Everywhere you imagine. .2 E N ESAS

SH7660

Hardware Manual

Renesas 32-Bit RISC Microcomputer
HD6417660

Rev.1.00 RenesasTechnology
2004.2.6 WWW.renesas.com

Rev. 1.00, 02/04, page ii of xxxviii
RENESANS

Cautions

Keep safety first in your circuit designs!

1.

Renesas Technology Corp. puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them.
Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with
appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of
nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1.

These materials are intended as a reference to assist our customers in the selection of the
Renesas Technology Corp. product best suited to the customer's application; they do not
convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corp. or a third party.

Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs,
algorithms, or circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts,
programs and algorithms represents information on products at the time of publication of these
materials, and are subject to change by Renesas Technology Corp. without notice due to
product improvements or other reasons. It is therefore recommended that customers contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for
the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various
means, including the Renesas Technology Corp. Semiconductor home page
(http://www.renesas.com).

When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products.
Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss
resulting from the information contained herein.

Renesas Technology Corp. semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product
distributor when considering the use of a product contained herein for any specific purposes,
such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or
undersea repeater use.

The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in
whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions, they
must be exported under a license from the Japanese government and cannot be imported into a
country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or
the country of destination is prohibited.

Please contact Renesas Technology Corp. for further details on these materials or the products
contained therein.

Rev. 1.00, 02/04, page iii of xxxviii
RENESANS

General Precautionson Handling of Product

1. Treatment of NC Pins

Note:

Do not connect anything to the NC pins.

The NC (not connected) pins are either not connected to any of the internal circuitry or are
they are used as test pins or to reduce noise. If something is connected to the NC pins, the
operation of the LSI is not guaranteed.

2. Treatment of Unused Input Pins

Note:

Fix all unused input pins to high or low level.

Generally, the input pins of CMOS products are high-impedance input pins. If unused pins
are in their open states, intermediate levels are induced by noise in the vicinity, a pass-
through current flows internally, and a malfunction may occur.

3. Processing before Initialization

Note:

When power is first supplied, the product’s state is undefined.

The states of internal circuits are undefined until full power is supplied throughout the
chip and a low level is input on the reset pin. During the period where the states are
undefined, the register settings and the output state of each pin are also undefined. Design
your system so that it does not malfunction because of processing while it is in this
undefined state. For those products which have a reset function, reset the LSI immediately
after the power supply has been turned on.

4. Prohibition of Access to Undefined or Reserved Addresses

Note:

Access to undefined or reserved addresses is prohibited.

The undefined or reserved addresses may be used to expand functions, or test registers
may have been be allocated to these addresses. Do not access these registers; the system’s
operation is not guaranteed if they are accessed.

Rev. 1.00, 02/04, page iv of xxxviii

RENESANS

Configuration of This Manual

This manual comprises the following items:

1. General Precautions on Handling of Product
2. Configuration of This Manual

3. Preface

4. Contents

5. Overview

6.

Description of Functional Modules
e CPU and System-Control Modules
e On-Chip Peripheral Modules

The configuration of the functional description of each module differs according to the
module. However, the generic style includes the following items:

i) Feature

ii) Input/Output Pin
iii) Register Description
iv) Operation

v) Usage Note

When designing an application system that includes this LSI, take notes into account. Each
section includes notes in relation to the descriptions given, and usage notes are given, as required,
as the final part of each section.

7. List of Registers
8. Electrical Characteristics
9. Appendix

10. Main Revisions and Additions in this Edition (only for revised versions)

The list of revisions is a summary of points that have been revised or added to earlier versions.
This does not include all of the revised contents. For details, see the actual locations in this
manual.

Rev. 1.00, 02/04, page v of xxxviii
RENESANS

Preface

The SH7660 RISC (Reduced Instruction Set Computer) microcomputer includes a Renesas
Technology original RISC CPU as its core, and the peripheral functions required to configure a
system.

Target Users: This manual was written for users who will be using this LSI in the design of
application systems. Users of this manual are expected to understand the
fundamentals of electrical circuits, logical circuits, and microcomputers.

Objective: ~ This manual was written to explain the hardware functions and electrical
characteristics of this LSI to the above users.
Refer to the SH-3/SH-3E/SH3-DSP Programming Manual for a detailed description
of the instruction set.

Notes on reading this manual:

Product names

The following products are covered in this manual.

Product Classifications and Abbreviations

Basic Classification Product Code

SH7660 HD6417660

In order to understand the overall functions of the chip

Read the manual according to the contents. This manual can be roughly categorized into parts
on the CPU, system control functions, peripheral functions, and electrical characteristics.

In order to understand the details of the CPU's functions
Read the SH-3/SH-3E/SH3-DSP Programming Manual.

Rev. 1.00, 02/04, page vi of xxxviii
RENESANS

Rules: Register name: The following notation is used for cases when the same or a
similar function, e.g. serial communication, is implemented
on more than one channel:

XXX_N (XXX is the register name and N is the channel
number)

Bit order: The MSB (most significant bit) is on the left and the LSB
(least significant bit) is on the right.

Number notation: Binary is B’xxxx, hexadecimal is H’xxxx, decimal is XXxX.

Signal notation: ~ An overbar is added to a low-active signal: xxxx

Related Manuals: The latest versions of all related manuals are available from our web site.
Please ensure you have the latest versions of all documents you require.
http://www.renesas.com/eng/

SH7660 manuals:

Document Title Document No.
SH7660 Hardware Manual This manual
SH-3/SH-3E/SH3-DSP Programming Manual ADE-602-096

Users manuals for development tools:

Document Title Document No.
SH Series C/C++ Compiler, Assembler, Optimizing Linkage Editor User's ADE-702-246
Manual

SH Series Simulator/Debugger (for Windows) User's Manual ADE-702-186
SH Series Simulator/Debugger (for UNIX) User's Manual ADE-702-203
High-performance Embedded Workshop User's Manual ADE-702-201
SH Series High-performance Embedded Workshop, High-performance ADE-702-230

Debugging Interface Tutorial

Rev. 1.00, 02/04, page vii of xxxviii
RENESANS

Abbreviations

ALU Arithmetic Logic Unit

ASE Adaptive System Evaluator
AUD Advanced User Debugger

bps bit per second

BSC Bus State Controller

CODEC Coder-Decoder

CPG Clock Pulse Generator

CPU Central Processing Unit

DAC Digital to Analog Converter
DMAC Direct Memory Access Controller
DSP Digital Signal Processor

ESD Electrostatic Discharge

FIFO First-In First-Out

Hi-Z High Impedance

H-UDI User Debugging Interface
INTC Interrupt Controller

LSB Least Significant Bit

MSB Most Significant Bit

PC Program Counter

PFC Pin Function Controller

PLL Phase Locked Loop

RAM Random Access Memory

RF Ratio Frequency

RISC Reduced Instruction Set Computer
ROM Read Only Memory

SIOF Serial Input Output with FIFO
SCIF Serial Communication Interface with FIFO
SOF Start Of Frame

TAP Test Access Port

T.B.D. To Be Determined

TLB Translation Lookaside Buffer
UBC User Break Controller

USB Universal Serial Bus

WDT Watch Dog Timer

Rev. 1.00, 02/04, page viii of xxxviii
RENESANS

Contents

SECHON 1 OVEIVIEWeiiiiiiiiiiiiiiteeeite ettt ettt ettt et e s 1
1.1 SH7600 FEAUIESeeeueieiieeietieieeieee ettt ettt st ettt ettt et eeb e b e sbeenbeeaaesatesaeenaee 1
1.2 BIOCK DIAZIAIM .. .coutiiiiiiiniiiieeiteteteteteste ettt ettt sttt et be sttt e ae e enenaen 8
1.3 PN ASSIZIIMENE c..coeeiiiieiiiienicetericeee ettt ettt ettt sa ettt sae e besae b et eanennens 9
1.4 PINFUNCHONS ..ot 21
SECtiON 2 CPU .ottt et 29
2.1 Processing States and Processing MOdES........c..ccuevueririniriniiienienieneneneereeeeeeneeenene 29
2.1.1 ProCessiNg SLALES.....cucouertimtiririerieieeietetentesteere st eteeitestesestentesrestesbesueeaeeneensennens 29
2.1.2 Processing Modes (User Mode/Privileged Mode)c..coceeerererieeeniencnenennens 30
2.2 MEMOTY IMAD ..ttt sttt ettt et et e s bt e ettt e s bt e et e e bt e e bt e s baeebeesbaeenaee s 31
2.2.1 Logical AdAress SPACE.....ccccevuerierieriiiiiiienitenieeteete et site sttt et st s saee i ereeas 31
2.2.2 Physical Address SPACEcocverieriiriiiiiiiiinienieeeeeete ettt st 33
2.2.3 External Address SPACEcooueiierieriieiieeieeieeteete ettt sttt 34
2.3 RegiSter DESCIIPLIONS «...eerviiiriiriiitieitetetenteste ettt ettt sttt et ettt sae bbbt eene e 36
2.3.1 General REZISLETSc.ccuiiiriniriieiieetetet ettt st 38
2.3.2 SySteM REZISTEIS..cccuieiiiiiiiieiie ittt ettt ettt ettt e sbeesate e st e saaeesabeenaeas 39
2.3.3 Program COUNLETcceeiirierieiienieeteete ettt ettt e et sitesbeesbeesae et saeesaeesbeenbeens 40
2.3.4 Control REZISTETS ..c.ueruveriiiriiiiiiiieiteeiteieeie ettt ettt st saeesbeereeas 41
2.4 Data FOIMALS. ...cc.eoiuiiiiiiieie ettt ettt et sttt ettt et ebe e bt et et eateeaeenaean 45
24.1 Register Data FOrMAt........ccccociiiiniiiiiiiiiiinieiceeceeeeeee e 45
242 Memory Data FOrmats..........ccccooiiiiiiiiiiiieicieeeneeeee e 45
2.5 Features of INStIUCHONScc.ciiiiiiiiiiiiiiiricccec e 47
2.5.1 Instruction Execution Method............ccocveviiniiiinininiiiiiiiiienccecccecrceeeeae 47
2.5.2 AdAressing MOAEScoeerieriiiiiiiiiniienieeieeteeit ettt sttt et st 49
2.5.3 InStruction FOIMALScccceiieiiiiiiiiieiiieee ettt 53
B D 03T 817 () Y TR 56
2.6.1 Instruction Set Based on FUNCtions...........cccocevuieriieiieieniecieseese e 56
2.6.2 Operation Code MaP......ccocueeriiiiiiiieiieeiieeite ettt ettt st sbe e 70
Section 3 DSP Operating Unif......cccceeeiiiiiiiiiiniiieiieeieeeieeeeeeee e 73
3.1 DSP Extended FUNCHOMNSccooiiriiiiiiiieieetiesteete ettt sttt et s sbe e 73
3.2 DSP MO RESOUICESccoveeruiiiriiieiiiiiniteeiiieeete ettt ettt ettt sttt e sbee s esbaeeanee s 75
3.2.1 Processing MOAEScceveruieierieieieieientene sttt ettt sttt ene e 75
3.2.2 DSP Mode MemOry Map......ceoviiirieiiiieniieeiieeniteesiteeniteeieeesite et e sieesieesvaesasee s 75
3.2.3 CPU REISIET SELS....certiriiruiiriiiniieieeieeieeitesitesieenie et et st sbeesueeste et satesbeenbeeseens 76
324 DSP REZISIEIS ..couveiuiiinieiiieiiienieeieeteete ettt ettt st sttt sae ettt st saee b ebeeas 80
3.3 CPU Extended INStrUCHIONSccueeutirtietieieeieeete ettt ettt ettt st e b e b e saesaeas 81
3.3.1 DSP Repeat CoNtrol.........coccoouieiiiiiiiiiiiinieieeieeeeesee e 81

