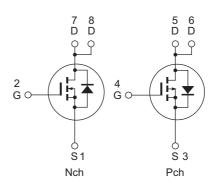


HAT3029R

Silicon N/P Channel Power MOS FET Power Switching

REJ03G1597-0600 Rev.6.00 Oct 16, 2007


Features

- Capable of 4.5 V gate drive
- Low drive current
- High density mounting

Outline

RENESAS Package code: PRSP0008DD-D (Package name: SOP-8<FP-8DAV>)

1, 3 Source 2, 4 Gate

5, 6, 7, 8 Drain

Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

Item	Symbol	Ra	Unit	
item	Symbol	Nch	Pch	Offic
Drain to source voltage	V_{DSS}	30	-30	V
Gate to source voltage	V_{GSS}	±20	-20/+10	V
Drain current	I _D	6	-6	Α
Drain peak current	I _{D(pulse)} Note1	48	-48	Α
Body-drain diode reverse drain current	I _{DR}	6	-6	Α
Channel dissipation	Pch Note2		1.3	W
Channel dissipation	Pch Note3	2.0		W
Channel temperature	Tch		150	°C
Storage temperature	Tstg	-55	to +150	°C

Notes: 1. PW \leq 10 μ s, duty cycle \leq 1 %

- 2. 1 Drive operation; When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW \leq 10s
- 3. 2 Drive operation; When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), $PW \le 10s$

