

R1LV1616RBA-5SI

16Mb Advanced LPSRAM (1M wordx16bit / 2M wordx8bit)

REJ03C0340-0001 Rev.0.01 2007.10.31

Description

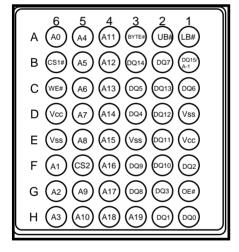
The R1LV1616R Series is a family of low voltage 16-Mbit static RAMs organized as 1048576-words by 16-bit, fabricated by Renesas's high-performance 0.15um CMOS and TFT technologies.

The R1LV1616R Series is suitable for memory applications where a simple interfacing, battery operating and battery backup are the important design objectives.

The R1LV1616RBA Series is packaged in a 48balls Wafer Level Chip Scale Package[WL-CSP / 5.62mm x 5.84mm with the ball-pitch of 0.55mm and the height of 0.79mm]. It gives the best solution for a compaction of mounting area as well as flexibility of wiring pattern of printed circuit boards.

Features

- Single 2.7-3.6V power supply
- Small stand-by current:2µA (3.0V, typ.)
- Data retention supply voltage =2.0V
- · No clocks, No refresh
- · All inputs and outputs are TTL compatible
- Easy memory expansion by CS1#, CS2, LB# and UB#
- Common Data I/O
- Three-state outputs: OR-tie capability
- OE# prevents data contention on the I/O bus
- Process technology: 0.15um CMOS

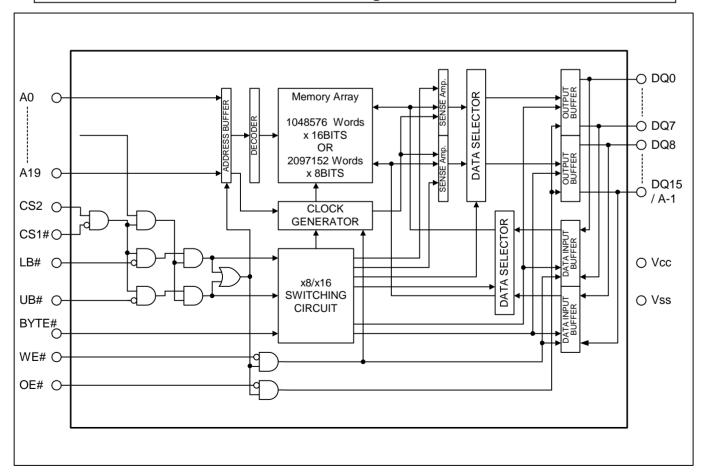


Ordering Information

Type No. Access time		Package
R1LV1616RBA-5SI	55 ns	5.62mmx5.84mm WL-CSP with 0.55mm pitch 48balls

Pin Arrangement

48-pin WL-CSP (bottom view)



Pin	Description	
	- 000pt0	

Pin name	Function
A0 to A19	Address input
DQ 0 to DQ15	Data input/output
CS1# &CS2	Chip select
WE#	Write enable
OE#	Output enable
LB#	Lower byte select
UB#	Upper byte select
Vcc	Power supply
Vss	Ground
BYTE#	Byte (x8 mode) enable input
NC	Non connection