3.3.2 Extended Repeat Control INStruCtionscccoeverirereeeeienicieneneneneee e 91

3.4 DSP Data Transfer INStIUCLIONScecueeierieriieriieieeieetesiieteeieeteseeseee e eseeeesneeseeeneeens 96
341 General REISIETS.....co.eeuiieeiiiitinieriieteeiteit ettt ettt ae 99
342 DSP Data AddIeSSINgcoevveeerueeiiiieeiienitienieesitesteesiteesteesieeesireesseeesisessbeessaeesane 101
343 Modulo AdAIESSINGcc.eeiieiiriiriiiriienieeieee ettt ettt st 103
344 Memory Data FOIMALScccceeviiriiiiinieniiieiicetestecee et 105
3.4.5 Instruction Formats of Double and Single Data Transfer Instructions 105
3.5 DSP Data Operation INSIIUCHIONSc..cceririertreeienieienienenienieeieeieeteteneesie e sre s eneeneenees 107
3.5.1 DSP REZISIELS ..coueuviniiiirieniieiietetestesteste sttt ettt sttt sae st st nee 107
3.5.2 DSP INStIUCHION SeL.....cciiiiiiiiiiiiiiiiiicieieec e 111
3.5.3 DSP-Type Data FOrmats........ccccceoueriiriiniiniiiieiienteceieeeeeseeesiee e e 116
3.54 ALU Fixed-Point Arithmetic Operations..........ccceevueevuereeneerennienreeneeneeneneenaes 118
3.5.5 ALU INte@er OPErationscccceveerueeierienieenieeieetesteentteteeieeeeesseesseesseeseseesas 123
3.5.6 ALU Logical OPETationscoceeerueruerueeeenienienienenteneeieeeteneetensessessessesseeneensenne 125
3.5.7 Fixed-Point Multiply Operation...........cecceeeeeierienenenieninieeeiereneenene e 126
3.5.8 Shift OPETrationscccuveerueiiiiiieiieiitieeite et etee et e stee st e steesebeesabeessbeesabeesaseesaseenns 129
3.5.9 Most Significant Bit Detection Operationcccccecvereerieerieneeneeneenenneeneenaes 132
3.5.10 RoUNAING OPETatiON....cc..eoviriiirieiiieiieiieeitenieenieete ettt sttt st e e e 135
3.5.11 OVerflow ProteCtion........c..ceiueeiiiiiiieniienieeie ettt 136
3.5.12 Local Data Move INSIUCLIONcocueeruiiriiinieenieerieeniie ettt 137
3.5.13 Operand CONTICEc..couererieiiiiieneneneeeetet ettt 138
3.6 DSP Extended Function INStruction Set...........ccceciviiiiiiiniiiiiiiiiiniineeeceeeieenen 139
3.6.1 CPU Extended INStruction Set.......c.ccoceviruirieieiieniiniininieieecieeesiese e 139
3.6.2 Double-Data Transfer Instruction Set.........ccccoeeeviniririeiienienienenineneceeeeene 141
3.6.3 Single-Data Transfer InStruction Setccecceeveirieiieiieiieieneseeeee e 142
3.6.4 DSP Data Operation INStruction Set..........cecuevuevvererenerenieeeienieneneneeeeeeneenne 144
3.6.5 Operation Code Map in DSP Mode..........cocceoiiriiniiiiiiiiiiniceecccrece e 150
Section 4 Exception Handlingccoocveeeiiiiiiiiiiiiiieieecee e 155
4.1 ReiSter DESCIIPHIONS ..c..vetiiiiiieiiieiteeiteettett ettt sttt ettt sb et e e eanesbaesaees 155
4.1.1 TRAPA Exception Register (TRA)cccoooiriiiiiieieeeeeee e 156
4.1.2 Exception Event Register (EXPEVT)......cccccoceiininininiiieicicnenene e 157
4.1.3 Interrupt Event Register 2 (INTEVT2).....ccccocevinimininieieiienenencneeeeeeieeens 157
4.1.4 Exception Address Register (TEA) ...ccccovviiiviiiniiiniieieeieereeeeeee e 157
4.2 Exception Handling FUNCHONcoceiiiiiiiiiiniiiiiiencceeeeet et 158
4.2.1 Exception Handling FIOWccccooiiiiiiiiiiiniiiiiieecieeeee et 158
4.2.2 Exception Vector AdAIESSESceeeeurereiirieniineriinieneeeeretetesrestesre st et eneensennens 159
423 EXCePHON COULSooruiiiieiiiiiiieiteitee ettt s s 159
4.2.4 Exception Request and BL Bit (Multiple Exception Prevention)...........cc.cccocu.... 159
4.2.5 Exception Source Acceptance Timing and Prioritycccccoeveevciieniiernieenineennen. 160
4.3 Individual EXCeption OPEerationsccocceveerierierienienienieenientesitesieenteeeeensesieesieenieennens 164
4301 RESEIS .ottt et s et 164
4.3.2 General EXCEPLIONS ...cc.ueiuiiiuieiieie ittt ettt sttt et st e e e e eas 165

Rev. 1.00, 02/04, page x of xxxviii

4.4 Exception Processing While DSP Extension Function is Valid........c.ccccccoooiniininnnnnne 168
4.4.1 TIllegal Instruction Exception and Slot Illegal Instruction Exception 168
4,42 CPU AdAress EITOTcc..ooiiiiiiiiiiiiieeieete ettt et 168
4.4.3 Exception in Repeat Control Period.........ccccueevieeriiinieiiiiinieeiecieeeee e 168
4.5 USAZE NOES ..ttt ettt ettt et et st sttt ettt eb e sbt e s bt e b et et saeesbeenae 175
SectioN S CACKE ...cooouiiiiiiie e 177
5.1 FRALUTES ..ttt ettt et et e b e et b e et s b e et s b e e et esbeeeaaee s 177
ST CaChe SIUCLUTE......viiiiiiiiieiieectteeeere ettt ettt ettt et e eaees 177
5.2 ReZIStEr DESCIIPHONS ..cueviiiiiiiiiierieeitierte ettt ettt et sbte et e e bt e ebeeesbbeebeesaaeenaeen 179
5.2.1 Cache Control Register 1 (CCRI) ..coccoviiriiniiniiiiiiienieniesieeeeeete e 179
5.2.2 Cache Control Register 2 (CCR2)coceriimiiniieiinieiieneesieenieee et 180
5.3 OPCTALION ...ttt ettt ettt e bt et et e s st e satesb e e bt e bt eateeaeeebe e bt enteenteeneesbeenbean 183
5.3.1 Searching the Cache.........cocoiiiiiiiiiiiiiiireecce et 183
5.3.2 REAA ACCESS ..etiuuiiiiiieiieeitteeitee sttt ettt ettt e s bttt e sab e e sat e s bt e s it e s bt et e e sabeenaees 184
5.3.3 PrefetCh OPerationccc.eeeieeiiieniiieniieeieeritesie ettt e sbeeseteesreesieeesbeenaees 184
5.3.4 WIHLE ACCESS cnutiniieiieitieiteeiteettest ettt et sttt ettt et s e s bt e bt et e bt saaesbeesueebeenbeeas 184
5.3.5 Write-Back BUFferc.c.ooiiiiiiiiiiiieee e 185
5.3.6 Coherency of Cache and External Memorycccceeeerienieneeneniienienceneeeene 185
54 Memory-Mapped Cachec..cooioiiiiiiiiiiiiieeee e 186
541 AdAIESS ATTAY ...cuviiiiiieiieiieieeeetee ettt et 186
542 DAta AITAY couviiieiieiiieeiee ettt ettt ettt sb e e st e sabeesabeesabeesabeesabeesateesabeenats 187
5.4.3 USage EXAMPIES....coueiriiiiiiiiiiiiienitete ettt st s 189
Section 6 X/Y MEMOTY ...ccueiiiiiiiiiiieiieeieceeeee et 191
0.1 FRALUIESceeieieiieieete ettt ettt et et et et e s st e s st e st eseenteentesaee st enseenseeneeeneesneensean 191
0.2 OPCTALION ..ottt sttt ettt ettt ettt ettt ettt et s bt eb e sbeebeea s et et e nbe st besueeat et enaenee 192
6.2.1 Access from CPU......cc.cooiiiiiiiiiieiieiciic ettt 192
6.2.2 Access from DSP......cooiiiiiiiiiii e 192
6.2.3 Access from I Bus Master ModUlec.ccooceeriieniinienienienenienieneenieeniceee e 193
0.3 USAZE INOLES ..ottt sttt ettt et sb bt sttt et et be st et 193
6.3.1 Page CONTLCE c..ooveeiiiiieiieieicierie ettt st 193
6.3.2 BUS CONTIICE ..c.uiitiiiieiieeee ettt sttt et st esaee s eneeens 193
6.3.3 CaChe SEUNZS.....eeiuiieiieiiiienieecitt ettt ettt sttt e sab e e st e sabeesateesabeesateesabeenaees 193
6.3.4 S1EEP MOME ...ttt sttt 194
Section 7 U MEMOTY ...c.ciiviiiiiiiiieiieieeeeee ettt 195
Tl FEATUIES ..ottt et ettt e et e st e st e st et e st e e sat e s b e naes 195
T2 OPETALION «.euvieiiiiieiteietete sttt ettt sttt sttt sb et b e sbe et e et et et e s bt sueebeeaeennennens 196
7.2.1 Access from CPU......cc.cooiiiiiiiiiiiiieici ettt 196
7.2.2 Access from DSP......coiiiiiiiiiiii e 196
7.2.3 Access from I Bus Master ModUulec.ccooceeriieniiniinienienienienieneenieeniceee e 196
T3 USAZE INOLES ..cuvenriiieiieiieteietest ettt ettt sttt ettt et besae bt ettt ebesaeebesueeneennens 197

