x15  | РТВ | Read / Write (R/W) | R/W  | R/W  | R/W    | R/W        | R/W         | R/W    | R/W  | R/W  |
| 0x15  | PID | Power-on           | U    | U    | U      | U          | U           | U      | U    | U    |
|       |     | /RESET and WDT     | U    | U    | U      | U          | U           | U      | U    | U    |
|       |     | Wake-up from Int   | Р    | Р    | Р      | Р          | Р           | Р      | Р    | Р    |
|       |     | Full Name          |      |      | Genera | al Purpose | e I/O port, | Port C |      |      |
|       |     | Bit Name           | -    | -    | PTC5   | PTC4       | PTC3        | PTC2   | PTC1 | PTC0 |
| 0x16  | PTC | Read / Write (R/W) | -    | -    | R/W    | R/W        | R/W         | R/W    | R/W  | R/W  |
| 0210  | PIC | Power-on           | -    | -    | U      | U          | U           | U      | U    | U    |
|       |     | /RESET and WDT     | -    | -    | U      | U          | U           | U      | U    | U    |
|       |     | Wake-up from Int   | -    | -    | Р      | Р          | Р           | Р      | Р    | Р    |
|       |     | Full Name          |      |      | Genera | al Purpose | e I/O port, | Port D |      |      |
|       |     | Bit Name           | PTD7 | PTD6 | PTD5   | PTD4       | PTD3        | PTD2   | PTD1 | PTD0 |
| 0.17  | PTD | Read / Write (R/W) | R/W  | R/W  | R/W    | R/W        | R/W         | R/W    | R/W  | R/W  |
| 0x17  | PID | Power-on           | U    | U    | U      | U          | U           | U      | U    | U    |
|       |     | /RESET and WDT     | U    | U    | U      | U          | U           | U      | U    | U    |
|       |     | Wake-up from Int   | Р    | Р    | Р      | Р          | Р           | Р      | Р    | Р    |





| Addr | Name  | Reset Type         | Bit 7 | Bit 6       | Bit 5      | Bit 4      | Bit 3       | Bit 2     | Bit 1   | Bit 0 |
|------|-------|--------------------|-------|-------------|------------|------------|-------------|-----------|---------|-------|
|      |       | Full Name          | ·     |             | General    | Purpose    | I/O port,   | Port E    |         |       |
|      |       | Bit Name           | PTE7  | PTE6        | PTE5       | PTE4       | PTE3        | PTE2      | PTE1    | PTE0  |
| 0.40 | DTE   | Read / Write (R/W) | R/W   | R/W         | R/W        | R/W        | R/W         | R/W       | R/W     | R/W   |
| 0x18 | PTE   | Power-on           | U     | U           | U          | U          | U           | U         | U       | U     |
|      |       | /RESET and WDT     | U     | U           | U          | U          | U           | U         | U       | U     |
|      |       | Wake-up from Int   | Р     | Р           | Р          | Р          | Р           | Р         | Р       | Р     |
|      |       | Full Name          |       |             | General    | Purpose    | I/O port,   | Port F    |         |       |
|      |       | Bit Name           | -     | -           | -          | -          | -           | -         | PTF1    | PTF0  |
| 010  | DTE   | Read / Write (R/W) | -     | -           | -          | -          | -           | -         | R/W     | R/W   |
| 0x19 | PTF   | Power-on           | -     | -           | -          | -          | -           | -         | U       | U     |
|      |       | /RESET and WDT     | -     | -           | -          | -          | -           | -         | U       | U     |
|      |       | Wake-up from Int   | -     | -           | -          | -          | -           | -         | Р       | Р     |
|      |       | Full Name          |       | Least si    | ignificant | Byte of 1  | 6-bit Free  | Run Co    | unter   |       |
|      |       | Bit Name           | FRC7  | FRC6        | FRC5       | FRC4       | FRC3        | FRC2      | FRC1    | FRC0  |
| 0x1A | LFRC  | Read / Write (R/W) | R     | R           | R          | R          | R           | R         | R       | R     |
| UXIA | LFRG  | Power-on           | 0     | 0           | 0          | 0          | 0           | 0         | 0       | 0     |
|      |       | /RESET and WDT     | 0     | 0           | 0          | 0          | 0           | 0         | 0       | 0     |
|      |       | Wake-up from Int   | 0     | 0           | 0          | 0          | 0           | 0         | 0       | 0     |
|      |       | Full Name          |       | Most si     | gnificant  | Byte of 16 | 6-bit Free  | Run Cou   | unter   |       |
|      |       | Bit Name           | FRCF  | FRCE        | FRCD       | FRCC       | FRCB        | FRCA      | FRC9    | FRC8  |
| 0x1B | HFRC  | Read / Write (R/W) | R/W   | R/W         | R/W        | R/W        | R/W         | R/W       | R/W     | R/W   |
| UNID |       | Power-on           | 0     | 0           | 0          | 0          | 0           | 0         | 0       | 0     |
|      |       | /RESET and WDT     | 0     | 0           | 0          | 0          | 0           | 0         | 0       | 0     |
|      |       | Wake-up from Int   | 0     | 0           | 0          | 0          | 0           | 0         | 0       | 0     |
|      |       | Full Name          |       | Least signi | ficant Byt | e Buffer o | of 16-bit F | ree Run   | Counter |       |
|      |       | Bit Name           | FRCB7 | FRCB6       | FRCB5      | FRCB4      | FRCB3       | FRCB2     | FRCB1   | FRCB0 |
| 0x1C | LFRCB | Read / Write (R/W) | R/W   | R/W         | R/W        | R/W        | R/W         | R/W       | R/W     | R/W   |
| 0,10 | LINOD | Power-on           | 0     | 0           | 0          | 0          | 0           | 0         | 0       | 0     |
|      |       | /RESET and WDT     | 0     | 0           | 0          | 0          | 0           | 0         | 0       | 0     |
|      |       | Wake-up from Int   | 0     | 0           | 0          | 0          | 0           | 0         | 0       | 0     |
|      |       | Full Name          |       | Seri        | ial Periph | eral Inter | face Rea    | d Registe | er      |       |
|      |       | Bit Name           | SPIR7 | SPIR6       | SPIR5      | SPIR4      | SPIR3       | SPIR2     | SPIR1   | SPIR0 |
| 0x1D | SPIRB | Read / Write (R/W) | R/W   | R/W         | R/W        | R/W        | R/W         | R/W       | R/W     | R/W   |
| 0,10 |       | Power-on           | 0     | 0           | 0          | 0          | 0           | 0         | 0       | 0     |
|      |       | /RESET and WDT     | 0     | 0           | 0          | 0          | 0           | 0         | 0       | 0     |
|      |       | Wake-up from Int   | Р     | Р           | Р          | Р          | Р           | Р         | Р       | Р     |

| Addr   | Name   | Reset Type         | Bit 7 | Bit 6 | Bit 5      | Bit 4       | Bit 3      | Bit 2       | Bit 1 | Bit 0 |
|--------|--------|--------------------|-------|-------|------------|-------------|------------|-------------|-------|-------|
|        |        | Full Name          |       | S     | erial Peri | pheral Inte | erface Wr  | ite Registe | er    |       |
|        |        | Bit Name           | SPIW7 | SPIW6 | SPIW5      | SPIW4       | SPIW3      | SPIW2       | SPIW1 | SPIW0 |
| 0x1E   | SPIWB  | Read / Write (R/W) | R/W   | R/W   | R/W        | R/W         | R/W        | R/W         | R/W   | R/W   |
| UXIE   | SFIND  | Power-on           | 0     | 0     | 0          | 0           | 0          | 0           | 0     | 0     |
|        |        | /RESET and WDT     | 0     | 0     | 0          | 0           | 0          | 0           | 0     | 0     |
|        |        | Wake-up from Int   | Р     | Р     | Р          | Р           | Р          | Р           | Р     | Р     |
|        |        | Full Name          |       |       | Co         | nverting \  | /alue of A | DC          |       |       |
|        |        | Bit Name           | ADD7  | ADD6  | ADD5       | ADD4        | ADD3       | ADD2        | ADD1  | ADD0  |
| 0v1E   | ADDATA | Read / Write (R/W) | R/W   | R/W   | R/W        | R/W         | R/W        | R/W         | R/W   | R/W   |
| UXIF   | ADDATA | Power-on           | 0     | 0     | 0          | 0           | 0          | 0           | 0     | 0     |
|        |        | /RESET and WDT     | 0     | 0     | 0          | 0           | 0          | 0           | 0     | 0     |
|        |        | Wake-up from Int   | Р     | Р     | Р          | Р           | Р          | Р           | Р     | Р     |
|        |        | Full Name          |       |       |            |             |            |             |       |       |
|        |        | Bit Name           |       |       | -          | -           | -          | -           | -     | -     |
| 0x20   | NC     | Read / Write (R/W) | -     | -     | -          | -           | -          | -           | -     | -     |
| 0,20   | NC     | Power-on           | -     | -     | -          | -           | -          | -           | -     | -     |
|        |        | /RESET and WDT     | -     | -     | -          | -           | -          | -           | -     | -     |
|        |        | Wake-up from Int   | -     | -     | -          | -           | -          | -           | -     | -     |
|        |        | Full Name          |       |       | Du         | ity of PWI  | M0-Low B   | yte         |       |       |
|        |        | Bit Name           | DT07  | DT06  | DT05       | DT04        | DT03       | DT02        | DT01  | DT00  |
| 0x21   | DT0L   | Read / Write (R/W) | R     | R     | R          | R           | R          | R           | R     | R     |
| 0,72,1 | DIOL   | Power-on           | 0     | 0     | 0          | 0           | 0          | 0           | 0     | 0     |
|        |        | /RESET and WDT     | 0     | 0     | 0          | 0           | 0          | 0           | 0     | 0     |
|        |        | Wake-up from Int   | Р     | Р     | Р          | Р           | Р          | Р           | Р     | Р     |
|        |        | Full Name          |       |       | Du         | ty of PWN   | /10-High B | yte         |       |       |
|        |        | Bit Name           | DT0F  | DT0E  | DT0D       | DT0C        | DT0B       | DT0A        | DT09  | DT08  |
| 0x22   | DT0H   | Read / Write (R/W) | R     | R     | R          | R           | R          | R           | R     | R     |
| 0,22   | DIGH   | Power-on           | 0     | 0     | 0          | 0           | 0          | 0           | 0     | 0     |
|        |        | /RESET and WDT     | 0     | 0     | 0          | 0           | 0          | 0           | 0     | 0     |
|        |        | Wake-up from Int   | Р     | Р     | Р          | Р           | Р          | Р           | Р     | Р     |
|        |        | Full Name          |       |       | Peri       | od of PW    | M0- Low    | Byte        |       |       |
|        |        | Bit Name           | PRD07 | PRD06 | PRD05      | PRD04       | PRD03      | PRD02       | PRD01 | PRD00 |
| 0x23   | PRD0L  | Read / Write (R/W) | R/W   | R/W   | R/W        | R/W         | R/W        | R/W         | R/W   | R/W   |
| 0723   | PROUL  | Power-on           | 0     | 0     | 0          | 0           | 0          | 0           | 0     | 0     |
|        |        | /RESET and WDT     | 0     | 0     | 0          | 0           | 0          | 0           | 0     | 0     |
|        |        | Wake-up from Int   | Р     | Р     | Р          | Р           | Р          | Р           | Р     | Р     |

LAN





| Addr | Name  | Posot Typo                 | Bit 7 | Bit 6 | Bit 5 | Bit 4     | Bit 3             | Bit 2 | Bit 1 | Bit 0 |
|------|-------|----------------------------|-------|-------|-------|-----------|-------------------|-------|-------|-------|
| Addi | Name  | Reset Type                 | BIL 7 | ыго   |       |           |                   |       | ып т  | ыго   |
|      |       | Bit Name                   | PRD0F | PRD0E | PRD0D | PRD0C     | M0- High<br>PRD0B | -     | PRD09 | PRD08 |
|      |       |                            | R/W   | R/W   | R/W   | R/W       | R/W               | R/W   | R/W   | R/W   |
| 0x24 | PRD0H | Read / Write (R/W)         | 0     | 0     | 0     | 0         | 0                 | 0     | 0     | 0     |
|      |       | Power-on<br>/RESET and WDT | 0     | 0     | 0     | 0         | 0                 | 0     | 0     | 0     |
|      |       | Wake-up from Int           | P     | P     | P     | P         | P                 | P     | P     | P     |
|      |       | Full Name                  | Г     | Г     | -     |           |                   |       | Г     | Г     |
|      |       |                            |       |       | -     |           | WM0-Lov           | -     |       |       |
|      |       | Bit Name                   | DL07  | DL06  | DL05  | DL04      | DL03              | DL02  | DL01  | DL00  |
| 0x25 | DLOL  | Read / Write (R/W)         | R/W   | R/W   | R/W   | R/W       | R/W               | R/W   | R/W   | R/W   |
|      |       | Power-on                   | 0     | 0     | 0     | 0         | 0                 | 0     | 0     | 0     |
|      |       | /RESET and WDT             | 0     | 0     | 0     | 0         | 0                 | 0     | 0     | 0     |
|      |       | Wake-up from Int           | Р     | Р     | Р     | P         | Р                 | Р     | Р     | Р     |
|      |       | Full Name                  |       |       | -     |           | WM0-Hig           | -     |       |       |
|      |       | Bit Name                   | DL0F  | DL0E  | DL0D  | DL0C      | DL0B              | DL0A  | DL019 | DL08  |
| 0x26 | DL0H  | Read / Write (R/W)         | R/W   | R/W   | R/W   | R/W       | R/W               | R/W   | R/W   | R/W   |
|      |       | Power-on                   | 0     | 0     | 0     | 0         | 0                 | 0     | 0     | 0     |
|      |       | /RESET and WDT             | 0     | 0     | 0     | 0         | 0                 | 0     | 0     | 0     |
|      |       | Wake-up from Int           | Р     | Р     | Р     | Р         | Р                 | Р     | Р     | Р     |
|      |       | Full Name                  |       | 1     |       | -         | M1-Low B          |       |       |       |
|      |       | Bit Name                   | DT17  | DT16  | DT15  | DT14      | DT13              | DT12  | DT11  | DT10  |
| 0x27 | DT1L  | Read / Write (R/W)         | R     | R     | R     | R         | R                 | R     | R     | R     |
|      |       | Power-on                   | 0     | 0     | 0     | 0         | 0                 | 0     | 0     | 0     |
|      |       | /RESET and WDT             | 0     | 0     | 0     | 0         | 0                 | 0     | 0     | 0     |
|      |       | Wake-up from Int           | Р     | Р     | Р     | Р         | Р                 | Р     | Р     | Р     |
|      |       | Full Name                  |       | 1     | Du    | ty of PWN | /11-High B        | yte   |       |       |
|      |       | Bit Name                   | DT1F  | DT1E  | DT1D  | DT1C      | DT1B              | DT1A  | DT19  | DT18  |
| 0x28 | DT1H  | Read / Write (R/W)         | R     | R/    | R     | R         | R                 | R     | R     | R     |
| 0120 | Dim   | Power-on                   | 0     | 0     | 0     | 0         | 0                 | 0     | 0     | 0     |
|      |       | /RESET and WDT             | 0     | 0     | 0     | 0         | 0                 | 0     | 0     | 0     |
|      |       | Wake-up from Int           | Р     | Р     | Р     | Р         | Р                 | Р     | Р     | Р     |
|      |       | Full Name                  |       |       | Per   | iod of PW | M1- Low I         | Byte  |       |       |
|      |       | Bit Name                   | PRD17 | PRD16 | PRD15 | PRD14     | PRD13             | PRD12 | PRD1  | PRD10 |
| 0x29 | PRD1L | Read / Write (R/W)         | R/W   | R/W   | R/W   | R/W       | R/W               | R/W   | R/W   | R/W   |
| 0,29 |       | Power-on                   | 0     | 0     | 0     | 0         | 0                 | 0     | 0     | 0     |
|      |       | /RESET and WDT             | 0     | 0     | 0     | 0         | 0                 | 0     | 0     | 0     |
|      |       | Wake-up from Int           | Р     | Р     | Р     | Р         | Р                 | Р     | Р     | Р     |

18 •

| Addr | Name  | Reset Type         | Bit 7 | Bit 6               | Bit 5   | Bit 4      | Bit 3      | Bit 2    | Bit 1 | Bit 0 |
|------|-------|--------------------|-------|---------------------|---------|------------|------------|----------|-------|-------|
|      |       | Full Name          |       |                     | Peri    | od of PWI  | M1- High   | Byte     |       |       |
|      |       | Bit Name           | PRD1F | PRD1E               | PRD1D   | PRD1C      | PRD1B      | PRD1A    | PRD19 | PRD18 |
| 0x2A | PRD1H | Read / Write (R/W) | R/W   | R/W                 | R/W     | R/W        | R/W        | R/W      | R/W   | R/W   |
| UXZA | FRDIN | Power-on           | 0     | 0                   | 0       | 0          | 0          | 0        | 0     | 0     |
|      |       | /RESET and WDT     | 0     | 0                   | 0       | 0          | 0          | 0        | 0     | 0     |
|      |       | Wake-up from Int   | Р     | Р                   | Р       | Р          | Р          | Р        | Р     | Р     |
|      |       | Full Name          |       |                     | Duty I  | Latch of P | WM1-Lov    | v Byte   |       |       |
|      |       | Bit Name           | DL17  | DL16                | DL15    | DL14       | DL13       | DL12     | DL11  | DL10  |
| 0x2B | DL1L  | Read / Write (R/W) | R/W   | R/W                 | R/W     | R/W        | R/W        | R/W      | R/W   | R/W   |
| UXZD | DLIL  | Power-on           | 0     | 0                   | 0       | 0          | 0          | 0        | 0     | 0     |
|      |       | /RESET and WDT     | 0     | 0                   | 0       | 0          | 0          | 0        | 0     | 0     |
|      |       | Wake-up from Int   | Р     | Р                   | Р       | Р          | Р          | Р        | Р     | Р     |
|      |       | Full Name          |       |                     | Duty L  | atch of P  | WM1-Hig    | h Byte   |       |       |
|      |       | Bit Name           | DL1F  | DL1E                | DL1D    | DL1C       | DL1B       | DL1A     | DL19  | DL18  |
| 0x2C | DL1H  | Read / Write (R/W) | R/W   | R/W                 | R/W     | R/W        | R/W        | R/W      | R/W   | R/W   |
| 0,20 | DLIII | Power-on           | 0     | 0                   | 0       | 0          | 0          | 0        | 0     | 0     |
|      |       | /RESET and WDT     | 0     | 0                   | 0       | 0          | 0          | 0        | 0     | 0     |
|      |       | Wake-up from Int   | Р     | Р                   | Р       | Р          | Р          | Р        | Р     | Р     |
|      |       | Full Name          |       | BB Address Register |         |            |            |          |       |       |
|      |       | Bit Name           | -     | -                   | -       | AAR4       | AAR3       | AAAR2    | AAR1  | AAR0  |
| 0x2D | RFAAR | Read / Write (R/W) | -     | -                   | -       | R/W        | R/W        | R/W      | R/W   | R/W   |
| 0720 |       | Power-on           | -     | -                   | -       | 0          | 0          | 0        | 0     | 0     |
|      |       | /RESET and WDT     | -     | -                   | -       | 0          | 0          | 0        | 0     | 0     |
|      |       | Wake-up from Int   | -     | -                   | -       | Р          | Р          | Р        | Р     | Р     |
|      |       | Full Name          |       |                     |         | BB Data    | a Buffer   |          |       |       |
|      |       | Bit Name           | RFDB7 | RFDB6               | RFDB5   | RFDB4      | RFDB3      | RFDB2    | RFDB1 | RFDB0 |
| 0x2E | RFDB  | Read / Write (R/W) | R/W   | R/W                 | R/W     | R/W        | R/W        | R/W      | R/W   | R/W   |
| UNZL |       | Power-on           | 0     | 0                   | 0       | 0          | 0          | 0        | 0     | 0     |
|      |       | /RESET and WDT     | 0     | 0                   | 0       | 0          | 0          | 0        | 0     | 0     |
|      |       | Wake-up from Int   | Р     | Р                   | Р       | Р          | Р          | Р        | Р     | Р     |
|      |       | Full Name          |       |                     | BB Data | Read/Wri   | te Control | Register |       |       |
|      |       | Bit Name           | -     | -                   | -       | -          | -          | RRST     | RFRD  | RFWR  |
| 0x2F | RFACR | Read / Write (R/W) | -     | -                   | -       | -          | -          | R/W      | R/W   | R/W   |
| UXZE | REACK | Power-on           | -     | -                   | -       | -          | -          | 0        | 1     | 1     |
|      |       | /RESET and WDT     | -     | -                   | -       | -          | -          | 0        | 1     | 1     |
|      |       | Wake-up from Int   | -     | -                   | -       | -          | -          | Р        | Р     | Р     |

