

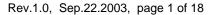
M65856SP

Digital Echo with Mic-mixing Circuit

REJ03F0085-0100Z Rev.1.0 Sep.22.2003

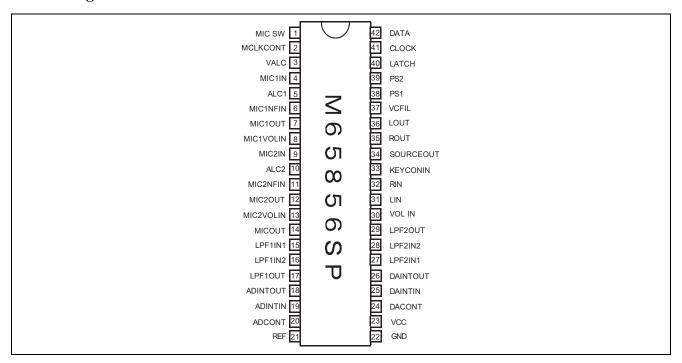
Description

The M65856SP is a CMOS IC that has a microphone peripheral circuit and an echo generation circuit for karaoke use, on a single chip.

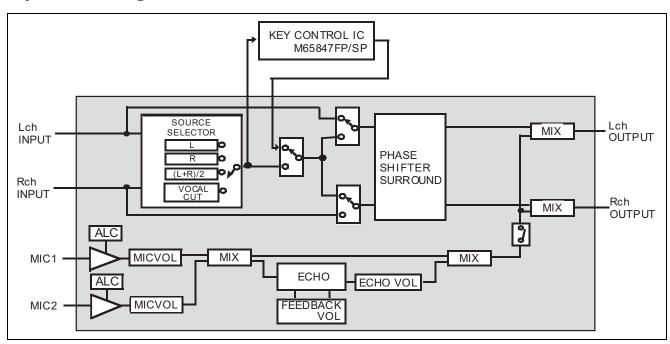

Its Karaoke function makes it ideal for video CDs, mini-compos, CD radio cassette players, VIRs and other similar devices.

Features

- High-performance digital echo circuit using 16-Kbit RAM
- Internal Surround function that allows audio from a monaural audio source to be reproduced in pseudo-stereo, and audio from a stereo audio source to be reproduced as surround audio
- A mic amplifier with an ALC makes it possible to handle overload input, and the ALC operating voltage can be externally set to the desired value.
- Internal dual-line mic volume, echo volume, and echo feedback volume
- Internal stereo mic mixing amplifier
- Internal functions for karaoke enjoyment (Vocal Cut, Auto Vocal Support)
- Interface pin provided for connection to an external key control IC
- The clock has an internal current control-type oscillation circuit, and the generation of unnecessary oscillation can be prevented because the clock does not affect anything external to the unit.
- Internal Auto Reset circuit that functions when the power supply is turned on
- 5 V single power supply


Recommended Operating Conditions

Operating power supply voltage range: Vcc = 4.5 to 5.5 V
 Rated power supply voltage range: Vcc = 5 V