7.3.1 Page CONTLCT .ooueeuieiiiiiiiieniieenceceetee st 197

7.3.2 BUS CONTIICE ...ttt ettt et e e e eneeens 197
7.3.3 CaChe SELHINESeouieiieiieieeie ettt e s s eae e e 197
T34 SICEP MOAE ...ttt ettt sttt st et e st sabeesatee s 198
Section 8 Interrupt Controller (INTC).....ccocuiiiiiiiiiiiiiiiiieeeeeeeeeeee 199
Bl FRALUIES ...ttt b ettt ettt a ettt et ea e b e e bbb eae 199
8.2 INpUt/OULPUL PINS .c.eiriiiiiiiiiiiiiiiciiieree ettt ettt 201
8.3 RegISter DESCIIPHONSeuveviriiieeiieietentesteeic ettt ettt sttt et sae et st eeaenaens 201
8.3.1 Interrupt Priority Registers A to H (IPRA to IPRH).........ccocevviiiiniiiniiiniiiiens 202
8.3.2 Interrupt Control Register 0 (ICRO).......ccccoveriiriiniiniiiieiceieneceeeecee e 204
8.3.3 Interrupt Control Register 1 (ICR1)......ccoceeviriiriiiniiiiiieinienceececec e 205
8.3.4 Interrupt Control Register 2 (ICR2).......cccoeiiiiiiiiniiiieeeeeeeeeee e 207
8.3.5 Interrupt Request Register 0 (IRRO).......ccceevveviininininiiniiicicicncnencreeeeeenee 208
8.3.6 Interrupt Mask Registers 0, 1, 4 to 6, and 9
(IMRO, IMR1, IMR4 to IMR6, and IMRO)c.cccoveririiiiiiienencneneeeeeen 208
8.3.7 Interrupt Mask Clear Registers O, 1, 4 to 6, and 9
(IMCRO, IMCRI1, IMCR4 to IMCR6, and IMCRO)c.cccoceeviininiiniiniienienne 210
8.4 INEEITUPE SOUICES...eueeiietietieii ettt ettt ettt et ettt st e sae et e et e e s e es e sbe e beenbeentesaeesae 211
84l NMIINIEITUPL......ieiiieiiieiiiciieeee ettt 211
842 TRQ INEEITUPLS .. .eieuiiiiiiieiieieeieee ettt s s 211
8.4.3 On-Chip Peripheral Module INterruptscoecveerveeriieniieinieenieeriieeree e 212
8.4.4 Interrupt Exception Handling and Priority........cccccoceveeveeiiniienicniencencnicneee 212
8.5 OPCIALION ..eniiniieiiieieeite ettt et sttt et et eb e bbb et sbe e bt e bt enbeeaae e 214
8.5.1 INITUPE SEQUEIICEeemiiiieiieieeie ettt ettt ettt ettt e b e beeae e 214
8.5.2 MUltiple INEITUPLS ..cveveruerueriieeiieniententeet ettt ettt ettt st 216
Section 9 Bus State Controller (BSC)coovvvviiiiiiiiiiieeeeecceceeeeeeee e, 217
0.1 OVRIVIBW .ttt ettt ettt et s e b et et eat e satesbe e bt et e et e sanesbaenbean 217
0101 FRATUIES ..ottt ettt ettt st ettt st st bt e bt et eas 217
9.2 INPU/OULPUL PINS ...cuviiiiiiiiiiiieiiciecieteeeeeet ettt s 220
0.3 ATCA OVEIVIEW .ttt ettt ettt ettt et e s bt e it e s bt e et e sbee e bt esbaeeabeesabaeennee s 221
0.3.1 ATCA DIVISION ...eeuiiiiieiiiesiieieete ettt et et et et et e st ee st ebeetesaesneesneesneenseenseenseens 221
9.3.2 ShadOW AT@a....cccuiiiiriiiiiniieiieitett ettt ettt sttt et e s e e b neeare e 222
0.3.3 AAIess MADcouiiiiiiiiiiieieee ettt st st 223
9.3.4 Data Bus Width....coccooiiiiiiiiiiiiiiieeeeeteeee et 224
9.4 RegiSter DESCIIPLIONSovviiiriiriiiiieiieieteterte ettt ettt sb et ettt et saesr st enne e 224
9.4.1 Common Control Register (CMNCR)cccoeririiirierieiiereese e 225
9.4.2 CSn Space Bus Control Register (CSnBCR) (n1=0, 3,4)ceevereeriereenieieeeenne 227
9.4.3 CSn Space Wait Control Register (CSNWCR) (n=0, 3, 4) ..cccvevvvirnienieerieennenn. 231
9.4.4 SDRAM Control Register (SDCR).....cc.ccocterirriiriiniinienieneeicneeseenieeeeeeeee e 242
9.4.5 Refresh Timer Control/Status Register (RTCSR)......cccccooeeveininniniiniiniininiens 245
9.4.6 Refresh Timer Counter (RTCINT).....ccccieiiiiiiieiiieiie et 246

Rev. 1.00, 02/04, page xii of xxxviii

RENESANS

9.4.8 Reset Wait Counter (RWTCNT)....ccoeiiiiiiiiiiecieecit ettt 247
9.5 Operating DESCTIPLONcc..evuiriiriiriiriieieieteene ettt sttt ettt st ene e 248
9.5.1 Endian/Access Size and Data ALignment...........ccccoevveevieeiiiirineeniiieniieeniee e 248
9.5.2 Normal Space INteTface........cooueriiriiriiiiiiiiinieteieeeeee et 251
9.5.3 Access Wait CONMIOLc..covuiiiiiiiriiiiiiiiiienteeee ettt 256
9.5.4 CSn Assert Period EXPansioncoocueveerueeeerusveesesssseesseseessesseesssseenaon. 258
9.5.5 SDRAM INEEITACEeevveeveeiieieeie ettt ettt ee sttt saeete e s e saeeeeenee e 259
9.5.6 Burst ROM INtErfacecceeeieiuieiiieieeie ettt st 285
9.5.7 Byte-Selection SRAM INtEIfaCEeevvirriiiriiiniieiiieeieesieeeeeee e 287
9.5.8 Wait between AcCess CYCIES ...c.eoviiiiriiiiinieiieiieieetese et 291
9.5.9 BUS AIDIIAtIONveeuiiiiiiiiiieiceic ettt sttt st s ea 291
0.5.10 USAZE NOLES ..cevenviriiieiieiteietentestente ettt ettt et ettt s e sae et et ssestesbesaeebesaeeneennens 295
Section 10 Direct Memory Access Controller (DMAC)cccocveeviiiencieennnnen. 297
TO. 1 FRALUIES ..ottt ettt ettt st sttt ettt st be e b e eanesmnesaeenae 297
10.2 INPUt/OULPUL PINS ..ottt ettt e 299
10.3 RegiSter DeSCIIPLIONS ..c..covueiiiiiiiiiiiieeiteeitet ettt ettt ettt st sbees 300
10.3.1 DMA Source Address Register (SAR)cocueriiiiiiiniinieneeee e 301
10.3.2 DMA Destination Address Register (DAR)cccoeviieieiienieiieeee e 301
10.3.3 DMA Transfer Count Register (DMATCR)cccoeiiiriiiiieiieeeeee e 301
10.3.4 DMA Channel Control Register (CHCR).........cocceeviiiiriiiiniiiniiiniiesieeieeeeee, 302
10.3.5 DMA Initial Address Register (IAR)......c.cccvveeriiiiniiniiniiniecececeeeeceee 308
10.3.6 DMA Operation Register (DMAOR)cccccociiriiiiiiniiniinienteieeesee e 308
10.3.7 DMA Extension Resource Selector 0 and 1 (DMARSO and DMARS]I)............. 310
1.4 OPETALION «.ouvitiiiiieiietetete sttt ettt ettt ettt ettt b e s bt bttt e et et e s besbe e bt et ennennens 313
10.4.1 DMA Transfer FIOWccccooiiiiiiiieiieieeieeeeee et 313
10.4.2 Repeat Mode Transfer........cooviviiiiriiiniienieerieeeeeseeseese et 315
10.4.3 DMA Transfer REQUESEScccevueeriiiiiiiiiniinieieeieeieettesteseee ettt 315
10.4.4 Channel PriOrityco.ceveerierierienienitee ittt ettt ettt st e e eae 318
10.4.5 DMA Transfer TYPeS....ccueeouerierieniierieeie ettt ettt ettt sttt et st e i enee e ene 321
10.4.6 Number of Bus Cycle States and DREQ Pin Sampling Timingcccccccecuene. 328
LO.5 USAZE NOLES ..ottt et ettt et e enesane s nae 332
Section 11 Clock Pulse Generator (CPG)......c..vvvvveeiiviiiiiiiieeieceeeeeeeiieeeeeeeeenn 333
L1.T FRALUIES ...ttt ettt et sttt sbe e bt et et eaaesbaenbeebeas 333
11.2 INpUt/OULPUL PINS .ueiiiiiiiiieiieie ettt st 336
11.3 Clock Operating MOMEScccueuerueriimieniriiriietetertentente ettt stesteste e b sre bt eeneeaenaens 337
11.4 RegiSter DESCIIPLIONScocveriiriiriiriieiieietentesteste sttt ettt sie sttt et et e e sbesae et eaenaens 340
11.4.1 Frequency Control Register (FRQCR)coovuiiriiiiniiiiniieniienieenieerieeiee e 340
11.5 Changing the FIEQUENCYccoceeriiiiiiiiiiiiieiieeeeete sttt 343
11.5.1 Changing the Multiplication Rateccccceceeririiniiiniiniiniiciicceececeee 343
11.5.2 Changing the Division Ratio........c.cceoiiiiiiiiiiiiiieiieieeeee e 343