LAN

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)

| Addr      | Name   | Reset Type         | Bit 7 | Bit 6  | Bit 5   | Bit 4         | Bit 3     | Bit 2      | Bit 1     | Bit 0    |
|-----------|--------|--------------------|-------|--------|---------|---------------|-----------|------------|-----------|----------|
|           |        | Full Name          |       |        | BE      | 3 Interrupt I | Flag Reg  | jister     |           |          |
|           |        | Bit Name           | CSDF  | TX_AEF | RX_AFF  | TX_EMPTYF     | RX_OFF    | LINK_DISF  | LOCK_OUTF | LOCK_INF |
| 0x30      | RFINTF | Read / Write (R/W) | R/W   | R/W    | R/W     | R/W           | R/W       | R/W        | R/W       | R/W      |
| 0x30      | REINTE | Power-on           | 0     | 0      | 0       | 0             | 0         | 0          | 0         | 0        |
|           |        | /RESET and WDT     | 0     | 0      | 0       | 0             | 0         | 0          | 0         | 0        |
|           |        | Wake-up from Int   | Р     | Р      | Р       | Р             | Р         | Р          | Р         | Р        |
|           |        | Full Name          |       |        | Dual    | Port Regis    | ters (64  | in total)  |           |          |
|           |        | Bit Name           | DPR7  | DPR6   | DPR5    | DPR4          | DPR3      | DPR2       | DPR1      | DPR0     |
| 0x40      | DPR    | Read / Write (R/W) | R/W   | R/W    | R/W     | R/W           | R/W       | R/W        | R/W       | R/W      |
| ~<br>0x7F | DPK    | Power-on           | ×     | ×      | ×       | ×             | ×         | ×          | ×         | ×        |
| 0,111     |        | /RESET and WDT     | ×     | ×      | ×       | ×             | ×         | ×          | ×         | ×        |
|           |        | Wake-up from Int   | Р     | Р      | Р       | Р             | Р         | Р          | Р         | Р        |
|           |        | Full Name          |       |        | Pe      | ripheral Fu   | nction E  | nable      |           |          |
|           |        | Bit Name           | SPIE  | -      | BBE     | ADE           | PWM1E     | PWM0E      | TCCE      | FRCE     |
| 0x80      | PRIE   | Read / Write (R/W) | R/W   | -      | R/W     | R/W           | R/W       | R/W        | R/W       | R/W      |
| 0,000     | FNE    | Power-on           | 0     | -      | 0       | 0             | 0         | 0          | 0         | 0        |
|           |        | /RESET and WDT     | 0     | -      | 0       | 0             | 0         | 0          | 0         | 0        |
|           |        | Wake-up from Int   | Р     | -      | Р       | Р             | Р         | Р          | Р         | Р        |
|           |        | Full Name          |       |        | Interru | upt Enable    | Control I | Register   |           |          |
|           |        | Bit Name           | GIE   | RBFIE  | PWM1IE  | PWM0IE        | EINT1E    | EINT0E     | TCCOE     | FRCOE    |
| 0x81      | INTE   | Read / Write (R/W) | R/W   | R/W    | R/W     | R/W           | R/W       | R/W        | R/W       | R/W      |
| 0.001     |        | Power-on           | 0     | 0      | 0       | 0             | 0         | 0          | 0         | 0        |
|           |        | /RESET and WDT     | 0     | 0      | 0       | 0             | 0         | 0          | 0         | 0        |
|           |        | Wake-up from Int   | Р     | Р      | Р       | Р             | Р         | Р          | Р         | Р        |
|           |        | Full Name          |       | Port A | Key Wak | e up Interru  | ipt Enab  | le Control | Register  |          |
|           |        | Bit Name           | -     | -      | -       | -             | KWUBE     | KWUAE      | KWU9E     | KWU8E    |
| 0,000     | KWUAIE | Read / Write (R/W) | -     | -      | -       | -             | R/W       | R/W        | R/W       | R/W      |
| 0x02      | RWUAIE | Power-on           | -     | -      | -       | -             | 0         | 0          | 0         | 0        |
|           |        | /RESET and WDT     | -     | -      | -       | -             | 0         | 0          | 0         | 0        |
|           |        | Wake-up from Int   | I     | -      | -       | -             | Р         | Р          | Р         | Р        |
|           |        | Full Name          |       | Port B | Key Wak | e up Interru  | upt Enab  | le Control | Register  |          |
|           |        | Bit Name           | KWU7E | KWU6E  | KWU5E   | KWU4E         | KWU3E     | KWU2E      | KWU1E     | KWU0E    |
| 0202      | KWUBIE | Read / Write (R/W) | R/W   | R/W    | R/W     | R/W           | R/W       | R/W        | R/W       | R/W      |
| 0.03      | NUDIE  | Power-on           | 0     | 0      | 0       | 0             | 0         | 0          | 0         | 0        |
|           |        | /RESET and WDT     | 0     | 0      | 0       | 0             | 0         | 0          | 0         | 0        |
|           |        | Wake-up from Int   | Р     | Р      | Р       | Р             | Р         | Р          | Р         | Р        |

ELAN

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)

| Addr  | Name   | Reset Type         | Bit 7   | Bit 6     | Bit 5      | Bit 4       | Bit 3     | Bit 2   | Bit 1    | Bit 0   |
|-------|--------|--------------------|---------|-----------|------------|-------------|-----------|---------|----------|---------|
|       |        | Full Name          |         |           | Externa    | al Interrup | ot Edge C | ontrol  |          | l       |
|       |        | Bit Name           |         | -         | -          | -           | -         | -       | EINT1ED  | EINT0ED |
| 004   |        | Read / Write (R/W) |         | -         | -          | -           | -         | -       | R/W      | R/W     |
| 0x84  | EINTED | Power-on           |         | -         | -          | -           | -         | -       | 0        | 0       |
|       |        | /RESET and WDT     |         | -         | -          | -           | -         | -       | 0        | 0       |
|       |        | Wake-up from Int   |         | -         | -          | -           | -         | -       | Р        | Р       |
|       |        | Full Name          |         | Serial Pe | ripheral S | Serial (SP  | I) Enable | Control | Register |         |
|       |        | Bit Name           | SPI_RBF | CES       | SBR2       | SBR1        | SBR0      | SDID    | SDOD     | SPIS    |
| 0,005 | SPIC   | Read / Write (R/W) | R/W     | R/W       | R/W        | R/W         | R/W       | R/W     | R/W      | R/W     |
| 0x85  | 3510   | Power-on           | 0       | 0         | 0          | 0           | 0         | 0       | 0        | 0       |
|       |        | /RESET and WDT     | 0       | 0         | 0          | 0           | 0         | 0       | 0        | 0       |
|       |        | Wake-up from Int   | Р       | Р         | Р          | 0           | 0         | 0       | 0        | 0       |
|       |        | Full Name          |         |           | I/C        | Control     | of Port A | ١       |          |         |
|       |        | Bit Name           | IOCA7   | IOCA6     | IOCA5      | IOCA4       | IOCA3     | IOCA2   | IOCA1    | IOCA0   |
| 0x86  | IOCA   | Read / Write (R/W) | R/W     | R/W       | R/W        | R/W         | R/W       | R/W     | R/W      | R/W     |
| 0000  | IUCA   | Power-on           | 1       | 1         | 1          | 1           | 1         | 1       | 1        | 1       |
|       |        | /RESET and WDT     | 1       | 1         | 1          | 1           | 1         | 1       | 1        | 1       |
|       |        | Wake-up from Int   | Р       | Р         | Р          | Р           | Р         | Р       | Р        | Р       |
|       |        | Full Name          |         |           | I/C        | Control     | of Port E | 3       |          |         |
|       |        | Bit Name           | IOCB7   | IOCB5     | IOCB5      | IOCB4       | IOCB3     | IOCB2   | IOCB1    | IOCB0   |
| 0x87  | IOCB   | Read / Write (R/W) | R/W     | R/W       | R/W        | R/W         | R/W       | R/W     | R/W      | R/W     |
| 0.07  | 1008   | Power-on           | 1       | 1         | 1          | 1           | 1         | 1       | 1        | 1       |
|       |        | /RESET and WDT     | 1       | 1         | 1          | 1           | 1         | 1       | 1        | 1       |
|       |        | Wake-up from Int   | Р       | Р         | Р          | Р           | Р         | Р       | Р        | Р       |
|       |        | Full Name          |         |           | I/C        | O Control   | of Port C | ;       |          |         |
|       |        | Bit Name           | -       | -         | IOCC5      | IOCC4       | IOCC3     | IOCC2   | IOCC1    | IOCC0   |
| 0x88  | IOCC   | Read / Write (R/W) | -       | -         | R/W        | R/W         | R/W       | R/W     | R/W      | R/W     |
| 0,00  | 1000   | Power-on           | -       | -         | 1          | 1           | 1         | 1       | 1        | 1       |
|       |        | /RESET and WDT     | -       | -         | 1          | 1           | 1         | 1       | 1        | 1       |
|       |        | Wake-up from Int   | -       | -         | Р          | Р           | Р         | Р       | Р        | Р       |
|       |        | Full Name          |         |           | I/C        | O Control   | of Port D | )       |          |         |
|       |        | Bit Name           | IOCD7   | IOCD6     | IOCD5      | IOCD4       | IOCD3     | IOCD2   | IOCD1    | IOCD0   |
| 0x89  | IOCD   | Read / Write (R/W) | R/W     | R/W       | R/W        | R/W         | R/W       | R/W     | R/W      | R/W     |
| 0x09  | 1000   | Power-on           | 1       | 1         | 1          | 1           | 1         | 1       | 1        | 1       |
|       |        |                    |         |           |            |             |           |         |          |         |
|       |        | /RESET and WDT     | 1       | 1         | 1          | 1           | 1         | 1       | 1        | 1       |

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)

LAN



## EM77950 BB Controller

|      |      |                    | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |       |       |            |            |       |       |       |  |  |
|------|------|--------------------|-------------------------------------------------|-------|-------|------------|------------|-------|-------|-------|--|--|
| Addr | Name | Reset Type         | Bit 7                                           | Bit 6 | Bit 5 | Bit 4      | Bit 3      | Bit 2 | Bit 1 | Bit 0 |  |  |
|      |      | Full Name          |                                                 |       |       | I/O Contro | ol of Port | E     |       |       |  |  |
|      |      | Bit Name           | IOCE7                                           | IOCE6 | IOCE5 | IOCE4      | IOCE3      | IOCE2 | IOCE1 | IOCE0 |  |  |
| 0x8A | IOCE | Read / Write (R/W) | R/W                                             | R/W   | R/W   | R/W        | R/W        | R/W   | R/W   | R/W   |  |  |
| UXOA | IOCE | Power-on           | 1                                               | 1     | 1     | 1          | 1          | 1     | 1     | 1     |  |  |
|      |      | /RESET and WDT     | 1                                               | 1     | 1     | 1          | 1          | 1     | 1     | 1     |  |  |
|      |      | Wake-up from Int   | Р                                               | Р     | Р     | Р          | Р          | Р     | Р     | Р     |  |  |
|      |      | Full Name          |                                                 |       |       | I/O Contro | ol of Port | F     |       |       |  |  |
|      |      | Bit Name           | -                                               | -     | -     | -          | -          | -     | IOCF1 | IOCF0 |  |  |
| 0.00 |      | Read / Write (R/W) | -                                               | -     | -     | -          | -          | -     | R/W   | R/W   |  |  |
| 0x8B | IOCF | Power-on           | -                                               | -     | -     | -          | -          | -     | 1     | 1     |  |  |
|      |      | /RESET and WDT     | -                                               | -     | -     | -          | -          | -     | 1     | 1     |  |  |
|      |      | Wake-up from Int   | -                                               | -     | -     | -          | -          | -     | Р     | Р     |  |  |
|      |      | Full Name          |                                                 |       | Р     | ull-up Con | trol of Po | rt A  |       |       |  |  |
|      |      | Bit Name           | PUCA7                                           | PUCA6 | PUCA5 | PUCA4      | PUCA3      | PUCA2 | PUCA1 | PUCA0 |  |  |
| 0x8C | PUCA | Read / Write (R/W) | R/W                                             | R/W   | R/W   | R/W        | R/W        | R/W   | R/W   | R/W   |  |  |
| 0,00 | FUCA | Power-on           | 0                                               | 0     | 0     | 0          | 0          | 0     | 0     | 0     |  |  |
|      |      | /RESET and WDT     | 0                                               | 0     | 0     | 0          | 0          | 0     | 0     | 0     |  |  |
|      |      | Wake-up from Int   | Р                                               | Р     | Р     | Р          | Р          | Р     | Р     | Р     |  |  |
|      |      | Full Name          | Pull-up Control of Port B                       |       |       |            |            |       |       |       |  |  |
|      |      | Bit Name           | PUCB7                                           | PUCB6 | PUCB5 | PUCB4      | PUCB3      | PUCB2 | PUCB1 | PUCB0 |  |  |
| 0x8D | PUCB | Read / Write (R/W) | R/W                                             | R/W   | R/W   | R/W        | R/W        | R/W   | R/W   | R/W   |  |  |
| UNOD | 100B | Power-on           | 0                                               | 0     | 0     | 0          | 0          | 0     | 0     | 0     |  |  |
|      |      | /RESET and WDT     | 0                                               | 0     | 0     | 0          | 0          | 0     | 0     | 0     |  |  |
|      |      | Wake-up from Int   | Р                                               | Р     | Р     | Р          | Р          | Р     | Р     | Р     |  |  |
|      |      | Full Name          |                                                 |       | Р     | ull-up Con | trol of Po | rt C  |       |       |  |  |
|      |      | Bit Name           | -                                               | -     | PUCC5 | PUCC4      | PUCC3      | PUCC2 | PUCC1 | PUCC0 |  |  |
| 0x8E | PUCC | Read / Write (R/W) | -                                               | -     | R/W   | R/W        | R/W        | R/W   | R/W   | R/W   |  |  |
| ONOL | 1000 | Power-on           | -                                               | -     | 0     | 0          | 0          | 0     | 0     | 0     |  |  |
|      |      | /RESET and WDT     | -                                               | -     | 0     | 0          | 0          | 0     | 0     | 0     |  |  |
|      |      | Wake-up from Int   | -                                               | -     | Р     | Р          | Р          | Р     | Р     | Р     |  |  |
|      |      | Full Name          |                                                 | -     | Р     | ull-up Con | trol of Po | rt D  |       |       |  |  |
|      |      | Bit Name           | PUCD7                                           | PUCD6 | PUCD5 | PUCD4      | PUCD3      | PUCD2 | PUCD1 | PUCD0 |  |  |
| 0x8F | PUCD | Read / Write (R/W) | R/W                                             | R/W   | R/W   | R/W        | R/W        | R/W   | R/W   | R/W   |  |  |
| 0.01 | 1000 | Power-on           | 0                                               | 0     | 0     | 0          | 0          | 0     | 0     | 0     |  |  |
|      |      | /RESET and WDT     | 0                                               | 0     | 0     | 0          | 0          | 0     | 0     | 0     |  |  |
|      |      | Wake-up from Int   | Р                                               | Р     | Р     | Р          | Р          | Р     | Р     | Р     |  |  |

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)

CLAN



| $\Psi$ | News | Beer of Tame       | D:: 7                        | Dit C  | Dit      | Dit 4      | Dit 0       | Dit 0  | Dit 4  | Dit 0 |  |
|--------|------|--------------------|------------------------------|--------|----------|------------|-------------|--------|--------|-------|--|
| Addr   | Name | Reset Type         | Bit 7                        | Bit 6  | Bit 5    | Bit 4      | Bit 3       | Bit 2  | Bit 1  | Bit 0 |  |
|        |      | Full Name          |                              |        |          | III-up Con |             | 1      | 1      |       |  |
|        |      | Bit Name           | PUCE7                        | PUCE6  | PUCE5    | PUCE2      | PUCE3       | PUCE2  | PUCE1  | PUCE0 |  |
| 0x90   | PUCE | Read / Write (R/W) | R/W                          | R/W    | R/W      | R/W        | R/W         | R/W    | R/W    | R/W   |  |
|        |      | Power-on           | 0                            | 0      | 0        | 0          | 0           | 0      | 0      | 0     |  |
|        |      | /RESET and WDT     | 0                            | 0      | 0        | 0          | 0           | 0      | 0      | 0     |  |
|        |      | Wake-up from Int   | Р                            | Р      | Р        | Р          | Р           | Р      | Р      | Р     |  |
|        |      | Full Name          |                              |        | Ρι       | III-up Con | trol of Por | tF     |        |       |  |
|        |      | Bit Name           | -                            | -      | -        | -          | -           | -      | PUCF1  | PUCF0 |  |
| 0x91   | PUCF | Read / Write (R/W) | -                            | -      | -        | -          | -           | -      | R/W    | R/W   |  |
| 0791   | 1001 | Power-on           | -                            | -      | -        | -          | -           | -      | 0      | 0     |  |
|        |      | /RESET and WDT     | -                            | -      | -        | -          | -           | -      | 0      | 0     |  |
|        |      | Wake-up from Int   | -                            | -      | -        | -          | -           | -      | Р      | Р     |  |
|        |      | Full Name          | Open Drain Control of Port B |        |          |            |             |        |        |       |  |
|        |      | Bit Name           | OPCB7                        | OPCB6  | OPCB5    | OPCB4      | OPCB3       | OPCB2  | OPCB1  | OPCB0 |  |
| 0x92   | ODCB | Read / Write (R/W) | R/W                          | R/W    | R/W      | R/W        | R/W         | R/W    | R/W    | R/W   |  |
| 0,92   | ODCB | Power-on           | 0                            | 0      | 0        | 0          | 0           | 0      | 0      | 0     |  |
|        |      | /RESET and WDT     | 0                            | 0      | 0        | 0          | 0           | 0      | 0      | 0     |  |
|        |      | Wake-up from Int   | Р                            | Р      | Р        | Р          | Р           | 0      | 0      | 0     |  |
|        |      | Full Name          | Time Clock/Counter Control   |        |          |            |             |        |        |       |  |
|        |      | Bit Name           | -                            | -      | -        | -          | TCCS0       | PS2    | PS1    | PS0   |  |
| 0x93   | тссс | Read / Write (R/W) | -                            | -      | -        | -          | R/W         | R/W    | R/W    | R/W   |  |
| 0.083  | TUUU | Power-on           | -                            | -      | -        | -          | 0           | 0      | 0      | 0     |  |
|        |      | /RESET and WDT     | -                            | -      | -        | -          | 0           | 0      | 0      | 0     |  |
|        |      | Wake-up from Int   | -                            | -      | -        | -          | Р           | Р      | Р      | Р     |  |
|        |      | Full Name          |                              |        | Fre      | e Run Co   | unter Cor   | ntrol  |        |       |  |
|        |      | Bit Name           | -                            | OSCO2E | OSCO2SL1 | OSCO2SL0   | PPSCL2      | PPSCL1 | PPSCL0 | FRCCS |  |
| 0.01   | FRCC | Read / Write (R/W) | -                            | R/W    | R/W      | R/W        | R/W         | R/W    | R/W    | R/W   |  |
| 0x94   | FRUU | Power-on           | -                            | 0      | 0        | 0          | 0           | 0      | 0      | 0     |  |
|        |      | /RESET and WDT     | -                            | 0      | 0        | 0          | 0           | 0      | 0      | 0     |  |
|        |      | Wake-up from Int   | -                            | Р      | Р        | Р          | Р           | Р      | Р      | Р     |  |
|        |      | Full Name          |                              |        | W        | atchdog T  | imer Con    | trol   |        |       |  |
|        |      | Bit Name           | GREEN                        | -      | -        | WDTCE      | -           | RAT2   | RAT1   | RAT0  |  |
|        | METC | Read / Write (R/W) | R/W                          | -      | -        | R/W        | -           | R/W    | R/W    | R/W   |  |
| 0x95   | WDTC | Power-on           | 0                            | -      | -        | 0          | -           | 0      | 0      | 0     |  |
|        |      | /RESET and WDT     | 0                            | -      | -        | 0          | -           | 0      | 0      | 0     |  |
|        |      | Wake-up from Int   | 0                            | -      | -        | Р          | -           | Р      | Р      | Р     |  |

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)

| Addr  | Name    | Reset Type         | Bit 7                                | Bit 6  | Bit 5  | Bit 4       | Bit 3       | Bit 2           | Bit 1     | Bit 0    |  |
|-------|---------|--------------------|--------------------------------------|--------|--------|-------------|-------------|-----------------|-----------|----------|--|
|       |         | Full Name          |                                      |        | AD     | C Analog In | put Pin S   | elect           |           |          |  |
|       |         | Bit Name           | -                                    | -      | IMS2   | IMS1        | IMS0        | CKR2            | CKR1      | CKR0     |  |
| 0x96  | ADCAIS  | Read / Write (R/W) | -                                    | -      | R/W    | R/W         | R/W         | R/W             | R/W       | R/W      |  |
| 0,290 | ADCAIS  | Power-on           | -                                    | -      | 0      | 0           | 0           | 0               | 0         | 0        |  |
|       |         | /RESET and WDT     | -                                    | -      | 0      | 0           | 0           | 0               | 0         | 0        |  |
|       |         | Wake-up from Int   | -                                    | -      | Р      | Р           | Р           | Р               | Р         | Р        |  |
|       |         | Full Name          |                                      |        | AD     | C Configura | ation Reg   | ister           |           |          |  |
|       |         | Bit Name           | ADRUN                                | ADIE   | -      | -           | AIPS3       | AIPS2           | AIPS1     | AIPS0    |  |
| 007   | 40000   | Read / Write (R/W) | R/W                                  | R/W    | -      | -           | R/W         | R/W             | R/W       | R/W      |  |
| 0x97  | ADCCR   | Power-on           | 0                                    | 0      | -      | -           | 0           | 0               | 0         | 0        |  |
|       |         | /RESET and WDT     | 0                                    | 0      | -      | -           | 0           | 0               | 0         | 0        |  |
|       |         | Wake-up from Int   | Р                                    | Р      | -      | -           | Р           | Р               | Р         | Р        |  |
|       | PWMCR   | Full Name          | PWM Control Register                 |        |        |             |             |                 |           |          |  |
|       |         | Bit Name           | -                                    | -      | -      | -           | S_PWM1      | S_PWM0          | -         | -        |  |
| 0.00  |         | Read / Write (R/W) | -                                    | -      | -      | -           | R/W         | R/W             | -         | -        |  |
| 0x98  |         | Power-on           | -                                    | -      | -      | -           | 0           | 0               | -         | -        |  |
|       |         | /RESET and WDT     | -                                    | -      | -      | -           | 0           | 0               | -         | -        |  |
|       |         | Wake-up from Int   | -                                    | -      | -      | -           | Р           | Р               | -         | -        |  |
|       |         | Full Name          | BB Interrupt Enable Control Register |        |        |             |             |                 |           |          |  |
|       |         | Bit Name           | CSDE                                 | TX_AEE | RX_AFE | TX_EMPTYE   | RX_OFE      | LINK_DISE       | LOCK_OUTE | LOOK_INE |  |
| 000   | DEINITE | Read / Write (R/W) | R/W                                  | R/W    | R/W    | R/W         | R/W         | R/W             | R/W       | R/W      |  |
| 0x99  | RFINTE  | Power-on           | 0                                    | 0      | 0      | 0           | 0           | 0               | 0         | 0        |  |
|       |         | /RESET and WDT     | 0                                    | 0      | 0      | 0           | 0           | 0               | 0         | 0        |  |
|       |         | Wake-up from Int   | Р                                    | Р      | Р      | Р           | Р           | Р               | Р         | Р        |  |
|       |         | Full Name          |                                      |        | Op     | en Drain Co | ontrol of P | itrol of Port C |           |          |  |
|       |         | Bit Name           | -                                    | -      | OPCC5  | OPCC4       | OPCC3       | OPCC2           | OPCC1     | OPCC0    |  |
| 0.000 | ODCC    | Read / Write (R/W) | -                                    | -      | R/W    | R/W         | R/W         | R/W             | R/W       | R/W      |  |
| 0x9A  | ODCC    | Power-on           | -                                    | -      | 0      | 0           | 0           | 0               | 0         | 0        |  |
|       |         | /RESET and WDT     | -                                    | -      | 0      | 0           | 0           | 0               | 0         | 0        |  |
|       |         | Wake-up from Int   | -                                    | -      | Р      | Р           | Р           | Р               | Р         | Р        |  |

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)

CLAN



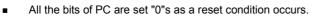
## 7 Function Description

## 7.1 Special Purpose Registers

The special purpose registers are function-oriented registers used by the CPU to access memory, record execution results, and carry out the desired operation. The functions of the registers related to the core are described in the following subsections

## 7.1.1 Accumulator – ACC

Internal data transfer operation, or instruction operand holding usually involves the temporary storage function of the Accumulator, which is not an addressable register.


## 7.1.2 Indirect Addressing Contents – IAC0 (0x00), and IAC1 (0x09)

The contents of R0 and R9 are implemented as indirect addressing pointers if any instruction uses R6 and R8 as registers.

## 7.1.3 High Byte Program Counter HPC (0x01) and Low Byte Program Counter LPC (0x02)

- Program Counter (PC) is composed of registers HPC and LPC.
- PC and the hardware stacks are 14 bits wide.
- The structure is depicted in Fig. 6-1.
- Generates 12K × 16 on-chip ROM addresses to the corresponding program memory (ROM).