Pin Configuration

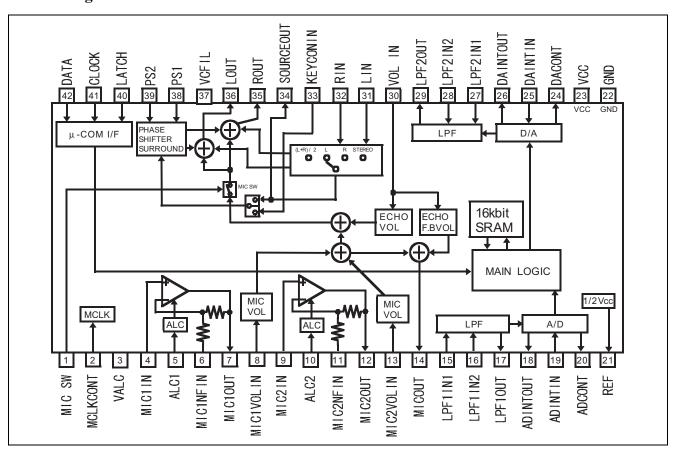
System Block Diagram

Description of Pin

Pin no.	Symbol	Name	I/O	Function
1	MIC SW	Mic switch	I	L: Mic off H: Mic on
2	MCLKCONT	Oscillator input	_	Internal clock is controlled by external resistor
3	VALC	ALC operating voltage setting	_	ALC operating voltage is set by applied voltage value
4	MIC1IN	Mic 1 input	ı	Used to connect Mic 1
5	ALC1	ALC1 control	_	Used to connect C for setting ALC attack and recovery times
6	MIC1NFIN	Mic 1 negative feedback input	ı	Used to set the Mic 1 amplifier gain using external resistor
7	MIC1OUT	Mic 1 output	0	Mic 1 amplifier output
8	MIC1VOLIN	Mic 1 volume input	ı	C coupling used to reduce noise when volume is switched
9	MIC2IN	Mic 2 input	I	Used to connect Mic 2
10	ALC2	ALC2 control	_	Used to connect C for setting ALC attack and
				recovery times
11	MIC2NFIN	Mic 2 negative feedback input	I	Used to set the Mic 2 amplifier gain using external resistor
12	MIC2OUT	Mic 2 output	0	Mic 2 amplifier output
13	MIC2VOLIN	Mic 2 volume input	I	C coupling used to reduce noise when volume is switched
14	MICOUT	Mic output	0	Mixing output of Mic 1 and Mic 2
15	LPF1IN1	Low-pass filter 1 input 1	I	Pre-filter before A/D conversion for digital echo
16	LPF1IN2	Low-pass filter 1 input 2	I	_
17	LPF1OUT	Low-pass filter 1 output	0	
18	ADINTOUT	A/D integrator output	0	Configures an integrator for A/D conversion using
19	ADINTIN	A/D integrator input	I	external C
20	ADCONT	A/D control	_	Determines the constant when ADM-type A/D conversion is applied
21	REF	Reference power supply output	_	Used to connect C for 1/2 Vcc output and filter
22	GND	Ground	_	
23	VCC	Power supply	_	
24	DACONT	D/A control	I	Determines the constant when ADM-type D/A conversion is applied
25	DAINTIN	D/A integrator input	I	Configures an integrator for D/A conversion using
26	DAINTOUT	D/A integrator output	0	external C
27	LPF2IN1	Low-pass filter 2 input 1	I	Post-filter before D/A conversion for digital echo
28	LPF2IN2	Low-pass filter 2 input 2	ı	_
29	LPF2OUT	Low-pass filter 2 output	0	
30	VOLIN	Volume input	l	C coupling used to reduce noise when volume is switched
31	LIN	Left channel line input	I	
32	RIN	Right channel line input	I	
33	KEYCONIN	Monaural input supporting external key control IC	I	Interface pin for connecting external key control IC
34	SOURCEOUT	Monaural output supporting external key control IC	0	

Description of Pin (cont)

Pin no.	Symbol	Name	I/O	Function
35	ROUT	Right channel line output	0	Mixing output of mic and line systems
36	LOUT	Left channel line output	0	
37	VCFIL	Vocal Cut filter	_	C connection for low-pass filter that passes frequency components lower than the vocal band through
38	PS1	Phase shifter 1	I	Used to connect a C that configures phase shifter
39	PS2	Phase shifter 2	I	surround
40	LATCH	Latch	I	Serial path latch input
41	CLOCK	Clock	I	Serial path clock input
42	DATA	Data		Serial path data input


Absolute maximum ratings

Symbol	Item	Rating	Unit	
VCC	Power supply voltage	6.0	V	
Vi	Input voltage	-0.3 to Vcc+0.3	V	
Pd	Internal power dissipation	1.1	W	
Topr	Ambient operating temperature	-20 to +75	°C	
Tstg	Storage temperature	-40 to +125	°C	

Recommended Operating Conditions

Symbol	Parameter	Measurement conditions	Limits	Unit		
			Min	Тур	Max	
VCC	Power supply voltage		4.5	5	5.5	V
VIL	Input voltage (L level)	Pins 40, 41, 42	0	_	0.8	V
VIH	Input voltage (H level)	Pins 40, 41, 42	2.4	_	VDD	V

Block Diagram

Electrical Characteristics

(Unless otherwise noted, Vcc = 5 V, f = 1 kHz, Vi = 100 mVrms, $Ta = 25^{\circ}\text{C}$)