9.4.7 Refresh Time Constant Register (RTCOR)ccceiiiiiiiiiiiiiiiiceceeee 247

Rev. 1.00, 02/04, page xiii of xxxviii
RENESANS

11.6 Notes 0n Board DeSi@i......coouiiiiieiiiiiiiiieieee ettt 344

Section 12 Watchdog Timer (WD)cooiiiiiiiiiiieeiieeeeeeeeeeeee e 347
12,1 FEAUIES ...ttt 347
12,2 RegiSter DeSCIIPLIONScccueeiieiiriiiriteitericeteete ettt ettt et st e b enieens 349
12.2.1 Watchdog Timer Counter (WTCNT).....cccccoceiriiniriiniinieiieieeeeseenieeeeee e 349
12.2.2 Watchdog Timer Control/Status Register (WTCSR).....c..ccccoevinininiininienennes 349
12.2.3 Notes 0N REZISIET ACCESS ..cvevveruirrerieeieieieienienteneeteeeeeeetestesten e e b sseeneeeensenee 351
12.3 OPETALION ..ottt ettt st ettt ettt sae bbbttt et e st st e ebesaeeae et ennenee 352
12.3.1 Canceling Software Standby..........ccceevieirieiiiiinieiiteece et 352
12.3.2 Changing the FIeqUENCYcocteriiireriiiiiiiieniieieeicetcte et 352
12.3.3 Using Watchdog Timer MOdecccocuerieniiriinieiienienieeiceieeeeseeneeeeeee e 353
12.3.4 Using Interval Timer Modecooieiiiiiiiiinieeeeeeee e e 353
Section 13 Power-Down Modes...........cooueriiiniiiiiiniinieiiceeeeeceeeeee 355
13,1 FEAUIES ..ottt s 355
13.1.1 POWEr-DOWN MOMESccooouiiiniiniiiiiiiciicicieieiee et 355
130120 RESCL ettt 357
13.1.3 Input/OuUtPUt PINS....coouiiiiiiieiieiieeeeee ettt e 358
13.2 RegiSter DESCIIPLIONSovitiriiriiriieiteteteteste sttt ettt ettt ettt sae bt eene e 359
13.2.1 Standby Control Register (STBCR).......cccccoceiriiiiiiiiiiieiciceeeeeeee e 360
13.2.2 Standby Control Register 2 (STBCR2)......ccccevviiiiiiiiieiitiieceeeeeeee e 361
13.2.3 Standby Control Register 3 (STBCR3)......coceeiiiniiiiriiiiiiieeceeeecee e 362
13.2.4 Standby Control Register 4 (STBCR4)......ccccooiivirviiniiniiiiiiceeeeeeee e 363
13.2.5 Memory Clock Control Register (MCCR).........cccerieiiiriiniinieeeieneeeee e 365
13.3 OPETALION ..ottt sttt ettt et b e bt s a ettt e b s b st bt bt eae et ennenee 366
1331 S1EEP MOAE ..ot s 366
13.3.2 Software Standby MOdE.........cccueiriiiiiiiiiiiiniieiieeeee ettt 366
13.3.3 Module Standby FUNCHON.......cceeriiiiiriiniiniieieeecteeeeeeeeeeesee e 368
13.3.4 State Transitions between MOdEsc.ccccevirininiiinieiiieieeeeeeeeee 369
13.3.5 Method of turning off the built-in regulator (external VDD used)ccccoeu.eee. 369
13.4 USAZE NOLE ..cevieiiiiieiieieeeie ettt ettt sttt et e n e et e s aeesae e ne et e eaneeanesanennees 370
13.4.1 Reset by the RESETP PNl ...c..cccooiiiiiiiiiiiiiiiiciiccecececeeeeeeeeee e e 370
Section 14 Timer Unit (TMU)......oveeiiiiiiiiiiiieeeeeee e 371
T4.T FRALUIES ..ottt st sttt s be st naen 371
14.2 RegiSter DESCIIPHIONSeeitiiiieiieie ettt ettt ettt ettt e st e bt et et e eneeseeenneas 373
14.2.1 Timer Start Register (TSTR)cocuieiiiiiiiieieeee e 374
14.2.2 Timer Control Registers (TCR)cooviiiiiiiiiiiiiiniiieeeeceeee e 374
14.2.3 Timer Constant Registers (TCOR)ccocceeeiiiiiiiiniiiiiieniie et 376
14.2.4 Timer Counters (TCNT) ..c.uiiiiiiiieeee e et 376
[4.3 OPCTALION ...ttt ettt ettt et h et ettt sate s bt e s bt e bt e bt saaesaeenbeenbeenteeas 377
14.3.1 CoUNLEr OPEIAtION ...c..eetieniieiieiieetierteerte et eteetee sttt et e ette bt ebe e besetesbeesbeebeeneeeaee 377

Rev. 1.00, 02/04, page xiv of xxxviii

144 INEETTUPES ..ottt ettt ettt et sa et ettt et et e be st s bt saeebe st ebesaesbesbeeuee e ensennennens 379

14.4.1 Status Flag Set TIMiNg........ccceveeereriiiieieienenencereeieee ettt nnens 379
14.4.2 Status Flag Clear TImMingcccceoieiiiiiiniinieiieiieteeeeeeeee et 379
14.4.3 Interrupt Sources and PriOTItiescccceerieiriieniieinieiieeie e 380
L4.5 USAZE INNOLES c...eeutieiteeiieeitesttete ettt ettt ettt ettt sb e bt et e e et s bt sbtesbee bt et e eatesbaenbe e beensean 380
Section 15 Serial I/O with FIFO (SIOF) ..., 381
) T B Y 1 1 (RS S 381
15.2 INPU/OULPUL PINS ..ottt sttt 383
15.3 ReISIEr DESCIIPHONS ..ceuvieiiieiiiieeiiieeieeeite ettt e etee st e sbee st esbeesabeesbeesabeesnbeesabeesaseesases 384
15.3.1 Mode Register (SIMDR)......cccoriiriiniiiiinienieieeieeteeitesitesie ettt 384
15.3.2 Control Register (SICTR)cccecviiriiiiiiiniinieieieeteeteeeeee et 387
15.3.3 Transmit Data Register (SITDR)c..cccieiiiiiiriiiieiieieee et 390
15.3.4 Receive Data Register (SIRDR)cccooiiiiiiieiiiieieeeeee et 391
15.3.5 Transmit Control Data Register (SITCR)ccceveeiiiriirierieeeeee e 392
15.3.6 Receive Control Data Register (SIRCR)ccoeviiviiiriiiiiiiiniieieeieeieeeeeee, 393
15.3.7 Status Register (SISTR) ...cc.cooiiriiiiiiiiiieecet et 394
15.3.8 Interrupt Enable Register (SIIER).......ccccoouiriiriiniiiiniiiieniececectesceeeee 399
15.3.9 FIFO Control Register (SIFCTR)c..cccieiiiriiiieiieiieieeeeeeeee et 401
15.3.10 Clock Select Register (SISCR)c.covuiiiieiieieeieseeieee ettt 403
15.3.11 Transmit Data Assign Register (SITDAR)ccccoceeirieiiiniininincnencneeecceieene 404
15.3.12 Receive Data Assign Register (SIRDAR)........coovueiviiiniiiiniiiniienieesieeieeseeee 405
15.3.13 Control Data Assign Register (SICDAR)ccceeviriiiriiniiniinieciceeceieeee 406
15.3.14 SPI Control Register (SPICR)c.ccooiiiiiriiniiniiiieeienieneeeeeee et 408
15.4 OPETALION ...ttt ettt ettt et e bt et et e eatesbt e bt et e eatees b e sseesbeenbeenbeenteeneesae 410
15.4.T Serial CIOCKSiiiiciiieieiiiieeeiiie e citee ettt et e et e e et e e eereeeeebeeeesnsseeesssseeesnnseaeans 410
15.4.2 Serial TIMNE c..ooveevereeiieieietentietere ettt ettt ettt et saesre e sae e et ennennens 411
15.4.3 Transfer Data FOrmat..........ccccooviiiriiiiiiiiniiinieeeieesieeseese et 412
15.4.4 Register Allocation of Transfer Dataccceoeeveeiieniiniinieninniiceenceceeee 413
15.4.5 Control Data INterfacecoceveerieniiiiiniinieieieeteeteeeeee et 416
I15.4.6 FIFO....oiiiiiieeeeee ettt ettt bbbt b ettt esaeesaeeneeenteens 417
15.4.7 Transmit and Receive Procedures...........cccvevevieeciieiiieciiiecieeceecreeee e 419
15.4.8 INEEITUPLS ...ceeieiiiiiiiieiieieeeeee ettt ettt ettt e e s s st sae e eaneene 424
15.4.9 Transmit and Receive Timing.......cccceevuierieiiiieniienieerieerie e 426
15.4.10 SPIMOME ...ttt sttt ettt ettt st st eae et eae 430
I5.5 USAZE INNOLES c..eeuieiieeiieeitesitete ettt ettt sttt et et s bt sbtesbee bt et eatesbaenbe e beensean 433
Section 16 Serial Communication Interface with FIFO (SCIF) 435
DT B e 1 1 (RS 435
16.2 INPUI/OULPUL PINS ..eeiiiiiiiiieiiie ettt sttt et e st st esabeenaees 438
16.3 RegiSter DeSCIIPLIONS ..c..covueiiiiiiiiiiiieeitesteteee ettt et sttt s sbees 439
16.3.1 Receive Shift Register (SCRSR).....cccccoviiiiiniiniiieiinienteeeeee e 440
16.3.2 Receive FIFO Data Register (SCFRDR)ccccoiiiiiiiiiiiiiiieeceeeeee 440

