

M62421SP/FP

Tone and Volume Controller with 2 Line Control

REJ03F0208-0201 Rev.2.01 Mar 31, 2008

Outline

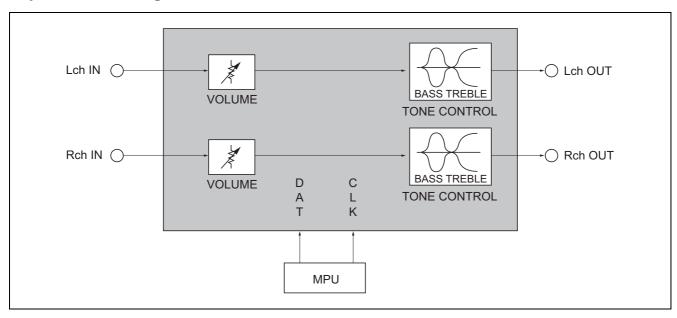
M62421SP/FP is the tone and volume controller with 2 line control.

This IC can apply the broad application because of low noise and distortion.

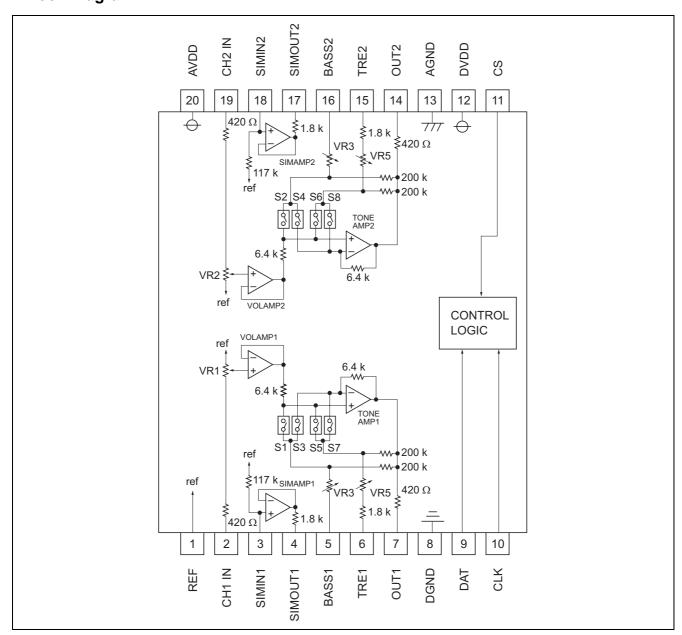
Feature

- Tone (Bass/Treble) control and 1 dB step volume control are enabled.
- Low noise and low distortion. $V_{NO} = 4.5 \mu Vrms$, THD = 0.1% max
- Controlling by 2 Line serial data.

Application


• Mini-Stereo, etc

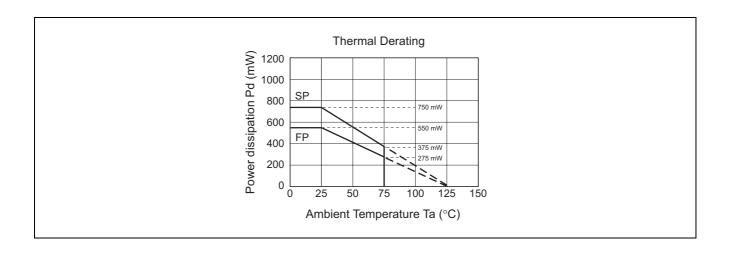
Recommended Operating Condition


Supply voltage range: $5.5 \sim 9.5 \text{ V}$ (analog), $4.5 \sim 5.5 \text{ V}$ (digital)

Rated supply voltage: 9 V (analog), 5 V (digital)

System Block Diagram

Block Diagram



Pin Description

Pin No.	Pin Name	I/O	Description
1	REF	I	Reference voltage terminal for analog
2	CH1 IN	I	Input terminal (ch1)
3	SIMIN1	I	Pin for capacitor of simulated inductor 1
4	SIMOUT1	0	Pin for capacitor of simulated inductor 1
5	BASS1	1	Pin for capacitor of ch1-side bass setting
6	TRE1	I	Pin for capacitor of ch1-side treble setting
7	OUT1	0	Output terminal (ch1)
8	DGND	_	Digital GND
9	DAT	1	I/O terminal of DATA 2 line bus format
10	CLK	1	Input terminal of CLOCK 2 line bus format
11	CS	1	Chip select terminal
12	DVDD		VDD for digital circuit
13	AGND	_	GND for analog circuit
14	OUT2	0	Output terminal (ch2)
15	TRE2	1	Pin for capacitor of ch2-side treble setting
16	BASS2	1	Pin for capacitor of ch2-side bass setting
17	SIMOUT2	0	Pin for capacitor of simulated inductor 2
18	SIMIN2	1	Pin for capacitor of simulated inductor 2
19	CH2 IN	1	Input terminal (ch2)
20	AVDD	_	V _{CC} for analog circuit

