BB506C

Built in Biasing Circuit MOS FET IC
 UHF RF Amplifier

REJ03G1246-0100
Rev.1.00
Jun. 27, 2005

Features

- Built in Biasing Circuit; To reduce using parts cost \& PC board space.
- High gain

PG $=24 \mathrm{~dB}$ typ. $(\mathrm{f}=900 \mathrm{MHz})$

- Low noise
$\mathrm{NF}=1.4 \mathrm{~dB}$ typ. $(\mathrm{f}=900 \mathrm{MHz})$
- Low output capacitance

Coss $=1.1 \mathrm{pF}$ typ. $(\mathrm{f}=1 \mathrm{MHz})$

- Provide mini mold packages: CMPAK-4 (SOT-343mod)

Outline

RENESAS Package code: PTSP0004ZA-A
(Package name: CMPAK-4)

1. Source
2. Gate1
3. Gate2
4. Drain

Notes: 1. Marking is "FS-".
2. BB506C is individual type number of RENESAS BBFET.

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Drain to source voltage	V_{DS}	6	V
Gate1 to source voltage	$\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}$	+6	V
	$\mathrm{~V}_{\text {G2S }}$	-0	V
Gate2 to source voltage		+6	
	I_{D}	-0	mA
Drain current	$\mathrm{Pch}^{\text {Note3 }}$	30	mW
Channel power dissipation	Tch	250	${ }^{\circ} \mathrm{C}$
Channel temperature	Tstg	150	${ }^{\circ} \mathrm{C}$
Storage temperature	-55 to +150		

Notes: 3. Value on the glass epoxy board ($50 \mathrm{~mm} \times 40 \mathrm{~mm} \times 1 \mathrm{~mm}$).

Electrical Characteristics

$$
\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)
$$

Item	Symbol	Min	Typ	Max	Unit	Test Conditions
Drain to source breakdown voltage	$\mathrm{V}_{\text {(BR) }{ }^{\text {dss }}}$	6	-	-	V	$\mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=0$
Gate1 to source breakdown voltage	$\mathrm{V}_{\text {(BR)G1SS }}$	+6	-	-	V	$\mathrm{I}_{\mathrm{G} 1}=+10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0$
Gate2 to source breakdown voltage	$\mathrm{V}_{\text {(BR)G2SS }}$	+6	-	-	V	$\mathrm{I}_{\mathrm{G} 2}=+10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0$
Gate1 to source cutoff current	$\mathrm{I}_{\mathrm{G} 1 \mathrm{SS}}$	-	-	+100	nA	$\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0$
Gate2 to source cutoff current	$\mathrm{I}_{\mathrm{G} 2 \mathrm{SS}}$	-	-	+100	nA	$\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0$
Gate1 to source cutoff voltage	$\mathrm{V}_{\mathrm{G} 1 \mathrm{~S} \text { (off) }}$	0.5	0.8	1.1	V	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$
Gate2 to source cutoff voltage	$\mathrm{V}_{\mathrm{G} 2 \mathrm{~S} \text { (off) }}$	0.4	0.7	1.0	V	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$
Drain current	$\mathrm{I}_{\mathrm{D} \text { (op) }}$	12	16	20	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{G}}=100 \mathrm{k} \Omega \end{aligned}$
Forward transfer admittance	$\left\|y_{\text {fs }}\right\|$	27	32	38	mS	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{G}}=100 \mathrm{k} \Omega, \mathrm{f}=1 \mathrm{kHz} \end{aligned}$
Input capacitance	$\mathrm{C}_{\text {iss }}$	1.2	1.6	2.0	pF	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V}$
Output capacitance	$\mathrm{C}_{\text {oss }}$	0.7	1.1	1.5	pF	$\mathrm{R}_{\mathrm{G}}=100 \mathrm{k} \Omega, \mathrm{f}=1 \mathrm{MHz}$
Power gain	PG	19	24	29	dB	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V}$
Noise figure	NF	-	1.4	2.1	dB	$\mathrm{R}_{\mathrm{G}}=100 \mathrm{k} \Omega, \mathrm{f}=900 \mathrm{MHz}$

