

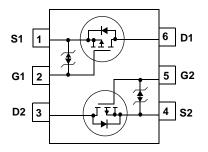
SEMICONDUCTOR®

FDMA1023PZ Dual P-Channel PowerTrench[®] MOSFET

–20V, –3.7A, 72mΩ

Features

- Max $r_{DS(on)} = 72m\Omega$ at $V_{GS} = -4.5V$, $I_D = -3.7A$
- Max $r_{DS(on)}$ = 95m Ω at V_{GS} = -2.5V, I_D = -3.2A
- Max $r_{DS(on)} = 130 m\Omega$ at $V_{GS} = -1.8V$, $I_D = -2.0A$
- Max $r_{DS(on)}$ = 195m Ω at V_{GS} = -1.5V, I_D = -1.0A
- Low profile 0.8 mm maximum in the new package MicroFET 2x2 mm
- HBM ESD protection level > 2kV typical (Note 3)
- RoHS Compliant



General Description

This device is designed specifically as a single package solution for the battery charge switch in cellular handset and other ultra-portable applications. It features two independent P-Channel MOSFETs with low on-state resistance for minimum conduction losses. When connected in the typical common source configuration, bi-directional current flow is possible.

The MicroFET 2X2 package offers exceptional thermal performance for its physical size and is well suited to linear mode applications.

Pin 1 S1 G1 D2 D1 D2 D1 G2 S2

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V _{DS}	Drain to Source Voltage		-20	V	
V _{GS}	Gate to Source Voltage		±8	V	
	Drain Current -Continuous	(Note 1a)	-3.7	٨	
D	-Pulsed		-6	— A	
D	Power Dissipation	(Note 1a)	1.5	14/	
P _D		(Note 1b)	0.7	W	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	

Thermal Characteristics

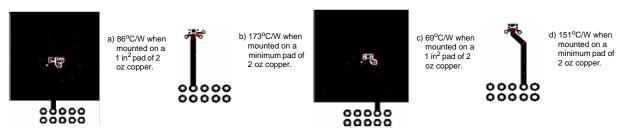
R_{\thetaJA}	Thermal Resistance for Single Operation, Junction to Ambient	(Note 1a)	86	
R_{\thetaJA}	Thermal Resistance for Single Operation, Junction to Ambient	(Note 1b)	173	°C/W
R_{\thetaJA}	Thermal Resistance for Dual Operation, Junction to Ambient	(Note 1c)	69	°C/w
$R_{\theta JA}$	Thermal Resistance for Dual Operation, Junction to Ambient	(Note 1d)	151	

Package Marking and Ordering Information

Dev	vice Marking	Device	Package	Reel Size	Tape Width	Quantity
	023	FDMA1023PZ	MicroFET 2X2	7"	8mm	3000 units