- "RET" ("RETL k", "RETI") instruction loads the program counter with the contents at the top of stack.
- "MOV R2, A" allows the loading of an address from the "A" register to the lower 8 bits of the PC, and the high byte (A8~A14) of the PC remain unchanged.
- "ADD R2, A" & "TBL" allows a corresponding address / offset be added to the current PC.

## 7.1.4 Status Register – SR (0x03)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| -     | -     | RST   | Т     | Р     | Z     | DC    | С     |

- **Bit 0 (C):** Carry flag. This bit indicates that a carry out of ALU occurred during the last arithmetic operation. This bit is also affected during bit test, branch instruction and bit shifts.
- **Bit 1 (DC):** Auxiliary carry flag. This bit is set during ADD and ADC operations to indicate that a carry occurred between Bit 3 and Bit 4.
- Bit 2 (Z): Zero flag. Set to "1" if the result of the last arithmetic, data or logic operation is zero.
- Bit 3 (P): Power down bit. Set to 1 during power on or by a "WDTC" command and reset to 0 by a "SLEP" command.
- Bit 4 (T): Time-out bit. Set to 1 by the "SLEP" command and the "WDTC" command, or during power up and reset to 0 by WDT timeout.
- **Bit 5 (RST):** Set if the CPU wakes up by keying Wake-up pins. Reset if the chip wakes up from other ways.

Bits 6 and 7 are reserved.

## 7.1.5 RAM Bank Selector – RAMBS0 (0x04), and RAMBS1 (0x07)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2   | Bit 1   | Bit 0   |
|-------|-------|-------|-------|-------|---------|---------|---------|
| -     | -     | -     | -     | -     | RAMBSX2 | RAMBSX1 | RAMBSX0 |

As depicted in Fig. 6-2, there are seven available banks in the MCU. Each of them have 128 registers and can be accessed by defining the bits, RAMBSX0 ~ RAMBSX2, as shown below.

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



| RAMBSX (0x04/0x07) | Bank |
|--------------------|------|
| 000                | 0    |
| 010                | 2    |
| 011                | 3    |
| 100                | 4    |
| 101                | 5    |
| 110                | 6    |

## 7.1.6 ROM Page Selector – ROMPS (0x05)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| -     | -     | -     | -     | -     | -     | -     | RPS0  |

As depicted in Fig. 6-1, there are two available pages in MCU. The first page has  $8K \times 16$  ROM size and the second page has  $4K \times 16$  ROM size. Both of them can be accessed by defining the bits, RPS0, as shown below.

As depicted in Fig. 6-1, there are two available pages in the MCU. Each page has  $12K \times 16$  ROM size and can be accessed by defining the bits, RPS0, as shown below.

| RPS0 | Page (Address)    |  |  |  |  |
|------|-------------------|--|--|--|--|
| 0    | 0 (0x0000~0×1FFF) |  |  |  |  |
| 1    | 1 (0x2000~0×2FFF) |  |  |  |  |

## 7.1.7 Indirect Addressing Pointers – IAP0 (0×06), and IAP1 (0×08)

Both R6 and R8 are not physically implemented registers. They are useful as indirect addressing pointers. Any instruction using R6/R4 and R8/R7 as registers actually access data pointed by R0 and R9 individually.

## 7.1.8 Indirect Address Pointer Direction Control Register – IAPDR (0x0A)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3  | Bit 2  | Bit 1    | Bit 0    |
|-------|-------|-------|-------|--------|--------|----------|----------|
| -     | -     | -     | -     | IAP1_D | IAP0_D | IAP1_D_E | IAP0_D_E |

**Bit 0/1** (IAP0\_D\_E/IAP1\_D\_E) Indirect addressing pointer0/1 direction function enable bit.

0: Disable

1: Enable

Bit 2/3 (IAP0\_D/IAP1\_D) Indirect addressing pointer0/1 direction control bit.

- 0: Minus direction
- 1: Plus direction

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



## 7.1.9 Table Look-up Pointer – LTBL (0x0B), and HTBL (0x0C)

The maximum length of a table is 64K, and can be accessed through registers LTBL and HTBL. HTBL is the high byte of the pointer, whereas LTBL is the low byte.

## 7.1.10 Stack Pointer – STKPTR (0x0D)

Register RD indicates how many stacks the current free run program uses. It is a read only register.

## 7.1.11 Repeat Counter – RPTC (0x0E)

The RE register is used to set how many times the "RPT" instruction is going to read the table.

## 7.1.12 Prescaler Counter – PRC (0x0F)

Prescaler counter for TCC.

## 7.1.13 Real Time Clock Counter – RTCC (0x10)

TCC counter.

## 7.1.14 Interrupt Flag Register – INTF (0x11)

| Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1 | Bit 0 |
|-------|-------|--------|--------|--------|--------|-------|-------|
| ADIF  | RBFIF | PWM1IF | PWM0IF | EINT1F | EINT0F | TCCOF | FRCOF |

- Bit 0 (FRCOF): FRC Overflow interrupt. Set as the contents of the FRC counter change from 0xFFFF to 0x0000, reset by software.
- Bit 1 (TCCOF): TCC Overflow interrupt. Set as the contents of the TCC counter change from 0xFF to 0x00, reset by software.
- Bits 2 ~ 3 (EINTOF & EINTIF): External input pin interrupt flag. Interrupt occurs at a defined edge of the external input pin, reset by software.
- Bits 4 ~ 5 (PWM0IF & PWM1IF): PWM interrupt flag. Interrupt occurs when TMRX is equal to PRDX, reset by software.
- Bit 6 (RBFIF): SPI receiving buffer full Interrupt flag. Interrupt occurs when an 8-bit data is received, reset by software.
- Bit 7 (ADIF): ADC conversion complete interrupt flag.

Each bit can function independently regardless whether its related interrupt mask bit is enabled or not.

# 7.1.15 Key Wake-up Flag Register – KWUAIF (0x12) & KWUBIF (0x13)

**KWUAIF:** Port A Key Wake-up Interrupt Flag

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3  | Bit 2  | Bit 1  | Bit 0  |
|-------|-------|-------|-------|--------|--------|--------|--------|
| -     | -     | -     | -     | KWUBIF | KWUAIF | KWU9IF | KWU8IF |

KWUBIF: Port B Key Wake-up Interrupt Flag

| ĺ | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  |
|---|--------|--------|--------|--------|--------|--------|--------|--------|
|   | KWU7IF | KWU6IF | KWU5IF | KWU4IF | KWU3IF | KWU2IF | KWU1IF | KWU0IF |

## 7.1.16 *I/O* Port Registers – PTA ~ PTF (0x14 ~ 0x19)

PTX can be operated by related instructions, as any other general purpose registers. That is, PTX is an 8-bit, bidirectional, general purpose port. Its corresponding I/O control bit determines the data direction of a PTX pin.

## 7.1.17 16-bit Free Run Counter (FRC) – LFRC (0x1A), HFRC (0x1B) & LFRCB (0x1C)

R1A is 16-bit FRC low byte; R1B is high byte; R1C is low byte buffer.

## 7.1.18 Serial Peripheral Interface Read Register – SPIRB (0x1D)

Register R1D indicates SPI received data.

## 7.1.19 Serial Peripheral Interface Write Register – SPIWB (0x1E)

Register R1E indicates SPI transmitted data.

## 7.1.20 ADC Converting Value – ADDATA (0x1F)

ADDATA: Converting Value of ADC.

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADD7  | ADD6  | ADD5  | ADD4  | ADD3  | ADD2  | ADD1  | ADD0  |

## 7.1.21 PWM Duty – DT0L (0x21)/DT0H (0x22) & DT1L (0x27) / DT1H (0x28)

R22 : R21 16-bit PWM0 output duty cycle. R28 : R27 16-bit PWM1 output duty cycle.

## 7.1.22 PWM Period – PRD0L (0x23)/PRD0H (0x24) & PRD1L (0x29)/PRD1H (0x2A)

R24 : R23 16-bit PWM0 output period cycle. R2A : R29 16-bit PWM1 output period cycle.

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



## 7.1.23 PWM Duty Latch – DL0L (0x25)/DL0H (0x26) & DL1L (0x2B)/DL1H (0x2C)

R26 : R25 16-bit PWM0 output duty cycle buffer. R2C : R2B 16-bit PWM1 output duty cycle buffer.

## 7.1.24 BB Address Register – RFAAR (0x2D)

Register R2D indicates BB indirect RAM address.

## 7.1.25 BB Data Buffer Register – RFDB (0x2E)

Register R2E indicates BB indirect RAM data.

## 7.1.26 BB Data Read/Write Control Register – RFACR (0x2F)

Register R2F indicates BB RAM access control.

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| -     | -     | -     | -     | -     | RRST  | RFRD  | RFWR  |

Bit 0 (RFWR): Write BB register.

Bit 1 (RFRD): Read BB register

Bit 2 (RRST): BB S/W reset.

Bit 3 ~ Bit 7: reserved

#### 7.1.27 BB Interrupt Flag Register – RFINTF (0x30)

| Bit 7 | Bit 6  | Bit 5  | Bit 4     | Bit 3  | Bit 2     | Bit 1     | Bit 0    |
|-------|--------|--------|-----------|--------|-----------|-----------|----------|
| CSDF  | TX_AEF | RX_AFF | TX_EMPTYF | RX_OFF | LINK_DISF | LOCK_OUTF | LOCK_INF |

Bit 0 (LOCK\_INF): This bit reflects the LOCK IN flag interrupt.

Bit 1 (LOCK\_OUTF): This bit reflects the LOCK OUT flag interrupt.

- Bit 2 (LINK\_DISF): This interrupt is invoked by the zero counter capacitor discharge mechanism.
- Bit 3 (RX\_OFF): This bit reflects the RX FIFO full flag interrupt.

Bit 4 (TX\_EMPTYF): This bit reflects the TX EMPTY flag interrupt.

Bit 5 (RX\_AFF): This bit reflects the RX FIFO almost full flag interrupt.

Bit 6 (TX\_AEF): This bit reflects the TX FIFO almost empty flag interrupt.

Bit 7 (CSDF): This flag indicates that a carrier-sense interrupt has occurred.

30 •



## 7.2 Dual Port Register (0x40 ~ 0x7F)

R 40 ~ R7F are dual port registers.

## 7.3 System Status, Control and Configuration Registers

These registers are function-oriented registers used by the CPU to record, enable or disable the peripheral modules, interrupts, and the operation clock modes.

## 7.3.1 Peripherals Enable Control – PRIE (0x80)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SPIE  | -     | BBE   | ADE   | PWM1E | PWM0E | TCCE  | FRCE  |

Bit 0 (FRCE): Free Run Counter 0 (FRC0) Enable bit.

Bit 1 (TCCE): Timer Clock/Counter (TCC) Enable bit.

Bit 2 (PWM0E): PWM0 function Enable bit.

Bit 3 (PWM1E): PWM1 function Enable bit.

Bit 4 (ADE): ADC Enable bit.

Bit 5 (BBE): Base Band (BB) Enable bit.

Bit 7 (SPIE): Serial Peripheral Interface Enable bit.

0: disable function

1: enable function

## 7.3.2 Interrupts Enable Control – INTE (0x81)

| Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1 | Bit 0 |
|-------|-------|--------|--------|--------|--------|-------|-------|
| GIE   | RBFIE | PWM1IE | PWM0IE | EINT1E | EINT0E | TCCOE | FRCOE |

Bit 0 (FRC00E): Free Run Counter (FRC) Overflow interrupt enable bit.

Bit 1 (TCCOE): TCC (TCC) Overflow interrupt enable bit.

Bit 2 (EINT0E): External pin (EINT0) interrupt enable bit.

Bit 3 (EINT1E): External pin (EINT1) interrupt enable bit.

Bits 4 (PWM0IE): PWM0 period complete enable bit.

Bits 5 (PWM1IE): PWM1 period complete enable bit.

Bit 6 (RBFIE): SPI Read Buffer Full (EINT) interrupt enable bit.

0: disable function interrupt

1: enable function interrupt







Bit 7 (GIE): Global interrupt control bit. Global interrupt is enabled by the ENI and RETI instructions and is disabled by the DISI instruction.

0: disable Global interrupt function

1: enable Global interrupt function

## 7.3.3 Key Wake-up Enable Control – KWUAIE (0x82) & KWUBIE (0x83)

#### KWUAIE: Port A Key Wake-up Interrupt Enable Control Register

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| -     | -     | -     | -     | KWUBE | KWUAE | KWU9E | KWU8E |

Bit 0 ~bit 3 (KWU8E ~ KWUBE): Enable or disable the PTA0 ~ PTA3 Key Wake-up

function.

 $\boldsymbol{0}:$  disable key wake-up function

1: enable key wake-up function

KWUBIE: Port B Key Wake-up Interrupt Enable Control Register

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| KWU7E | KWU6E | KWU5E | KWU4E | KWU3E | KWU2E | KWU1E | KWU0E |

Bit 0 ~bit 7 (KWU0 ~ KWU7): Enable or disable the PTB0 ~ PTB7 Key Wake Up function.

0: disable key wake-up function

1: enable key wake-up function

## 7.3.4 External Interrupts Edge Control – EINTED (0x84)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1   | Bit 0   |
|-------|-------|-------|-------|-------|-------|---------|---------|
| -     | -     | -     | -     | -     | -     | EINT1ED | EINT0ED |

Bit 0 (EINT0ED): Define which edge as an interrupt source for EINT0.

Bit 1 (EINT1ED): Define which edge as an interrupt source for EINT1.

- 0: Falling Edge
- 1: Rising Edge

Bit 2 ~ Bit 7 reserved

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



# 7.3.5 Serial Peripheral Serial (SPI) Enable Control Register – SPIC (0x85)

| Bit 7   | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|---------|-------|-------|-------|-------|-------|-------|-------|
| SPI_RBF | CES   | SBR2  | SBR1  | SBR0  | SDID  | SDOD  | SPIS  |

Bit 0 (SPIS): SPI start.

Bit 1 (SDOD): SPI data shift out direction.

- **0**: Most significant bit (MSB) transmitted first
- 1: Least significant bit (LSB) transmitted first

#### Bit 2 (SDID): SPI data shift in direction.

- 0: Most significant bit (MSB) received first
- 1: Least significant bit (LSB) received first

Bit 3 ~ 5 (SBR0 ~ SBR2): Configure the transmission mode and the clock rate.

| SBR2 (Bit5) | SBR1 (Bit4) | SBR0 (Bit3) | Mode   | Baud Rate |
|-------------|-------------|-------------|--------|-----------|
| 0           | 0           | 0           | Master | Fosc/2    |
| 0           | 0           | 1           | Master | Fosc/4    |
| 0           | 1           | 0           | Master | Fosc/8    |
| 0           | 1           | 1           | Master | Fosc/16   |
| 1           | 0           | 0           | Master | Fosc/32   |
| 1           | 0           | 1           | Slave  | N/A       |
| 1           | 1           | 0           | N/A    | N/A       |
| 1           | 1           | 1           | N/A    | N/A       |

Bit 6 (CES): Clock edge select bit.

- **0** : Data shifts out on a rising edge, and shifts in on a falling edge. Data is held during a low level
- 1 : Data shifts out on falling edge, and shifts in on rising edge. Data is hold during the high level
- Bit 7 (SPI\_RBF): SPI read buffer full flag.

#### 7.3.6 I/O Control Registers – IOCA~IOCF (0x86~0x8B)

IOCX is used to determine the data direction of its corresponding I/O port bit.

- 0 : configure a selected I/O pin as output
- 1 : configure a selected I/O pin as input

The only four least significant bits of port F, and the only five least significant bits of port C are available.





## 7.3.7 Pull-up Resistance Control Registers for Ports A~F – PUCA~PUCF (0x8C ~ 0x91)

Each bit of PUCX is used to control the pull-up resistors attached to its corresponding pin respectively. The theoretical value of the resistor is 64 K $\Omega$ . However, due to process variation, ±35% variation in resistance must be taken into consideration.

PUCX:

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PUCX7 | PUCX6 | PUCX5 | PUCX4 | PUCX3 | PUCX2 | PUCX1 | PUCX0 |

0 : Pull-up Resistors disconnected

1 : Pull-up Resistors attached

## 7.3.8 Open Drain Control Registers of Port B/Port C – ODCB/ODCC (0x92/0x9A)

ODCB/ODCC: Open drain control of Port B/Port C.

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| OPCX7 | OPCX6 | OPCX5 | OPCX4 | OPCX3 | OPCX2 | OPCX1 | OPCX0 |

**0** : Open drain disable

1 : Open drain enable

## 7.3.9 Timer Clock Counter Controller – TCCC (0x93)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| -     | -     | -     | -     | TCCS0 | PSR2  | PSR1  | PSR0  |

#### Bit 0 ~ 2 (PSR0 ~ PSR2): Prescaler for TCC.

| PSR2 | PSR1 | PSR0 | Clock Rate |
|------|------|------|------------|
| 0    | 0    | 0    | 1:2        |
| 0    | 0    | 1    | 1:4        |
| 0    | 1    | 0    | 1:8        |
| 0    | 1    | 1    | 1:16       |
| 1    | 0    | 0    | 1:32       |
| 1    | 0    | 1    | 1:64       |
| 1    | 1    | 0    | 1:128      |
| 1    | 1    | 1    | 1:256      |

Bit 3 (TCCS0): Clock Source Select.

| TCCS0 | Clock Source              |
|-------|---------------------------|
| 0     | Selected PLL Clock Source |
| 1     | Selected IRC Clock Source |

Bits 4 ~ 7 are reserved.



## 7.3.10 Free Run Counter Controller – FRCC (0x94)

| Bit 7 | Bit 6  | Bit 5    | Bit 4    | Bit 3  | Bit 2  | Bit 1  | Bit 0 |
|-------|--------|----------|----------|--------|--------|--------|-------|
| -     | OSCO2E | OSCO2SL1 | OSCO2SL0 | PPSCL2 | PPSCL1 | PPSCL0 | FRCCS |

Bit 0 (FRCCS): Clock Source Select.

| FRCCS | Clock Source              |
|-------|---------------------------|
| 0     | Selected PLL Clock Source |
| 1     | Selected IRC Clock Source |

Bits 1 ~ 3 (PSR0 ~ PSR2): Prescaler for the OSCO2 clock output.

| PPSCL2 | PPSCL1 | PPSCL0 | Clock Rate |
|--------|--------|--------|------------|
| 0      | 0      | 0      | 1:2        |
| 0      | 0      | 1      | 1:4        |
| 0      | 1      | 0      | 1:8        |
| 0      | 1      | 1      | 1:16       |
| 1      | 0      | 0      | 1:32       |
| 1      | 0      | 1      | 1:64       |
| 1      | 1      | 0      | 1:128      |
| 1      | 1      | 1      | 1:256      |

## Bit 4 and Bit 5 (OSCO2SL0 and OSCO1SL1): System Clock Frequency Select Control Bits

| OSCO2SL0 | OSCO2SL1 | Output Frequency (MHz) |
|----------|----------|------------------------|
| 0        | 0        | 6                      |
| 0        | 1        | 12                     |
| 1        | 0        | 24                     |
| 1        | 1        | 48                     |

Bit 6 (OSCO2E): OSCO2 output function mask. .

**0**: OSCO2 disabled, function as pin PF0;

1: OSCO2 enabled.

Bit 7 Reserved.

## 7.3.11 Watchdog Timer Controller – WDTC (0x95)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| GREEN | -     | -     | WDTCE | -     | RAT2  | RAT1  | RAT0  |

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



#### Bit 0 ~ 2 (RAT0 ~ RAT2): Prescaler of WDT.

| RAT2 | RAT1 | RAT0 | Clock Rate |
|------|------|------|------------|
| 0    | 0    | 0    | 1:2        |
| 0    | 0    | 1    | 1:4        |
| 0    | 1    | 0    | 1:8        |
| 0    | 1    | 1    | 1:16       |
| 1    | 0    | 0    | 1:32       |
| 1    | 0    | 1    | 1:64       |
| 1    | 1    | 0    | 1:128      |
| 1    | 1    | 1    | 1:256      |

Bit 4 (WDTCE): Enable the WDT Counter

0 : WDT disabled;

1 : WDT enabled.

Bits 7 (GREEN): for the reason of power saving, the system clock can be changed to internal RC mode.

1 : Green Mode

0 : Normal Mode

Bits 3, 5 and 6 are reserved.

## 7.3.12 ADC Analog Input Pin Select – ADCAIS (0x96)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| -     | -     | -     | IMS2  | IMS1  | IMS0  | CKR1  | CKR0  |

CKR0 ~ CKR2 (Bit 0 ~ Bit 2): AD conversion Rate control bits.

IMS2~IMS0 (Bit 2 ~ Bit 4): ADC configuration definition bit.

Bits 5 ~ 7 are reserved.

## 7.3.13 ADC Configuration Register – ADCCR (0x97)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADRUN | ADIE  | -     | -     | AIPS3 | AIPS2 | AIPS1 | AIPS0 |

Bit 0 ~ Bit3 (AIPS0~AIPS3): Analog Input Select.

Bit 6 ~ Bit 7 (ADIE): ADC interrupt enable.

0 : ADC interrupt disable

1 : ADC interrupt enable

Bit 7 (ADRUN): ADC starts to RUN

- **0** : reset on completion of the conversion; this bit cannot be reset by software.
- 1 : A/D conversion is started; this bit can be set by software.

Bits 4 and 5 are reserved.

## 7.3.14 PWM Control Register – PWMCR (0x98)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3  | Bit 2  | Bit 1 | Bit 0 |
|-------|-------|-------|-------|--------|--------|-------|-------|
| -     | -     | -     | -     | S_PWM1 | S_PWM0 | -     | -     |

Bit 2 (S\_PWM0): Selected PWM0 output enable.

Bit 3 (S\_PWM1): Selected PWM1 output enable.

0: disable PWM output

1: enable enable PWM output

Bits 0, 1 and 4 ~ 7 are reserved.

## 7.3.15 BB Interrupt Control Register – RFINTE (0x99)

|                                                   | Bit 7     | Bit 6    | Bit 5            | Bit 4                                      | Bit 3       | Bit 2         | Bit 1         | Bit 0        |  |  |  |  |
|---------------------------------------------------|-----------|----------|------------------|--------------------------------------------|-------------|---------------|---------------|--------------|--|--|--|--|
|                                                   | CSDE      | TX_AEE   | RX_AFE           | TX_<br>EMPTYE                              | RX_OFE      | LINK_<br>DISE | LOCK_OU<br>TE | LOCK_<br>INE |  |  |  |  |
| E                                                 | Bit 0 (LO | CK_INE): | LOCK I           | LOCK IN interrupt enable bit.              |             |               |               |              |  |  |  |  |
| E                                                 | Bit 1 (LO | CK_OUTE  | ): LOCK C        | UT interru                                 | pt enable b | it.           |               |              |  |  |  |  |
| Bit 2 (LINK_DISE): LINK_DIS interrupt enable bit. |           |          |                  |                                            |             |               |               |              |  |  |  |  |
| E                                                 | Bit 3 (RX | _OFE):   | RX FIFC          | RX FIFO full interrupt enable bit.         |             |               |               |              |  |  |  |  |
| E                                                 | Bit 4 (TX | _EMPTYE) | : TX EMP         | TX EMPTY interrupt enable bit.             |             |               |               |              |  |  |  |  |
| E                                                 | Bit 5 (RX | _AFE):   | RX FIFO          | RX FIFO almost full interrupt enable bit.  |             |               |               |              |  |  |  |  |
| E                                                 | Bit 6 (TX | _AEE):   | TX FIFC          | TX FIFO almost empty interrupt enable bit. |             |               |               |              |  |  |  |  |
| E                                                 | Bit 7 (CS | DE):     | carrier-s        | carrier-sense interrupt enable bit.        |             |               |               |              |  |  |  |  |
|                                                   |           |          | <b>0</b> : disab | 0: disable interrupt function              |             |               |               |              |  |  |  |  |
|                                                   |           |          | 1: enabl         | 1: enable interrupt function               |             |               |               |              |  |  |  |  |

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



## 7.4 Code Option (ROM-0x2FFF)

Register SCLK is located on the very last bit of EM77950's 12K program ROM. These values will be fetched first to be the system initial values as power-on.