Block Diagram

O	ne	rati	na	Ta	ble
\sim		u	ш	···	

CS1#	CS2	BYTE#	LB#	UB#	WE#	OE#	DQ0-7	DQ8-14	DQ15	Operation
Н	Х	Х	Х	Х	Х	Х	High-Z	High-Z	High-Z	Stand by
Х	L	Х	Х	Х	Х	Х	High-Z	High-Z	High-Z	Stand by
Х	Х	Н	Η	Н	Х	Х	High-Z	High-Z	High-Z	Stand by
L	Н	Н	L	Н	L	Х	Din	High-Z	High-Z	Write in lower byte
L	Η	Н	L	Н	Н	L	Dout	High-Z	High-Z	Read from lower byte
L	Н	Х	Х	Х	Н	Н	High-Z	High-Z	High-Z	Output disable
L	Н	Н	Н	L	L	Х	High-Z	Din	Din	Write in upper byte
L	Н	Н	Н	L	Н	L	High-Z	Dout	Dout	Read from upper byte
L	Н	Н	L	L	L	Х	Din	Din	Din	Write
L	Н	Н	L	L	Н	L	Dout	Dout	Dout	Read
L	Н	L	L	L	L	Х	Din	High-Z	A-1	Write
L	Н	L	L	L	Н	L	Dout	High-Z	A-1	Read

Note 1. H:VIH L:VIL X: VIH or VIL

2. When applying BYTE# ="L", please assign LB#=UB#="L".

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Power supply voltage relative to Vss	Vcc	-0.5 to +4.6	V
Terminal voltage on any pin relation toVss	VT	-0.5*1 to Vcc+0.3*2	V
Power dissipation	Рт	0.7	W
Operation temperature	Topr	-40 to +85	°C
Storage temperature	Tstg	-65 to +150	°C
Storage temperature range under bias	Tbias	-40 to +85	°C

Note 1. -2.0V in case of AC (Pulse width \leq 30ns)

2. Maximum voltage is +4.6V

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Supply voltage	Vcc	2.7	3.0	3.6	V	
	Vss	0	0	0	V	
Input high voltage	VIH	2.4	1	Vcc+0.2	V	
Input low voltage	VIL	-0.2	-	0.4	V	1
Ambient temperature range	Та	-40	-	+85	°C	2

Note 1. -2.0V in case of AC (Pulse width ≤ 30 ns)

DC Characteristics

Parameter	Symbol	Min.	Typ.*1	Max.	Unit	Test conditions*2		
Input leakage current	Iu	-	-	1	μΑ	Vin=Vss to Vcc		
Output leakage current	ILo	1	ı	1	μA	CS1# =VIH or CS2=VIL or OE# = VIH or WE# =VIL or LB# =UB# =VIH,VI/O=Vss to Vcc		
Average energting	Icc ₁	-	25	40	mA	Min. cycle, duty =100% I I/O = 0 mA, CS1# =VIL, CS2=VIH Others = VIH / VIL		
Average operating current	lcc2	ı	2	5	mA	Cycle time = 1 μ s, I I/O = 0 mA, CS1# \leq 0.2V, CS2 \geq Vcc-0.2V VIH \geq Vcc-0.2V , VIL \leq 0.2V, duty=100%		
Standby current	Isb	-	0.1	0.3	mA	CS2=VIL		
		-	2	6	μΑ	~+25°C V in ≥ 0V (1) 0V≤CS2≤0.2V or		
Standby current	Is _{B1}	ı	4	12	μΑ	~+40°C (2) CS2≥Vcc-0.2V, CS1# ≥Vcc-0.2V or		
Standby current	ISB1	-	-	25	μΑ	~+70°C (3)LB# =UB# ≥Vcc-0.2V, CS2≥Vcc-0.2V,		
		-	-	40	μΑ	CS1# ≤0.2V ~+85°C Average value		
Output hige voltage	Vон	2.4		-	V	lон = -1mA		
Output Low voltage	Vol	-	-	0.4	V	IoL = 2mA		

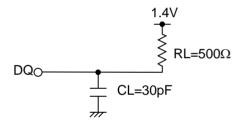
Note 1. Typical parameter indicates the value for the center of distribution at 3.0V (Ta= 25° C), and not 100% tested. 2. BYTE# \geq Vcc-0.2V or BYTE# \leq 0.2V

Capacitance

 $(Ta = +25^{\circ}C, f = 1MHz)$

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test conditions	Note
Input capacitance	C in	-	-	10	рF	V in = 0V	1
Input / output capacitance	C 1/O	-	-	10	pF	V I/O = 0V	1

Note 1:This parameter is sampled and not 100% tested.


