

M62362P/FP

1280 Resolution 3ch Multiplying D/A Converter

REJ03D0873-0201 Rev.2.01 Dec 27, 2007

Description

The M62362P is an integrated circuit semiconductor of CMOS structured with 3 channels of built-in 1280 step resolution (equivalent 10.3-bit) multiplication type D/A converters.

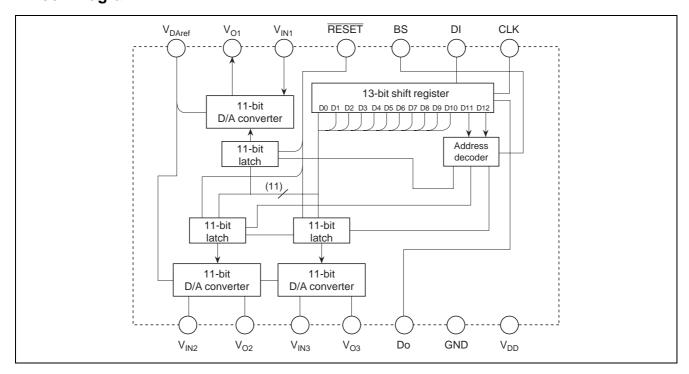
The 3-wire serial interface method and it is able to cascading serial use with D₀ terminal.

The device is suited for use in high accuracy automatic adjustment combination with microcomputer.

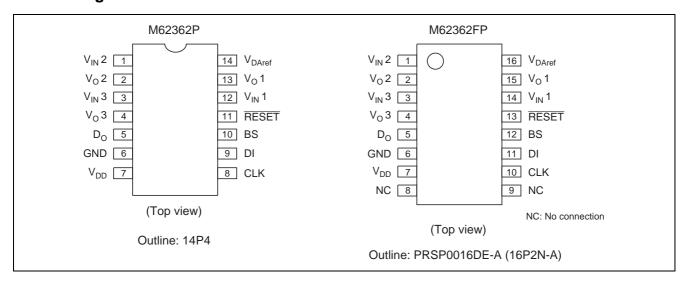
Features

- Digital data transfer method: 3-wire serial data transfer method
- High resolution Resolution is more over 10-bit and error is less than ±1 LSB
- Capable of 4 quadrant multiplication
- Short setting time
- With reset terminal

Recommended Operating Condition


Digital section supply voltage: $V_{DD} = 5 \text{ V} \pm 10\%$

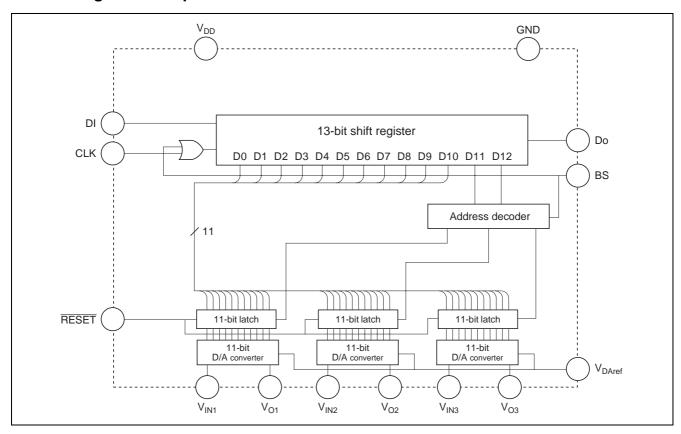
Application


Signal gain control of display-monitor or CTV. Conversion from digital control data to analog control data for home-use and industrial equipment.

Automatic adjustment by combination with EEPROM and microcomputer. (Replacement of conventional half-fixed)

Block Diagram

Pin Arrangement



Pin Description

Pin No.	Pin Name	Function
9 (11)	DI	Serial data input terminal
5	Do	Serial data output terminal
8 (10)	CLK	Serial clock input terminal
10 (12)	BS	When BS terminal level is "H" latch circuit data is load
11 (13)	RESET	When RESET terminal level is "L", all D/A output terminal became "L"
13 (15)	V _{O1}	1280 resolution D/A output
2	V _{O2}	
4	V _{O3}	
7	V_{DD}	Power supply terminal
6	GND	GND terminal
1	V _{IN2}	D/A converter input terminal
3	V _{IN3}	
12 (14)	V _{IN1}	
14 (16)	V _{DAref}	D/A converter reference voltage input terminal

Note: (): M62362FP

Block Diagram for Explanation of Terminals

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Supply voltage	V_{DD}	-0.3 to +7.0	V
Digital input voltage (DI, CLK, BS)	V _{IND}	-0.3 to +7.0	V
Input voltage	V _{IN}	-0.3 to V _{DD} + 0.3	V
Output voltage	Vo	-0.3 to V _{DD} + 0.3	V
D/A reference voltage	V _{DAref}	-0.3 to V _{DD} + 0.3	V
Operating temperature	Topr	-20 to +85	°C
Storage temperature	Tstg	-40 to +125	°C