Symbol	Item		Measurement conditions	Limits			Unit
-				Min.	Тур.	Max.	-
Total	Icc	Current drawn by the circuit	When there is no signal	_	40	88	mA
Mic amplifier	Gvo	Amplifier bare gain	Vo = −17 dBV	44	47	50	dB
	THD1	Output distortion	Vo = -17 dBV, other than ALC operation	_	0.5	1.5	%
	THD2	Output distortion	Vi = -37 dBV, when using ALC operation	_	3.0	6.0	%
	VoALC	ALC operating voltage measurement	Measured value = −10 to +30dBV	-3	0	+3	dB
	TAL CAT	ALC attack time	C = 4.7 μF	25	40	55	msec
	TAL CRE	ALC recovery time	C = 4.7 μF	1.0	1.5	2.0	sec
	VoMAX	Maximum output voltage	THD = 10%	1.3	1.4	_	Vrms
	No	Output noise voltage	Rg = 620 Ω, JIS-A	_	-68	– 57	dBV
	Zi	Input impedance		6	10	16	kΩ
Mic volume	Gv	Gain between input/output	At maximum volume	-3	0	+3	dB
	ATTmax	Maximum attenuation	At minimum volume	_	-72	-67	dBV
	THD	Output distortion	At maximum volume	_	0.15	0.30	%
	ViMAX	Maximum input voltage	THD = 10%	1.4	1.7	_	Vrms
	No	Output noise voltage	JIS-A	_	-96	-90	dBV
Echo volume	Gv	Gain between input/output	Volume 0 dB	-3	0	+3	dB
	ATTmax	Maximum attenuation	At minimum volume	_	-72	-67	dBV
	THD	Output distortion	At maximum volume	_	0.15	0.30	%
	VoMAX	Maximum output voltage	THD = 10%	1.1	1.4	_	Vrms
	No	Output noise voltage	JIS-A	_	-96	-90	dBV
Digital echo	Gv	Gain between input/output		-3	0	+3	dB
	VoMAX	Maximum output voltage	THD = 10%	1.1	1.4	_	Vrms
	Td	Delay time	Sets delay time using micro-	88.4	104.0	119.6	msec
			computer	117.9	138.7	159.5	msec
				132.6	156.0	179.4	msec
				176.9	208.1	239.3	msec
	THD	Output distortion	Td = 104.0 mS, 30 kHzLPF	_	1.0	2.0	%
			Td = 138.7 mS, 30 kHzLPF	_	1.5	3.0	%
			Td = 156.0 mS, 30 kHzLPF	_	1.5	3.0	%
			Td = 208.1 mS, 30 kHzLPF	_	2.0	4.0	%
	No	Output noise voltage	Vi = 0mVrms, JIS-A	_	-87	-72	dBV
		e aq ar marer remage	Td = 104.0 mS, Rg = 620 Ω				
			Vi = 0mVrms, JIS-A	_	-85	-70	dBV
			Td = 138.7 mS, Rg = 620 Ω				
			Vi = 0mVrms, JIS-A	_	-85	-70	dBV
			Td = 156.0 mS, Rg = 620 Ω				
			Vi = 0mVrms, JIS-A	_	-82	-67	dBV
			Td = 208.1 mS, Rg = 620 Ω				

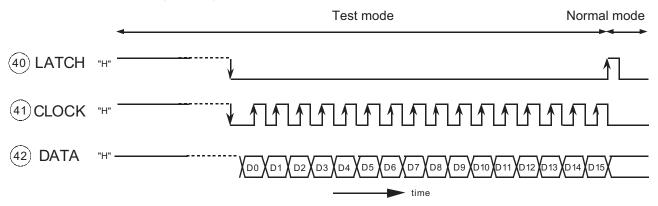
M65856SP

Electrical Characteristics (cont)

Symbol		Item	Measurement conditions	Limits			Unit
				Min.	Тур.	Max.	
Line	Gv	Gain between input/output		-3	0	+3	dB
	THD	Output distortion	30 kHzLPF	_	0.02	0.04	%
	VoMAX	Maximum output voltage	THD = 10%	1.1	1.7	_	Vrms
	No	Output noise voltage	JIS-A, MIC SW OFF	_	-95	-90	dBV
	CS	Channel separation	JIS-A	_	-70	- 50	dB
	Zi	Input impedance		10	20	30	kΩ
	Grej	Vocal elimination ratio	Vocal Cut	14	18	_	dB

Serial Data Format

This product is controlled by the serial data in the format indicated below.