Bias Circuit for Operating Items ($\mathrm{I}_{\mathrm{D}(\mathrm{op})},\left|\mathrm{y}_{\mathrm{fs}}\right|$, Ciss, Coss, NF, PG)

900 MHz Power Gain, Noise Figure Test Circuit

Main Characteristics

Power Gain vs.
Gate2 to Source Voltage

Gain Reduction vs.
Gate2 to Source Voltage

Test condition: $\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}}=5 \mathrm{~V}$,

$$
\mathrm{VGS2}=4 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=100 \mathrm{k} \Omega
$$ 0.05 to $1.05 \mathrm{GHz}(0.05 \mathrm{GHz}$ step)

S_{12} Parameter vs. Frequency

Test condition: $\mathrm{VDS}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{VG}_{\mathrm{G} 1}=5 \mathrm{~V}$,

$$
\mathrm{VGS2}=4 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=100 \mathrm{k} \Omega
$$

0.05 to $1.05 \mathrm{GHz}(0.05 \mathrm{GHz}$ step)
S_{21} Parameter vs. Frequency

Test condition: $\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 1}=5 \mathrm{~V}$,
$\mathrm{VGS}_{\mathrm{G}}=4 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=100 \mathrm{k} \Omega$ 0.05 to 1.05 GHz (0.05 GHz step)
S_{22} Parameter vs. Frequency

Test condition: VDS $=5 \mathrm{~V}, \mathrm{VG1}=5 \mathrm{~V}$,

$$
V_{G S 2}=4 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=100 \mathrm{k} \Omega
$$

0.05 to 1.05 GHz (0.05 GHz step)

S parameter

Freq (MHz)	S11		S21		S12		S22	
	Mag	Deg	Mag	Deg	Mag	Deg	Mag	Deg
50	0.995	-3.3	3.28	177.9	0.001	17.6	0.991	-1.8
100	0.991	-6.2	3.26	175.5	0.001	75.6	0.996	-3.6
150	0.992	-9.3	3.28	173.7	0.002	73.8	0.995	-5.2
200	0.987	-12.4	3.26	171.3	0.002	79.5	0.997	-7.0
250	0.984	-15.5	3.27	170.0	0.004	116.5	0.995	-8.6
300	0.981	-18.6	3.24	167.3	0.003	89.6	0.993	-10.3
350	0.975	-21.7	3.23	165.8	0.004	76.3	0.992	-11.8
400	0.967	-24.8	3.24	163.3	0.004	87.0	0.989	-13.9
450	0.964	-27.9	3.22	161.9	0.004	91.9	0.991	-15.5
500	0.958	-30.8	3.22	159.4	0.006	89.0	0.987	-17.0
550	0.951	-33.9	3.22	157.9	0.006	100.4	0.988	-18.9
600	0.939	-37.0	3.20	155.4	0.004	84.2	0.985	-20.4
650	0.933	-40.3	3.20	154.1	0.004	85.4	0.984	-22.2
700	0.922	-43.5	3.20	150.7	0.007	80.4	0.983	-23.7
750	0.916	-46.5	3.19	150.7	0.007	93.5	0.981	-25.5
800	0.900	-49.6	3.19	146.7	0.006	108.8	0.979	-27.2
850	0.892	-52.8	3.18	146.4	0.005	122.9	0.978	-28.9
900	0.883	-56.2	3.18	142.8	0.005	120.3	0.975	-30.6
950	0.866	-59.2	3.17	142.3	0.006	104.0	0.970	-32.3
1000	0.858	-62.0	3.16	139.8	0.006	121.3	0.970	-33.8

Package Dimensions

Ordering Information

Part Name	Quantity	Shipping Container
BB506CFS-	3000	Taping

Note: For some grades, production may be terminated. Please contact the Renesas sales office to check the state of production before ordering the product.

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6--2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

1. Renesas first in your circuit designs! maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap
Notes regarding these materials
2. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor
4. When using any or all of the informat evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeate use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.
http://www.renesas.com

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology Hong Kong Ltd.

7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071
Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd

Unit2607 Ruijing Building, No. 205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001
Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th FI., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> 2-796-3115, Fax: <82> 2-796-2145
Renesas Technology Malaysia Sdn. Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