Absolute Maximum Ratings

Item	Symbol	Limits	Unit	Condition
Analog supply voltage	AVdd	10.0	V	
Digital supply voltage	DVdd	7.0	V	
Power dissipation	Pd	750 (SP)	mW	Ta ≤ 25°C
		550 (FP)		
Thermal derating ratio	Кθ	7.5 (SP)	mW/°C	Ta > 25°C
		5.5 (FP)		
Operating temperature	Topr	− 20 ~ + 75	°C	
Storage temperature	Tstg	−40 ~ +125	°C	

Recommended Operating Condition

 $(Ta = 25^{\circ}C \text{ unless otherwise noted})$

Item	Symbol	Min	Тур	Max	Unit
Analog supply voltage	AVDD	5.5	9.0	9.5	V
Digital supply voltage	DVDD	4.5	5.0	5.5	V
H level input voltage (logic circuit)	VIH	0.7 DVDD	_	VDD	V
L level input voltage (logic circuit)	VIL	0	_	0.3 DVDD	V

Electric Characteristics

(Ta = 25°C, AVdd = 9 V, DVdd = 5 V and bass and treble = 0 dB unless otherwise noted)

(1) Supply Voltage

			Limit			
Item	Symbol	Min	Тур	Max	Unit	Condition
Analog supply current	Icc	_	10	20	mA	• AVdd = 9.0 V
						 measure terminal = 20 pin
						no signal input
Digital supply current	ldd	_	0	2	μΑ	• DVdd = 5 V
						measure terminal = 12 pin
						no signal input

(2) I/O Characteristics

			Limit			
Item	Symbol	Min	Тур	Max	Unit	Condition
Maximum input voltage	VIM	2.0	3.2	_	Vrms	2, 19 pin input
						7, 14 pin output
						RL = 10 k Ω , THD = 1%, f = 1 kHz
						ATT = -6 dB
Output voltage	Vodc	4.35	4.5	4.65	V	7 pin, 14 pin, no signal
Gain	Gv	-2	0	2	dB	Vin = 0 dBm, FLAT, f = 1 kHz
						2 ~ 7 pin, 19 ~ 14 pin gain
Output noise voltage	Vono	_	4.5	10	μVrms	IHF-A filter
						no signal
						Rg = 10 kΩ 7, 14 pin
Total harmonic distortion	THD	_	0.007	0.1	%	7 pin, 14 pin f = 1 kHz
						Vo = 0.5 Vrms, $RL = 10 kΩ$
						LPF = 30 kHz
Channel separation	СТ	_	-100	-70	dB	$RL = 10 \text{ k}\Omega$
						S: Vin = 1 Vrms, f = 1 kHz
						M: Rg = 10 kΩ, IHF-A filter

(3) Tone Characteristics

		Limit				
Item	Symbol	Min	Тур	Max	Unit	Condition
Tone control gain (bass)	Gbassb	9	12	15	dB	f = 100 Hz
	Gbassc	-15	-12	-9	dB	
Tone control gain (treble)	Gtrebb	9	12	15	dB	f = 10 kHz
	Gtrebc	-15	-12	-9	dB	

(4) Volume Characteristics

		Limit				
Item	Symbol	Min	Тур	Max	Unit	Condition
Maximum attenuation	ATTmax	-108	-100	-80	dB	f = 1 kHz, Vin = 0 dBm
Minimum attenuation	ATTmin	-1.5	0	1.5	dB	2 pin ~ 7 pin
						19 pin ~ 14 pin gain
						IHF-A-filter

Function Explanation

Equivalent Circuit of Tone Control

The resonance circuit is able to construct by using built-in amplifier for simulated inductor. (Shows the constant as follow)