Rev. 1.00, 02/04, page xv of xxxviii
RENESANS

16.3.3 Transmit Shift Register (SCTSR) ..cccuoeiiiiiiiiiee e 440

16.3.4 Transmit FIFO Data Register (SCEFTDR)........cccccvevieiiieienieeeeeeceeeeee e 441
16.3.5 Serial Mode Register (SCSMR)......cccoeviiiiiiieiieieeieeieeee e 442
16.3.6 Serial Control Register (SCSCR).....cccuiiviiiiiiiiiieeiie ittt 445
16.3.7 FIFO Error Count Register (SCFER)c.ccoceiiiniiniiiiiiinieeeeneeeeneee e 449
16.3.8 Serial Status Register (SCSSR) ..c..oovieriiiiiiiiiiiiieeceeeeeeeteeee e 450
16.3.9 Bit Rate Register (SCBRR)oocuiiiiiiiiieiee et 456
16.3.10 FIFO Control Register (SCFCR)ccceiiiiieiieieeieeieeeee e 458
16.3.11 FIFO Data Count Register (SCFDR).........ccccooiirieiiieiieieeieeeeee e 461
16.3.12 Transmit Data Stop Register (SCTDSR) ...cccceevviiriiiinieiiiiieeie et 461
L60.4 OPCTALION ...ttt ettt ettt et et h et et et sbbesbee s bt e bt e bt saaesaeenbeenbeenteeas 462
160.4.1 OVEIVIEW ..ouiiniiiiiiiiiciicecect ettt st s 462
16.4.2 ASynchronous MOdE..........ccoeeiiiiiiiiiiiiieiteie ettt 462
16.4.3 Serial Operation in Asynchronous Mode..........ccccocceveevienieneninieninenenceeeeenenn 464
16.4.4 Clock Synchronous Mode...........cccuevuererininininieieeieieiese sttt 475
16.4.5 Serial Operation in Clock Synchronous Modec..ccceeeevvierrieniiienceenieennenn. 476
16.5 SCIF Interrupt Sources and DMACcocoviiiiiiiiniinienieeeeeee sttt 485
16.6 INOES ON USAZE ...ttt ettt ettt et eb ettt sb et e bt et saeesaeesbee st eaeeaeeene 487
Section 17 Boot Function (BOOT).........coooviiiiiiiiiieeieciieeeeeee e, 491
T7.1 FEATUTES ..ccutteiieeeiteeeite ettt ettt ettt ettt e b e et e s bt e et e e s bt e eabeesabeesabeesabeesanee s 491
172 INPUI/OUIPUL PN eeiiniiiiiiiiieece ettt ettt ettt et e s baesaeee s 493
17.3 RegiSter DESCIIPLION ...c..eevuiiiieiiiiieiieriteritecetc ettt sttt e b e ens 493
L7.4 OPCTALION «..cneeniiiniieiiieiteeitettet ettt ettt et h et et et sbtesbee s bt e bt e bt saaesaeenbeenbeenteeas 494
17.4.1 Address Space in BOOt MOdE..........cccecuevieniininininieieieicieietene e 494
17.4.2 Procedure for Execution of Boot Processingcc.cecceeeecverenenenencneeeeneennenn 495
17.5 USAZE NOTE.......eeuiieiieiieiieteee ettt et et st ae et e e e ene e eaneen 498
17.5.1 Endian when Using Boot FUNCLIONcccoiiiiniiiiiiiieiiiciieeec et 498
17.5.2 Clock Frequency and Data Transfer Rate when Using Boot Function................ 498
Section 18 USB Pin Multiplex Controller (USBPM)......c.ccccooiiiiiiiiiniiiinieens 499
T8l FEAUTE ..ottt ettt et ettt e st e st e s bt e eabeesabeesabeesabeesanee s 499
18.2 INPUt/OULPUL PINS ..ottt st 501
18.3 ReISIEr DESCIIPION .eouuvieiiiiiiieiiieiieete ettt ettt ettt et e e e e te e bt e e abeebeeesasesaeees 502
18.3.1 EXCPG Control Register (EXCPGCR).....c..ccoceeviriiniiniiiiiniinienieieeesie e 502
18.4 Examples of EXternal CirCUIL........ccceevuiriiriiniieiiieiinicritenieeeeteste sttt 505
18.4.1 Example of the Connection between USB Function Controller
and EXternal CirCUIt.......eoviiiiieriiiiiieeiec ettt 505
18.4.2 Example of the Connection between USB Host Controller
and EXternal CIrCUIL......ocueeieriirieneiieiie ettt s 507
I8.5 USAZE INOLES ...eouiuieitiiteiteteeit ettt ettt ettt st sttt ettt e bt esb e e bt e bees bt saeesbeesbeenbeenbeenee e 508

Rev. 1.00, 02/04, page xvi of xxxviii
RENESANS

Section 19 USB Host Controller (USBH)oovviiiiiiiiiiiieiieeeeieeeeeeee e 509

TO.T FEATUTES ..ottt ettt ettt e s e e s bt e s it e st e s bt esabeesbteesabeennteesaaeenaees 509
19.2 INPUI/OULPUL PINS .eiiiiiiiiieiiie ettt et e st st esabeenaes 510
19.3 RegiSter DeSCIIPLIONS ..c..cevutiiiiiiiiiiieeiteieeieete ettt et sttt et s siaesbees 511
19.3.1 HcRevision Register (HREVR)coocoiiiiiiiiiiniiiiiiiciceccctececeee 512
19.3.2 HcControl Register (HCTLR)......cccceiiiiiiiiiiieiieieeieeeete et 513
19.3.3 HcCommandStatus Register (HCSR)coeoiiriiiieiieieeieceeee e 516
19.3.4 HclInterruptStatus Register (HISR)ccccocveiiniiniinininiiieieiciccnccneeeeceeene 518
19.3.5 HclnterruptEnable Register (HIER)........cccccoovuiiriiiiniiiniiiniieieeieeeeee e 521
19.3.6 HclnterruptDisable Register (HIDR)cccocceriiniiniiiniiniiniiiiicieceenceceee 524
19.3.7 HcHCCA Register (HHCCAR)cooiiiiiiiniiiiiiieienteteeeeee et 526
19.3.8 HcPeriodCurrentED Register (HPCEDR)cccooiiiiiiiiniiniicec e 527
19.3.9 HcControlHeadED Register (HCHEDR).........ccocciriiiniiiniiiniienieeieeieeeeeee, 527
19.3.10 HcControlCurrentED Register (HCCEDR)c...coviiiviiiiiiiniiiieeieeieeeeee, 527
19.3.11 HcBulkHeadED Register (HBHEDR)ccocoueiiiiiiiiiiiieiiiecieeeeieeeeeeeee 528
19.3.12 HcBulkCurrentED Register (HBCEDR).........cocuoiiiiiniiiniiniinieciiceenceieeeee 528
19.3.13 HcDoneHeadED Register (HDHEDR)cccccocieiiiiiiniiniinieniececeeceieeiee 528
19.3.14 HcFmlnterval Register (HFIR)ccooiiiiiiiiiieieieeeeee e 529
19.3.15 HcFmRemaining Register (HFRR)........cccccoiiiininininiiiicicicncncnceeeeeeeene 531
19.3.16 HcFmNumber Register (HFNR).......ccccooiiiiiiiiiiiiiii e 532
19.3.17 HcPeriodicStart Register (HPSR)ccocuiiiiiiiiiiiieeeeeee e, 533
19.3.18 HcLSThreshold Register (HLSTR) ...cocuiiiiniiniiiiniinienieteieeecec e 534
19.3.19 HcRhDescriptorA Register (HRDRA)........oociiiiiiiiiiniiiiieiecceceececeee 535
19.3.20 HcRhDescriptorB Register (HRDRB)c..cocooiriiiiieiiiiiciinicnineneeeeeeeeene 537
19.3.21 HcRhStatus Register (HRSR)ooouiiiiiiiiieeeeeeeeeeee e 538
19.3.22 HcRhPortStatus Register (HRPSR)ooiiiiiiiiiiiiieeeeee 540
19.4 Data Storage Format of USB Host CONLIOIIETcc.eevviiiiieiiiieiieniieeieecieeeieesiee e 546
19.4.1 Storage Format of Transferred Dataccccooovevieiiniiniiniininiicieceeeee 546
19.4.2 Storage Format of DeSCIIPLOL......ccoueiuiiiiriiniiniieieeieeierte sttt 546
19.5 Usage Restrictions of USB Host CONtIOLIET........c.cccveievieniininiiieieieienieneneseeeeeeeeenens 546
19.5.1 Restriction of Reset CONLrOL...........ccooviiiieiiirierieiieieeieeee et 546
Section 20 USB Function Controller (USBF)cooovviiiiiiiiiiiiiiiieeeeeeeeeens 547
20,1 FEALUIEScueetieiienieeteeiterit ettt et ettt ettt ettt e sbt e s bt e b e e bt s bt satesbeenbee bt eateeaaesbeenbeenbeas 547
20.2 INPUt/OULPUL PINS ..ottt sttt e bees 549
20.3 RegiSter DESCIIPLIONSeeiuietieiiiieeie ettt ettt sttt ettt sbe et et et e eeeesaeesaeas 550
20.3.1 Interrupt Flag Register O (IFRO)cccoceeiiiiniineninineeeeeeceseeesc et 551
20.3.2 Interrupt Select Register O (ISRO)......coceeveeoieriineninineneeieecenesese e 558
20.3.3 Interrupt Enable Register O (IERO)cooouiiriiiiiiiiiniieniieriiecicecieeeeeeee e 563
20.3.4 EPOi Data Register (EPDRO1)ccccovuiiiiiiiniiiiiiieieniceeeeeceesteeeneeeee e 566
20.3.5 EPOo Data Register (EPDROO)cccccovuiiiimiiniiniiiienienieseesieeieee e 567
20.3.6 EPOs Data Register (EPDROS)cc.cooiiiiiiiiiieiieieeeeieseesiee et 567