AC Characteristics

Test Conditions (Vcc= $2.7\sim3.6$ V, Ta = $-40\sim+85$ °C *)

• Input pulse levels: VIL= 0.4V,VIH=2.4V

• Input rise and fall time: 5ns

Input and output timing reference levels: 1.4V
Output load: See figures (Including scope and jig)

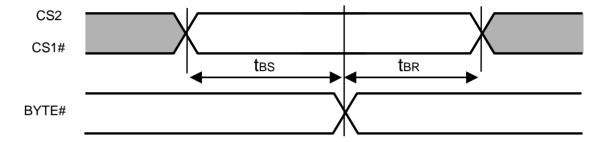
Read Cycle

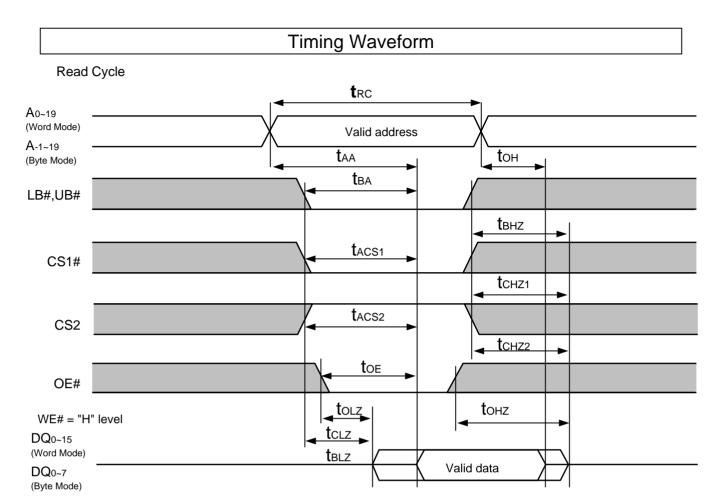
Parameter	Symbol	(not	te0)	Unit	Notes
Faranietei	Symbol	Min.	Max.	Offic	Notes
Read cycle time	t RC	55	-	ns	
Address access time	t AA	-	70	ns	
Chip select access time	t _{ACS1}	-	55	ns	
Only select access time	t ACS2	-	55	ns	
Output enable to output valid	t oe	1	35	ns	
Output hold from address change	tон	10	ı	ns	
LB#,UB# access time	t BA	1	55	ns	
Chip select to output in low-Z	t clz	10	-	ns	2,3
LB#,UB# enable to low-Z	t BLZ	5	ı	ns	2,3
Output enable to output in low-Z	t olz	5	-	ns	2,3
Chin deceler to output in high 7	t cHZ1	0	20	ns	1,2,3
Chip deselect to output in high-Z	t CHZ2	0	20	ns	1,2,3
LB#,UB# disable to high-Z	t BHZ	0	20	ns	1,2,3
Output disable to output in high-Z	t onz	0	20	ns	1,2,3