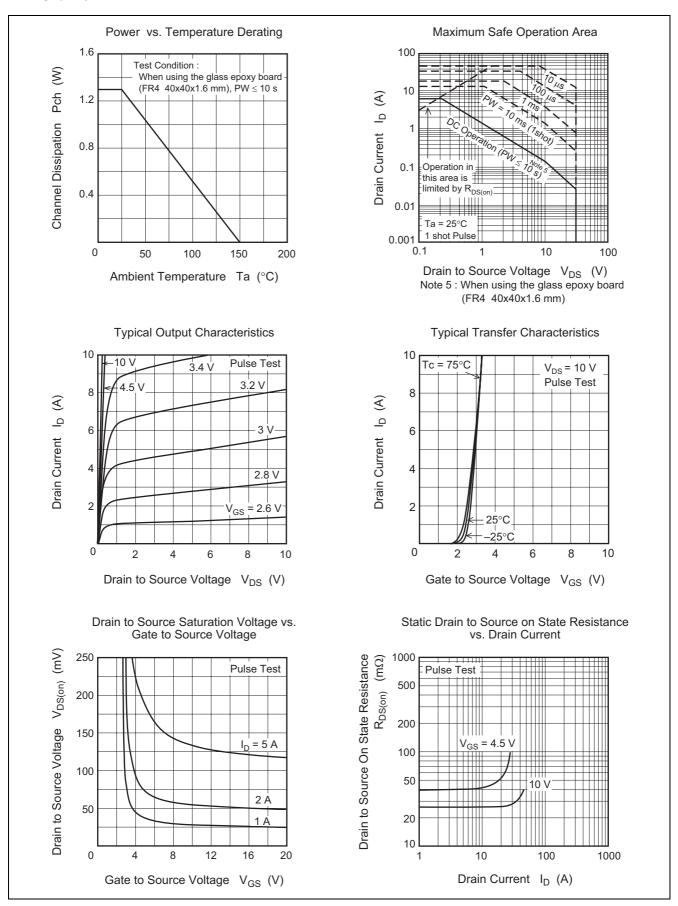
Electrical Characteristics

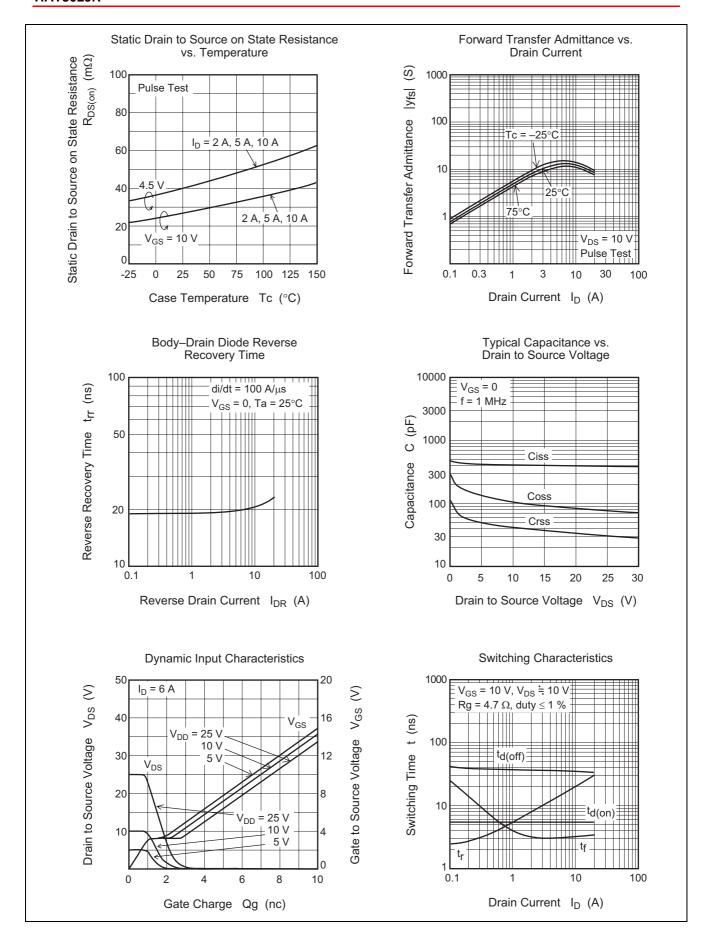
 $(Ta = 25^{\circ}C)$

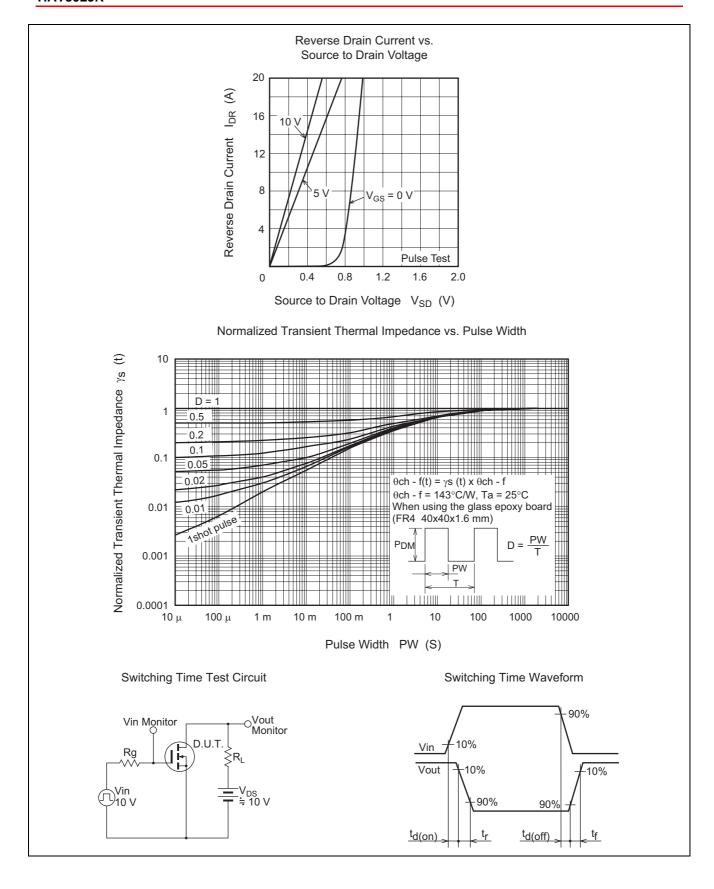
• N Channel

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Drain to source breakdown voltage	$V_{(BR)DSS}$	30	_	_	V	$I_D = 10 \text{ mA}, V_{GS} = 0$
Gate to source leak current	I _{GSS}	_		±0.1	μΑ	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0$
Zero gate voltage drain current	I _{DSS}	_		1	μΑ	$V_{DS} = 30 \text{ V}, V_{GS} = 0$
Gate to source cutoff voltage	$V_{GS(off)}$	1.0		2.5	V	$V_{DS} = 10 \text{ V}, I_{D} = 1 \text{ mA}$
Static drain to source on state	R _{DS(on)}	_	27	34	mΩ	$I_D = 3 \text{ A}, V_{GS} = 10 \text{ V}^{\text{Note4}}$
resistance	R _{DS(on)}	_	40	58	mΩ	$I_D = 3 \text{ A}, V_{GS} = 4.5 \text{ V}^{\text{Note4}}$