DATA (Pin 42) is read on the rising edge of CLOCK (Pin 41), and the 16 bits of data, which are filled in starting from the right, are loaded on the rising edge of LATCH (Pin 40).

LATCH D1 D5 D6 D8 D9 (D10)(D11) D12 D13 D14 D15 D2 D3 D4 D7 time Data **Function Control contents** Data **Function Control contents** D0 Echo D1 Digital Used to set the delay time DO D1 Used to set the volume in 8 echo in 4 stages, from 104.0 ms volume stages, between +3 dB to D2 D2 to 208.1 ms -15 dB and -∞ D3 D3 D4 Source Voice multiplex software D4 Feedback Used to set the volume in 5 DO = DO = selector support volume stages, between -2 dB to -D5 D5 "L" "H" Used to set 5 types of 7 dB and $-\infty$ D6 D6 multiplex modes: Lch Monaural, Rch Monaural, (L+R)/2, Vocal Cut, and Stereo D7 Phase Surround using phase D7 Mic 1 Used to set the volume in 8 stages, between 0 dB to -D8 shifter shifter; effects can be D8 volume surround varied by adjusting 18 dB and -∞ external resistor D9 Auto vocal If there is no mic input, this D9 support automatically outputs the reference vocal D10 Enables / disables external D10 Mic 2 Used to set the volume in 8 Key control stages, between 0 dB to passkey control volume 18 dB and $-\infty$ through Sets MIC OUT SW to ON D11 Mic switch D11 or OFF D12, D13 In Test mode and Normal D12 mode, D12 = "L" and D13 = "L" Data is read when D14 = D13 D14 Address "L" and D15 = "H"; D15 D14 Address Data is read when D14 = otherwise canceled "L" and D15 = "H"; D15

otherwise canceled

(Usage Precautions)

- 1. If the power supply is turned on when DATA (Pin 42), CLOCK (Pin 41), and LATCH (Pin 40) are all "H", the mode switches to the Test mode. Please be aware that the settings in this mode are different from those in the mode following an auto reset.
- 2. After the serial data has been input in the Test mode, the mode is canceled on the rising edge of LATCH (Pin 40), and returns to the normal (Standard) mode.

Function Settings

Delay time settings

Source s	electo
----------	--------

Data				Delay time
D0	D3	D2	D1	
	L	L	_	104.0 ms
	L	Н	_	138.7 ms
L	Н	L	_	156.0 ms
	Н	Н	L	208.1 ms
	Н	Н	Н	Delay OFF

Data			Source selector	
D0	D6	D5	D4	
	L	L	L	Lch, Monaural
	L	L	Н	Rch, Monaural
L	L	Н	_	(L + R) / 2
	Н	L	_	Vocal Cut
	Н	Н	_	Stereo

Phase shifter surround settings

Auto vocal support switch

Delay time		!	Phase shifter surround		Data		Auto vocal support	
D0	D8	D7	Surround switch	Effect	D0 D9		switch	
	L	L	OFF	-	L	L	OFF	
L	L	Н		Effect (small)		Н	ON	
			ON					
	Н	L		Effect (medium)				
	Н	Н		Effect (large)				

M65856SP

Input selector switch Mic mixing switch MIC SW Setting Data Setting Data D0 D0 D10 D11 External key control OFF Mic mixing OFF supported (Note) External key control not Н ON Mic mixing ON supported (pass-through)

Only monaural signals are supported as output signals to external key control (Pin 34: SOURCEOUT), so when external key control is supported, the D4 to D6 source selectors should be set to a setting other than "Stereo". (If set to "Stereo", external key control will not be supported.)