SCLKC: System Clock Control Register

| SCLKC  | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3  | Bit 2  | Bit 1 | Bit 0 |
|--------|-------|-------|-------|-------|--------|--------|-------|-------|
| 0x2FFF | -     | -     | -     |       | RFCLK1 | RFCLK0 | SCLK1 | SCLK0 |

| SCLKC  | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 |
|--------|--------|--------|--------|--------|--------|--------|-------|-------|
| 0x2FFF | -      | -      | -      | -      | -      | -      | -     | -     |

Bit 1 ~ Bit 2 (SCLKS1 ~ SCLKS0): System Clock Frequency Select Control Bits

| SCLK1 | SCLK0 | System Clock (MHz) |
|-------|-------|--------------------|
| 0     | 0     | 6                  |
| 0     | 1     | 12                 |
| 1     | 0     | 24                 |
| 1     | 1     | 48                 |

Bit 3 ~ Bit 4 (RFCK1 ~ RFCK0): Wireless Modem Clock Frequency Select Control Bits

| RFCLK1 | RFCLK0 | System Clock (MHz) |
|--------|--------|--------------------|
| 0      | 0      | 6                  |
| 0      | 1      | 12                 |
| 1      | 0      | 24                 |
| 1      | 1      | 48                 |

#### Bit5 ~ 15: Reserved

| SCLK [1:0]  | RFCLK [1:0] | WDT_CON.GREEN | SYS CLK    | RF CLK     | Note              |
|-------------|-------------|---------------|------------|------------|-------------------|
| 00          | 00          | 0             | Bypass     | Bypass     | 1~20MHz<br>(6MHz) |
| 00/01/10/11 | 01/10/11    | 0             | 6/12/24/48 | 12/24/48   |                   |
| 01/10/11    | 00/01/10/11 | 0             | 12/24/48   | 6/12/24/48 |                   |
| 00/01/10/11 | 00/01/10/11 | 1             | IRC        | 6/12/24/48 | BB enable         |

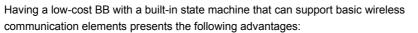


## 8 Baseband (BB)

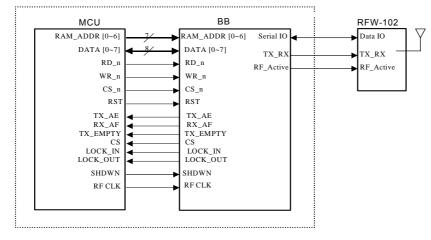
## 8.1 BB: Standard Interface for the RFW102 Series

## 8.1.1 Features

- Parallel interface to RFW102 modem
- Serial to Parallel conversion of RFW102 interface
- Input FIFO (RX\_FIFO)
- Output FIFO (TX\_FIFO)
- Preamble Correlation
- Packet Address Filter (Network and unique)
- CRC calculation
- Working Frequencies: 6-24MHz
- Power Save modes: Idle, Power-down
- Inter-RFWAVES networks Carrier-sense
- Discharge of the RFW-102 reference capacitor
- Compensate for clock drifts between transmitting and the receiving the EM77950 up to 1000ppm. Hence, the EM77950 requires low performance crystal.
- Interrupt Driver connected to the EM77950's internal interrupt and informs the EM77950 about BB events.


#### 8.1.2 Description

RFWAVES has developed a very low cost wireless modem (RFW102) for short range, cost-sensitive applications. The modem is a physical layer element (PHY) – allowing the transmission and reception of bits from one end to the other.


In an RFWAVES application, the MCU is in charge of the MAC layer protocol. In order to reduce the real-time demands of the MCU handling the MAC protocol, the BB was developed. The BB enables the MCU an easy interface to RFW102 through a parallel interface, similar to memory access. It converts the fast serial input to 8-bit words, which are much easier for an 8-bit MCU to work with, and requires a lower rate oscillator. It buffers the input through a TBD bytes FIFO, enabling the MCU to access the BB more efficiently. Instead of reading one byte per interrupt, the MCU can read up to 16 bytes in each interrupt. This reduces the MCU overhead in reading incoming words, insofar as stack stuffing and pipeline emptying are concerned, in cases where each incoming byte causes an interrupt. When using the FIFO, the MCU pays the same overhead for all the FIFO bytes as it paid for only one byte without a FIFO.



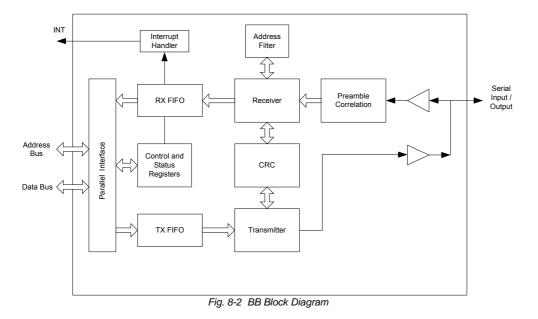
Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



- Shorter development time, hence shorter time to market.
- Conserve CPU power and other resources for other applications.
- Offer an easy, standard integrated solution.



## 8.1.3 I/O and Package Description


Fig. 8-1 Parallel Interface between the MCU and RFW-102 through BB

| Name                                                         | Туре | Description                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATA [0-7]                                                   | I/O  | This bus comprises of eight TRI-STATE input/output lines. The bus provides bidirectional communication between the system and the MCU. Data, control words, and status information are transferred via the DATA [0-7] data bus.                                                                                                                  |
| RD_n                                                         | I    | When RD_n is low while the system is enabled, BB outputs one of its internal register values to DATA[0-7] according to RAM_ADDR[0-6].                                                                                                                                                                                                            |
| WR_n                                                         | I    | When WR_n is low while the system is enabled, BB enables writing to its internal registers. The register is determined by RAM_ADDR [0-6] and the value DATA[0-7].                                                                                                                                                                                |
| RAM_ADDR[0-6]                                                | I    | These four input signals determine the register to which the MCU writes to or reads from.                                                                                                                                                                                                                                                        |
| CS_n                                                         | I    | Chip select input pin. When CS_n is low, the chip is selected; when high, the chip is disabled. This pin overrides all pins excluding RST. This enables communication between BB and the MCU. This pin functions as wakeup pin for power-down and idle modes.                                                                                    |
| TX_AE;<br>TX_EMPTY;<br>RX_AF;<br>CS;<br>LOCK_IN;<br>LOCK_OUT | 0    | Interrupt driver pins.<br>This pin goes high whenever any of the interrupt sources has an active high condition and is enabled via the IER. The purpose of this pin is to notify the MCU through its external interrupt pin that an event (such as empty TX_FIFO) has occurred.<br>Goes low when IER register is read.                           |
| RST                                                          | I    | Chip's reset pin.<br>When this pin is set high, all registers and FIFOs are cleared to their<br>initial values. All transceiver traffic is disabled and aborted. Reset is<br>asynchronous to system clock.<br>After power-up, a pulse in RST input should be applied (by POR).                                                                   |
| SHDWN                                                        | I    | Shut Down BB                                                                                                                                                                                                                                                                                                                                     |
| RF_ACTIVE                                                    | 0    | This output pin controls the RFW102 working/shutdown mode. Its values are determined by SCR4(1).                                                                                                                                                                                                                                                 |
| SERIAL_IO                                                    | I/O  | Serial input or output according to TX_RX mode.<br>It functions as serial interface for the RFW-102 (RFWAVES<br>modem).<br>When SERIAL_IO is input, it is a Schmitt-trigger input.                                                                                                                                                               |
| RX_TX                                                        | 0    | This pin controls RFW-102 operation mode. It should be connected to RFW-102 RX_TX input pin.<br>When RX_TX is low, RFW-102 is in receiving mode.<br>When RX_TX is high, RFW-102 is in transmitting mode.<br>In most cases RX_TX output pin is determined by SCR2(0) register.<br>SCR3(7) and the capacitor discharge mechanism affects this pin. |
| RF_CLK                                                       | I    | Clock for RF operation                                                                                                                                                                                                                                                                                                                           |

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)

*<u>ALAN</u>* 





## 8.2 BB Description

## 8.2.1 Reset

A reset is achieved by holding the RST pin high for at least TBD oscillator cycles.

To ensure good power-up, a reset should be given to BB after power-up.

## 8.2.2 Power Saving Modes

The BB was designed to work in similar working modes as a typical MCU.

These modes enable the system to conserve power when the BB is not in use.

#### 8.2.2.1 Power-Down Mode

The MCU is able to halt all activity in BB by stopping its clock. This enables the MCU to reduce the power consumption of the BB to a minimum.

All registers and FIFOs retain their values when BB is in power-down mode.

BB enters power-down mode by setting bit TBD in register TBD to "1". This bit is set by the MCU and cleared by BB.

BB goes back to working mode by setting CS\_n input pin to "0" for TBD msec.

The wake-up time of BB from power-down mode to fully operating mode is TBD msec.

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)





Since BB retains all the register values in power-down mode, special care should be paid to the register values before it enters power-down. For example, the MCU should check that the BB is not in the middle of transmitting or receiving a packet.

The RFACTIVE should be set low to shutdown the RFW-102, before entering power-down mode.

#### 8.2.2.2 Idle Mode

In idle mode, the BB internally blocks the clock input. The external clock is not stopped, but it is not routed to the internal logic. By doing this, the MCU achieves substantial power savings and yet the wake-up time is still relatively short. The power consumption is not minimal since the external clock is still active.

All registers and FIFOs retain their values when BB is in idle mode.

BB enters idle mode by setting bit TBD in register TBD to "1". This bit is set by the MCU and cleared by BB.

BB goes back to working mode by setting CS\_n input pin to "0" for TBD  $\mu$ sec.

Since BB retains all the register values in idle mode, special care should be given to the register values before BB enters idle mode. For example, the MCU should check that the BB is not in the middle of transmission or receiving a packet. In addition, the RFACTIVE should be set low to shutdown the RFW-102.

## 8.2.3 Preamble Correlation

The transmitting BB sends the PREAMBLE in order to synchronize the receiver to its transmission. BB transmits a fixed size PREAMBLE of 16 bits. The received PREAMBLE has a variable length of 16⇔9 bits, determined by SCR2 [5:7]. The receiver correlates the 16⇔9 bits from its PRE-L and PRE-H registers to the 16⇔9 bits in its input shift-register. If a correlation was found, then BB receiver state machine is enabled.

The purpose of the PREAMBLE is to filter the module packets from white noise or other transmissions on the channel. NODE\_ID and NET\_ID filter are used to filter packets from other module networks.

The PREAMBLE is transmitted MSB to LSB (PRE-H first and then PRE-L).

The value of the PREAMBLE is determined according to PRE-L and PRE-H registers.

The BB has the same PREAMBLE when it is in transmitting mode (TX\_RX=1) as when it is in receiving mode (TX\_RX=0).

The value of the PRE-L and PRE-H registers should be identical in the BB in all nodes in the network.



Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



## 8.2.4 Refresh Bit

When receiving a valid packet, The RFWaves modem (PHY layer) has to receive a "1" symbol each time a certain period has elapsed in order to maintain its sensitivity. The time between adjacent "1" symbols is determined by the value of the reference capacitor. This constraint is transparent to the application layer since the BB adds a "1" symbol (refresh bit) if too many "0" symbols are transmitted consecutively. On the receiver side, these additional "1" symbols (refresh bits) are removed by the BB.

This feature is transparent to the application layer. The application layer has only to initialize the maximum allowed number of consecutive x"00" bytes.

The BB has the flexibility to add a refresh bit every 1 to 7 bytes. This is configured by RB (0:2) bits in PPR register. The value of RB (0:2) bits in PPR register determines the overhead the refresh bit has on the throughput of the link.

The refresh bit does not add substantial overhead on the bit stream, since it is only added when the number of consecutive x"00" bytes exceeds a certain value.

The data that is sent is application dependent, so the application can be adjusted in order that there will be a negligible probability of this event happening.

Typical RFWaves capacitor: C=1nF.

Normal discharge current = 200nA.

Each 10mV on the capacitor represent 1dB in receiving power.

$$\frac{I}{C \cdot V} = \frac{200nA}{1nF \cdot 10mV} = \frac{1dB}{50\mu \sec}$$

The capacitor is charged with each received "1" symbol.

The receiver is allowed to lose 1dB before a new "1" is to be received.

Thus, after each 50 consecutive "0" bits in 1Mbps (50 $\mu$ sec) a "1" symbol should be sent.

In this case, setting RB [0:2] in PPR register to be 5 ("101") would be sufficient (5 bytes = 40bits).

When RB (0:2) bits are set to "000" a refresh bit is added to every transmitted byte, regardless of its content. This introduces a constant overhead of 12.5%.

#### 8.2.5 Bit Structure

The BB uses an oscillator ranging from 6~24 MHz. In order to determine the output and input bit rate, the BB must be configured to the number of clocks consisting each bit. This gives the applicator the control over the bit rate with certain restrictions. Each bit must have at least 6 clock cycles.



The maximum bit rate is: 1Mbps.

The minimum bit rate is: 10Kbps (TBD)

However it is recommended to work only at 1Mbps since reducing the bit rate does not change the energy of a transmitted bit. Meaning, reducing the bit-rate does not improve the bit error rate or the range between the transmitter and the receiver.

Bit Length Register (BLR) determines the number of clock cycles per bit (bit period).

BLR value is given a fixed offset of 6, since the minimum number of clock cycles in one bit is 6.

Bit Rate = Oscillator/(BLR+6).

The BB outputs (for the RFW-102) the bit structure shown below.

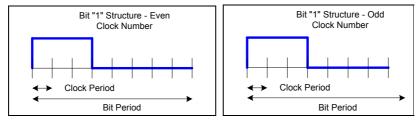



Fig. 8-3 Bit Structure of the BB output to the RFW-102

In the odd number of clocks example BLR=1.

In the even number of clocks example BLR=2.

The number of clocks when the line is "1" is determined as follows:

Number of "I" 
$$s = FLOOR\left[\left(\frac{BLR+6}{2}\right) - 1\right]$$

In case of "0" bit, BB output "0" value for BLR+6 clock pulses.

\* FLOOR - Rounds towards zero.

## 8.2.6 CRC

The BB adds additional CRC information to each packet in the transmitter module, in order to enable the protocol to detect errors. The CRC is a redundant code, which is calculated and added to each packet on the transmitter side. The CRC is also calculated on the receiver side. The CRC calculation results of the receiver and the CRC field in the received packet are compared in the receiver using the CRC module in the chip. If CRC results are equal, then the receiver knows with reasonable probability that the packet was received correctly. If the CRC results are not equal then the receiver knows with probability 1 that the packet was received incorrectly.

The CRC mode is configured in the PPR (3:4) register.

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



Both the receiving node and the transmitting node in the network have to be in the same CRC mode.

The BB can apply CRC in three different ways:

16-Bit CRC – using polynomial  $1+X^2+X^{15}+X^{16}$ .

8-Bit CRC – using polynomial  $1+X+X^2+X^8$ .

No CRC.

This gives each application the flexibility to choose the adequate amount of overhead it adds to each packet and the corresponding level of protection the CRC code has.

If CRC is enabled, then BB calculates the CRC of each incoming packet. It does not put the received CRC value in the RX\_FIFO. It just puts the result of its calculation in the RX\_FIFO as the last byte of the packet:

0x55 - CRC received correctly.

0xAA – CRC was received incorrectly.

The status bit SSR (0) stores the result of the last received packet.

#### 8.2.7 RX FIFO

All received bytes are transferred to the RX\_FIFO. The RX\_FIFO stores the input data until the MCU reads the data from it.

CRC and Preamble bytes are not transferred to the RX\_FIFO.

The RX\_FIFO is accessed just like all the other read-only registers in the BB. The MCU cannot write to RX\_FIFO - it can only read from it.

RX\_FIFO\_SIZE is 16 bytes.

The purpose of having an input FIFO in BB is to reduce the real-time burden from the MCU. The FIFO is used as a buffer, which theoretically enables the MCU to read the incoming data every RX\_FIFO\_SIZE  $\times$  8 bit/byte  $\times$  1µsec = 128 µsec, and not every 1µsec in the case of serial input, or every 8µsec in the case where there is a serial to parallel converter.

The actual buffer size for practical use is a bit smaller, since the MCU response time is taken into account.

The MCU has three ways to learn about the RX\_FIFO status:

The RX FIFO Status Register (RFSR) contains the number of bytes in the RX\_FIFO.

**BB INT pin**. If configured appropriately, the INT pin will be "1" each time RX\_FIFO is almost full. This invokes an MCU interrupt if the INT pin is connected to the MCU external interrupt pin.

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



**RX\_FIFO Overflow Status Bit** – bit RX\_OF in SSR indicates when an overflow event has occurred. If a received byte is written to a full RX\_FIFO, the last byte in the RX\_FIFO is override and the RX\_OF flag is raised.

The **RX\_AF** interrupt should invoke the MCU to read from the RX\_FIFO. Using the almost full event gives the MCU 32 $\mu$ sec (4 bytes × 8  $\mu$ sec) to respond before it loses data, assuming a bit rate of 1Mbps. It uses most of the RX\_FIFO size even if the response latency of the MCU is very short.

Should the MCU not respond properly to the almost full event, and an input byte is written to the RX\_FIFO when it was full, then this byte would overrun the last byte in the RX\_FIFO, meaning the byte that immediately preceded it.

**LOCK\_OUT** interrupt should also trigger the MCU to read from the RX\_FIFO. In case a packet has ended and the RX\_AF interrupt was not invoked, the MCU should be triggered by the LOCK\_OUT interrupt.

## 8.2.8 TX FIFO

Transmitting data is done by writing it to the TX\_FIFO.

The interface to the TX\_FIFO is similar to all the other write-only registers in BB.

The purpose of the TX\_FIFO is to reduce the real-time from the MCU in a transmitting process. The TX\_FIFO enables the MCU, theoretically, to write to the TX\_FIFO every 128µsec and not every 8µsec, as is the case with a regular 8-bit shift register.

The TX\_FIFO Status Register (TFSR) indicates the number of bytes in the TX\_FIFO.

The TX\_FIFO can also invoke an MCU interrupt if TX\_FIFO almost empty event occurs.

Almost empty flag will rise when there are only 4 empty bytes in the TX\_FIFO.

It gives the MCU 32µsec to respond time to reload the TX\_FIFO in case the transmitted packet is bigger than the TX\_FIFO.

In case the MCU writes to a full TX\_FIFO, then this byte overruns the last byte in the TX\_FIFO, meaning the byte that was written just before it. Writing to a full TX\_FIFO set the TX\_OF flag in SSR.

## 8.2.9 Interrupt Driver

The INT output pin is the summation of all interrupt sources in the BB. Whenever an interrupt event has occurred and this interrupt is enabled (IER), INT will go from low to high. INT will remain high until IIR register is read. The IIR register contains all the interrupts event that have occurred since the last read. It shows the event only for enabled interrupts. If an interrupt is disabled, even if the event that invoked this interrupt has occurred, the interrupt flag will be low. The IER register is used to enable/disable each of the interrupt. SCR4 (0) enables/disables all the interrupts.

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)

There are 8 events in the BB that can cause the INT pin to go from low to high:

- LOCK\_IN This interrupt indicates that the BB has started receiving a new packet. The Preamble has been identified. If the NET\_ID or/and the NODE\_ID are enabled, then they have been identified correctly. This event signals the beginning of an incoming packet.
- 2. LOCK OUT BB has just finished receiving a packet. This means that if the BB is in fixed packet size mode, then it has finished receiving PSR bytes not including CRC bytes. If BB is not in fixed packet size mode, then it has just finished receiving a packet of size as indicated in the packet header. Although RX\_STOP and setting TX\_RX=1 (SCR2) terminate the receiving of the packet, they do not cause a LOCK\_OUT event, since the MCU is already aware of it (the MCU initiated it). The LOCK\_OUT interrupt tells the MCU when to get data out of the RX\_FIFO.
- LINK\_DIS This interrupt indicates that a "Zero counter" capacitor discharge event has occurred. If a consecutive number of zero bits (according to SCR3 (4:6)) have been received, this interrupt is set, even if zero count capacitor discharge is disabled (SCR3 (3) – EN\_ZERO\_DIS = '0'). The actual capacitor discharge and its interrupt are two separate registers (IER (2) for the interrupt and SCR3 (3) for the discharge).
- 4. RX\_OF This interrupt indicates that a byte from an incoming packet was discarded, since the RX\_FIFO was already full. The receiver module tried to write a byte to a full RX\_FIFO. The MCU should know that the corresponding packet is corrupted, since it is lacking at least one byte.
- 5. TX\_EMPTY The BB has finished transmitting a packet. Meaning, the transmit shift register is empty and BB is now in RX mode (not TX mode).
- RX\_FIFO\_AF RX\_FIFO is almost full. If the MCU does not want the RX\_FIFO to overflow, then it should empty it.
- TX\_FIFO\_AE TX\_FIFO is almost empty. If the MCU did not finish putting the transmitted packet in the TX\_FIFO, then it should continue doing so now.
- CS CS status line has gone from "1" to "0" invokes a CS interrupt. This signals the MCU that an unidentified (NET\_ID or NODE\_ID or Preamble were not identified) packet has ended. If the MCU has a packet to transmit, and CS="1" than the MCU waits for this event.

All these events can be masked. If an event is masked, then even if that event occurs - it does not set the INT pin to "1". The masking is done by register IER.

The reason for masking is that in different applications or in different situation in the same application these events have different priorities. The MCU determines which of these events will invoke an MCU interrupt.

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)





Moreover all these events can be masked together by IE in IER register. If INT pin is set to "1", the MCU learns which event has occurred by reading IIR register. INT goes "0" when MCU reads from IIR register.

## 8.2.10 Packet Size

There are two types of packet structure determined by PPR [5] (FIXED).

**Fixed Sized Packet** – all packets have the same, fixed size. The packet size is determined in PSR register. The packet size can be  $2 \sim 255$  bytes.

**Variable Sized Packet** - the header of the incoming packet determines the packet size. One of the header bytes contains the packet size. Bits SIZE\_LOC[0:1] in LCR register determines the location (offset) of the packet size inside each incoming packet header. The BB reads the packet size byte in the packet header according to LCR register.

In both cases the packet size does not include the CRC addition or the Preamble.