Electrical Characteristics

<Digital Part>

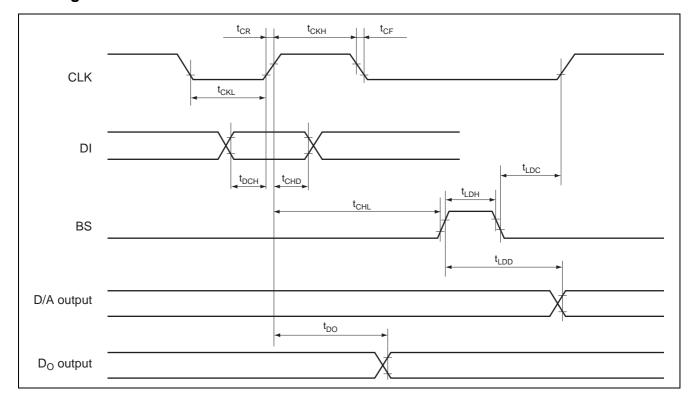
 $(V_{DD},\,V_{IN}=+5\,\,V\,\pm\,10\%,\,V_{DD}\geq V_{IN},\,GND=V_{DAref}=0\,\,V,\,Ta=-20\,\,to\,+85^{\circ}C,\,unless\,\,otherwise\,\,noted.)$

			Limits			
Item	Symbol	Min	Тур	Max	Unit	Conditions
Supply voltage	V_{DD}	4.5	5.0	5.5	V	
Input leak current	I _{ILK}	-10	1	10	μΑ	$V_{IN} = 0$ to V_{DD}
Input low voltage	V _{IL}	_	1	$0.2\ V_{DD}$	V	
Input high voltage	V _{IH}	0.8 V _{DD}	1	1	V	
Output low voltage	V _{OL}	_	1	0.4	V	I _{OL} = 2.5 mA
Output high voltage	V _{OH}	$V_{DD} - 0.4$			V	$I_{OH} = -400 \mu A$

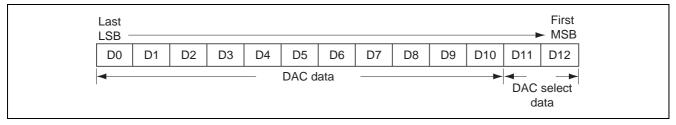
<Analog Part>

 $(V_{DD},\,V_{IN}=+5\,\,V\,\pm\,10\%,\,V_{DD}\geq V_{IN},\,GND=V_{DAref}=0\,\,V,\,Ta=-20\,\,to\,\,+85^{\circ}C,\,unless\,\,otherwise\,\,noted.)$

	Limits						
Item		Symbol	Min	Тур	Max	Unit	Conditions
Input voltage		V _{IN}	0	_	V_{DD}	V	
Out	tput voltage	Vo	0	_	V_{DD}	V	$V_{IN} = 0$ to V_{DD}
Inp	ut current	I _{IN}	_	0.75	1.5	mA	$V_{IN} = 5 \text{ V}, V_{DAref} = 0 \text{ V}$
							Proportional to (V _{IN} – V _{DAref})
D/A	reference source current	I _{DAref}	-4.5	-2.25	_	mA	$V_{IN1} = V_{IN2} = V_{IN3} = 5 V,$
							$V_{DAref} = 0 V$
							Proportional to (V _{IN} – V _{DAref})
D/A	output sink or source	I ₀	-1.0	_	1.0	μA/LSB	
cur	rent						
Out	tput impedance	Ro	_	1.8	3.6	kΩ	Constant for all D/A output mode
Resolution		RES	_	1280	_	STEP	
5	Differential nonlinearity	DNL	-1	_	1	LSB	
Accuracy	Nonlinearity	NL	-0.6		0.6	%FS	
Ä	Nonlinearity for channels	ΔNL	-0.4	_	0.4	%FS	


Note: Polarity of current, (+) is sink into IC and (-) is source from IC.