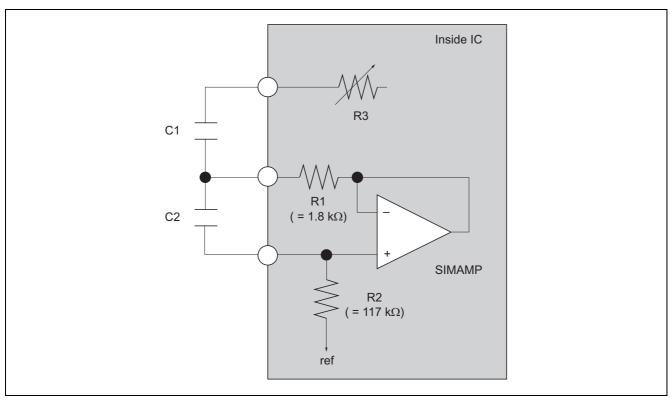


Figure 1 The circuit used simulated inductor

Center frequency:

f0 = 1 /
$$2\pi$$
 $\sqrt{C1 \cdot C2 \cdot R1 \cdot R2 \text{ [Hz]}}$
Q = $\sqrt{(C2 \cdot R2) / (C1 \cdot R1)}$

Example: BASS band ($f \approx 100 \text{ Hz}$)

$$R1 = 1.8 \text{ k}\Omega, R2 = 117 \text{ k}\Omega$$

$$C1 = 0.47 \mu$$
, $C2 = 0.022 \mu$

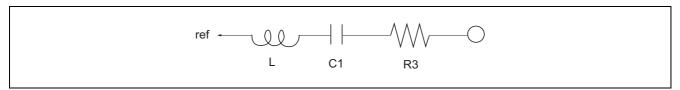
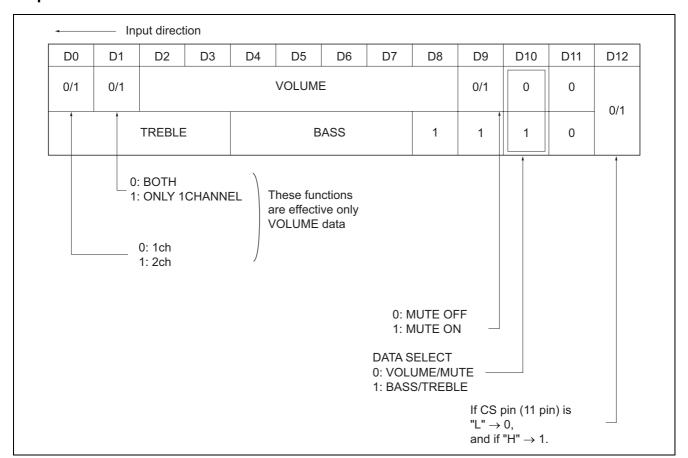



Figure 2 The equivalent circuit used L

Figure 1 is equal to figure 2.

The following relation is concluded.

Input Data Format

Volume Control

Volume Code

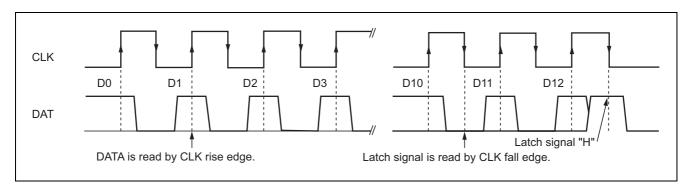
ATT	D2	D3	D4	D5	D6
0 dB	Н	L	Н	L	Н
–4 dB	L	L	Н	L	Н
–8 dB	Н	Н	L	L	Н
–12 dB	L	Н	L	L	Н
–16 dB	Н	L	L	L	Н
–20 dB	L	L	L	L	Н
–24 dB	Н	Н	Н	Н	L
–28 dB	L	Н	Н	Н	L
–32 dB	Н	L	Н	Н	L
–36 dB	L	L	Н	Н	L
–40 dB	Н	Н	L	Н	L
–44 dB	L	Н	L	Н	L
–48 dB	Н	L	L	Н	L
–52 dB	L	L	L	Н	L
–56 dB	Н	Н	Н	L	L
–60 dB	L	Н	Н	L	L
−64 dB	Н	L	Н	L	L
–68 dB	L	L	Н	L	L
–72 dB	Н	Н	L	L	L
–76 dB	L	Н	L	L	L
-80 dB	Н	L	L	L	L
–∞ dB	L	L	L	L	L

