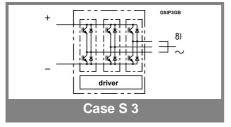

SKiiP 792GB170-3D

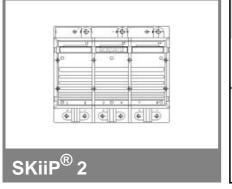
2-pack - integrated intelligent Power System

Power section


SKiiP 792GB170-3D

Power section features

- SKiiP technology inside
- CAL diode technology
- · Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 2 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- 1) with assembly of suitable MKP capacitor per terminal
- 8) AC connection busbars must be connected by the user; copper busbars available on request


Absolute	Maximum Ratings	s = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V_{CES}		1700	V			
V _{CES} V _{CC} 1)	Operating DC link voltage	1200	V			
V_{GES}		± 20	V			
I _C	T _s = 25 (70) °C	750 (562)	Α			
Inverse diode						
$I_F = -I_C$	T _s = 25 (70) °C	750 (562)	Α			
I _{FSM}	$T_i = 150 ^{\circ}\text{C}, t_p = 10 \text{ms}; \text{sin}.$	6480	Α			
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	210	kA²s			
T_j , (T_{stg})		- 40 (- 25) + 150 (125)	°C			
V _{isol}	AC, 1 min. (mainterminals to heat sink)	4000	V			

Characteristics $T_s = 25$ °C unless otherwise specified										
Symbol	Conditions				min.	typ.	max.	Units		
IGBT										
V_{CEsat}	I _C = 600 A	, T _i = 25 (1	25) °C			3,3 (4,3)	3,9	V		
V_{CEO}	$T_i = 25 (12)$	25) [°] °C				1,7 (2)	2 (2,3)	V		
r_{CE}	$T_j = 25 (12)$	25) °C				2,7 (3,9)	3,2 (4,4)	mΩ		
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES} ,					(45)	3	mA		
	$T_i = 25 (12)$	25) °C								
E _{on} + E _{off}	I _C = 600 A	, V _{CC} = 900	O V				518	mJ		
	T _j = 125 °(C, V _{CC} = 12	200 V				763	mJ		
R _{CC' + EE'}	terminal c	hip, T _i = 12	5 °C			0,17		mΩ		
L _{CE}	top, bottor	m .				5		nΗ		
C _{CHC}	per phase	, AC-side				2,4		nF		
Inverse o	diode									
$V_F = V_{EC}$	I _F = 600 A	., T _j = 25 (1	25) °C			2,3 (2,1)	2,9	V		
V_{TO}	$T_j = 25 (12)$						1,6 (1,3)	V		
r _T	$T_j = 25 (12)$					1,7 (1,9)		mΩ		
E _{rr}	-	$V_{CC} = 900$					64	mJ		
	T _j = 125 °0	C, V _{CC} = 12	200 V				75	mJ		
Mechani										
M_{dc}		als, SI Unit			6		8	Nm		
M _{ac}	AC terminals, SI Units				13		15	Nm		
W	SKiiP® 2 System w/o heat sink					2,7		kg		
W	heat sink					6,6		kg		
			P16 hea	t sink; 29	95m³/h);	" _r " refer	ence to			
temperat		sor			İ			1		
R _{th(j-s)I}	per IGBT						0,027	K/W		
R _{th(j-s)D}	per diode						0,089	K/W		
R _{th(s-a)}	per modul						0,036	K/W		
Z_{th}	R _i (mK/W) (max. values)				tau _i (s)					
7	3	2 21	3 3	4 0	1 1	2	3	4 1		
Z _{th(j-r)I}	10	68	3 11	0	1	0,13 0,13	0,001 0,001	1		
Z _{th(j-r)D}						•	•			
$Z_{th(r-a)}$	11,1	18,3	3,5	3,1	204	60	6	0,02		

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

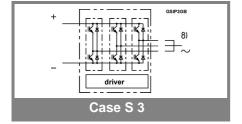
SKiiP 792GB170-3D

Absolute	Maximum Ratings	a = 25 °C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S1}	stabilized 15 V power supply	18	V	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{iH}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, r.m.s., 2s)	4000	Vac	
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac	
f_{sw}	switching frequency	11	kHz	
f _{out}	output frequency for I=I _C ;sin.	1	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

2-pack - integrated intelligent Power System

2-pack integrated gate driver

SKiiP 792GB170-3D


Gate driver features

- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- · Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 25/85/56

Characte	(T _a = 25 °C)			= 25 °C)	
Symbol	Conditions	min.	typ.	max.	Units
V_{S1}	supply voltage stabilized	14,4	15	15,6	V
V_{S2}	supply voltage non stabilized	20	24	30	V
I _{S1}	V _{S1} = 15 V	260+500	260+500*f/f _{max} +1,2*(I _{AC} /A)		
I _{S2}	V _{S2} = 24 V	200+370	200+370*f/f _{max} +0,85*(I _{AC} /A)		
V_{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
t _{d(on)IO}	input-output turn-on propagation time			1,5	μs
t _{d(off)IO}	input-output turn-off propagation time			1,4	μs
t _{pERRRESET}	error memory reset time	9			μs
t_{TD}	top / bottom switch : interlock time		3,3		μs
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage		750		Α
L	(available when supplied with 24 V)			50	mA
I _{Vs1outmax} I _{A0max}	output current at pin 12/14			5	mA
V _{0I}	logic low output voltage			0,6	V
V _{0H}	logic high output voltage			30	V
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)		938		Α
I _{TRIPLG}	ground fault protection				Α
T_tp	over temperature protection	110		120	°C
U _{DCTRIP}	trip level of U _{DC} -protection	1200			V
	(U _{analog OUT} = 9 V); (option)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