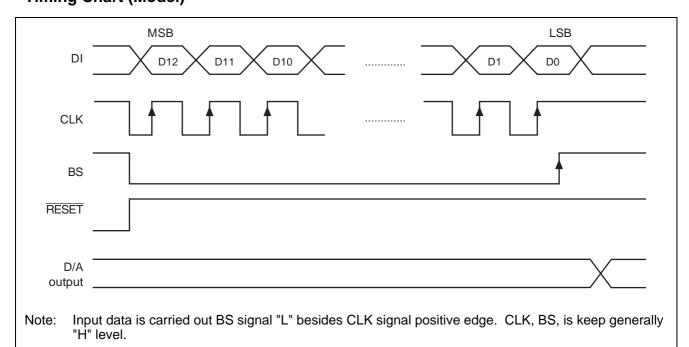
AC Characteristics


 $(V_{DD},\,V_{IN}=+5\,\,V\pm10\%,\,V_{DD}\geq V_{IN},\,GND=V_{DAref}=0\,\,V,\,Ta=-20\,\,to\,\,+85^{\circ}C)$

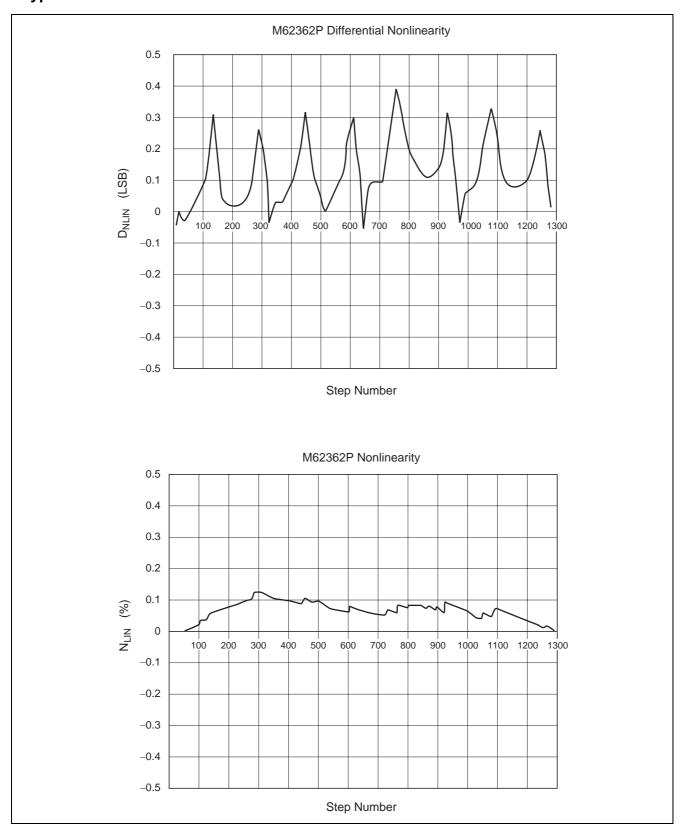
		Limits				
ltem	Symbol	Min	Тур	Max	Unit	Conditions
Clock "L" pulse width	t _{CKL}	200	_	_	ns	
Clock "H" pulse width	t _{CKH}	200	_	_	ns	
Clock rise time	t _{CR}	_	_	200	ns	
Clock fall time	t _{CF}	_	_	200	ns	
Data setup time	t _{DCH}	60	_	_	ns	
Data hold time	t _{CHD}	100	_	_	ns	
LD setup time	t _{CHL}	200	_	_	ns	
LD hold time	t _{LDC}	100	_	_	ns	
LD "H" pulse width	t _{LDH}	100	_	_	ns	
Data output delay time	t _{DO}	70	_	350	ns	$C_L \le 100 \text{ pF}$
Data output setting time t _{LDD}		_	_	20	μS	No load
Input/output response time		_	_	5		f = 10 kHz