Write Cycle

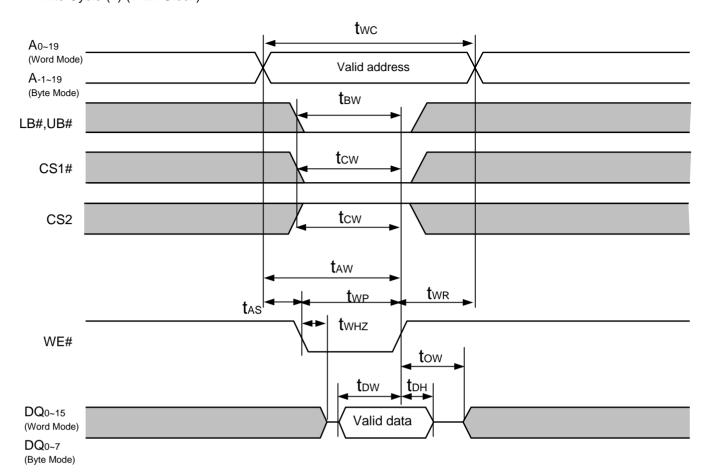
Parameter	Symbol	Vcc=2.7	V to 3.6V	Unit	Notes
Parameter	Symbol	Min.	Max.	Unit	notes
Write cycle time	t wc	55	1	ns	
Address valid to end of write	t aw	50	-	ns	
Chip selection to end of write	t cw	55	1	ns	5
Write pulse width	twp	40	-	ns	4
LB#,UB# valid to end of write	t _{BW}	50	-	ns	
Address setup time	t as	0	ı	ns	6
Write recovery time	twr	0	-	ns	7
Data to write time overlap	t _{DW}	25	-	ns	
Data hold from write time	t DH	0	1	ns	
Output active from end of write	tow	5	1	ns	2
Output disable to output in high-Z	t онz	0	20	ns	1,2
Write to output in high-Z	t wHz	0	20	ns	1,2

Note0. 55ns parts can be supported under the condition of the input timing limitation toward SRAM on customer's system. Please contact our sales office in your region, in case of the inquiry for 55ns parts. In case of tAA =70ns, tRC =70ns.

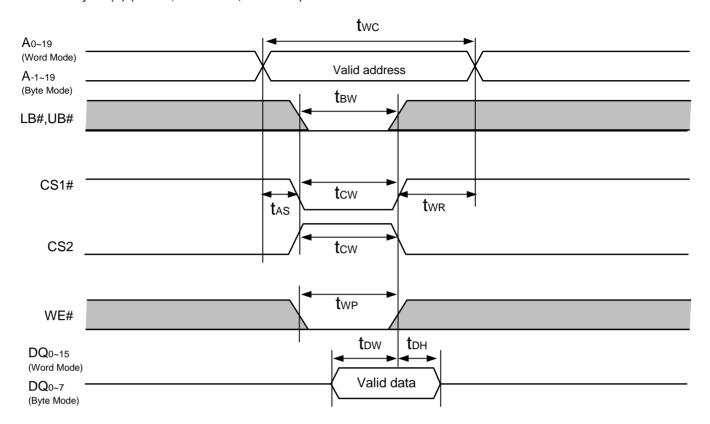

- 1. tchz, tohz, twhz and tbhz are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.
- 2. This parameter is sampled and not 100% tested.
- 3. AT any given temperature and voltage condition, thz max is less than thz min both for a given device and form device to device.
- 4. A write occurs during the overlap of a low CS1#, a high CS2, a low WE# and a low LB# or a low UB#. A write begins at the latest transition among CS1# going low, CS2 going high, WE# going low and LB# going low or UB# going low.
 - A write ends at the earliest transition among CS1# going high, CS2 going low, WE# going high and LB# going high or UB# going high. twp is measured from the beginning of write to the end of write.
- 5. tcw is measured from the later of CS1# going low or CS2 going high to end of write.
- 6. tas is measured the address valid to the beginning of write.
- 7. twn is measured from the earliest of CS1# or WE# going high or CS2 going low to the end of write cycle.

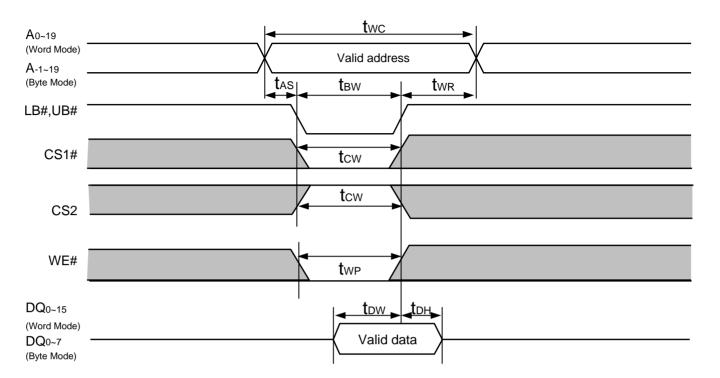


Timing condition for Byte enable


Parameter	Symbol	Min.	Max.	Unit	Notes
Byte setup time	t BS	5	-	ms	
Byte recovery time	t BR	5	-	ms	