ATT	D7	D8
0 dB	Н	Н
−1 dB	L	Н
−2 dB	Н	L
–3 dB	L	L

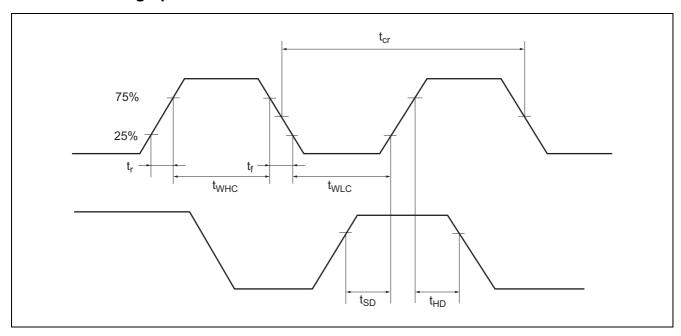
Tone Level Control

Tone Code

		Ва	ISS			Tre	ble	
	D7	D6	D5	D4	D3	D2	D1	D0
12 dB	L	Н	Н	L	L	Н	Н	L
10 dB	L	Н	L	Н	L	Н	L	Н
8 dB	L	Н	L	L	L	Н	L	L
6 dB	L	L	Н	Н	L	L	Н	Н
4 dB	L	L	Н	L	L	L	Н	L
2 dB	L	L	L	Н	L	L	L	Н
0 dB	L	L	L	L	L	L	L	L
–2 dB	Н	L	L	Н	Н	L	L	Н
−4 dB	Н	L	Н	L	Н	L	Н	L
−6 dB	Н	L	Н	Н	Н	L	Н	Н
–8 dB	Н	Н	L	L	Н	Н	L	L
-10 dB	Н	Н	L	Н	Н	Н	L	Н
–12 dB	Н	Н	Н	L	Н	Н	Н	L

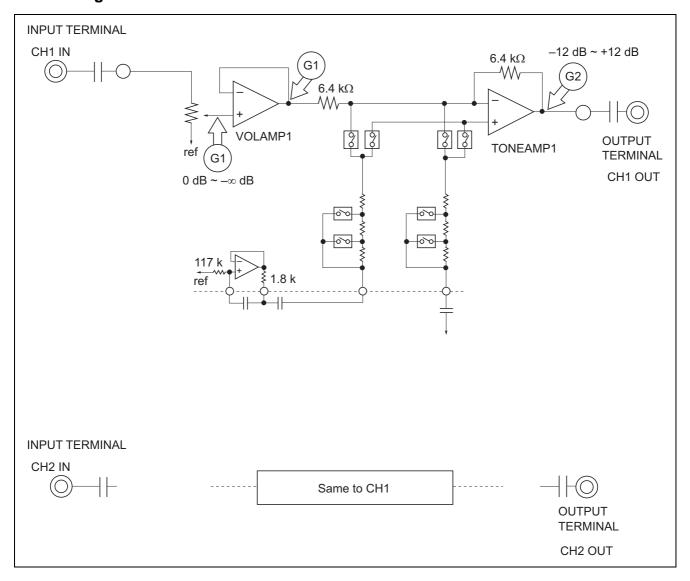

Note: Not used "HHHH", "LHHH", "HLLL"

Mute Control

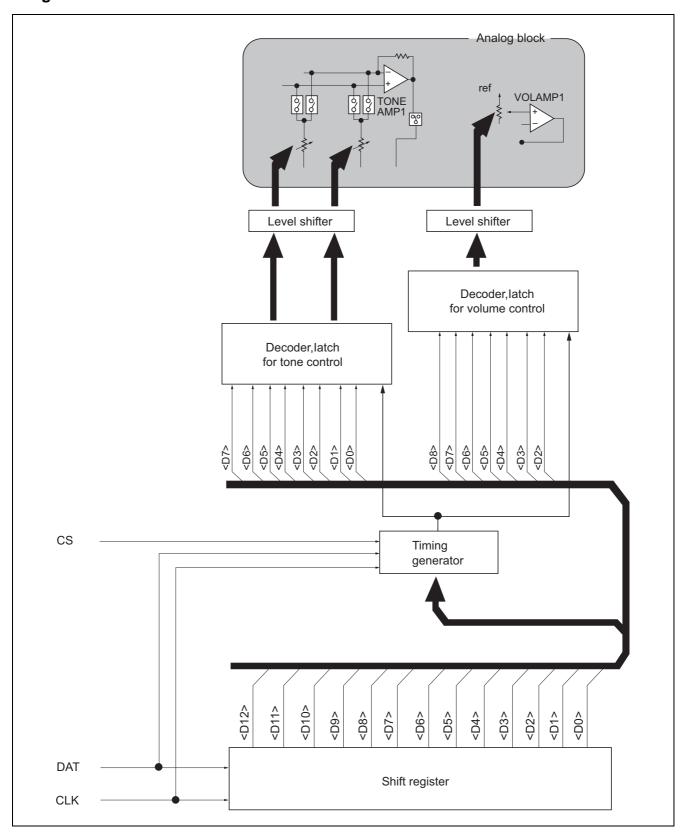

On condition D9 = 1, MUTE can be set up.