## 8.2.11 NET\_ID and NODE\_ID Filters

NET\_ID and NODE\_ID are two filters in the receiver. They filter incoming packets according to their network address and node address.

The address field in each incoming packet is compared to NET\_ID byte and NODE\_ID byte. If one of the above comparisons fails, then the packet is discarded and the MCU will not be aware of it.

NET\_ID and NODE\_ID are both one byte. Their values are stored in NIR and BIR registers accordingly. The byte to which they are compared is set by the LCR register.

Each of them can be enabled or disabled independently (PPR register).

NET\_ID is targeted to be a filter on the network address. It is supposed to be common for all nodes in the network.

NODE\_ID is targeted to be a filter on the specific node address. It is supposed to be unique to each node in the network.

The purpose of these filters is to conserve MCU power and to reduce its load. In a multi-node network, a node can filter all packets that are not sent to it, while in multi-network environment, a node can filter packets from other RFWaves networks.

In certain network, a multicast ability inside the network is required. Even if NODE\_ID filter is applied, Addresses '111111XX' in NODE\_ID filter are preserved for multicast transmissions. NODE\_ID filter will not discard those 4 addresses in any case.





## 8.2.12 Carrier-Sense

Carrier-sense protocols are protocols in which a node (station) listens to the common channel before it starts transmitting. The node tries to identify other transmissions in order to avoid collision that might block its own transmission. In a wider perspective, a network that applies carrier-sense protocol utilizes the channel bandwidth more efficiently. A more efficient network enables lower power consumption to each node, shorter delay and higher probability of reaching destination to each packet.

The BB uses one complimentary technique in order to achieve very wide-ranging carrier-sense abilities. It has an internal implementation of RFWaves Network Carrier-Sense algorithm. This enables it to avoid collision with other RFWaves stations on its network or from other networks in the area.

While the Carrier-Sense status bit in SSR (CS) tells the MCU when not to transmit, the two interrupt CS and LINK\_DIS gives the MCU a flag when to transmit. LINK\_DIS will be invoked whenever any transmission has ended, while CS interrupt will be invoked only when an RFWaves transmission has ended. An application can use some of the above mechanisms though not all of them – according to its needs.

#### 8.2.12.1 RFWaves Carrier-Sense Algorithm

Assuming our bit rate is 1Mbps. According to the described bit structure (Section 8.2.5 Bit Structure), the time difference between two rising on DATA\_IO must be an integer number of 1µsec. If we take into account the frequency deviation between the two BB oscillators, the time difference between two rising edges is  $1\mu$ sect. The depends on the frequency deviation between the two BB oscillators. The BB uses this quality in its carrier-sense algorithm. If an N (N = (CSR (0:3) \* 2) + 2) number of "1" bit, where each is preceded by at least one "0" bit, are received with time difference of an integer number of 1µsec between two consecutive "1" bit, then the CS flag in SSR equals '1'. Basically, the BB counts "0" to "1" transits on DATA\_IO input, where the time difference between two transits should be an integer number ( $\geq 2$ ) of 1µsec. The number of consecutive "1" bit that conforms to this rule is counted in the following example (Figure 8-2) in ONE\_CNT counter. ONE\_CNT is incremented only if a "1" bit that comes after a "0" bit is received, where the time gap between the "1" bit and the preceding "1" bit is as mentioned above. If the time difference between two consecutive "1" bit is out of the allowed deviation, the ONE\_CNT is reset. ONE\_CNT is also reset if the number of consecutive "0" exceeds (CSR (4:7) \* 2) + 2, where CSR is the last "1" bit received is counted in ZERO\_CNT. ZERO\_CNT is reset each time "1" bit is received.

Both M and N values are determined in CSR register (CSR (7:4) and CSR (3:0) accordingly).

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)

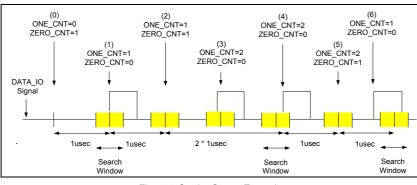



Fig. 8-4 Carrier-Sense Example

In the example shown in Figure 8-2, at time (1) a new "1" bit is received after a "0" bit was received. Thus, ONE\_CNT equals 1 and ZERO\_CNT is reset to 0. At time (2), a zero bit is received, so the ZERO\_CNT is incremented. At time (3), a "1" is received after a "0" bit that was received before it. Thus ONE\_CNT is incremented and ZERO\_CNT is reset. At time (4) a "1" bit is received after a "1" bit, thus, there is no change in any counter. At time (6) a "1" bit is received out of the allowed window, so ONE\_CNT is reset to 1.

The CSR register is used to configure the carrier-sense algorithm sensitivity. The CSR register determines the number of "1" bit required in order to decide that a carrier exists. The CSR also determines the number of successive "0" bits that reset the carrier-sense state machine.

In SSR register, bit CS notifies whether a carrier was identified. Carrier-sense can also be used as an interrupt. When CS in SSR goes from '1' to '0' i.e. the transmission has stopped, a CS interrupt is invoked (if enabled in IER). The purpose of this interrupt is to inform the MCU that the channel is free again.

If the BB identifies a packet, the carrier-sense algorithm halts. When the BB is in RX mode and the LOCK flag in SSR is "0", the CS mechanism is working. When the LOCK flag in SSR is "1", the CS mechanism is not working, since the CS flag does not add any information because a Preamble was identified already. After a Preamble was identified the CS in SSR equals '1'.

## 8.2.13 Receiver Reference Capacitor Discharge

BB implements two independent mechanisms for receiver capacitor discharge:

At the end of each received packet.

Zero counter.

Mechanism 1 is enabled/disabled by bit EN\_CAP\_DISCH in SCR3.

Mechanism 2 is enabled/disabled by bit EN\_ZERO\_DISCH in SCR3.

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



The number of "0" bits that will cause a discharge in Mechanism 2 are determined by bits ZERO\_DISCH\_CNT [0:2].

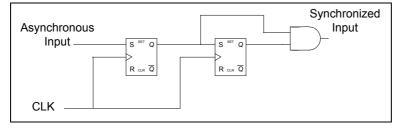
For both mechanisms, the discharge time is determined by CAP\_DIS\_PERIOD in SCR3.

Discharge is done by setting RX\_TX pin to '1' for a certain time and then setting it back to '0'.

(\*) More detailed explanations of the reference capacitor discharge algorithms and motivations are can be found in the "RFW - Capacitor Discharge.pdf" document.

## 8.2.14 Changing BB Configuration

It is not recommended to change the BB configuration while it is in the middle of receiving or transmitting a packet.


Thus, before writing to any of the BB control registers (such as BLR, PRE-L, PRE-H, PPR etc), do thefollowing:

- 1. Change TX\_RX mode to RX.
- 2. Disable Preamble search (SEARCH\_EN in SCR2)
- 3. Stop all RX receiving RX\_STOP.

It is then safe to change the BB configuration.

## 8.2.15 Input Synchronizer

Handling asynchronous inputs to the BB.



## 8.3 Register Description

The registers in the BB are divided into three groups:

- Read-only registers. Mainly status registers.
- Write-only registers. Mainly control registers.
- Read and write registers.

In case of an RST pulse, all register are set to their default value.

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



## 8.3.1 Bit Length Register (BLR)

This register is both a read and a write register.

It determines the length of the bit in terms of clock cycles.

The bit length will be (BLR+6) clocks, since the minimum length of a bit is 6 clocks.

Default Value: 00 (0+6=6).

## 8.3.2 Preamble Low Register (PRE-L)

This register is a write-only register.

This register contains the 8 least significant bits of the Preamble.

| Name  | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| PRE-L | PR-7  | PR-6  | PR-5  | PR-4  | PR-3  | PR-2  | PR-1  | PR-0  |

Default Value: 0xEB.

## 8.3.3 Preamble High Register (PRE-H)

This register is a write-only register.

This register contains the 8 most significant bits of the Preamble.

| Name  | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| PRE-H | PR-15 | PR-14 | PR-13 | PR-12 | PR-11 | PR-10 | PR-9  | PR-8  |

Default Value: 0xFF.

## 8.3.4 Packet Parameter Register (PPR)

| Name | Bit 7        | Bit 6         | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|------|--------------|---------------|-------|-------|-------|-------|-------|-------|
| PPR  | NET<br>ID_EN | NODE<br>ID_EN | FIXED | CRC1  | CRC0  | RB-2  | RB-1  | RB-0  |

This is a read and a write register.

It contains control bits of the transmitted and received packet structure.

Default Value: 0x3A.





#### Bits 0-2 (RB-0~RB-2): Refresh Bits

These bits determine the maximum number of successive "zero" bytes allowed before an added "one" bit is stuffed to the packet by the transmitter state machine. The reason for this feature is to keep the RFW-102 reference capacitor charged.

| Refresh Bit                                             | Bit 2 | Bit 1 | Bit 0 |
|---------------------------------------------------------|-------|-------|-------|
| Refresh bit is added to every byte.                     | 0     | 0     | 0     |
| Refresh bit is added if 1 byte equals x"00".            | 0     | 0     | 1     |
| Refresh bit is added if 2 successive bytes equal x"00". | 0     | 1     | 0     |
| Refresh bit is added if 3 successive bytes equal x"00". | 0     | 1     | 1     |
| Refresh bit is added if 4 successive bytes equal x"00". | 1     | 0     | 0     |
| Refresh bit is added if 5 successive bytes equal x"00". | 1     | 0     | 1     |
| Refresh bit is added if 6 successive bytes equal x"00". | 1     | 1     | 0     |
| Refresh bit is added if 7 successive bytes equal x"00". | 1     | 1     | 1     |

The value of the refresh bit is determined by the value of the reference capacitor.

## Bits 3, 4: CRC [0:1]

These bits control the CRC operation for both transmit and receive mode:

| CRC    | Bit 4 | Bit 3 |
|--------|-------|-------|
| No CRC | 0     | 0     |
| CRC8   | 0     | 1     |
| CRC8   | 1     | 0     |
| CRC16  | 1     | 1     |

#### Bit 5: FIXED

This controls the packet mode when high system packets are fixed size and the length is specified in the Packet Size Register (PSR).

When FIXED is low, the packet size is variable. The size is specified in the header of the incoming or outgoing packets. The location of the packet size field is specified in the LCR register.

#### Bit 6: NODE\_ID\_EN

This is NODE\_ID control bit.

0: Disables Node ID search.

1: Enables Node ID search according to LCR, BIR.



## Bit 7: NET\_ID\_EN

This is NET\_ID control bit.

0: Disables Net ID search.

1: Enables Net ID search according to LCR, NIR.

## 8.3.5 System Control Register1 (SCR1)

| Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
| N/A  | N/A   | N/A   | N/A   | N/A   | N/A   | N/A   | N/A   | N/A   |

This byte is reserved.

Default Value: 0x00.

#### 8.3.6 System Control Register 2 (SCR2)

| Name | Bit 7         | Bit 6         | Bit 5         | Bit 4 | Bit 3 | Bit 2            | Bit 1        | Bit 0 |
|------|---------------|---------------|---------------|-------|-------|------------------|--------------|-------|
| SCR2 | PRE<br>MASK 2 | PRE<br>MASK 1 | PRE<br>MASK 0 |       | -     | RX FIFO<br>RESET | SEARCH<br>EN | TX_RX |

This register is a read and a write register.

This register controls the system operation modes.

## Bit 0: TX\_RX

Controls the transceiver mode: receive mode or transmit mode

When TX\_RX is low – BB is in receive mode (default mode). The output pin RX\_TX is set to '0'. BB searches for a Preamble. If Preamble is found, it handles the process of receiving a packet.

If SCR3 (7) is set, then the BB goes to RX mode and the output pin RX\_TX is TX mode.

The capacitor discharge can change the output pin RX\_TX to TX mode even if we are in RX mode in the BB. In this case the output pin RX\_TX will be in TX for a short duration and then return to RX mode.

When TX\_RX is high – BB is in transmit mode. The output pin RX\_TX is set to '1'. BB handles the process of transmitting a packet according to the data in the TX\_FIFO. When it finishes transmitting the packet, it automatically goes back to receive mode.

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



#### Bit 1: SEARCH\_EN

Preamble search enable bit.

When 1: Enables the search for Preamble in receive mode.

When 0: Disables the search for Preamble in receive mode, (used when user configures the system while in default receive mode).

This bit's default value is '0'. It must be set to '1' in order to start receiving a packet.

#### Bit 2: RX\_FIFO\_RESET

This bit resets the RX\_FIFO address pointers when set to Logic 1. This bit is set by MCU and is cleared automatically by BB.

#### Bit 3: TX\_FIFO\_RESET

This bit resets the TX\_FIFO address pointers when set to Logic 1. This bit is set by MCU and is cleared automatically by BB.

Bit 4: STOP\_RX

This bit stops receiving the current command, resets the RX\_FIFO counters and start new searches for preamble. This bit is set by MCU and is cleared automatically by BB.

#### Bits 5-7: PRE\_MASK [0:2]

These bits determine the mask on PRE-H in preamble correlation. Meaning, it determines the size of the Preamble in the receiver.

The PRE-L is always used in the Preamble correlation.

BB cuts off bit from PRE-H register, starting from the MSB.

| PRE<br>MASK 0 | PRE<br>MASK 1 | PRE<br>MASK 2 | Preamble Size |
|---------------|---------------|---------------|---------------|
| 0             | 0             | 0             | 16            |
| 0             | 0             | 1             | 15            |
| 0             | 1             | 0             | 14            |
| 0             | 1             | 1             | 13            |
| 1             | 0             | 0             | 12            |
| 1             | 0             | 1             | 11            |
| 1             | 1             | 0             | 10            |
| 1             | 1             | 1             | 9             |

Default Value: 0x60



## 8.3.7 System Control Register 3 (SCR3)

This register is a read and a write register.

| Name | Bit 7       | Bit 6                  | Bit 5                  | Bit 4                  | Bit 3                | Bit 2             | Bit 1            | Bit 0 |
|------|-------------|------------------------|------------------------|------------------------|----------------------|-------------------|------------------|-------|
| SCR3 | LOW<br>MODE | ZERO<br>DISCH<br>CNT 2 | ZERO<br>DISCH<br>CNT 1 | ZERO<br>DISCH<br>CNT 0 | EN<br>ZERO<br>DISCH. | CAP DIS<br>PERIOD | EN CAP<br>DISCH. | -     |

Bit 1: EN\_CAP\_DISCH

Enables/disables capacitor discharge mechanism after each received packet:

- 0: Disables discharge.
- 1: Enables discharge.

This bit overrides Bit 3.

Bit 2: CAP\_DIS\_PERIOD

Determines the capacitor discharge duration:

- **0**: The pulse width is 36 clocks, (3  $\mu$ sec at 12 MHz clock).
- 1: The pulse width is 72 clocks, (3  $\mu sec$  at 24 MHz clock).
- Bit 3: EN\_ZERO\_DISCH

Enables/disables zero counter mechanism for capacitor discharge:

- 0: Disables discharge
- 1: Enables discharge
- Bits 4-6: ZERO\_DISCH\_CNT [0:2]

Determine the number of zero bits that will trigger a capacitor discharge by the zero counter mechanism.

| ZERO DISCH<br>CNT 0 | ZERO DISCH<br>CNT 1 | ZERO DISCH<br>CNT 2 | Number of Zeros |
|---------------------|---------------------|---------------------|-----------------|
| 0                   | 0                   | 0                   | 5               |
| 0                   | 0                   | 1                   | 10              |
| 0                   | 1                   | 0                   | 15              |
| 0                   | 1                   | 1                   | 20              |
| 1                   | 0                   | 0                   | 25              |
| 1                   | 0                   | 1                   | 30              |
| 1                   | 1                   | 0                   | 35              |
| 1                   | 1                   | 1                   | 40              |

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



#### Bit 7: LOW\_MODE

Enables or disables low power mode for RFW-102

0: Disables low mode (normal mode).

1: Enables low mode. BB is in RX mode, while RFW-102 is in TX mode.

User has to put the BB into RX mode to disable RX and Preamble search, before enabling LOW\_MODE. This transfers the RFW-102 to TX mode using RX\_TX pin, while the BB is still in RX mode.

RFW-102 power consumption is lower in TX mode than in RX mode. BB cannot remain in TX mode, if it is not transmitting. The low mode is the combination of both of the above.

Default Value: 0x01

## 8.3.8 System Control Register 4 (SCR4)

This register is a read and a write register.

| Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3         | Bit 2       | Bit 1         | Bit 0 |
|------|-------|-------|-------|-------|---------------|-------------|---------------|-------|
| SCR4 | N/A   | N/A   | N/A   | N/A   | FIFO<br>FLAGS | WIN<br>CONT | RF_AC<br>TIVE | IE    |

Bit 0: IE

This flag enables all interrupts when set to '1'.

When '0' all interrupts are disabled.

#### Bit 1: RF\_ACTIVE

This bit controls RF\_ACTIVE pin. When this bit is high the RF Modem is active.

#### Bit 2: WIN CONT

This bit determines the size of the WINDOW in the Preamble search module.

IF (BLR+6) > 14 and WIN\_CONT=1, then the preamble window size is 5

Bit 3: FIFO FLAGS

Determines the RX\_FIFO AF flag and TX\_FIFO AE flag:

IF FIFO FLAGS = 0 then AF = 12 and AE = 4.

IF FIFO FLAGS = 1 then AF = 8 and AE = 8.

Default Value: 0x00.



## 8.3.9 Transmit FIFO Status Register (TFSR)

This register is a read-only register. It contains the number of bytes in the TX\_FIFO.

Default Value: 0x00 (TX\_FIFO empty).

## 8.3.10 Receive FIFO Status Register (RFSR)

This register is a read-only register. It contains the number of bytes in the RX\_FIFO.

Default Value: 0x00 (TR\_FIFO empty).

## 8.3.11 Location Control Register (LCR)

This is a read and a write register.

| Name | Bit 7 | Bit 6 | Bit 5 | Bit 4         | Bit 3 | Bit 2        | Bit 1         | Bit 0 |
|------|-------|-------|-------|---------------|-------|--------------|---------------|-------|
| LCR  | -     | -     | -     | SIZE<br>LOC 0 |       | NET<br>LOC 0 | NODE<br>LOC 1 |       |

Bits 0, 1: NODE\_LOC [0:1]

These bits determine the location of the NODE\_ID parameter in the header (the location is specified in bytes excluding preamble). The location should be fixed for all of different kinds of packets transferred by the system. NODE\_ID must never be set to be smaller than NET\_ID, if both filters are enabled.

| Location | NODE LOC 1 | NODE LOC 0 |
|----------|------------|------------|
| 2        | 0          | 0          |
| 3        | 0          | 1          |
| 4        | 1          | 0          |
| 5        | 1          | 1          |

#### Bits 2, 3: NET\_LOC [0:1]

These bits determine the location of the NET\_ID parameter in the header (the location is specified in bytes excluding the Preamble). The location should be fixed for all the different kinds of packets transferred by the system.

| Location | NET LOC 1 | NET LOC 0 |
|----------|-----------|-----------|
| 1        | 0         | 0         |
| 2        | 0         | 1         |
| 3        | 1         | 0         |
| 4        | 1         | 1         |

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



## Bits 4-5: SIZE\_LOC [0:2]

These bits determine the location of the Packet Size parameter in the header (the location is specified in bytes excluding the Preamble). The location should be fixed for all the different kinds of packets transferred by the system.

| Location | SIZE LOC 2 | SIZE LOC 1 | SIZE LOC 0 |
|----------|------------|------------|------------|
| 2        | 0          | 0          | 0          |
| 3        | 0          | 0          | 1          |
| 4        | 0          | 1          | 0          |
| 5        | 0          | 1          | 1          |
| 6        | 1          | 0          | 0          |
| 7        | 1          | 0          | 1          |
| 8        | 1          | 1          | 0          |
| 9        | 1          | 1          | 1          |

Default Value: 0x00

## 8.3.12 Node Identity Register (BIR)

This is a read and a write register.

When the Receiver State Machine builds the incoming packet, it compares the value in the BIR register to the received data at the location specified in LCR.

If received NODE\_ID and the expected NODE\_ID are not equal, the packet is discarded.

Four multicast NODE\_ID addresses are implemented "111111XX". All packets whose 6 MSBs are "1" are not discarded.

Default Value: 0x00

#### 8.3.13 Net Identity Register (NIR)

This is a read and a write register.

When the Receiver State Machine builds the incoming packet, it compares the value in the NIR to the received data at the location specified in LCR.

If received NET\_ID and the expected NET\_ID are not equal, the packet is discarded.

Default Value: 0x00

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



## 8.3.14 System Status Register (SSR)

| Name | Bit 7 | Bit 6 | Bit 5     | Bit 4 | Bit 3 | Bit 2    | Bit 1  | Bit 0     |
|------|-------|-------|-----------|-------|-------|----------|--------|-----------|
| SSR  | -     | TX_UF | BIT_ERROR | LOCK  | CS    | TX EMPTY | LOCKED | CRC ERROR |

This register is a read-only register.

This register provides status information to the MCU concerning the communication line and the data transfer. Bits 1, 2, 3 can trigger the interrupt if enabled in the IER. Bits 0, 5 and 6 are set by H/W and cleared automatically after the MCU reads the register. Bits 1~4 are set and cleared by H/W.

#### Bit 0: CRC\_ERROR

This flag indicates a CRC Error in the packet. The CRC Block sets this flag at the end of each received packet according to the CRC calculation result. BB compares the calculated CRC and the received CRC. When these values differ, the flag goes high.

The flag is cleared only after the MCU reads the SSR register. If the MCU does not read the SSR register, this flag remains "1".

#### Bit 1: LOCKED

This flag indicates that a packet is being received.

Bit 1 is set to Logic 1 whenever the system identifies a new incoming packet (triggers LOCK IN interrupt). The bit will reset to Logic 0 when the packet ends (triggers LOCK OUT interrupt) or when one of the IDs fails (NET or BYTE). This indicator is important whenever we want to switch to transmit mode because it can tell us that the line is busy and that in most cases the transmission will not succeed. The Lock triggers interrupt for every change in the bit status.

#### Bit 2: TX\_EMPTY

This bit is the Transmitter Empty flag. When this bit is high the system is available for loading the next packet for transmission and BB is in receive mode. When the flag is low, BB is in the middle of a packet transmission.

When transmitting few successive packets, the MCU should wait to the end of a packet before it reloads the TX\_FIFO with the next packet.

#### Bit 3: CS

Carrier Sense detection bit

When this bit is high, the system has identified a structure of packet transmission in the air according to CSR.

When low, no carrier has been detected. This bit is only valid in receive mode. The conditions for setting or clearing this flag are determined in the CS register. When LOCKED is high, then CS is meaningless.





#### Bit 4: LOCK

This signals whether a Preamble was identified or is still searching. When the flag is "0", the receiver is searching for Preamble.

When the flag is "1" a Preamble was identified. If a packet was discarded for any reason, the LOCK flag goes to 1.

#### Bit 5: BIT\_ERROR

This flag indicate that there was some error in the received package. The packet was not received according the expected timing specifications.

The packet can still pass CRC verification.

Bit 6: TX\_UF

This flag is set whenever the MCU reads a byte from an empty TX\_FIFO.