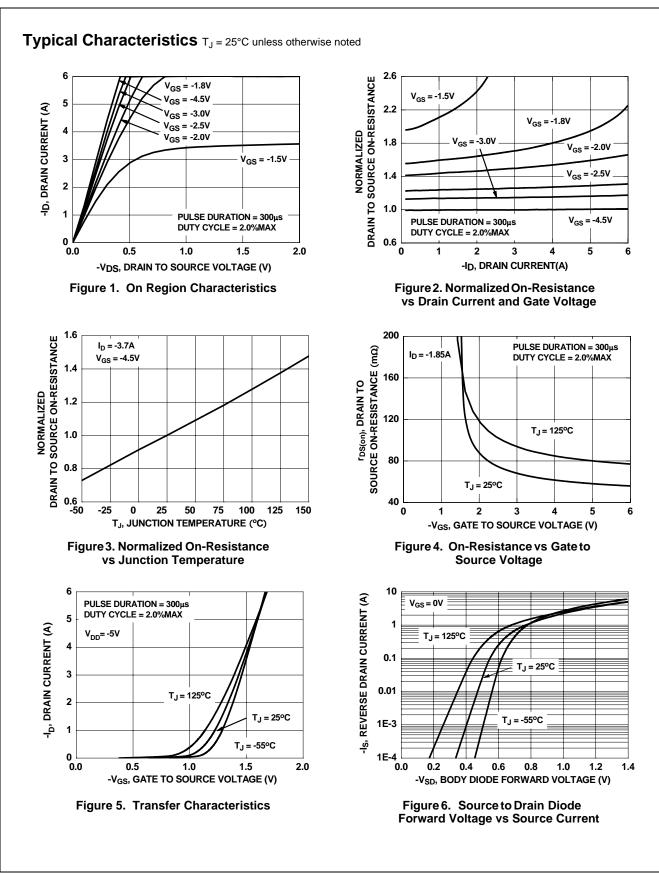
March 2008

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
	acteristics			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1		
BV _{DSS}	Drain to Source Breakdown Voltage	$I_{D} = -250 \mu A, V_{GS} = 0V$	-20			V	
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = -250\mu$ A, referenced to 25°C		-11		mV/°C	
IDSS	Zero Gate Voltage Drain Current	$V_{DS} = -16V, V_{GS} = 0V$			-1	μA	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 8V, V_{DS} = 0V$			±10	μA	
On Chara	cteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250 \mu A$	-0.4	-0.7	-1.0	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_{J}}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250 \mu A$, referenced to 25°C		2.5		mV/°C	
	Static Drain to Source On-Resistance	$V_{GS} = -4.5V, I_{D} = -3.7A$		60	72		
		$V_{GS} = -2.5V, I_D = -3.2A$		75	95	_	
r _{DS(on)}		$V_{GS} = -1.8V, I_D = -2.0A$		100	130	mΩ	
		$V_{GS} = -1.5V, I_D = -1.0A$		130	195	_	
		$V_{GS} = -4.5V, I_D = -3.7A, T_J = 125^{\circ}C$		81	91		
9 _{FS}	Forward Transconductance	$V_{DS} = -5V, I_{D} = -3.7A$		12		S	
C _{iss} C _{oss}	Characteristics Input Capacitance Output Capacitance	$V_{DS} = -10V, V_{GS} = 0V,$ f = 1MHz		490 100	655 135	pF pF	
C _{rss}	Reverse Transfer Capacitance			90	135	pF	
	g Characteristics						
t _{d(on)}	Turn-On Delay Time			9	18	ns	
t _r	Rise Time	$V_{DD} = -10V$, $I_D = -1A$ 		12	22	ns	
t _{d(off)}	Turn-Off Delay Time	VGS = 4.0V, NGEN = 0.12		64	103	ns	
t _f	Fall Time			37	60	ns	
Q _{g(TOT)}	Total Gate Charge	V _{DD} = -10V, I _D = -3.7A		8.6	12	nC	
Q _{gs}	Gate to Source Gate Charge	$V_{GS} = -4.5V$		0.7		nC	
Q _{gd}	Gate to Drain "Miller" Charge			2.0		nC	
Drain-So	urce Diode Characteristics					1	
I _S	Maximum Continuous Drain-Source Dioc				-1.1	Α	
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0V, I_S = -1.1A$ (Note 2)		-0.8	-1.2	V	
	Devene Deservery Time			32	48	ns	
t _{rr} Q _{rr}	Reverse Recovery Time Reverse Recovery Charge	— I _F = –3.7A, di/dt = 100A/μs		15	23	nC	


Notes:

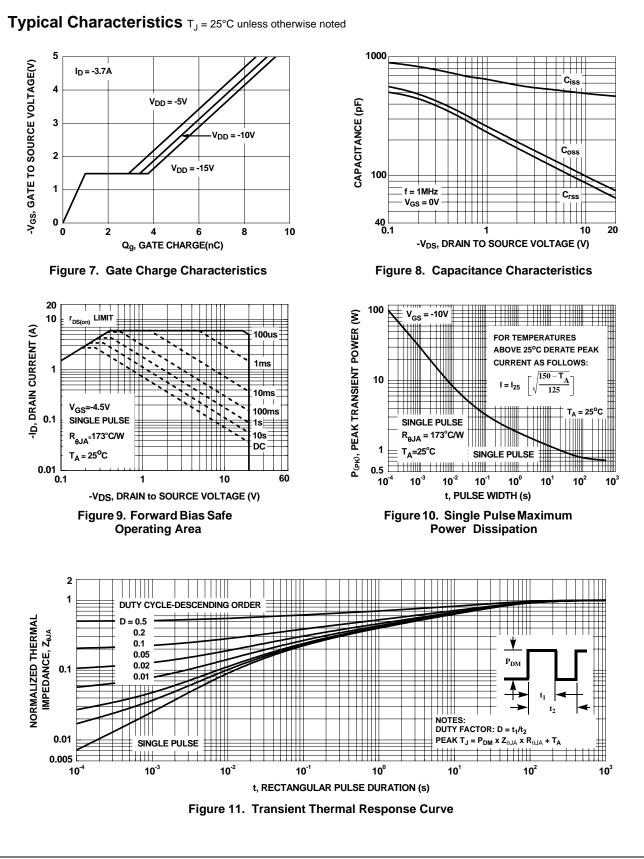
1: $R_{\theta JA}$ is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta JA}$ is determined by the user's board design. (a) $R_{\theta JA} = 86^{\circ}$ C/W when mounted on a 1 in² pad of 2 oz copper, 1.5" x 1.5" x 0.062" thick PCB. For single operation.