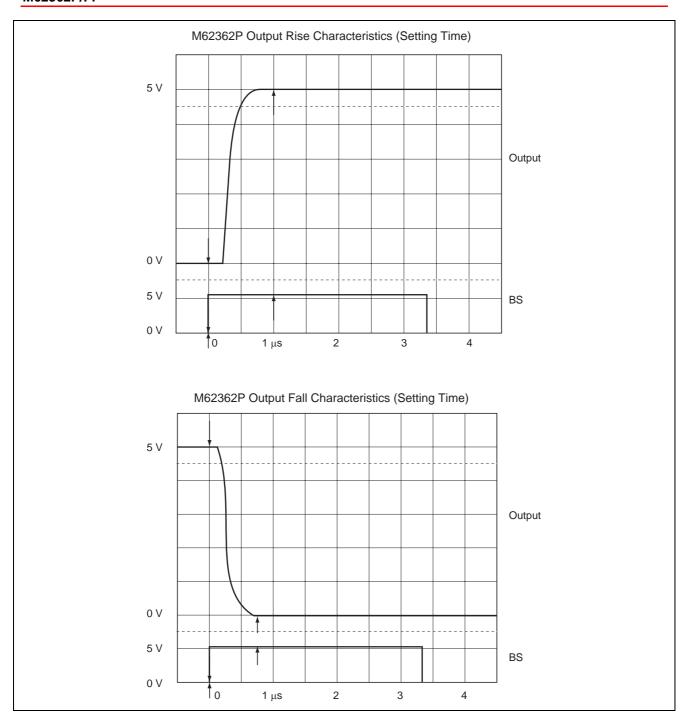
Timing Chart

Digital Data Format


DAC Data

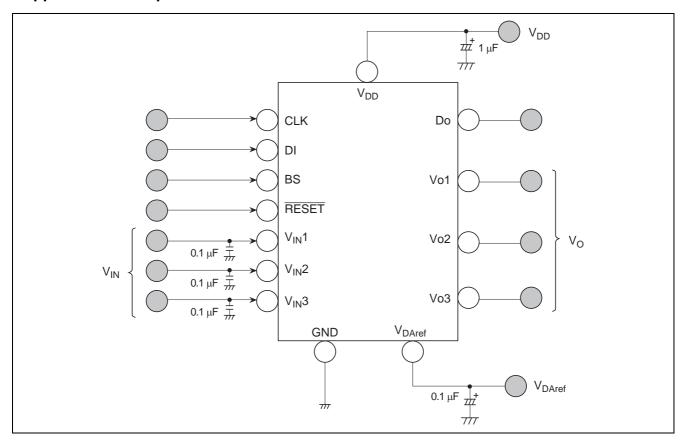
D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D/A Output
0	0	0	0	0	0	0	0	0	0	0	V _{DAref}
1	0	0	0	0	0	0	0	0	0	0	$(V_{IN} - V_{DAref}) / 1280 \times 1 + V_{DAref}$
0	1	0	0	0	0	0	0	0	0	0	$(V_{IN} - V_{DAref}) / 1280 \times 2 + V_{DAref}$
1	1	0	0	0	0	0	0	0	0	0	$(V_{IN} - V_{DAref}) / 1280 \times 3 + V_{DAref}$
:	:	:	:	:	:	:	:	:	:	:	:
1	1	1	1	1	1	1	1	0	0	1	$(V_{IN} - V_{DAref}) / 1280 \times 1279 + V_{DAref}$
0	0	0	0	0	0	0	0	1	0	1	V _{IN}
:	:	:	:	:	:	:		:	:	:	:
1	1	1	1	1	1	1	1	1	1	1	V _{IN}


DAC Select Data

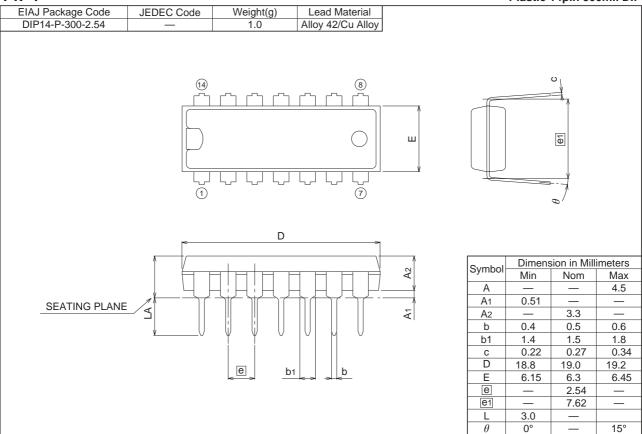

D11	D12	DAC Selection
0	0	Don't care
0	1	ch1
1	0	ch2
1	1	ch3

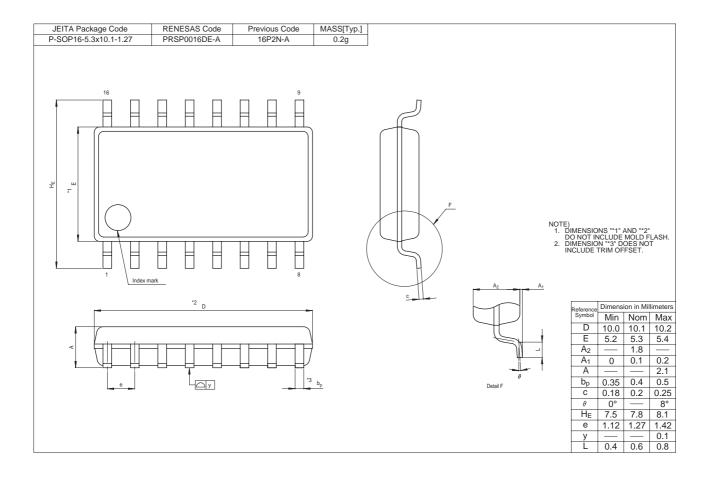
Timing Chart (Model)

Typical Characteristics



Precaution for Use


M62362 have 5 terminals these are input free voltage at use. ($V_{DD},\,V_{IN1},\,V_{IN2},\,V_{IN3},\,V_{DAref}$) If ripple and spike is input to these terminals, accuracy of conversion is down. So, when use this device, please connect capacitor among to each terminals and GND for stable operation.


Application Example

Package Dimensions

14P4 Plastic 14pin 300mil DIP

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect to the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the development is satisfied. The procedure is such as the development of the dev

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510