This flag indicates abnormal end of packet transmission. The MCU transmitter's state machine has expected to find a valid byte in the TX\_FIFO according to the packet size, but it found an empty TX\_FIFO. When this event occurs, the TX\_EMPTY interrupt is invoked and TX\_UF (underflow) flag is set to '1'.

This flag is set by hardware and cleaned by MCU. It is cleaned whenever the MCU read the SSR register.

Default Value: 0x04.

#### 8.3.15 Packet Size Register (PSR)

This is a read and a write register.

It contains the Packet Size in byte units. When working in fixed size packets (see Control Bit-1), the size will be fixed for all types of packets.

The size in PSR excludes 2 bytes of Preamble and 2, 1 or 0 bytes of CRC.

Default Value: 0x00.

## 8.3.16 Carrier Sense Register (CSR)

This is both a read and a write register.

| Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
| CSR  | ZERO  | ZERO  | ZERO  | ZERO  | ONE   | ONE   | ONE   | ONE   |
| CSK  | CNT.3 | CNT.2 | CNT.1 | CNT.0 | CNT.3 | CNT.2 | CNT.1 | CNT.0 |

#### Bits 0-3: ONE\_CNT [0:3]

The number of successive "1" bits that set the carrier sense high.

## Bits 4-7: ZERO\_CNT [0:3]

The number of successive "0" bits that reset the carrier sense (CS='0').

#### Default Value: 0x44





## 8.4 Interrupt Registers

## 8.4.1 Interrupt Enable Register (IER)

This register is a write and a read register.

| Name | Bit 7 | Bit 6 | Bit 5 | Bit 4       | Bit 3 | Bit 2        | Bit 1       | Bit 0      |
|------|-------|-------|-------|-------------|-------|--------------|-------------|------------|
| IER  | CS    | TX_AE | RX AF | TX<br>EMPTY | RX_OF | LINK_<br>DIS | LOCK<br>OUT | LOCK<br>IN |

#### Default Value: 0x00.

For all flags in this register, 0: Disable

1 : Enable

#### Bit 0: LOCK\_IN

This flag enables/disables the LOCK IN interrupt.

PREAMBLE + NODE\_ID + NET\_ID identified correctly triggers LOCK IN interrupt.

#### Bit 1: LOCK\_OUT

This flag enables/disables the LOCK OUT interrupt.

End of received packet triggers LOCK\_OUT interrupt.

#### Bit 2: LINK\_DIS

This flag enables/disables the LINK\_DIS interrupt.

The zero counter capacitor discharge triggers the LINK\_DIS interrupt.

#### Bit 3: RX\_OF

This flag enables/disables the RX\_OF interrupt.

End of received packet triggers RX\_OF interrupt.

#### Bit 4: TX\_EMPTY

This flag enables/disables the TX\_EMPTY (Transmitter Empty) interrupt.

X\_EMPTY interrupt tells the MCU that the transmitter has just finished transmitting a packet. BB goes to RX mode after finishing the transmission of a packet.

#### Bit 5: RX\_AF

This flag enables/disables the RX\_AF interrupt.

The RX\_AF interrupt is triggered when RX\_FIFO AF flag goes from '0' to '1'.

#### Bit 6: TX\_AE

This flag enables/disables the TX\_AE interrupt.

The TX\_AE interrupt is triggered when TX\_FIFO AE flag goes from '0' to '1'.





#### Bit 7: CS

This flag enables/disables the CS interrupt.

CS flag in SSR negative edge triggers CS interrupt.

8.4.2 Interrupt Identification Register (IIR)

| Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
| IIR  | CS    | ТΧ    | RX    | ΤХ    | RX_OF | LINK_ | LOCK  | LOCK  |
| IIR  |       | AE    | AF    | EMPTY |       | DIS   | OUT   | IN    |

This is a read only register.

When the MCU accesses the IIR, all interrupts freeze. While the MCU access is occurring, the system records the changes in the interrupts but waits until the MCU access is complete before updating the register. A flag is active only when the matching interrupt enable bit is set, and does not depend on the IE bit value. The flags are set by H/W and cleared after the MCU reads the register.

Bit 0: This bit reflects the LOCK IN flag interrupt when enabled by IER.

This bit reflects the LOCK IN flag interrupt when enabled by IER.

LOCK\_IN interrupt is invoke whenever a PREAMBLE+NET\_ID+NODE\_ID where recognized.

If NET\_ID is disabled, then a received PREAMBLE+ NODE\_ID invokes the interrupt.

If NODE\_ID is disabled, then a received PREAMBLE+ NET\_ID invokes the interrupt.

If NET\_ID and NODE\_ID are disabled, then a received PREAMBLE invokes the interrupt.

Bit 1: This bit reflects the LOCK OUT flag interrupt when enabled by IER.

This bit reflects the LOCK OUT flag interrupt when enabled by IER.

LOCK\_OUT interrupt is invoked whenever RFW-D100 has finished receiving a packet. The end of the packet is determined according to the packet size.

Bit 2: This bit reflects the LINK\_DIS flag interrupt when enabled by IER.

This interrupt is invoked by the zero counter capacitor discharge mechanism.

- Bit 3: This bit reflects the RX\_OF flag interrupt when enabled by IER.
- Bit 4: This bit reflects the TX EMPTY flag interrupt when enabled by IER.
- Bit 5: This bit reflects the RX FIFO AF flag interrupt when enabled by IER.
- Bit 6: This bit reflects the TX FIFO AE flag interrupt when enabled by IER.
- Bit 7: CS when CS flag goes from "1" to "0", an interrupt is invoked.



# 8.5 List of BB Register Mapping

| Register Address | Write   | Read    | Default | Values |  |
|------------------|---------|---------|---------|--------|--|
| 0 (00000)        | TX_FIFO | RX_FIFO | —       | -      |  |
| 1 (00001)        | PRI     | E_L     | 0x      | FF     |  |
| 2 (00010)        | PRI     | E_H     | 0x      | FF     |  |
| 3 (00011)        | FR      | C_L     | 0x      | FF     |  |
| 4 (00100)        | FRO     | С_Н     | 0x      | FF     |  |
| 5 (00101)        | SC      | R1      | 0x      | 00     |  |
| 6 (00110)        | SC      | R2      | 0x      | 60     |  |
| 7 (00111)        | SC      | R3      | 0x      | 01     |  |
| 8 (01000)        | SC      | R4      | 0x00    |        |  |
| 9 (01001)        | LC      | R       | 0x      | 00     |  |
| 10 (01010)       | B       | R       | 0x      | 00     |  |
| 11 (01011)       | N       | R       | 0x00    |        |  |
| 12 (01100)       | PS      | SR      | 0x00    |        |  |
| 13 (01101)       | PF      | PR      | 0x3A    |        |  |
| 14 (01110)       | BL      | R       | 0x      | 00     |  |
| 15 (01111)       | CS      | SR      | 0x      | 44     |  |
| 16 (10000)       | IE      | R       | 0x      | 00     |  |
| 17 (10001)       | -       | IIR     | -       | -      |  |
| 18 (10010)       | _       | SSR     | _       | 0x04   |  |
| 19 (10011)       | _       | TFR     | -       | 0x00   |  |
| 20 (10100)       | -       | RFR     | -       | 0x00   |  |

# 8.6 MCU BB Control Registers

### 8.6.1 Control Registers List

RFAAR (0x2D): Register R2D indicates WM indirect RAM address.

RFDB (0x2E): Register R2E indicates WM indirect RAM data.

RFACR (0x2F): Register R2F indicates WM RAM access control.

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| -     | -     | -     | -     | -     | RRST  | RFRD  | RFWR  |

#### RFINTF (0x30): BB interrupt flags.

| Bit 7 | Bit 6  | Bit 5  | Bit 4         | Bit 3  | Bit 2         | Bit 1         | Bit 0    |
|-------|--------|--------|---------------|--------|---------------|---------------|----------|
| CSDF  | TX_AEF | RX_AFF | TX_<br>EMPTYF | RX_OFF | LINK_<br>DISF | LOCK_OU<br>TF | LOCK_INF |

Product Specification (V1.0) 10.09.2007

(This specification is subject to change without further notice)



RFINTE (0x99): BB interrupt enable.

| Bit 7 | Bit 6  | Bit 5  | Bit 4         | Bit 3  | Bit 2         | Bit 1         | Bit 0     |
|-------|--------|--------|---------------|--------|---------------|---------------|-----------|
| CSDE  | TX_AEE | RX_AFE | TX_<br>EMPTYE | RX_OFE | LINK_<br>DISE | LOCK_OU<br>TE | LOCK_ INE |

PRIE (0x80): Peripherals enable control.

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SPIE  | -     | BBE   | ADE   | PWM1E | PWM0E | TCCE  | FRCE  |

## 8.6.2 BB Control Example

|               |                            | // TX_EMPTY INT address                                                         |
|---------------|----------------------------|---------------------------------------------------------------------------------|
| BC<br>RETI    | RFINTF, TX_EMPTYF          | // RF data send out, clear INT flag.                                            |
| ORG<br>START: | 0X0100                     |                                                                                 |
| BS<br>NOP     | RFACR, RRST                | // BB reset.                                                                    |
| BC            | RFACR, RRST                |                                                                                 |
| BS            | PRIE, WME                  | // BB power enable.                                                             |
| MOV           | A, #0x10                   |                                                                                 |
| MOV           | RFINTE, A                  | // BB INT.TX_EMPTY enable.                                                      |
| ENI           |                            | // enable all INT.                                                              |
| RF_TX_        | INITIAL:                   |                                                                                 |
|               | #SCR2, #8                  | // Reset TX_FIFO, RX mode.                                                      |
|               | #BLR, #10                  | // Set bit rate.                                                                |
| WRITE         | #PPR, #33                  | <pre>// Set package size to be fixed. // Refresh bit mode 1. CRC disabled</pre> |
|               | #PSR, #6                   | // Set package size to 6.                                                       |
| WRITE         | <pre>#PRE_H, #0xDC</pre>   | // Set preamble High byte value.                                                |
| WRITE         | <pre>#PRE_L, #0xA7</pre>   | // Set preamble Low byte value.                                                 |
| RF_SENI       | D_DATA:                    |                                                                                 |
| WRITE         | <pre>#TX_FIFO, #0x01</pre> | <pre>// Write first byte of package to // TX_FIFO.</pre>                        |
| WRITE         | <pre>#TX_FIFO, #0x02</pre> |                                                                                 |
| WRITE         | #TX_FIFO, #0x03            |                                                                                 |
| WRITE         | #TX_FIFO, #0x04            |                                                                                 |
| WRITE         | <pre>#TX_FIFO, #0x05</pre> |                                                                                 |
| WRITE         | <pre>#TX_FIFO, #0x06</pre> | // Write last byte of package to<br>// TX_FIFO.                                 |
| READ          | #TFR, 0x60                 | // Read TFR register data                                                       |
| WRITE         | #IER, #16                  | // enable TX_EMPTY INT                                                          |
| WRITE         | #SCR4, #0x03               | // enable all INT.                                                              |
| WRITE         | #SCR2, #1                  | // move from RX to TX mode.                                                     |

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)

```
LOOP:
JMP
     LOOP
WRITE_DATA_TO_RF:
                     // BB register write SUB
     RFACR, RFWR
BC
NOP
NOP
     RFACR, RFWR
BS
RET
READ_DATA_FROM_RF:
                       // BB register read SUB
NOP
NOP
NOP
NOP
BC
     RFACR, RFRD
NOP
NOP
NOP
NOP
NOP
                       // Note the access time
MOV
     A, RFDB
NOP
NOP
NOP
BS
     RFACR, RFRD
RET
WRITE MACRO#CON1, #CON2 // BB register write MACRO
     A, #CON2
MOV
MOV
     RFDB, A
MOV
     A, #CON1
MOV
     RFAAR, A
CALL
     WRITE_DATA_TO_RF
ENDM
READMACRO#CON, REG
                     // BB register read MACRO
    A, #CON
MOV
MOV
     RFAAR, A
CALL
     READ_DATA_FROM_RF
     REG, A
MOV
ENDM
```

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



# 9 Direction Serial Peripheral Interface (SPI)

## 9.1 Introduction

The EM77950 communicates with other devices via SPI (Direction Serial Peripheral Interface) module, as shown in Fig. 9-1. To accomplish communication, SPI uses three wire synchronous protocols: Serial Clock, Serial Data Output, and Serial Data. If the EM77950 is a master controller, it sends clock through the SCK pin. An 8-bit data is transmitted and received at the same time. If the EM77950, however, is defined as a slave, its SCK pin could be programmed as an input pin. Data will continue to be shifted on the basis of both the clock rate and the selected edge.

## 9.2 Features

- 3-wire, full duplex synchronous transceiver
- Operation in either Master mode or Slave mode
- Programmable baud rates of communication
- Programming clock polarity
- Programmable data transmission order
- Interrupt flag available for read buffer full
- Up to 8 MHz (maximum) bit frequency

## 9.3 Block Diagram

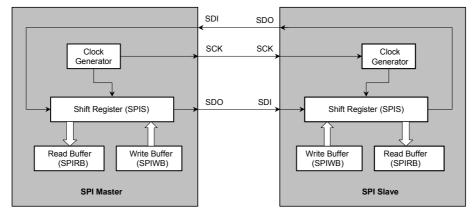



Fig. 9-1 Typical SPI Transceiver Mode

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



## 9.4 Transceiver Timing

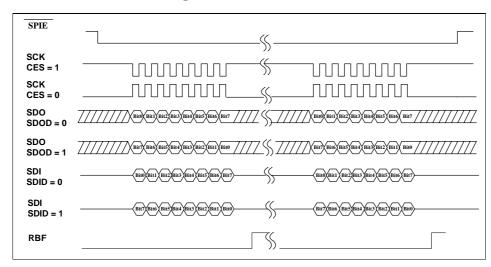



Fig. 9-2 SPI Transceiver Timing

### 9.5 Related Registers with SPI

As the SPI mode is defined, the related registers of this operation are shown below:

SPIRB (0x1D): Serial peripheral interface read Register

SPIWB (0x1E): Serial peripheral interface write Register

INTF (0X11): Interrupt flag

| Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1 | Bit 0 |
|-------|-------|--------|--------|--------|--------|-------|-------|
| ADIF  | RBFIF | PWM1IF | PWM0IF | EINT1F | EINT0F | TCCOF | FRCOF |

PRIE (0x80): Peripherals enable control

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SPIE  | -     | BBE   | ADE   | PWM1E | PWM0E | TCCE  | FRCE  |

INTE (0X81): Interrupt enable control

| Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1 | Bit 0 |
|-------|-------|--------|--------|--------|--------|-------|-------|
| GIE   | RBFIE | PWM1IE | PWM0IE | EINT1E | EINT0E | TCCOE | FRCOE |

SPIC (0X85): SPI control.

| Bit 7   | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|---------|-------|-------|-------|-------|-------|-------|-------|
| SPI_RBF | CES   | SBR2  | SBR1  | SBR0  | SDID  | SDOD  | SPIS  |

Product Specification (V1.0) 10.09.2007

(This specification is subject to change without further notice)



## 9.6 Function Description

#### 9.6.1 Block Diagram Description

The following subsections describe the function of each blocks and signals. Fig. 9.2 depicts how the SPI communication is carried out.

SDI: Serial Data In

SCK: Serial clock

SDO: Serial Data Out

RBFIF: Set by Buffer Full Detector, and reset by software

SPIS: Loads the data in SPIWB register, and begin to shift

- Shift reg.: Shifting byte out and in. The order is defined by bit SDOD. Both the Shift register and the SPIWB registers are loaded at the same time. Once data are written to, SPIS starts transmission / reception. The received data will be moved to the SPIRB register, as the shifting of the 8-bit data is completed. The RBFIF (Read Buffer Full) flag is equal to 1.
- **SPIRB:** Read buffer. The buffer will be updated, as the 8-bit shifting is completed. The data must be read before the next reception is finished. The RBF flag is cleared as the SPIRB register is read.
- SPIWB: Write buffer. The buffer will deny any write until the 8-bit shifting is completed. The SPIS bit will be kept in 1 if the communication is still undergoing. This flag must be cleared as the shifting is finished. Users can determine if the next write attempt is available.

SBR2~SBR0: Programming the clock frequency/rates and sources.

Edge Select: Selecting the appropriate clock edges by programming the CES bit.

#### 9.6.2 Signal & Pin Description

The three pins, SDI, SDO, and SCK, which are shown in Fig. 9-1, will be explained in details as follows:

SDI:

- SDI: Serial Data In
- Serial Data In
- Receive serially
- Defined as high-impedance, if not selected.



- Programmed the same clock rate and the same clock edge to latch on both the master device and slave device.
- The received byte will replace the corresponding transmitted byte.
- The RBFIF bit will be set, as the SPI operation is completed.
- Timing is shown in Fig. 9-2.

#### SCK:

- Serial Clock.
- Generated by a master device.
- Synchronize the data communication on both the SDI pin and the SDO pin.
- The CES used to select the edge to communicate.
- The SBR0~SBR2 used to determine the baud rate of communication.
- The ES, SBR0, SBR1, and SBR2 bit have no effect in the slave mode.
- Timing is shown in Fig. 9-2

#### SDO:

- Serial Data Out
- Transmit serially
- Programmed the same clock rate and the same clock edge to latch on both the master device and slave device.
- The received byte will replace the transmitted byte.
- The SPIS bit will be reset, as the SPI operation is completed.
- Timing is shown in Fig. 9-2.

# 10 Analog to Digital Converter (ADC)

The analog-to-digital circuitry consists of one 16-to-1 multiplexer, two control registers (ADCAIS and ADCCR), one data register (ADDATA) and one ADC calculator with 8-bit resolution. The functional block diagram of the ADC is shown in Fig. 10. Port D [7:0] and Port E [7:0] can be selected as either normal digital I/O ports or analog input ports. A maximum of 16 analog input pins can be selected by ADCAIS register [5:3], IMS3 ~IMS0 bits. Control bits, AIPS3 ~ AIPS0, of ADCCR [3:0] are then used to select the ADC input channel that will supply analog signal to ADC calculator. CKR2 ~ CKR0 control bits are used to select the desired conversion rate. The ADC module, then, utilizes successive approximation to convert the unknown analog signal into an 8-bit digital output value. Finally, the 8-bit result is fed to the ADDATA register. If the ADC interrupt is enabled, the ADC interrupt flag will be set to "1" as the analog-to-digital conversion is completed.



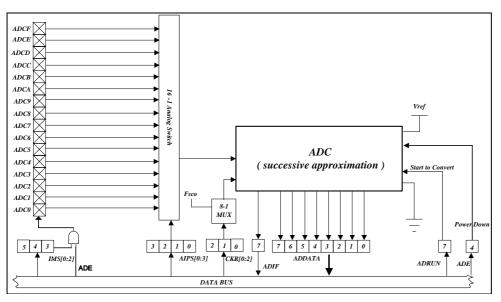



Fig.10 Analog-to-Digital Conversion Functional Block Diagram

## **10.1 ADC Control Registers**

As the ADC mode is defined, the related registers of this operation are shown below:

INTF (0X11): Interrupt flag,

| Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1 | Bit 0 |
|-------|-------|--------|--------|--------|--------|-------|-------|
| ADIF  | RBFIF | PWM1IF | PWM0IF | EINT1F | EINTOF | TCCOF | FRCOF |

ADDATA (0x1F): ADC 8-bit data.

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADD7  | ADD6  | ADD5  | ADD4  | ADD3  | ADD2  | ADD1  | ADD0  |

When the A/D conversion is completed, Bit 7 ~ Bit 0 are loaded to the ADDATA [7:0]. The ADCRUN bit is cleared, and the ADIF is set.

PRIE (0x80): Peripherals enable control

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SPIE  | -     | BBE   | ADE   | PWM1E | PWM0E | TCCE  | FRCE  |

ADCAIS (0x96): ADC analog input pin select and conversion rate select.

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| -     | -     | IMS2  | IMS1  | IMS0  | CKR2  | CKR1  | CKR0  |

Product Specification (V1.0) 10.09.2007

(This specification is subject to change without further notice)



#### IMS2~IMS0 (Bit 2 ~ Bit 4): ADC configuration definition bit.

| IMS | PTE<br>7 | PTE<br>6 | PTE<br>5 | PTE<br>4 | PTE<br>3 | PTE<br>2 | PTE<br>1 | PTE<br>0 | PTD<br>7 | PTD<br>6 | PTD<br>5 | PTD<br>4 | PTD<br>3 | PTD<br>2 | PTD<br>1 | PTD<br>0 |
|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| ADC | F        | Е        | D        | С        | В        | А        | 9        | 8        | 7        | 6        | 5        | 4        | 3        | 2        | 1        | 0        |
| 000 | А        | А        | D        | D        | D        | D        | D        | D        | D        | D        | D        | D        | D        | D        | D        | D        |
| 001 | А        | А        | А        | А        | D        | D        | D        | D        | D        | D        | D        | D        | D        | D        | D        | D        |
| 010 | А        | А        | А        | А        | А        | А        | D        | D        | D        | D        | D        | D        | D        | D        | D        | D        |
| 011 | А        | А        | А        | А        | А        | А        | А        | А        | D        | D        | D        | D        | D        | D        | D        | D        |
| 100 | А        | А        | А        | А        | А        | А        | А        | А        | А        | А        | D        | D        | D        | D        | D        | D        |
| 101 | А        | А        | А        | А        | А        | А        | А        | А        | А        | А        | А        | А        | D        | D        | D        | D        |
| 110 | А        | А        | А        | А        | А        | А        | А        | А        | А        | А        | А        | А        | А        | А        | D        | D        |
| 111 | А        | А        | А        | А        | А        | А        | А        | А        | А        | А        | А        | А        | А        | А        | А        | А        |

#### CKR2~CKR0 (Bit 2 ~ Bit 0): AD conversion Rate control bits.

|                     |              | A/                      | D Conversion             | Rate Unit: k             | Hz                       |
|---------------------|--------------|-------------------------|--------------------------|--------------------------|--------------------------|
| CKR2: CKR1:<br>CKR0 | Divided Rate | 6MHz<br>Clock<br>Source | 12MHz<br>Clock<br>Source | 24MHz<br>Clock<br>Source | 48MHz<br>Clock<br>Source |
| 000                 | ÷ 2          | 250                     | 500                      | 1000                     | 2000                     |
| 001                 | ÷ 4          | 125                     | 250                      | 500                      | 1000                     |
| 010                 | ÷ 8          | 62.5                    | 125                      | 250                      | 500                      |
| 011                 | ÷ 16         | 31.3                    | 62.5                     | 125                      | 250                      |
| 100                 | ÷ 32         | 15.6                    | 31.3                     | 62.5                     | 125                      |
| 101                 | ÷ 64         | 7.8                     | 15.6                     | 31.3                     | 62.5                     |
| 110                 | ÷ 128        | 3.9                     | 7.8                      | 15.6                     | 31.3                     |
| 111                 | ÷ 256        | 2.0                     | 3.9                      | 7.8                      | 15.6                     |

ADCCRR (0x97): ADC configuration register.

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADRUN | ADIE  | -     | -     | AIPS3 | SIPA2 | AIPS1 | AIPS0 |

AIPS0~AIPS3 (Bits 0~3): Analog Input Select.