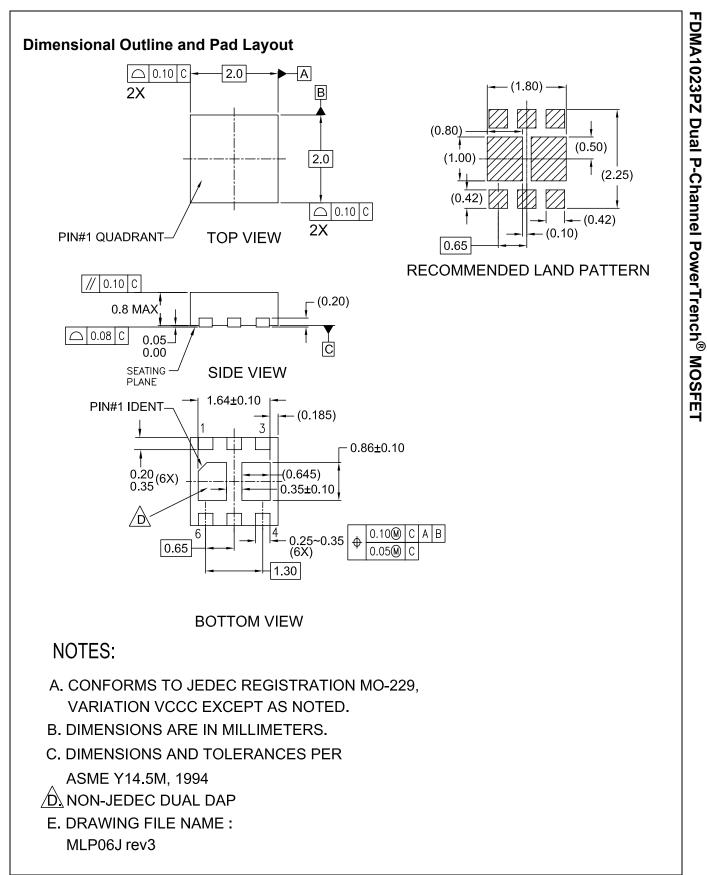
(b) $R_{\theta JA} = 173^{\circ}C/W$ when mounted on a minimum pad of 2 oz copper. For single operation.


(c) $R_{\theta JA} = 69^{\circ}$ C/W when mounted on a 1in² pad of 2 oz copper, 1.5" x 1.5" x 0.062" thick PCB, For dual operation.

(d) $R_{\theta JA} = 151^{\circ}C/W$ when mounted on a minimum pad of 2 oz copper. For dual operation.

2: Pulse Test : Pulse Width < 300us, Duty Cycle < 2.0%


3: The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.


FDMA1023PZ Rev.C2

4

www.fairchildsemi.com

www.fairchildsemi.com

www.fairchildsemi.com

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

ACEx®	FPS™	PDP-SPM™	The Power Franchise [®]
Build it Now™	F-PFS™	Power-SPM™	þ uwer
CorePLUS™	FRFET [®]	PowerTrench [®]	p uwer franchise
CorePOWER™	Global Power Resource SM	Programmable Active Droop™	TinyBoost™
CROSSVOLT™	Green FPS™	QFET®	TinyBuck™
CTL™	Green FPS™ e-Series™	QS™	TinyLogic®
Current Transfer Logic™	GTO™	Quiet Series™	TINYOPTO™
EcoSPARK [®]	IntelliMAX™	RapidConfigure™	TinyPower™
EfficentMax™	ISOPLANAR™	Saving our world 1mW at a time™	TinyPWM™
EZSWITCH™ *	MegaBuck™	SmartMax™	TinyWire™
E 2.™	MICROCOUPLER™	SMART START™	µSerDes™
	MicroFET™	SPM [®]	\mathcal{U}
F ^w	MicroPak™	STEALTH™	Ser <mark>Des</mark> ™
Fairchild [®]	MillerDrive™	SuperFET™	UHC [®]
Fairchild Semiconductor [®]	MotionMax™	SuperSOT™-3	Ultra FRFET™
FACT Quiet Series™	Motion-SPM™	SuperSOT™-6	UniFET™
FACT [®]	OPTOLOGIC [®]	SuperSOT™-8	VCX™
FAST [®]	OPTOPLANAR®	SuperMOS™	VisualMax™
FastvCore™	®		
FlashWriter [®] *		GENERAL	

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		