Rev. 1.00, 02/04, page xvii of xxxviii
RENESANS

20.4

20.5

20.6

20.7
20.8

20.3.7 EP1 Data Register (EPDR1)cccoiiiiiiiiiiieie e 567

20.3.8 EP2i Data Register (EPDR21).....cccoceetriiiiiiniininenieerceteecteeneese s 568
20.3.9 EP20 Data Register (EPDR20)ccceeiiiiiiiieiieieeeeee et 568
20.3.10 EP3i Data Register (EPDR31)........cccociiiiiiiniiiiiieeiie ittt 568
20.3.11 EP30 Data Register (EPDR30)cccueoiiriimiiiiiiienienieneeseeceee et 569
20.3.12 EP4 Data Register (EPDR4)coccooiiiiiiiiiiiniiieieeeeeeee et 569
20.3.13 EP5 Data Register (EPDRS)cociiiiiiiiiiieee et 569
20.3.14 EP6 Data Register (EPDRO)cccoceriririiiiiininenieecccteectee et 570
20.3.15 EPOo Receive Data Size Register (EPSZ00)ccveveeiierierieeeeeieeeeseeieeiene 570
20.3.16 EP20 Receive Data Size Register (EPSZ20)coocveviieniiiniiiiiiieeeeeeeeen 570
20.3.17 EP30 Receive Data Size Register (EPSZ30) ..c..cooceeveiviiiiininiiiiiinienceieeiens 570
20.3.18 EP6 Receive Data Size Register (EPSZ0)cc.cocevieriiniininiiiiinieneenceiceeene 571
20.3.19 Trigger RegiSter (TRG) ..c..coueeeruiruirieiiieieienienreneeeeeeeeetetctese e 571
20.3.20 Data Status Register (DASTS)....cccuiriirieieeeeeeeeseeee et 572
20.3.21 FIFO Clear Register (FCLR) ...c..ccceeotetiiiniineninineneeeeeeteeetenie st 572
20.3.22 DMA Transfer Setting Register (DMA)ccccueeviiriiiinieiiieiiieeiee et 573
20.3.23 Endpoint Stall Register (EPSTL)........cocoiiiiiiiiiiinienieneeeceee e 574
20.3.24 Configuration Value Register (CVR)cccoviiiiiiiniiiiiiiiiciiceciecenceieeee 575
20.3.25 Time Stamp Register (TSR) ..cocueiiiiiiiiieeeeeee e 576
20.3.26 Control Register (CLTR)ccciiiiieiiiieiieiieieee et 576
20.3.27 Endpoint Information Register (EPIRnO to EPIRNS).....c..ccccoeveninincncnieecnenn 578
(00155 21110) KOO OO OO PRR PPN 586
20.4.1 Cable CONNECHION......c.coeiieiiiiiiriieiecit ettt 586
20.4.2 Cable DiSCONNECHIONccueruiriiriieiieiieietetee sttt s 587
20.4.3 Control TranSTer.......cotiiiiiiiii ettt sttt 587
20.4.4 EPI1, 4 Interrupt-In Transfer........cccoceeverienieieninineneneececectee e 593
20.4.5 EP2i, 5 Bulk-In Transfer (Dual FIFOS)cccoecvuieiiiiiiieieecieeiee e 594
20.4.6 EP2o0, 6 Bulk-Out Transfer (Dual FIFOS)...........ccoovviuiiiiiiieiiiieiiee e 595
20.4.7 EP3i Isochronous-In Transfer...........ccccocuevieviiiinininininieicicicieniecne e 597
20.4.8 EP30 Isochronous Out Transfer...........cccccevivinininininiiiiiiciciecce e 599
Processing of USB Standard Commands and Class/Vendor Commandsccc.ceue... 601
20.5.1 Processing of Commands Transmitted by Control Transfer.........c..ccccecceveeeennen 601
Sl OPETALIONS......cueeutinreierteriieteeieetetetene sttt ettt et et sttt st bt et et et e saesbe s bt eaeeaseneennenee 602
20.6.1 OVEIVIBW .eouiiiiiiiiiiiienieeie ettt sttt ettt st ste ettt e e satesanesaeesueenaeeaeennesneenne 602
20.6.2 Forcible Stall by APPlICAtiONcc.eeveeriieriieiieienienteneeeee ettt 602
20.6.3 Automatic Stall by USB Function Module.........c..ceceevieriineeniininiinienceieeiens 604
Example of External Circuitry for USB Function Controllercccccoveviiriienceneennnnns 605
USAZE INOLES ...ttt ettt et ettt e s saeesaeeaeesneenneeas 606
20.8.1 Setup Data RECEPLIONc..covuieiiiiiiiiiiiiicieieeeeeeeee e 606
20.8.2 FIFO ClIRAT ...cuueetiriiniienieeieeieete ettt ettt ettt ettt s s saeesae e eane e 606
20.8.3 Overreading/Overwriting of Data RegiSter........ccccevvervieriineininiiniinienceieeiens 606
20.8.4 Assigning EPO INterrupt SOUICESccouveriieriiriiriiniienienieenieee et 607
20.8.5 FIFO Clear when DMA Transfer iS Set......ccccoviererierierieneeneeie e 607

Rev. 1.00, 02/04, page xviii of xxxviii

RENESANS

20.8.6 Note on Using TR INTEITUPEcceeriiiriiiiieiieieiieiceeee et 607

20.8.7 Note on Clearing and Transition to Software Standby Modec..ccccecereeueenee 609
20.8.8 Main Clock Usage when Using Bus Password Function.........c..ccccecceeeienienicnnene 610
20.8.9 Peripheral clock for USBcooiiiiiiiiiiiiiiiiieeteeeeee et 610
Section 21 Bluetooth Interface (BT).....coooovviiiiiiiiiiiii 611
211 FEALUIES ...ttt ettt ettt h ettt et et e e bt e s bt e bt e bt e bt satesaeenbe et e enteeneeeneenbeenbean 611
21.2 INPU/OULPUL PINS ..curiniiiiiiiiiriieiieteetertet ettt ettt ettt 613
21.3 RegiSter DESCIIPLION.cuirtiriiriirtiiiieietenteeteste ettt ettt ettt bbbt ae e 614
214 RE-TCINEITACE ...couuiiniiiiiiiiiiieeeieeteeetet ettt et sttt saeen 614
21.4.1 Connection With REF ICS.......ccccoiiiiiiiiiiiiiiieiceteeeeee et 614
21.5 Voice Codec IC INLEITACE.coveiriiriiiiieiteiteeeetestetee ettt 616
21.5.1 Voice Codec (STLC7550) Interfaceccceeeeeueieeeiiiiieeiiee e 616
21.5.2 Voice Codec (MC145483) INterface.........cceeveveeecueeeiieeieeciieeieeciee e eve e 617
21.6 Low-Frequency Clock Oscillator Interface...........cccecuevvererininencnieneenienenesenceeeceeenne 618
21.6.1 Using RTCSEL1 Bit to Select Clock Function..........ccccccevcueervieeniienieenieeneeennen. 618
21.6.2 Frequency-Conversion Circuit Operationsccoceevervuereereenennueneeneeneenuenns 619
21.6.3 Note on Connecting External Crystal Resonatorcc.ccoceveenenncneencenennnenns 620
21.7 Power-On Reset/Clock-Resume Control CirCuitcceerueerierrierienienieenieeieeieseeseeeenn 621
21.7.1 POWET-ON RESEL...ccuuiiiiiiiiiiiiii ittt et 621
21.7.2 Clock-Resume CONtIOlcc.ceviiiriiiniiiiniieniienieenieeetee ettt 622
21.8 Bluetooth HCI/TCI Commands and APcccccociriiniiniininiiiiinecneeiecieereeeeseeeen 622
Section 22 D/A Converter (DAQ)... .ot 623
22,1 FEALUIES....cueetietieteete ettt ettt ettt ettt ettt e et e e bt e s bt e bt e bt e tesatesaeenbe e bt enteeneeebeenbeebean 623
222 INPUI/OULPUL PINS ..covviniiiiiiiiriieiietccertt ettt et 624
22.3 RegiSter DESCIIPLIONS «....eerviiiriiriiitieiietententeste ettt ettt et sttt ettt et sae bbbt e e e 624
22.3.1 D/A Data Registers 0 and 1 (DADR_0, DADR_1) ...coocuiiviiiniiiiniienieenieerieeee, 624
22.3.2 D/A Control Register (DACR)c.coriiiiiriiniiniiiieeeerteseeeee et 625
22,4 OPCTALION ..ottt ettt ettt ettt ettt et et e sbte s bt e s bt e bt e bt eatesbeesbee bt enteeanesanesbaenbean 625
Section 23 I/O POTES ...ccouviiiiiiiieieeeee ettt 627
G T B = R USSP 627
23.1.1 RegiSter DESCIIPLION ...eeivuiieriiieriiieeieerieeeie ettt ste et e sateesateesibeesaeeesaneeaeas 627
23.1.2 Port A Data Register (PADR)......ccccoviiiiiiiniiiiiiieienieeeeee et 628
232 POIE B ottt bbbt h ettt b e bt ebe et e nee 629
23.2.1 RegiSter DESCIIPHONo.eeveuiiiiiiriirtieiteiteieectete sttt sae e st 629
23.2.2 Port B Data Register (PBDR)ccccceiiiiiiiiiiiiiiiiiiniteeeeeceeeee e 629
2 TR B = A D T USSP 631
23.3.1 RegiSter DESCIIPLION ...eeiiuiieriiieriiieeieerieeeteesie ettt ettt e steesiteesareesaeeesaneeaeas 631
23.3.2 Port D Data Register (PDDR)......c..cooiiiiiiiniiiiiiinienieteieeeee st 631
2314 POTLE .ot b et h ettt b e st eae et nee 633
23.4.1 RegiSter DESCIIPLIONecuuiiuiiiiieitietieieeie ettt ettt ettt sbe et e eesete e saeeeeeneeeas 633

1 T T 03 4 A € BRSPS 635
23.5.1 Register DESCIIPHON «...c.cocuiriiriiniirinieriteiieteestest ettt st 635
23.5.2 Port G Data Register (PGDR).......ccccociiiiiiiiiiiiiieic ettt 636

G T I o0 4 A = PSSR 637
23.6.1 Register DESCIIPLION «...ovueeiiiiiiiiiiiiriieieeieeteeteette sttt et st 637
23.6.2 Port H Data Register (PHDR).........cccoiiiiiiiiiiieeeee e 637

Section 24 Pin Function Controller (PFC)cooovmiiiiieiiiiieiiiiiiiieeeeeee e, 639

241 OVETVIEW...eiiiuiieiiiesiiieetteette st e st e st e st e s bt e sabeesabeesabeesabeesabaesabeeeaseesabaesnbeesasaesnseessaesnseesn 639