Forward transfer admittance	y _{fs}	6	10	_	S	$I_D = 3 \text{ A}, V_{DS} = 10 \text{ V}^{\text{Note4}}$
Input capacitance	Ciss	_	410	_	pF	V _{DS} = 10 V
Output capacitance	Coss	_	110	_	pF	$V_{GS} = 0$
Reverse transfer capacitance	Crss	_	41	_	pF	f = 1 MHz
Total gate charge	Qg	_	3.1	_	nC	V _{DD} = 10 V
Gate to source charge	Qgs	_	1.1	_	nC	$V_{GS} = 4.5 \text{ V}$
Gate to drain charge	Qgd	_	1.1	_	nC	$I_D = 6 A$
Turn-on delay time	t _{d(on)}	_	5.4	_	ns	$V_{GS} = 10 \text{ V}, I_D = 3 \text{ A}$
Rise time	t _r	_	10	_	ns	$V_{DD} \cong 10 \text{ V}$
Turn-off delay time	t _{d(off)}	_	36	_	ns	$R_L = 3.33 \Omega$
Fall time	t _f	_	3.0	_	ns	$Rg = 4.7 \Omega$
Body-drain diode forward voltage	V_{DF}	_	0.84	1.10	V	IF = 6 A, V _{GS} = 0 Note4
Body-drain diode reverse recovery	t _{rr}	_	20	_	ns	IF = 6 A, V _{GS} = 0
time						$di_F/dt = 100 A/ \mu s$