In MUTE, VOLUME LEVEL is set up VOL = $-\infty$ automatically.

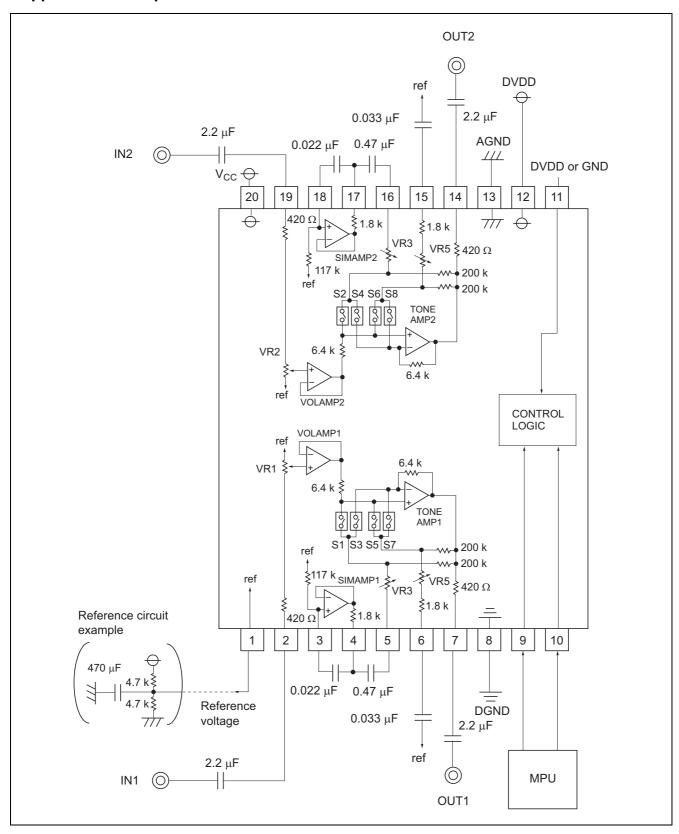
Data and Clock

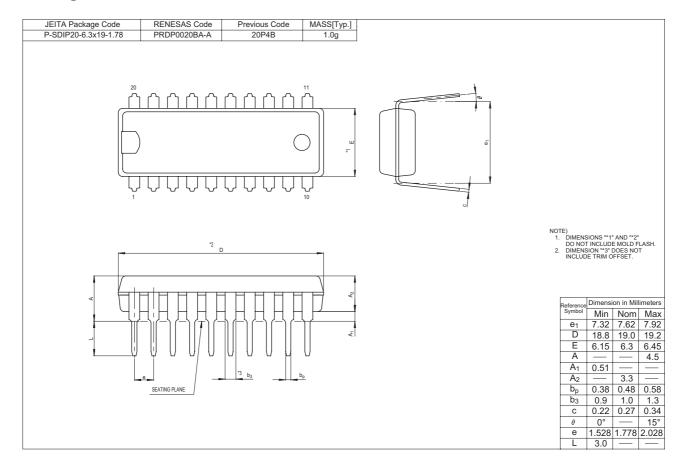


Bus Line Timing Specification



Item	Symbol	Min	Max	Units
CLK clock frequency	t _{cr}	4	_	μS
The HIGH period of the clock	t _{WHC}	1.6	_	μS
The LOW period of the clock	t _{WLC}	1.6	_	μS
Rise time of CLK line	t _r	_	0.4	μS
Fall time of CLK line	t _f	_	0.4	μS
Set-up time DATA	t _{SD}	0.8	_	μS
Hold time DATA	t _{HD}	0.8	_	μS


Level Diagram


Logic Circuit

Application Example

Package Dimensions

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the such procedure in the procedure of the such procedures and procedures are such as that disclosed through our website. (http://www.renesas.com/)

 3. Renesas has su used reasonable care in compling the information included in this document, but the respect to the procedure of the procedu

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510