242 RegiSter DESCIIPLIONScooutetieiirieriieriteritete ettt ettt ettt sttt et et e saeesbeenneeas 641
24.2.1 Port A Control Register (PACR)cccociiriiiiiiinienienieeeeeeeeeeeeeeeeee e 641
24.2.2 Port B Control Register (PBCR).........cocuiiiiiiiiiiieiecieeeee e 643
24.2.3 Port D Control Register (PDCR)c.cccoeriiiieiieieeeceee e 644
24.2.4 Port E Control Register (PECR)c.ccciriiiieriieieee et 646
24.2.5 Port G Control Register (PGCR)ccceoriiriiiiiiieiieiiieeee ettt 647
24.2.6 Port H Control Register (PHCR)cocoeiiiniiiiiiiiinienicccececcecececeeee 649
24.2.7 Pin Select Register A (PSELA)cooiiiiiiiiiiiiiieeeeeeeee et 650
24.2.8 1/O Buffer Hi-Z Control Register A (HIZCRA)cccoeviiiiiiiniiieeeeeeeeeee 652
24.2.9 Noise Canceller Control Register (NCCR)........ccceviiriiiiierienieeee e 654

Section 25 User Break Controller............ooovieeiieiniieeiieeeieecieeeieeesiee e 655

25,1 FRALUIES ...uvieitieeiieeiieette et e ette et e et e e eteeebee e beessbeeeabeessbeessseesnbeeesseesssaeanseesnsaensseesnsaennseens 655

25.2 RegiSter DESCIIPLIONScooutetiiiirieriieniteritee ettt ettt ettt sttt et e e et s sbeesbeenreeas 657
25.2.1 Break Address Register A (BARA)c.coiiiiiiiieieeeeeee e 657
25.2.2 Break Address Mask Register A (BAMRA)........coooiiiiiiiiiiiniiniceeeeceeeee 658
25.2.3 Break Bus Cycle Register A (BBRA)......ccooeririrenirieciccieenesceceeeeeenne 658
25.2.4 Break Address Register B (BARB)ooviiiiiiiiiiiiiiiieceeececeeeee e 660
25.2.5 Break Address Mask Register B(BAMRB)cccccooiiiiniiniiiniiiiiicneenceceeee 661
25.2.6 Break Data Register B (BDRB)......cccuoiiiriiiiiiiiierieneeieeeeecee e 661
25.2.7 Break Data Mask Register B (BDMRB)........ccccoeiiiiiiiiiiiiicceeeeeeee 662
25.2.8 Break Bus Cycle Register B (BBRB)ccccoccviviriiiiiiiciiniiencneecnceeeeeene 663
25.2.9 Break Control Register (BRCR)cccccvevuieiiieiiieiecerieeeieee e 664
25.2.10 Execution Times Break Register (BETR).......cccceeviiiniiiniiiniiiiiiienecceeee 667
25.2.11 Branch Source Register (BRSR).....ccccoiiiiiiiiiiiiiiiniiccceeeceeeee 669
25.2.12 Branch Destination Register (BRDR).....cc..cocueiiininiiniiiniiniinciiciceceieeeee 670

25.3 OPCTALION ...ttt ettt ettt ettt et e bt et eat e et e e st e e bt enteeateestesbeenbeenbeenbesaeesaeenseenteans 671
25.3.1 Flow of the User Break Operationc.ccocereeererieieneenieneneneneneeeeseeeeenne 671
25.3.2 Break on Instruction Fetch CycClecccooevinininininiiciecienceececeeeecenne 672
25.3.3 Break on Data AcCesSs CYCle.......iiviiiniiiriiiiiieieeieerreete ettt 673
25.3.4 Break on X/Y-Memory Bus CYCleccccoieviiiiiiriiniinieniececcec e 674
25.3.5 Sequential BreaK......c..cooeiriiiiiiiiiiiiiieeieeieeteetesteste et 674
25.3.6 Value of Saved Program COUNLETcc.cevuieuieiieieniieneenieeie et 675

Rev. 1.00, 02/04, page xx of xxxviii
RENESANS

25.3.7 PO TIACE vttt ettt e e e e et e e e e e s ettt e e e e e e s ennnaaneeeeas 676

25.3.8 Usage EXAMPIES.......cooiiiiiiiiiiieiicicce ettt 676
25.4 USAZE INOLESeourieuiieereeiierieeieeie et ettt ettt ettt e e st et e st ene s nesaeesaeesseesn e ean e e e esneeneenneen 681
Section 26 User Debugging Interface (H-UDI).........ccccovveviiieniiiiniiieiiecen 683
20.1 FEALUIES ..ottt ettt st s 683
26.2 INpUt/OULPUL PINS ..ottt et sttt et sbeenaeas 684
26.3 RegiSter DESCIIPLIONS «.....eoviriiriiriiitieiietententeste ettt ettt sttt et et sae bbbt ee e e 685
26.3.1 Bypass Register (SDBPR)cccoceiirimiiiiiiietcenieseeeeeteteeese e 685
26.3.2 Instruction Register (SDIR)cccoovviiiiiiiniiiiiieniecieeteee et 685
26.3.3 Boundary Scan Register (SDBSR)cociriiniiniiiiiiieienieeeece e 686
26.3.4 ID RegiSter (SDID) ...cc.coitiiiiriiiiieienieeieeieeiteettestt ettt st sttt e i ens 691
20.4 OPCTALION ...ttt sttt ettt sttt ettt ettt et s bt bt eat sttt e b esae st e e besue e e eneennenne 692
26.4.1 TAP CONIOIIETeonieiieeieeiiee ettt sttt e e e sneeeeens 692
26.4.2 Reset CONFIGUIALIONocueviiriiriinririieiieitetetet ettt ettt st eanennens 693
26.4.3 TDO OUtput TIMING cevveerrieniieriienieeniee ettt ettt e sbeesiteesreesateesaseesseeesaseenaees 693
20.5 BOUNAATY SCAM .c..eiitiiiiiiiiieiietete ettt sttt ettt bt e sb ettt et s e b enbeen 694
26.5.1 Supported INSIUCTONS ..c..eovueriiiieriieieeiieteeiteett ettt sttt saee e e 694
20.5.2 CAULIONS c..veneeeuieeiieetiete ettt et e st e bt et et e sae e s bt e bt enteeaeeebeesbeenbeenbesatesaeesueenseenseans 695
26.0 USAZE INOLESenveveeiieiieierteetenie ettt ettt sttt ettt et e b e st b e sbe bttt et sa e b saeebeeaeene e 696
Section 27 List Of REZISIEIS ...ceevuiiiiiiieiiiieeiieeeiteeeee et 697
27.1 Register Addresses
(by functional module, in order of the corresponding section nUMbErs)cc.ccevueennenne. 698
27.2 REZISIET BIS....eiiuiiitiiiiiieiie ettt sttt ettt sb e bttt et sbeenaean 705
27.3 Register States in Each Operating Modecocceceeciiriiniinininenieienceneseseeeeeeeenee 722
Section 28 Electrical CharaCteristiCscevuevieruieiierieniiiiienienieeieniesieeeeenen 729
28.1 Absolute Maximum Ratingscoceereerieriinieniinieeieiie ettt 729
28.2 DC CharaCteriStICS ...eveviruieiiriieiiiiieiieientiste sttt ettt sttt ettt ae st s e ne 731
28.3 AC CRATACLEIISTICS ..euveeueeruieriienteeteeteeiteette st et et eateettesbtesbe e beeteeatesaeesbee bt enteenseeneesbeenbean 735
28.3.1 CIOCK TIMIIZ c.veveveneeiieieienienteeteste ettt ettt et ettt ettt et sr st be s eat et ensennens 736
28.3.2 Control Signal TIMINgcccociiiiiriiriiiiiiiiiiieeeee et 740
28.3.3 AC BUS TIMINZ...eeiiiiiiiiiiieniieiiteeieereeste ettt ettt site bt e sbtesbeesbaesasees 743
28.3.4 Basic TIMING.c..ccoueiriiiiirieeieniieieeeee ettt ettt st st eas 745
28.3.5 BUrst ROM TIMNg ...c..eooueriiriiniieiiiierie sttt ettt st st s sae e eaee e 752
28.3.6 Synchronous DRAM Timingccceerueeriirienieniieiieieeiesieesiee e ee st 753
28.3.7 Peripheral Module Signal Timing.........cccccovevineriniriienieienieneneneneseeeeeereeens 776
28.3.8 SIOF Module Signal TIimingcccceveeeeeeuenienenieniineneeeeeetenreneesreseeeneeseeneenens 777
28.3.9 SCIF Module Signal Timing.........coceerieerueenieenieeniienieesieesieesieeseeeseeesveenanes 781
28.3.10 USB Module Signal TImingccccceveerieriemeeneeniieienienieenieenie e sieesieeseeeeesieenne 782
28.3.11 USB Transceiver TIMINGcccecuerierieeniiriinieniienieeieetesitesiee et st seeenie e eas 783
28.3.12 Bluetooth Interface (BT) Timingcoceevuerieriieniieieeieeieseeseee e 785

Rev. 1.00, 02/04, page xxi of xxxviii
RENESANS

28.3.13 AC Characteristic Test CONItIONSceouerieriierieriierieiie ettt 789
28.4 D/A Converter CharaCteriStiCSeeuuerrrerteerteereestesiesteereeeteeeeseesseesseesseessessesneesseesseenseens 790
APPEINAIX oottt et e st e e st e e sabeeesabeeenabeeens 791
AL PINSTALES oo et 791
B. Usage Notes for Oscillator circuit with External Crystal Resonator..........cc.ccoceveenieenene 795

B.1 Recommended OSscillator CIrCUIL........oeuerierieriieieeieeieeet ettt 795

B.2 Note 0N PCB dESIZN.....coviriiriiriiniieiieieiciesienenceeee ettt 796
C. Package DIMENSIONScoueeueruiriieieietertenterte ettt ettt st ettt se e st ebe e eneennens 797
X e 799

Rev. 1.00, 02/04, page xxii of xxxviii
RENESANS

Figures

Section 1 Overview

Figure 1.1
Figure 1.2

Block Diagram of SHT7660cccoeriiiiiiieiieciesieeie et 8
Pin ASSIZNIMENL ...eevviiiiieiiieiiieiiecieseeie e ete st et steeaeesteesaeeteesseesseesseesseessessaesseesseensesneas 9