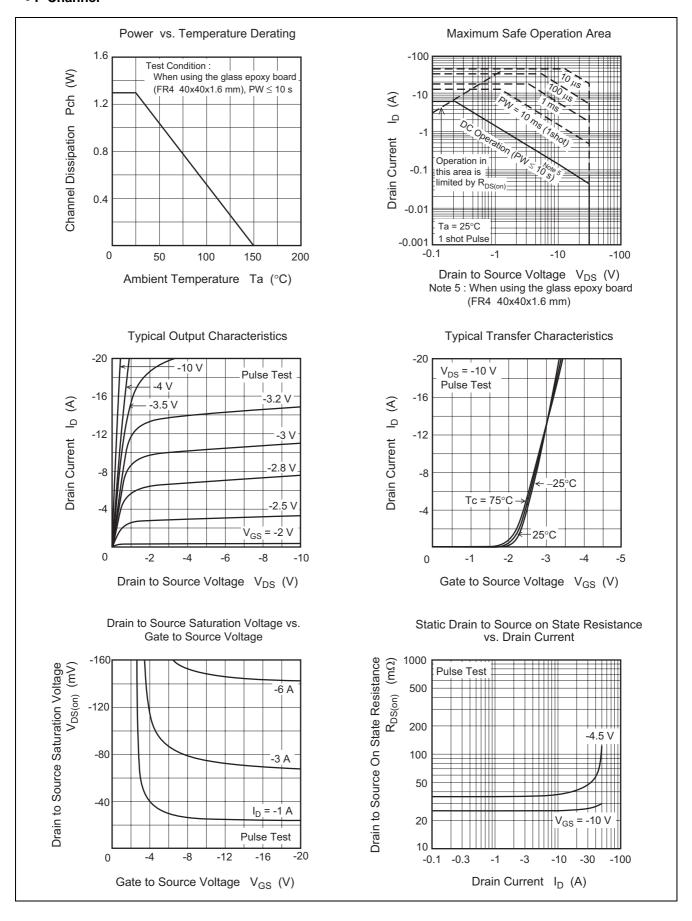
Notes: 4. Pulse test

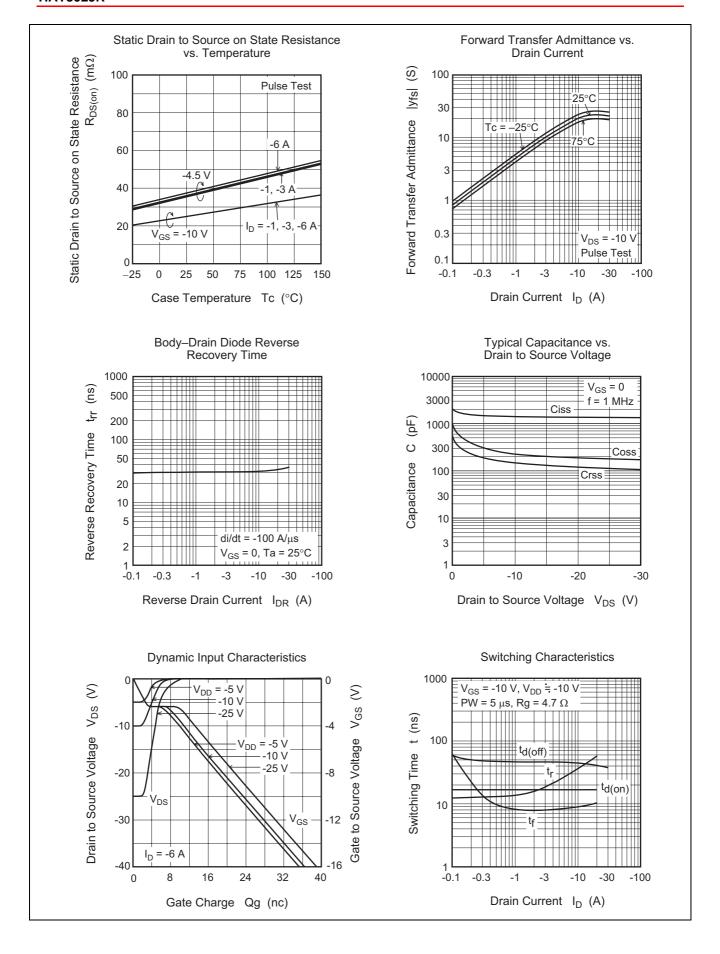

• P Channel

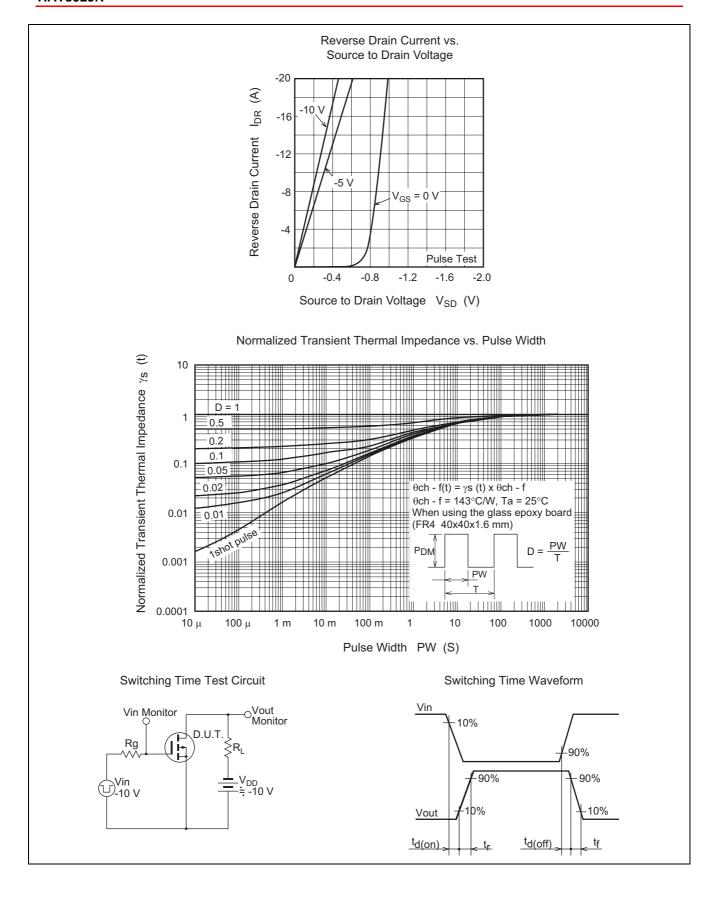

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Drain to source breakdown voltage	V _{(BR)DSS}	-30	_	_	V	$I_D = -10 \text{ mA}, V_{GS} = 0$
Gate to source leak current	I_{GSS}	_	_	±0.1	μΑ	$V_{GS} = -20,+10 \text{ V}, V_{DS} = 0$
Zero gate voltage drain current	I _{DSS}	_	_	-1	μΑ	$V_{DS} = -30 \text{ V}, V_{GS} = 0$
Gate to source cutoff voltage	$V_{GS(off)}$	-1.0	_	-2.5	V	$V_{DS} = -10 \text{ V}, I_{D} = -1 \text{ mA}$
Static drain to source on state	R _{DS(on)}	_	25	32	mΩ	$I_D = -3 \text{ A}, V_{GS} = -10 \text{ V}^{\text{Note4}}$
resistance	R _{DS(on)}	_	36	53	mΩ	$I_D = -3 \text{ A}, V_{GS} = -4.5 \text{ V}^{\text{Note4}}$
Forward transfer admittance	y _{fs}	6	10	_	S	$I_D = -3 \text{ A}, V_{DS} = -10 \text{ V}^{\text{Note4}}$
Input capacitance	Ciss	_	1330	_	pF	V _{DS} = -10 V
Output capacitance	Coss	_	215	_	pF	V _{GS} = 0 f = 1MHz
Reverse transfer capacitance	Crss	_	155	_	pF	
Total gate charge	Qg	_	11.5	_	nC	V _{DD} = -10 V