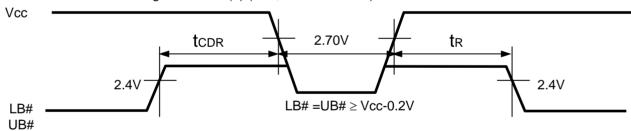
BYTE# Timing Waveform



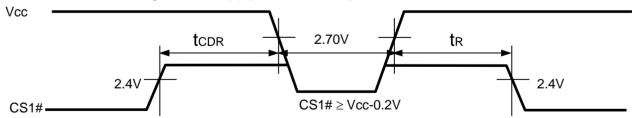

Write Cycle (1) (WE# Clock)

Write Cycle (2) (CS1# ,CS2 Clock, OE#=VIH)

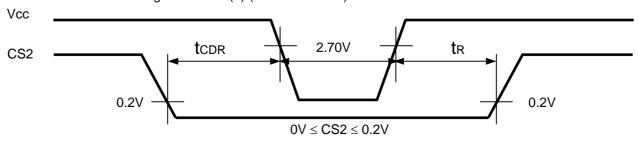
Write Cycle (3) (LB#,UB# Clock, OE#=VIH)


Data	Retention	Characteristics
Dala	netennon	CHALACIELISTICS

Parameter	Symbol	Mln.	Typ.*1	Max.	Unit	Test conditions*2,3	
Vcc for data retention	Vdr	2.0	-	3.6	V	(2) CS2 ≥ ' CS1# ≥ (3) LB# =U	Vcc-0.2V or JB# ≥ Vcc-0.2V, Vcc-0.2V,
		-	2	6	μA	~+25°C	Vcc=3.0V,Vin≥0V (1) 0V ≤ CS2 ≤ 0.2V or
Data retention current	ICCDR	-	4	12	μA	~+40°C	(2) CS2 ≥ Vcc-0.2V, CS1# ≥ Vcc-0.2V or
Data retention current		-	-	25	μA	~+70°C	(3) LB# =UB# ≥Vcc-0.2V, CS2 ≥ Vcc-0.2V, CS1# ≤ 0.2V
		ı	ı	40	μA	~+85°C	Average value
Chip deselect to data retention time	tcdr	0	1	ı	ns	See retention waveform	
Operation recovery time	t R	5	-	-	ms		


Note 1. Typical parameter of ICCDR indicates the value for the center of distribution at Vcc=3.0V and not 100% tested.

- 2. BYTE# pin supported only by TSOP and uTSOP types. BYTE# \geq Vcc-0.2V or BYTE# \leq 0.2V
- 3. Also CS2 controls address buffer, WE# buffer ,CS1# buffer ,OE# buffer ,LB# ,UB# buffer and Din buffer .If CS2 controls data retention mode,Vin levels (address, WE# ,OE#,CS1#,LB#,UB#,I/O) can be in the high impedance state. If CS1# controls data retention mode, CS2 must be CS2 ≥ Vcc-0.2V or 0V ≤ CS2 ≤ 0.2V. The other input levels (address, WE# ,OE#,CS1#,LB#,UB#,I/O) can be in the high impedance state.


Data Retention timing Waveform (1) (LB#,UB# Controlled)

Data Retention timing Waveform (2) (CS1# Controlled)

Data Retention timing Waveform (3) (CS2 Controlled)

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the such procedure in the procedure of the development of the development of the development of the procedure of the development of the de

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510