Volume Settings

Echo volume settings

Data	Data			Setting (dB)
D0	D3	D2	D1	
	L	L	L	+3
	L	L	Н	0
Н	L	Н	L	-3
	L	Н	Н	- 6
	Н	L	L	- 9
	Н	L	Н	-12
	ш	ш	1	15

Н

Echo feedback volume settings

Data			Setting (dB)	
D0	D6	D5	D4	
	L	L	L	-2
	L	L	Н	-3
Н	L	Н	L	– 5
	L	Н	Н	-7
	Н	L	L	-∞

Mic volume settings

Н

Data					_
D0	D9	D8	D7	MIC1 volume	Setting (dB)
	D12	D11	D10	MIC2 volume	_
	L	L	L	0	
	L	L	Н	-3	
Н	L	Н	L	-6	
	L	Н	Н	-9	
	Н	L	L	-12	
	Н	L	Н	–15	
	Н	Н	L	–18	
	Н	Н	Н	-∞	

- ∞

Address settings

Data			Address
D0	D15	D14	-
L, H	L	L	Data Cancel
	L	Н	
	Н	L	Data Read
	Н	Н	Data Cancel

Explanation of Functions

(1) Auto reset

When the power supply is turned on, a reset is carried out automatically, and after approximately 120 ms (Vcc = 5 V, REF pin C = 47 μ F), the function settings are set as described below.

• Delay time setting: 104.0 ms

Source selector: Stereo

Phase shifter surround setting: OFF

• Auto vocal support switch: OFF

• Key control pass-through: External key control supported

• Mic mixing switch: OFF

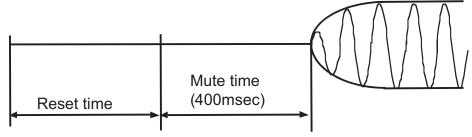
Echo volume: -∞
 Feedback volume: -∞
 Mic volume setting: -9 dB

*1. Reset time

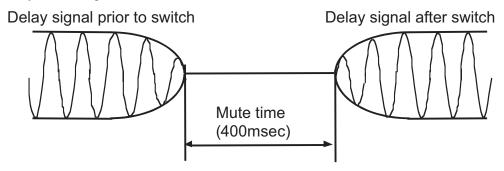
The reset time is determined by the values of the resistor in the IC and the capacitor C attached to the REF pin. It can be determined using the following equation.

Reset time (msec) =
$$2.5 \times C (\mu F)$$

Example) When $C = 47 \mu F$


Reset time = $2.5 \times 47 = 117.5$ (msec)

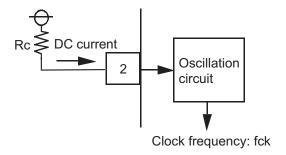
This results in a reset time of approximately 120 msec


(2) Auto mute function

When the power supply is turned on or when the delay time setting is switched, the auto mute function is activated in order to suppress the shock noise of the digital delay.

• When the power supply is turned on

• When the delay time setting is switched



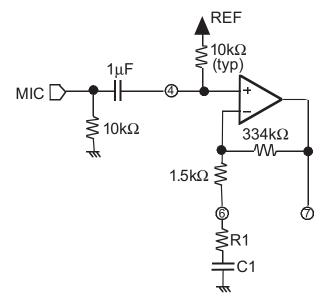
(3) Clock oscillation circuit

This IC incorporates a current control-type oscillation circuit. The oscillation circuit can be configured simply by connecting a resistor for current control to Pin 2 (MCLKCONT).

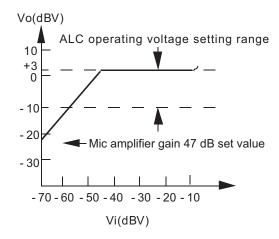
Moreover, the clock is completely internal, so the generation of unnecessary oscillation can be prevented because the clock does not affect anything external to the circuit.

The oscillation frequency is fck = 2 MHz (Rc = 47 k Ω)

(4) Mic amplifier

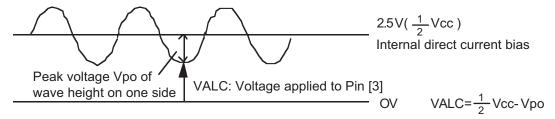

The gain Gv and low-pass cutoff frequency fcl of the mic amplifier are expressed as follows:

Gv=20log •
$$\frac{R1+1.5K+334K}{R1+1.5K}$$
 fcl= $\frac{1}{2\pi \cdot (R1+1.5K) \cdot C1}$

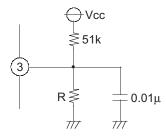

$$Gv (max) = 47 dB, fcl = 48.2 Hz$$

R1 = 0
$$\Omega$$
, C1 = 2.2 μ F

As one example of the various constants, v = 37 dB and fcl = 15.1 Hz, then R1 = 3.3 K Ω and C1 = 2.2 μ F.