Gate to source charge	Qgs	_	3.2	_	nC	$V_{GS} = -4.5 \text{ V}$ $I_D = -6 \text{ A}$
Gate to drain charge	Qgd	_	4.4	_	nC	
Turn-on delay time	t _{d(on)}	_	18	_	ns	$V_{GS} = -10 \text{ V}, I_D = -3 \text{ A}$
Rise time	t _r	_	19	_	ns	$V_{DD} \cong -10 \text{ V}$ $R_L = 3.33 \Omega$ $R_g = 4.7 \Omega$
Turn-off delay time	t _{d(off)}	_	47	_	ns	
Fall time	t _f	_	8	_	ns	
Body-drain diode forward voltage	V_{DF}	_	-0.84	-1.10	V	$IF = -6 A$, $V_{GS} = 0$ Note4
Body-drain diode reverse	t _{rr}	_	20	_	ns	$IF = -6 A, V_{GS} = 0$
recovery time						$di_F/dt = 100A/\mu s$

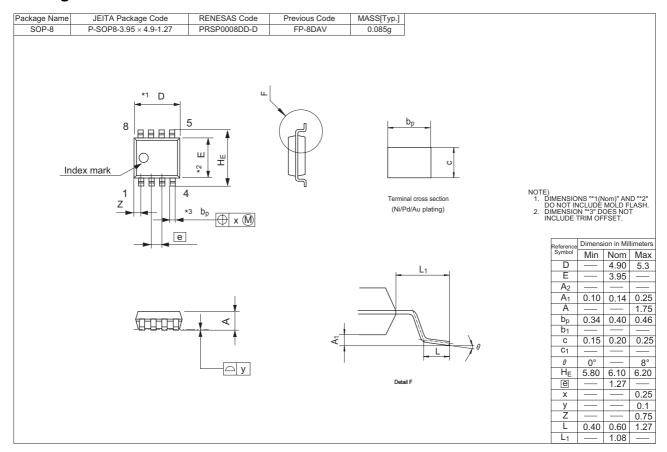

Notes: 4. Pulse test

Main Characteristics


• N Channel






• P Channel

Package Dimensions

Ordering Information

Part Name	Quantity	Shipping Container
HAT3029R-EL-E	2500 pcs	Taping

Note: For some grades, production may be terminated. Please contact the Renesas sales office to check the state of production before ordering the product.

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the development is satisfied. The procedure is such as the development of the dev

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510