0000 = AN0;0001 = AN1; 0010 = AN2;0011 = AN3

0100 = AN4;0101 = AN5; 0110 = AN6;0111 = AN7

1000 = AN8;1001 = AN9; 1010 = ANA;1011 = ANB

1100 = ANC;1101 = AND; 1110 = ANE;1111 = ANF

They can only be changed when the ADIF bit and the ADRUN bit are both LOW.

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



ADIE (Bit 6): ADC interrupt enable.

ADRUN (Bit 7): ADC starts to RUN

- **0** = reset on completion of the conversion; this bit cannot be reset by software.
- **1** = an A/D conversion is started; this bit can be set by software.

## **10.2 Programming Steps/Considerations**

Follow these steps to obtain data from the ADC:

- 1. Set ADC function power on (PRIE.ADE).
- Write to the three bits (IMS2:IMS0) on the ADCCR register to define the characteristics of PD and PF: Digital I/O, analog channels, and voltage reference pin;
- 3. Write to the ADCAIS register to configure ADC module:
  - i Select ADC input channel (AIPS3: AIPS0)
  - ii Define ADC conversion clock rate (CKR2: CKR1: CKR0)
- 4. Set ADC interrupt enable (ADCCR.ADIE). Include the "ENI" instruction, if the interrupt function is employed.
- 5. Set the ADRUN bit to 1 to begin sampling.
- 6. Wait for either the interrupt flag to be set or the ADC interrupt to occur.
- 7. Read the conversion data register ADDATA.
- 8. Clear the interrupt flag bit (INTF.ADIF).
- 9. For next conversion, go to Step 2 or Step 3 as required. At least 2Tct is required before the next acquisition starts.

#### NOTE

To obtain an accurate value, it is necessary to avoid any data transition on the I/O pins during AD conversion.

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)

# 11 Dual Pulse Width Modulations (PWM0 and PWM1)

## 11.1 Overview

The EM77950 has two built-in PWM outputs with 16-bit resolution. Fig.11-1 shows the functional block diagram. A PWM output has a period and a duty cycle, and it keeps the output high. The baud rate of the PWM is the inverse of the period. Fig. 11-2 depicts the relationships between a period and a duty cycle.

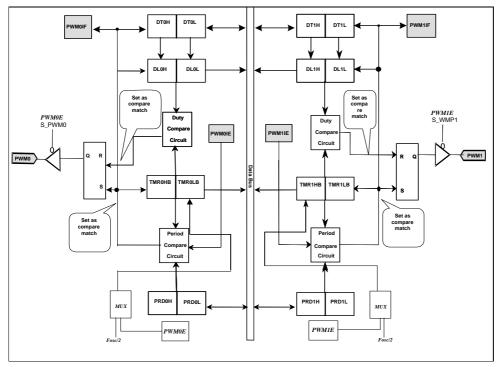



Fig. 11-1 The Functional Block Diagram of the Dual PWM

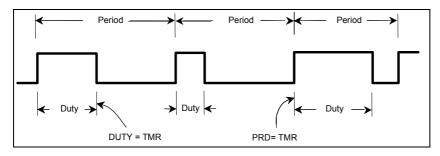



Fig. 11-2 PWM Output Timing Diagram

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



## 11.2 PWM Control Registers

As the PWM mode is defined, the related registers of this operation are shown below:

#### INTF (0x11): Interrupt flag

| Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1 | Bit 0 |
|-------|-------|--------|--------|--------|--------|-------|-------|
| ADIF  | RBFIF | PWM1IF | PWM0IF | EINT1F | EINT0F | TCCOF | FRCOF |

DT0L (0x21): Duty of PWM0 low byte

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| DT07  | DT06  | DT05  | DT04  | DT03  | DT02  | DT01  | DT00  |

DT0H (0x22): Duty of PWM0 high byte

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| DT0F  | DT0E  | DT0D  | DT0C  | DT0B  | DT0A  | DT09  | DT08  |

#### DL0L (0x25): Duty latch of PWM0 low byte

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| DL07  | DL06  | DL05  | DL04  | DL03  | DL02  | DL01  | DL00  |

#### DL0H (0x26): Duty latch of PWM0 high byte

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| DL0F  | DL0E  | DL0D  | DL0C  | DL0B  | DL0A  | DL09  | DL08  |

#### DT1L (0x27): Duty of PWM1 low byte

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| DT17  | DT16  | DT15  | DT14  | DT13  | DT12  | DT11  | DT10  |

#### DT1H (0x28): Duty of PWM1 high byte

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| DT1F  | DT1E  | DT1D  | DT1C  | DT1B  | DT1A  | DT19  | DT18  |

#### DL1L (0x2B): Duty latch of PWM1low byte

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| DL17  | DL16  | DL15  | DL14  | DL13  | DL12  | DL11  | DL10  |

#### DL2H (0x2C): Duty latch of PWM1 high byte

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| DL1F  | DL1E  | DL1D  | DL1C  | DL1B  | DL1A  | DL19  | DL18  |

The PWM duty cycle is defined by writing to the DTX register, and is latched from DTX to DLX while TMRX is cleared. When DLX is equal to TMRX, the PWMX pin is cleared. DTX can be loaded at any time. However, it cannot be latched into DLX until the current value of DLX is equal to TMRX.



The following formula describes how to calculate the PWM duty cycle:

#### Duty Cycle = (DTX+1) \* (2/Fosc)

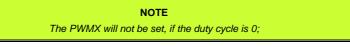
PRD0L (0x23): Period of PWM0 low byte

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PRD07 | PRD06 | PRD05 | PRD04 | PRD03 | PRD02 | PRD01 | PRD00 |

**PRD0H (0x24):** Period of PWM0 high byte

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PRD0F | PRD0E | PRD0D | PRD0C | PRD0B | PRD0A | PRD09 | PRD08 |

PRD1L (0x29): Period of PWM1 low byte


| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PRD17 | PRD16 | PRD15 | PRD14 | PRD13 | PRD12 | PRD11 | PRD10 |

PRD1H (0x2A): Period of PWM1 high byte

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PRD1F | PRD1E | PRD1D | PRD1C | PRD1B | PRD1A | PRD19 | PRD18 |

The PWM period is defined by writing to PRDX. When TMRX is equal to PRDX, the following events occur on the next increment cycle:

- TMRX is cleared.
- The PWMX pin is set to 1.
- The PWMX duty cycle is latched from DTPS to DUTY.



- The PWMXIF pin is set to 1.
- The following formula describes how to calculate the PWM period:

#### Period = (PRD +2) \* (2/Fosc)

The function of PWM must be disabled before a new period being executed. In other word, bit PWMXE has to be reset by advance, if the contents of PRDX are reloaded.

PRIE (0x80): Peripherals enable control

| Bit 7                                 | Bit 6             | Bit 5     | Bit 4  | Bit 3  | Bit 2  | Bit 1 | Bit 0 |  |
|---------------------------------------|-------------------|-----------|--------|--------|--------|-------|-------|--|
| SPIE                                  | -                 | BBE       | ADE    | PWM1E  | PWM0E  | TCCE  | FRCE  |  |
| INTE (0x81): Interrupt enable control |                   |           |        |        |        |       |       |  |
| Bit 7                                 | Bit 6             | Bit 5     | Bit 4  | Bit 3  | Bit 2  | Bit 1 | Bit 0 |  |
| GIE                                   | RBFIE             | PWM1IE    | PWM0IE | EINT1E | EINT0E | TCCOE | FRCOE |  |
| PWMCR (                               | <b>)x98):</b> PWI | V control |        |        |        |       |       |  |
| Bit 7                                 | Bit 6             | Bit 5     | Bit 4  | Bit 3  | Bit 2  | Bit 1 | Bit 0 |  |
| -                                     | -                 | -         | -      | S_PWM1 | S_PWM0 | -     | -     |  |
|                                       |                   |           |        |        |        |       |       |  |

Product Specification (V1.0) 10.09.2007

(This specification is subject to change without further notice)





## 11.3 PWM Programming Procedures/Steps

- (1) Load PRDX with the PWMX period.
- (2) Load DTX with the PWMX Duty Cycle.
- (3) Enable the interrupt function by setting PWMXIE in the INTE register, if required.
- (4) Set the PWM pin as output by setting PWMCR.S\_PWMX.
- (5) Enable the PWM function by setting PWMXE bit in the PRIE register.
- (6) Write the desired new duty to DTX before TMRX is equal to PRDX, then this new DTX will be latched into DLX if various duty cycle is required for the next PWMX operation.
- (7) Clear PWMXE bit and write the desired new period to PRDX, then enable it again if various periods are required for the next PWMX operation.
- (8) Clear the PWMXIF before the next operation if interrupt PWMXIE is employed.

## **12 Interrupts**

## 12.1 Introduction

The EM77950 has 15 interrupt sources. By priority, these interrupts are classified into two levels, namely; peripherals and base band, as described in the following:

The interrupt status registers record the interrupt requests in the corresponding control bits in the interrupt control registers. The global interrupt (GIE) is enabled by the ENI instruction and is disabled by the DISI instruction. The interrupt flag bit must be cleared by instructions before leaving the interrupt service routine to avoid recursive interrupts.

The flags in the Interrupt Status Register are set regardless of the status of their corresponding mask bits or the execution of DISI. Note that the logic AND of an interrupt flag and its corresponding interrupt control bit is 1 which makes the program counter point to the right interrupt vector. Refer to Fig. 12-1. The RETI instruction ends the interrupt routine and enables the global interrupt (the execution of ENI).

Before the interrupt subroutine is executed, the contents of ACC, SR and ROMPS will be saved by the hardware. After the interrupt service routine is finished, ACC, SR and ROMPS will be pushed back.

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



In EM77950, individual interrupt sources have their own interrupt vectors, depicted in the following table:

| No | Mnen      | nonic     | Driority | Vector                  | Function                   | Mas      | k   | Statu    | s   |
|----|-----------|-----------|----------|-------------------------|----------------------------|----------|-----|----------|-----|
| NO | Mask      | Status    | FIOILY   | VECIO                   | Function                   | Register | Bit | Register | Bit |
| 1  | KWUAE     | KWUAIF    | 1        | 0x10                    | Key Wake up                | 0x82     | 3~0 | 0x12     | 3~0 |
|    | KWUBE     | KWUBIF    |          |                         |                            | 0x83     | All | 013      | All |
| 2  | EINT0E    | EINT0F    | 1        | 0x18 External Interrupt |                            | 0x81     | 2   | 0x11     | 2   |
| -  | EINT1E    | EINT1F    |          | 0,10                    |                            | 0,01     | 3   | UX11     | 3   |
| 3  | FRCOE     | FRCOF     | 1        | 0x20                    | FRC Overflow               | 0x81     | 0   | 0x11     | 0   |
| 4  | TCCOE     | TCCOF     | 1        | 0x28                    | TCC Overflow               | 0x81     | 1   | 0x11     | 1   |
| 5  | RBFIE     | RBFIF     | 1        | 0x30                    | Read Buffer Full<br>of SPI | 0x81     | 6   | 0x11     | 6   |
| 6  | ADCIE     | ADCIF     | 1        | 0x38                    | ADC complete               | 0x80     | 4   | 0x11     | 7   |
| 7  | PWM0IE    | PWM0IF    | 1        | 0x40                    | PWM period                 | 0x81     | 4   | 0x11     | 4   |
| 1  | PWM1IE    | PWM1IF    | I        | 0x40                    | complete                   | 0x01     | 5   | UXII     | 5   |
| 8  | CSDE      | CSDF      | 2        | 0x48                    | Carrier sense<br>interrupt | 0x99     | 7   | 0x30     | 7   |
| 9  | TX_AEE    | TX_AEF    | 2        | 0x50                    | TX FIFO almost<br>empty    | 0x99     | 6   | 0x30     | 6   |
| 10 | RX_AFE    | RX_AFF    | 2        | 0x58                    | RX FIFO almost<br>full     | 0x99     | 5   | 0x30     | 5   |
| 11 | TX_EMPTY  | TX_EMPTYF | 2        | 0x60                    | TX FIFO empty              | 0x99     | 4   | 0x30     | 4   |
| 12 | RX_OFE    | RX_OFF    | 2        | 0x68                    | RX FIFO overflow           | 0x99     | 3   | 0x30     | 3   |
| 13 | LINK_DIS  | LINK_DIS  | 2        | 0x70                    | LINK_DIS<br>interrupt      | 0x99     | 2   | 0x30     | 2   |
| 14 | LOCK_OUTE | LOCK_OUTF | 2        | 0x78                    | Lock out interrupt         | 0x99     | 1   | 0x30     | 1   |
| 15 | LOCK_INE  | LOCK_INF  | 2        | 0x80                    | Lock in interrupt          | 0x99     | 0   | 0x30     | 0   |

The interrupt priority is another useful feature provided by this IC. The latest interrupt, which has the highest priority than the others, will override and hold the currently executed interrupt until the interrupt is finished. Otherwise, the latest interrupt will be in queue right after all its peers.

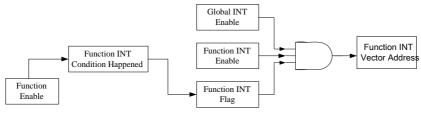



Fig. 12 Block Diagram of Interrupts

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



# 13 Circuitry of Input and Output Pins

## 13.1 Introduction

The EM77950 has six parallel ports, namely Port A, Port B, Port C, Port D, Port E and Port F. There are 40 available I/O pins. A control bit defines the configuration of its corresponding pin. Refer to Fig. 3.1 for the Pin Assignment.

The I/O registers, from Port A to Port F, are bidirectional tri-state I/O ports. The I/O ports can be defined as "input" or "output" pins by the I/O control registers (IOCA, IOCB, IOCD, IOCE and IOCF) under program control. The I/O registers and I/O control registers are both readable and writable.

## 14 Timer/Counter System

## 14.1 Introduction

The EM77950 provides two timer modules: 8-bit TCC (Timer Clock/Counter), and 16-bit FRC (Free Run Counter). The clock sources of TCC come from one of the instruction cycles and low frequency oscillator (IRC). The clock source of FRC is from either the instruction cycle or low frequency oscillator (IRC).

## 14.2 Time Clock Counter (TCC)

An 8-bit counter is available as prescaler for the TCC. The prescaler ratio is determined by the PS0~PS2 bits. When in TCC mode, the prescaler is cleared each time an instruction writes to the TCC.

- TCC is an 8-bit timer/counter. If the TCC signal source is from the system clock, TCC will be incremented by 1 for every instruction cycle (without prescaler).
- If the TCC signal source is from the IRC clock input, TCC will be incremented by 1 on every falling edge or rising edge of the TCC pin.
- The prescaler counter (PRC) can be read from Address 0x0F. In other words, the combination of TCC and PRC can be used as a 16-bit counter without prescaler

### 14.2.1 Block Diagram of TCC

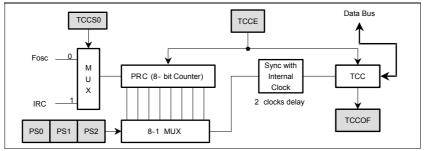



Fig. 14-1 Function Block Diagram of TCC

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



#### 14.2.2 TCC Control Registers

As the TCC mode is defined, the related registers involved in this operation are shown below:

PRC (0x0F): Prescale counter.

TCC (0x10): Timer clock/counter.

INTF (0x11): Interrupt flag.

| Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1 | Bit 0 |
|-------|-------|--------|--------|--------|--------|-------|-------|
| ADIF  | RBFIF | PWM1IF | PWM0IF | EINT1F | EINT0F | TCCOF | FRCOF |

PRIE (0x80): Peripherals enable control

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SPIE  | -     | BBE   | ADE   | PWM1E | PWM0E | TCCE  | FRCE  |

INTE (0x81): Interrupt enable control

| Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1 | Bit 0 |
|-------|-------|--------|--------|--------|--------|-------|-------|
| GIE   | RBFIE | PWM1IE | PWM0IE | EINT1E | EINT0E | TCCOE | FRCOE |

TCCC (0x93): Timer clock/counter control.

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| -     | -     | -     | -     | TCCS0 | PS2   | PS1   | PS0   |

#### 14.2.3 TCC Programming Procedures/Steps

(1) Load TCCC with the prescaler and TCC clock source.

(2) Load TCC with the TCC overflow period.

(3) Enable the interrupt function by setting TCCOE in the INTE register, if required.

(4) Enable the TCC function by setting the TCCE bit in the PRIE register.

(5) Wait for either the interrupt flag to be set (TCCOF) or the TCC interrupt to occur.

(6) The following formula describes how to calculate the TCC overflow period:

*TCC Timer* = 
$$(0 \times 100 - TCC) \times \text{Pr} escaler \left(\frac{1}{ClockSource}\right)$$

where Clock Source = Fosc or IRC

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



## 14.3 Free Run Counter

Dual 8-bit counters, high byte register and low byte register, make up the 16-bit software programmable counter. The driving clock source is either the system clock divided by 2 or the low frequency oscillator. A read of the low byte register allows full control of the corresponding timer function. On the contrary, accessing a high byte register will inhibit the specific timer function until the corresponding low byte is read as well.



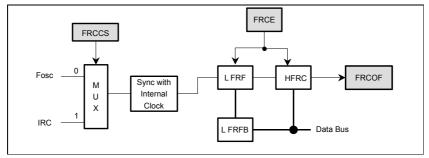



Fig. 14-2 Function Block Diagram of Timer 1

#### 14.3.2 FRC Control Registers

As the FRC mode is defined, the related registers of this operation are shown below:

INTF (0x11): Interrupt flag.

| Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2         | Bit 1 | Bit 0 |
|-------|-------|--------|--------|--------|---------------|-------|-------|
| ADIF  | RBFIF | PWM1IF | PWM0IF | EINT1F | <b>EINT0F</b> | TCCOF | FRCOF |

LFRC (0x1A): Least significant byte of 16-bit free run counter.

HFRC (0x1B): Most significant byte of 16-bit free run counter.

LFRCB (0x1C): Least significant byte buffer of 16-bit free run counter.

PRIE (0x80): Peripherals enable control

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SPIE  | -     | BBE   | ADE   | PWM1E | PWM0E | TCCE  | FRCE  |

#### INTE (0x81): Interrupt enable control

| Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1 | Bit 0 |
|-------|-------|--------|--------|--------|--------|-------|-------|
| GIE   | RBFIE | PWM1IE | PWM0IE | EINT1E | EINT0E | TCCOE | FRCOE |

FRCC (0x94): Free run counter control.

| Bit 7 | Bit 6  | Bit 5    | Bit 4    | Bit 3  | Bit 2  | Bit 1  | Bit 0 |
|-------|--------|----------|----------|--------|--------|--------|-------|
| -     | OSCO2E | OSCO2SL1 | OSCO2SL0 | PPSCL2 | PPSCL1 | PPSCL0 | FRCCS |

Product Specification (V1.0) 10.09.2007

(This specification is subject to change without further notice)





#### 14.3.3 FRC Programming Procedures/Steps

- (1) Load LFRCB with the FRC overflow period low byte.
- (2) Load HFRC with the TCC overflow period high byte. Then LFRC will load with the LFRCB automatically.
- (3) Enable interrupt function by setting FRCOE in the INTE register, if required.
- (4) Enable FRC function by setting FRCE bit in the PRIE register.
- (5) Wait for either the interrupt flag to be set (FRCOF) or the FRC interrupt to occur.
- (6) An access of low byte of a 16-bit counter receives the count value at the moment of the read. However, the contents of low byte will transfer to the buffer, the LFRCB register, if a high byte is read first. The value in the LFRCB register remains unchanged until the corresponding low byte is read.
- (7) The following formula describes how to calculate the FRC overflow period:

FRC Timer =  $\left( 0 \times 10000 - HFRC : LFRC \right) \times \left( \frac{1}{ClockSource} \right)$ 

where Clock Source = Fosc or IRC

## 15 Reset and Wake up

#### 15.1 Reset

A reset can be caused by one of the following:

- (1) Power-on reset
- (2) /RESET pin input "low", or
- (3) Watchdog timer time-out (if enabled)

The device will remain in a reset condition for a period of 8-bit external RC ripple counter (one oscillator start-up timer period) after the reset is detected. **The initial Address is 000h.** 

## 15.2 The Status of RST, T, and P of the STATUS Register

A reset condition can be caused by the following events:

- (1) A power-on condition (external);
- (2) A high-low-high pulse on the /RESET pin (external); and
- (3) Watchdog timer time-out (internal).

The values of bits RST, T and P, listed in Table 17.1 can be used to check how the processor wakes up.



Tabl

| e 17 1 | Values | of RST  | T and P after a reset |  |
|--------|--------|---------|-----------------------|--|
| C 17.1 | values | 011001, |                       |  |

| Condition                               | RST | Т  | Р  |
|-----------------------------------------|-----|----|----|
| Power on                                | 0   | 1  | 1  |
| WDTC instruction                        | *P  | 1  | *P |
| WDT timeout                             | *P  | 0  | *P |
| SLEP instruction                        | *P  | *P | 0  |
| Wake-Up on pin change during SLEEP mode | 1   | 1  | 0  |

\*P: Previous status before reset

## 15.3 System Set-up Time (SST)

In order to have a successful start up, System Set-up Time (SSU) is employed to guarantee a stable clock for IC operation. It is made up of two delay sources:

- (1) Internal RC Oscillation Set-up Delay (IRCOSUD): Internal RC oscillation shared with a watchdog timer divided by an 8-bit ripple counter.
- (2) Main Oscillation Set-up Delay (MOSUD): A 10-bit ripple counter is used to filter unstable main clocks at the beginning of power-on before the chip starts to run. This delay is performed right after IRCOSUD, if enabled

$$SST = \left(\frac{1}{32.768K}\right) \times 2^8 + \left(\frac{1}{Main\ Clock}\right) \times 2^{10}$$

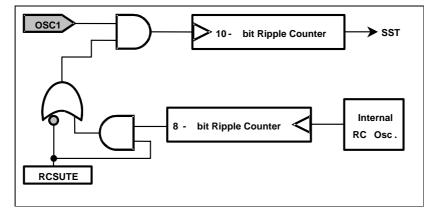



Fig. 15 System Set-up Time

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



## 15.4 Wake-up Procedure on Power-on Reset

Power-on Voltage Detector (POVD) will allow the VDD whose value is over the default threshold voltage (2.0 V for the EM77950) to enter the IC, and the SST delay starts.

The following three cases may be taken into consideration:

- (1) /RESET pin goes high with VDD at the same time. In hardware, this pin and VDD are tied together. The internal reset will remain low until the SST delay is over.
- (2) /RESET pin goes high during the SST delay. It is similar to Case 1. The IC will start to operate when the SST delay is over.

/RESET pin goes high after an SST delay. The EM77950 will start program execution immediately

## 16 Oscillators

## 16.1 Introduction

The EM77950 provides three main oscillators: One high frequency crystal oscillator (connected to OSCI and OSCO), internal RC, and four PLL (Phase Lock Loop) outputs. Versatile combinations of oscillation are provided for a wide range of applications. On-chip clock sources can be either dual clocks or single clock.