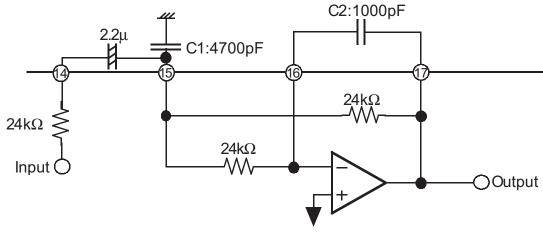
(5) ALC level diagram


(6) ALC operating voltage setting

The ALC operating voltage may be set to any desired value within a range of -10 dBV to +3 dBV, depending on the value of the direct current voltage applied to Pin 3 (ALC operating voltage setting).

Example showing the ALC operating voltage set to -5 dB (when Vcc = 5 V)

Because of the high input impedance of Pins 5 and 10, which exceeds 1 M Ω , the ALC reference voltage can be applied by splitting the resistance.



at Vcc = 5 V:

Voltage VALC (V) applied to Pins 5 and 10	Resistance R (Ω)
0.50	5.6 k
1.09	15 k
1.38	20 k
1.61	24 k
1.79	27 k
1.94	33 k
2.05	36 k
	applied to Pins 5 and 10 0.50 1.09 1.38 1.61 1.79 1.94

(7) Digital echo input/output low-pass filter

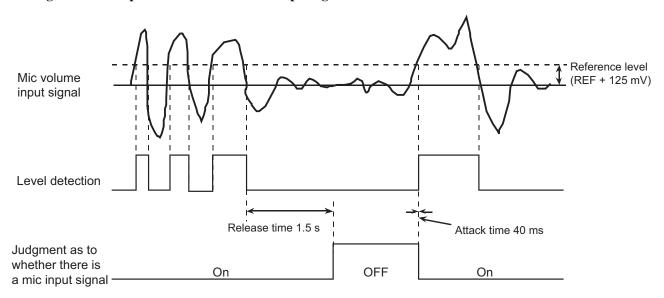
The digital echo input/output low-pass filter is configured as shown below.

The precision of the resistance in the IC is approximately $\pm 30\%$.

The cutoff frequency (fc) is as follows:

$$fc = \frac{1}{2\pi \times 24k\Omega \times \sqrt{C1~X~C2}} = \frac{1}{2\pi \times 24k\Omega \times \sqrt{4700pF \times 1000pF}} \cong 3.1 \text{KHz}$$

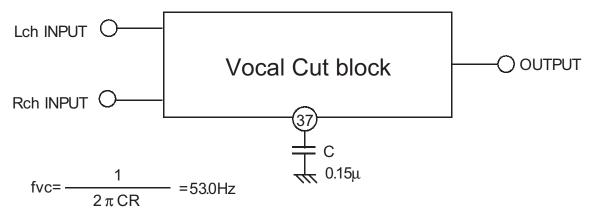
The quality factor (Q) is as follows:


$$Q = \frac{1}{3} \sqrt{\frac{C1}{C2}} \cong 0.72$$

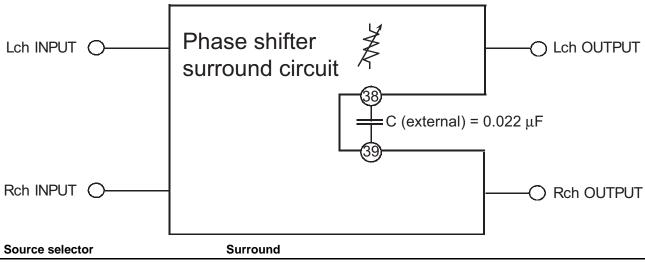
(8) Auto Vocal Support

When the Karaoke function is used, and when the Audio Signal Source selector is set to "Lch Monaural" (to eliminate the vocal component when multiplex voice software is being used) or "Vocal Cut" (to eliminate the vocal component of ordinary music software), with no voice being input from the microphone, the Auto Vocal Support function is used to output the vocal component of the audio source to provide vocal support.

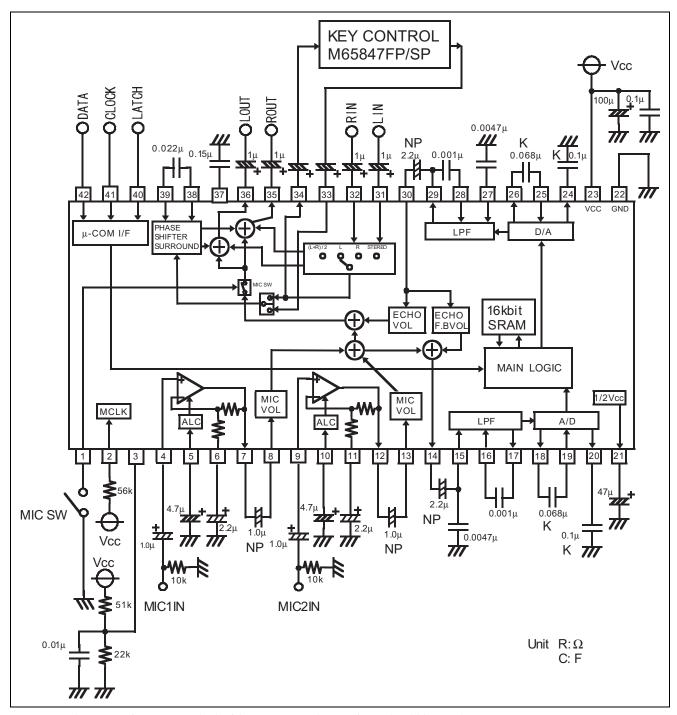
Presence of mic input signal	Source selector setting			
Yes	Lch Monaural	Vocal Cut	Stereo Rch Monaural (L + R) / 2	
No	(L+R) / 2	(L+R) / 2	Same as when there is mic input	


Timing at which the presence/absence of a mic input signal is detected

(9) Vocal Cut

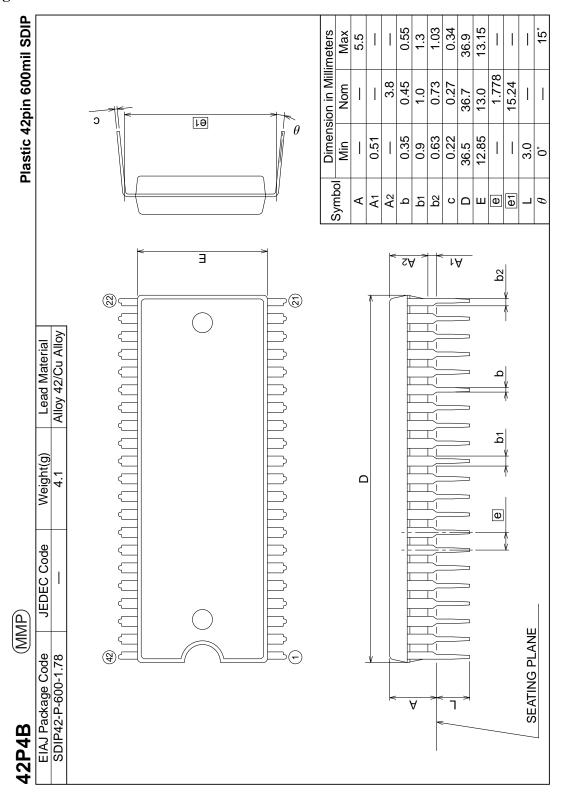

This eliminates the vocal component from ordinary music sources (stereo). Normally, the vocal component occupies a center fixed position, and is input to the L and R channels at the same phases and same amplitude. Consequently, Lch – Rch can be used to cut the vocal component.

In this case, however, the low-pass region of music with no sense of a fixed position is also eliminated, so a low-pass filter has to be used to pass the low-pass component through to augment what is missing acoustically.


The low-pass filter is configured of an internal resistor R (20 k Ω) and an external capacitor C. If C = 0.15 μ F, the cutoff frequency will be 53 Hz.

(10) Phase shifter block

Source selector	Surround	
L		
R	Depute stores	
(L+R) / 2	Pseudo-stereo	
Vocal Cut		
Stereo	Stereo surround	


Application Example

Note: Where capacitors are marked with a "K", K-rank capacitors should be used.

Where capacitors are marked with "NP", capacitors with no polarity should be used.

Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

The pastery in a survival circula designs; and the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss resident product product of the responsibility of the information of the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances i

- use.

 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

http://www.renesas.com

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited.

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.
1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001