## 16.2 Clock Signal Distribution

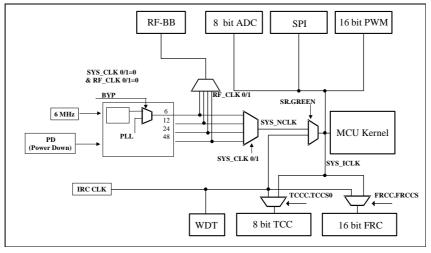



Fig. 16 Clock Tours

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



## 16.3 PLL Oscillator

The Phase-locked loop (PLL) technology is employed to produce four different frequencies: 6 MHz, 12MHz, 24MHz and 48 MHz (external 6MHz crystal). Setting the SYS\_CLK bits can select the system clock source. PLL is enabled except when entering Green and Sleep mode.

## 16.4 Selected PLL Oscillation out

As shown in register FRCC (0x94), EM77950 can output the selected PLL frequency divided by the prescaler. Once the pin is enabled as a PLL clock out, the output frequency can be implemented by the peripherals of the chip. If disabled, this pin is used as pin PF0, a general purpose I/O pin.

# 17 Low-Power Mode

## 17.1 Introduction

The EM77950 has two power-saving modes, green mode and sleep mode. Figure 17 shows the mode change diagram.

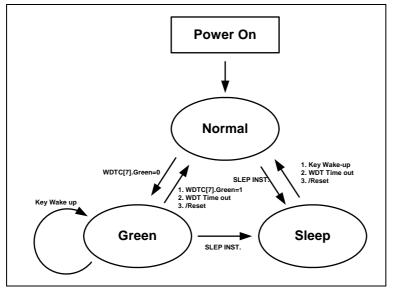



Fig. 17 Three-Mode State



## 17.2 Green Mode

The "GREEN" bit of WDTC [7] register is the only control bit used for mode switching between normal mode and green mode. Its initial value is "0", normal mode. When "GREEN" bit is written with a 1, the MCU will switch to green mode from normal mode. In contrast, the MCU will go back to normal mode when the "GREEN" bit is written from 1 to 0. During green mode, the main oscillator and PLL will be turned off. The MCU and all the peripherals are driven by the internal RC oscillator - IRC.

Once BB peripheral is functional and then switched into green mode, the clock source of all other peripherals, except PLL, will be provided by IRC. PLL will keep running as BB circuit's clock source.

## 17.3 Sleep Mode

The execution of "SLEP" instruction will turn the whole chip into Sleep mode. The main clock will be shut down. The IRC oscillator is halted also if the watchdog function is disabled. All registers, memory and I/O port remain in their previous states during sleep mode. The overflow of the watchdog timer driven by IRC will generate a reset to resume normal operation. Key Wake up (KWU) interrupt and /RESET pin are other methods to exit sleep mode. It is essential to wait for stable Oscillation start-up time before normal operation. The stabilizing time is SST.





# **18 Instruction Description**

# 18.1 Instruction Set Summary

| Туре             |      | Binary In | structio | n    | Mnemonic   | Operation                                                       | Status<br>Affected | Cycles |
|------------------|------|-----------|----------|------|------------|-----------------------------------------------------------------|--------------------|--------|
|                  | 0000 | 0000      | 0000     | 0000 | NOP        | No operation                                                    | None               | 1      |
|                  | 0000 | 0000      | 0000     | 0001 | WDTC       | $WDT \leftarrow 0$                                              | None               | 1      |
|                  | 0000 | 0000      | 0000     | 0010 | RET        | $PC \gets (Top of Stack)$                                       | None               | 1      |
| System           | 0000 | 0000      | 0000     | 0011 | RETI       | PC ← (Top of Stack);<br>Enable Interrupt                        | None               | 1      |
| Control          | 0000 | 0000      | 0000     | 0100 | SLEP       | WDT ← 0<br>Stop oscillator                                      | None               | 1      |
|                  | 0000 | 0000      | 0000     | 0101 | ENI        | Enable Interrupt                                                | None               | 1      |
|                  | 0000 | 0000      | 0000     | 0110 | DISI       | Disable Interrupt                                               | None               | 1      |
|                  | 0000 | 0000      | 0000     | 0111 | DAA        | Decimal Adjust A                                                | С                  | 1      |
|                  | 1010 | 0000      | rrrr     | rrrr | TBRDP r    | $r \leftarrow ROM[(TABPT[15:1])]$<br>TABPT $\leftarrow$ TABPT+1 | None               | 2      |
|                  | 1010 | 0001      | rrrr     | rrrr | TBRD r     | $r \leftarrow ROM[(TABPT[15:1])]$                               | None               | 2      |
|                  | 1010 | 0010      | rrrr     | rrrr | TBRDM r    | $r \leftarrow ROM[(TABPT[15:1])]$<br>TABPT $\leftarrow TABPT-1$ | None               | 2      |
| Table<br>Look up | 0000 | 0000      | 0000     | 1010 | TBRDP A    | $A \leftarrow ROM[(TABPT[15:1])]$<br>TABPT $\leftarrow$ TABPT+1 | None               | 2      |
| LOOK UP          | 0000 | 0000      | 0000     | 1011 | TBRD A     | $A \leftarrow ROM[(TABPT[15{:}1])]$                             | None               | 2      |
|                  | 0000 | 0000      | 0000     | 1100 | TBRDM A    | $A \leftarrow ROM[(TABPT[15:1])]$<br>TABPT $\leftarrow$ TABPT-1 | None               | 2      |
|                  | 0011 | 1101      | 0000     | 0010 | TBL        | R2 ← R2+A                                                       | C, DC, Z           | 1      |
|                  | 1010 | 1011      | kkkk     | kkkk | RETL #k    | $A \leftarrow k$<br>PC $\leftarrow$ [Top of Stack]              | None               | 1      |
|                  | 0000 | 0001      | rrrr     | rrrr | OR A, r    | $A \leftarrow A$ .or. r                                         | Z                  | 1      |
|                  | 0000 | 0010      | rrrr     | rrrr | OR r, A    | $r \leftarrow r$ .or. A                                         | Z                  | 1      |
|                  | 0000 | 0011      | kkkk     | kkkk | OR A, #k   | $A \leftarrow A$ .or. k                                         | Z                  | 1      |
|                  | 0000 | 0100      | Rrrr     | rrrr | AND A, r   | $A \leftarrow A$ .and. r                                        | Z                  | 1      |
|                  | 0000 | 0101      | Rrrr     | rrrr | AND r, A   | $r \leftarrow r$ .and. A                                        | Z                  | 1      |
|                  | 0000 | 0110      | kkkk     | kkkk | AND A, #k  | $A \leftarrow A$ .and. k                                        | Z                  | 1      |
|                  | 0000 | 0111      | Rrrr     | rrrr | XOR A, r   | A ← A .xor. r                                                   | Z                  | 1      |
|                  | 0000 | 1000      | rrrr     | rrrr | XOR r, A   | r ← r .xor. A                                                   | Z                  | 1      |
|                  | 0000 | 1001      | kkkk     | kkkk | XOR A, #k  | $A \leftarrow A$ .xor. k                                        | Z                  | 1      |
| Logic            | 0000 | 1010      | rrrr     | rrrr | COMA r     | A ← /r                                                          | Z                  | 1      |
|                  | 0000 | 1011      | rrrr     | rrrr | COM r      | r ← /r                                                          | Z                  | 1      |
|                  | 1011 | 00kk      | rrrr     | rrrr | RRCA r, #k | [C,r] rotate right k bits to<br>[C,A]                           | С                  | 1      |
|                  | 1011 | 01kk      | rrrr     | rrrr | RRC r, #k  | [C,r] rotate right k bits to<br>[C,r]                           | С                  | 1      |
|                  | 1011 | 10kk      | rrrr     | rrrr | RLCA r, #k | [C,r] rotate left k bits to<br>[C,A]                            | С                  | 1      |
|                  | 1011 | 11kk      | rrrr     | rrrr | RLC r, #k  | [C,r] rotate left k bits to [C,r]                               | С                  | 1      |
|                  | 0101 | 10kk      | rrrr     | rrrr | SHRA r, #k | [C,r] shift right k bits to A<br>Insert C into high order bits  | None               | 1      |
|                  | 0101 | 11kk      | rrrr     | rrrr | SHLA r, #k | [C,r] shift left k bits to A<br>Insert C into low order bits    | None               | 1      |

| Туре       |              | Binary In      | structio       | n              | Mnemonic        | Operation                                                                               | Status<br>Affected | Cycles |
|------------|--------------|----------------|----------------|----------------|-----------------|-----------------------------------------------------------------------------------------|--------------------|--------|
|            | 0001<br>xxaa | Obbb<br>aaaa   | rrrr<br>aaaa   | rrrr<br>aaaa   | JBC<br>r,b,addr | If r(b)=0, jump to addr                                                                 | None               | 2/3    |
|            | 0001<br>xxaa | 1bbb<br>aaaa   | rrrr<br>aaaa   | rrrr<br>aaaa   | JBS<br>r,b,addr | If r(b)=1, jump to addr                                                                 | None               | 2/3    |
| Compare    | 0101<br>xxaa | 0010<br>aaaa   | rrrr<br>aaaa   | rrrr<br>aaaa   | DJZA r,addr     | A $\leftarrow$ r-1, jump to addr if zero                                                | None               | 2/3    |
| Branch     | 0101<br>xxaa | 0011<br>aaaa   | rrrr<br>aaaa   | rrrr<br>aaaa   | DJZ r,addr      | r ←r-1, jump to addr if zero                                                            | None               | 2/3    |
|            | 0101<br>xxaa | 0100<br>aaaa   | rrrr<br>aaaa   | rrrr<br>aaaa   | JZA r,addr      | A←r+1, jump to addr if zero                                                             | None               | 2/3    |
|            | 0101<br>xxaa | 0101<br>aaaa   | rrrr<br>aaaa   | rrrr<br>aaaa   | JZ r,addr       | r ←r+1, jump to addr if zero                                                            | None               | 2/3    |
|            | 0010         | 0bbb           | rrrr           | rrrr           | BC r,b          | r(b) ← 0                                                                                | None               | 1      |
|            | 0010         | 1bbb           | rrrr           | rrrr           | BS r,b          | r(b) ← 1                                                                                | None               | 1      |
|            | 0011         | 0bbb           | rrrr           | rrrr           | BTG r,b         | $r(b) \leftarrow /r(b)$                                                                 | None               | 1      |
|            | 0011         | 1000           | rrrr           | rrrr           | SWAP r          | $r(0:3) \leftrightarrow r(4:7)$                                                         | None               | 1      |
| Process    | 0011         | 1001           | rrrr           | rrrr           | SWAPA r         | A(4:7) $\leftarrow$ r(0:3)<br>A(0:3) $\leftarrow$ r(4:7)<br>Z $\leftarrow$ 0 if r < > 0 | None               | 1      |
|            | 1010         | 1100           | rrrr           | rrrr           | ZCHK r          | $Z \leftarrow 0    1 < > 0$<br>$Z \leftarrow 1    f r = 0$                              | Z                  | 1      |
|            | 0000         | 0000           | 0000           | 1101           | RPT             | Single repeat CS times<br>on next TBRD instruction                                      | None               | 1      |
|            | 1010         | 1111           | rrrr           | rrrr           | CLR r           | r ← 0                                                                                   | Z                  | 1      |
|            | 0011         | 1100           | rrrr           | rrrr           | ADD A,r         | A ← A+r                                                                                 | C, DC, Z           | 1      |
|            | 0011         | 1101           | rrrr           | rrrr           | ADD r,A         | r ← r+A                                                                                 | C, DC, Z           | 1      |
|            | 0011         | 1110           | kkkk           | kkkk           | ADD A,#k        | $A \leftarrow A + k$                                                                    | C, DC, Z           | 1      |
|            | 0100         | 0010           | rrrr           | rrrr           | SUB A,r         | $A \gets r\text{-}A$                                                                    | C, DC, Z           | 1      |
| Arithmetic | 0100         | 0011           | rrrr           | rrrr           | SUB r,A         | f ← r-A                                                                                 | C, DC, Z           | 1      |
| / unumouo  | 0100         | 0100           | kkkk           | kkkk           | SUB A,#k        | $A \gets k\text{-}A$                                                                    | C, DC, Z           | 1      |
|            | 0100         | 1110           | rrrr           | rrrr           | INCA r          | $A \leftarrow r+1$                                                                      | C, DC, Z           | 1      |
|            | 0100         | 1111           | rrrr           | rrrr           | INC r           | r ← r+1                                                                                 | C, DC, Z           | 1      |
|            | 0101         | 0000           | rrrr           | rrrr           | DECA r          | A ← r-1                                                                                 | C, DC, Z           | 1      |
|            | 0101         | 0001           | rrrr           | rrrr           | DEC r           | r ← r-1                                                                                 | C, DC, Z           | 1      |
|            | 1010         | 1000           | rrrr           | rrrr           | MOV A,r         | A ← r                                                                                   | Z                  | 1      |
|            | 1010         | 1001           | rrrr           | rrrr           | MOV r,A         | r ← A                                                                                   | None               | 1      |
| Move       | 0110         | r2 r2 r2<br>r2 | r2 r2 r1<br>r1 | r1 r1 r1<br>r1 | MOVRR r1,<br>r2 | Register r1 ← Register r2                                                               | None               | 1      |
|            | 1010         | 0111           | kkkk           | kkkk           | MOV A,#k        | $A \leftarrow k$                                                                        | None               | 1      |
| Bronob     | 110a         | aaaa           | aaaa           | aaaa           | JMP addr        | $PC \leftarrow addr$<br>PC[1316] unchange                                               | None               | 1      |
| Branch     | 111a         | аааа           | аааа           | aaaa           | CALL addr       | [Top of Stack] $\leftarrow$ PC + 1<br>PC $\leftarrow$ addr<br>PC [1316] unchange        | None               | 1      |
| Bank       | 1010         | 1110           | 0000           | 0kkk           | BANK #k         | R4(RAMBS0) ← k (0~6)                                                                    | None               | 1      |
| Page       | 1010         | 1101           | 0000           | 000k           | PAGE #k         | R5(PAGES) ← k (0~1)                                                                     | None               | 1      |

ELAN

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



# **19 Electrical Specification**

# 19.1 Absolute Maximum Ratings

| Temperature under Bias | 0°C   | to | 70°C  |
|------------------------|-------|----|-------|
| Storage temperature    | -65°C | to | 150°C |
| Input voltage          | -0.3V | to | +3.6V |
| Output voltage         | -0.3V | to | +3.6V |

## **19.2 DC Electrical Characteristic**

Ta=0°C ~ 70 °C, VDD=3.3V±5%, VSS=0V

| Symbol | Parameter                                          | Condition                                                                                                | Min     | Тур  | Max     | Unit |
|--------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------|------|---------|------|
| Fxt    | Crystal: VDD ~ 2.75V                               | One cycle with one clock                                                                                 | DC      | -    | 48.0    | MHz  |
| IIL    | Input Leakage<br>Current for input pins            | VIN = VDD, VSS                                                                                           | Ι       | -    | ±2      | μA   |
| VIH    | Input High Voltage                                 | Port A ~ Port F                                                                                          | 0.8xVDD | -    | -       | V    |
| VIL    | Input Low Voltage                                  | Port A ~ Port F                                                                                          | VSS     | -    | 0.2xVDD | V    |
| VIHT   | Input High Threshold<br>Voltage                    | /RST                                                                                                     | 2.0     | -    | -       | V    |
| VILT   | Input Low Threshold<br>Voltage                     | /RST                                                                                                     | -       | -    | 0.8     | V    |
| VIHX   | Clock Input High<br>Voltage                        | OSCI, OSCO                                                                                               | 2.5     | -    | -       | V    |
| VILX   | Clock Input Low<br>Voltage                         | OSCI, OSCO                                                                                               | _       | -    | 1.0     | V    |
| VOH1   | Output High Voltage:<br>PTA, PTC, PTD,<br>PTE, PTF | IOH = -8.0 mA                                                                                            | 2.4     | -    | -       | V    |
| VOH2   | Output High Voltage:<br>PTB;<br>RFIO               | IOH = -8.0 mA                                                                                            | 2.4     | _    | -       | V    |
| VOL1   | Output Low Voltage:<br>PTA, PTC, PTD,<br>PTE, PTF  | IOL = 8.0 mA                                                                                             | -       | -    | 0.4     | V    |
| VOL2   | Output Low Voltage:<br>PTB; RFIO                   | IOL = 8.0 mA                                                                                             | -       | -    | 0.4     | V    |
| IPH    | Pull-high current                                  | Pull-high active, input pin at<br>VSS                                                                    | -       | -6.5 | -       | μA   |
| ISB    | Power down current                                 | All input and I/O pins at VDD,<br>Output pin floating,<br>WDT enabled.                                   | -       | -    | 2       | μA   |
| ISB    | Power down current                                 | All input and I/O pins at VDD,<br>Output pin floating, WDT and<br>all peripherals disabled.              | Ι       | -    | 1       | μA   |
| ICC1   | Operating supply<br>current<br>(VDD = 3.3V)        | /RESET = 'High',<br>Fosc = 32kHz (RC type),<br>Output pin floating, WDT and<br>all peripherals disabled. | -       | 60   | -       | μΑ   |
| ICC3   | Operating supply<br>current<br>(VDD = 3.3V)        | /RESET= 'High',<br>Fosc = 6MHz (Crystal type),<br>Output pin floating, and all<br>peripherals disabled.  | _       | 5    | -       | mA   |

90 •



# **19.3 Voltage Detector Electrical Characteristic**

### Ta=25°C

| Symbol    | Parameter                          | Condition                           | Min  | Тур         | Max | Unit  |
|-----------|------------------------------------|-------------------------------------|------|-------------|-----|-------|
| Vdet      | Detect voltage                     | -                                   | 1.8  | 2.0         | 2.2 | V     |
| Vrel      | Release voltage                    | -                                   | _    | Vdet × 1.05 | _   | V     |
| lss       | Current consumption                | VDD = 3V                            | -    | -           | 0.8 | μA    |
| Vop       | Operating voltage                  | -                                   | 0.7* | -           | 3.5 | V     |
| ∆Vdet/∆Ta | Vdet Temperature<br>characteristic | $0^{\circ}C \le Ta \le 70^{\circ}C$ | _    | _           | -2  | MV/°C |

\* When the VDD voltage rises between Vop=0.7V and Vdet, the voltage detector output must be "Low".

## **19.4 AC Electrical Characteristic**

## 19.4.1 MCU

Ta=0°C ~ 70 °C, VDD=3.3 V $\pm$ 5%, VSS=0V

Ta=0°C ~ 70 °C, VDD=3.3 V±5%, VSS=0V

| Symbol | Parameter                            | Conditions              | Min          | Тур | Max      | Unit     |
|--------|--------------------------------------|-------------------------|--------------|-----|----------|----------|
| Dclk   | Input CLK duty cycle                 | -                       | 45           | 50  | 55       | %        |
| Tins   | Instruction cycle time<br>(CLKS="0") | Crystal type<br>RC type | 125<br>500   | -   | DC<br>DC | ns<br>ns |
| Ttcc   | TCC input period                     | -                       | (Tins+20)/N* | -   | -        | ns       |
| Tdrh   | Device reset hold time               | Ta = 25°C               | 9            | 18  | 30       | ms       |
| Trst   | /RESET pulse width                   | Ta = 25°C               | 2000         | -   | -        | ns       |
| Twdt   | Watchdog timer period                | Ta = 25°C               | 9            | 18  | 30       | ms       |
| Tset   | Input pin setup time                 | -                       | -            | 0   | -        | ms       |
| Thold  | Input pin hold time                  | -                       | -            | 20  | -        | ms       |
| Tdelay | Output pin delay time                | Cload=20pF              | _            | 50  | _        | ms       |

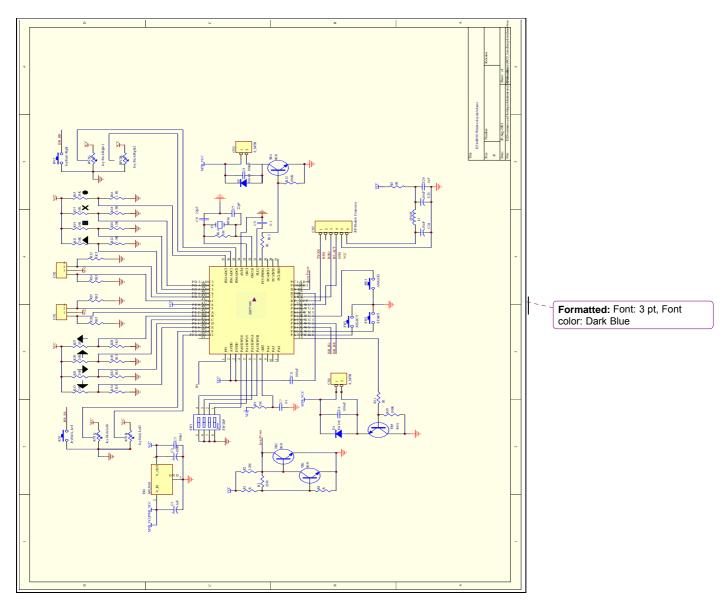
\* N= selected prescaler ratio.

Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)



## 19.4.2 BB

| Symbol | Parameter                          | Min      | Max      | Unit |
|--------|------------------------------------|----------|----------|------|
| 1/tOSC | Oscillator frequency               | 0.1      | 24       | MHz  |
| tRDPW  | RD pulse width                     | 3*tOSC+∆ | -        | ns   |
| tCSRD  | CS low to RD low                   | tOSC     | -        | ns   |
| tADRD  | Address valid for RD low           | 0        | -        | ns   |
| tRDDV  | RD low to Data valid               | -        | 3*tOSC+∆ | ns   |
| tRHDT  | Data float after RD.               | -        | tOSC     | ns   |
| tDHAR  | Data hold after RD                 | 0        | -        | ns   |
| tRHDT  | Time between consecutive RD pulses | 2*tOSC   | -        | ns   |
| tRDAN  | Address valid after RD low         | 3*tOSC+∆ | -        | ns   |


Ta=0°C ~ 70 °C, VDD=3.3 V±5%, VSS=0V

 $\Delta$ >0 will be determined according to cell library simulation.

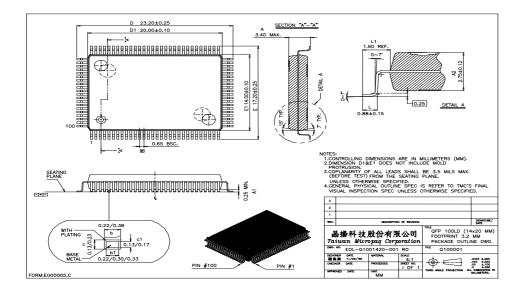
The values above were determined according to behavioral simulations. They take into account only the BB digital state-machine. Thus, such values are for reference only.



# 20 Application Circuit



Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)




# APPENDIX

# A Package Type

| ET NO    | Package Type | Pin count | Package Size |
|----------|--------------|-----------|--------------|
| EM77950A | QFP52        | 52        | 14×20MM      |
| EM77950B | QFP44        | 44        | 10×10MM      |

# **B** Package Information



Product Specification (V1.0) 10.09.2007 (This specification is subject to change without further notice)