Section 2 CPU

Figure 2.1 Processing State TransSitionS........coeereerierierienienieeie et steent ettt st s 30
Figure 2.2 Logical Address SPacCeeeoueeiiiieiieiteie ettt s 32
FAGUIE 2.3 P4 ATCA....oeiiiiieei ettt ettt ettt st et et et et e e st e s st e s seeseenseenseennesnnennnenne 33
Figure 2.4 Physical Address SPACE.......cccuevierieriieieeieriesit ettt etesttestte e etesaeseaesseesseesesaesseenes 34
Figure 2.5 External Address Space and Mounted Space (Area 0).......ccceevveeveveereeneenieeeeeeeneenns 35
Figure 2.6 Register Configuration in Each Processing Mode...........ccccooeeiiiirieieneneiccceceeee 37
Figure 2.7 General REGISTETScciiiiuiriiieieieeieee ettt ettt ettt seeebe e eneeneene 39
Figure 2.8 System Registers and Program COUNLETcocieiiieiirienieiieieee e 40
Figure 2.9 Control Register Configurationcccccuereerierireciieieniesiesieeie e see e sae e snnees 44
Figure 2.10 Data Format on Memory (Big Endian Mode)cccoeeuvrieiienienieiciie e 46
Figure 2.11 Data Format on Memory (Little Endian Mode)ccecvvierienieciiiiiiiereeeeie e 46
Section 3 DSP Operating Unit

Figure 3.1 DSP Instruction FOrmat.........ccoooiiiiiiiiiiiiiieiieeeeeeee et 74
Figure 3.2 CPU Registers in DSP MoOde..........ooiiiiiiiiiieieeeeeeeee e 76
Figure 3.3 DSP Register Configurationecceecuerierieniesiieieeiesieesitesieeiesaeseeseesseesseenessnens 80
Figure 3.4 DSP Registers and Bus CONNECHONSc.cccuerierireriieieeieniesiiesieeneeeee e seeseeeneeeneens 97
Figure 3.5 General Registers (DSP MoOd@)ccceevieriieiieiieieeiieieere ettt 100
Figure 3.6 Sample Parallel DSP Instruction Program.............ccccecereienineniniececeeeee e 113
Figure 3.7 Examples of Conditional Operations and Data Transfer Instructions 115
Figure 3.8 Data FOIMALScooiiiiiiiieieee ettt see e 117
Figure 3.9 ALU Fixed-Point Arithmetic Operation FIOW.........ccccccvevieninininininceiinicncncnee, 118
Figure 3.10 Operation Sequence EXample.........ccoocvvoiiiieriinieieeieeieeeecee e 120
Figure 3.11 DC Bit Generation Examples in Carry or Borrow Modecccceeevevvenienneenennen. 121
Figure 3.12 DC Bit Generation Examples in Negative Value Mode.........c.ccccoeoeeeienincnnneenne. 121
Figure 3.13 DC Bit Generation Examples in Overflow Mode...........ccccceririnnieieneneiciceeeee 122
Figure 3.14 ALU Integer Arithmetic Operation FIOWccoocieiiiiiiieiiieiieeeeeeeee e, 123
Figure 3.15 ALU Logical Operation FIOWcccccceeieiiiiiiiiiiiiiesieiecee e 125
Figure 3.16 Fixed-Point Multiply Operation FIOWcccccvroiiriiinienieiee e 127
Figure 3.17 Arithmetic Shift Operation FIOWccccooieriiiviiiciiiieieeeeee e 129
Figure 3.18 Logical Shift Operation FIOWccccueiiiiiiiiiiiieeee e 131
Figure 3.19 PDMSB Operation FIOWcccooiiiiiiiiiiiiic e 133
Figure 3.20 Rounding Operation FIOWccoooiiiiiiiiiiiieeeeeeeee e 135
Figure 3.21 Definition of Rounding Operation..............cevverueerreecienienieniieieeieeie e seesseenseenees 136
Figure 3.22 Local Data Move Instruction FIOW.........c.cccoeviiriieiiiiiiinieiecee e 137

Rev. 1.00, 02/04, page xxiii of xxxviii
RENESANS

Section 4 Exception Handling

Figure 4.1 Register Bit CONfigurationc..cocceeiirierieniinieeeeste et 156
Section 5 Cache
Figure 5.1 Cache StrUCUIEccuiiiiiiiiiiet ettt ettt et eneeeeeens 177
Figure 5.2 Cache Search SChemec.cccveiieiieiieieieeeeee et 183
Figure 5.3 Write-Back Buffer Configuration..............cccoecvveieriesienieieeie e 185
Figure 5.4 Specifying Address and Data for Memory-Mapped Cache Accesscccceerueneenne. 188
Section 8 Interrupt Controller INTC)
Figure 8.1 Block Diagram of INTCcooiiiiiiiiiiieeeee et 200
Figure 8.2 Interrupt Operation FIowchart.............ccoooiiiiiiiiiieee e 215
Section 9 Bus State Controller (BSC)
Figure 9.1 BSC Functional Block Diagram.............ccceeieriieniieiiriienieeieeee e 219
Figure 9.2 Logical Address Space and Physical Address Spacecccccveveevveviiecieecieneenieennns 221
Figure 9.3 Normal Space Basic Access Timing (Access Wait 0).......ccceoeviinienienieeninnienienens 251
Figure 9.4 Continuous Access for Normal Space 1 Data Bus Width = 16 bits,

Long-Word Access, CSnWCR.WN Bit = 0 (Access Wait = 0, Cycle Wait =0)...... 253
Figure 9.5 Continuous Access for Normal Space 2 Data Bus Width = 16 bits,

Long-Word Access, CSnWCR.WN Bit = 1 (Access Wait = 0, Cycle Wait=0)...... 254
Figure 9.6 Example of 16-Bit Data-Width SRAM Connection...........c.cceevveevveeeeneeseerienvenenens 255
Figure 9.7 Example of 8-Bit Data-Width SRAM Connection............cceeuerereneneneerienenieneene. 255
Figure 9.8 Wait Timing for Normal Space Access (Software Wait Only)c.cceceevenennnnnne. 256
Figure 9.9 Wait State Timing for Normal Space Access

(Wait State Insertion using WAIT Signal)cccooieviriiiiienierieceeeeeeeeeee 257
Figure 9.10 CSn Assert Period EXPAnSion.............cocoovveveeeeereeeeeeeseeeeseseseseseseses s 258
Figure 9.11 Example of 16-Bit Data-Width SDRAM Connection...........ccccevevererenenereneenee. 260
Figure 9.12 Burst Read Basic Timing (Auto Pre-charge).........coocooeiiiiiiiieiieneecccceeeee 268
Figure 9.13 Burst Read Wait Specification Timing (Auto Pre-charge)..........ccccoooevvniiieinnnee. 268
Figure 9.14 Single Read Wait Specification Timing (Auto Pre-charge)cccceeveevveiennnnnns 269
Figure 9.15 Basic Timing for Synchronous DRAM Burst Write (Auto Pre-charge).................. 270
Figure 9.16 Single Write Basic Timing (Auto-Precharge)ccoocvevierieiieciinieieeeieeieens 271
Figure 9.17 Burst Read Timing (N0 Auto Precharge)........cccecvevierieniieniieiieieseeie e eeeeeeeniens 273
Figure 9.18 Burst Read Timing (Bank Active, Same Row Address)c.cceceeeeieienieneneneenne. 273
Figure 9.19 Burst Read Timing (Bank Active, Different Row Addresses)cccceeveevenenenne. 274
Figure 9.20 Single Write Timing (No Auto Precharge).........cccooeeieiiiiiiiinieeeeeeeeeee 275
Figure 9.21 Single Write Timing (Bank Active, Same Row Address)......c..cocceceeeevenienicncnncnne. 276
Figure 9.22 Single Write Timing (Bank Active, Different Row Addresses).........ccccceuevuerennenne. 277
Figure 9.23 Auto-Refresh Timingccoccvevierieriieiieieeiectesieee ettt eseenne s 278
Figure 9.24 Self-Refresh Timingccooiiiiiiiiieieee e 280
Figure 9.25 Low-Frequency Mode Access TIMINGccoriiiiirieieienieie e 281
Figure 9.26 Power-Down Mode Access TIMINGc.ceoveruieriieriieiienieiieeeere e 282
Figure 9.27 Synchronous DRAM Mode Write Timing (Based on JEDEC)..........cccccvevvrnennne. 284

Rev. 1.00, 02/04, page xxiv of xxxviii
RENESANS

Figure 9.28 Burst ROM Access (Data Bus Width 8 Bits, 4-byte Transfer (number of burst 4),

Access Wait for the 1st time 2, Access Wait for 2nd Time and after 1).................. 286
Figure 9.29 Byte-Selection SRAM Basic Access Timing (BAS =0).....cccoocevieiiieiienenenenee, 288
Figure 9.30 Byte-Selection RAM Basic Access Timing (BAS = 1)..cccceiieiiiiineiieiieeeeee, 289
Figure 9.31 Example of Connection with 16-Bit Data-Width Byte-Selection SRAM 289
Figure 9.32 Waveform in the Event of @ Problemcooveiiiiiniiniiieeeeceeeee e, 290
Figure 9.33 Bus Arbitration Timing (Master Mode)ccecvveierienieniiiieiieneeee e 293
Figure 9.34 Master and Slave Connection EXample.........c.coooeiriiriienininiiceceeeeee e 294
Section 10 Direct Memory Access Controller (DMAC)
Figure 10.1 Block Diagram of the DMACcoooiiiiiiiiee et e 298
Figure 10.2 DMA Transfer FIOWCRAIT...........ccoeoieiiiiieiieriet e 314
Figure 10.3 Round-Robin MOde..........cooieiiiiiiiiieiieieie ettt 319
Figure 10.4 Changes in Channel Priority in Round-Robin Mode...........ccccooeririnincienienencnne. 320
Figure 10.5 Data Flow of Dual Address Mode...........cccoiiiiiiiiiieeeesee e 322
Figure 10.6 Example of DMA Transfer Timing in Dual Mode
(Source: Ordinary memory, Destination: Ordinary memory)........ceceeveveereeeeennen. 323
Figure 10.7 Data Flow in Single Address Mode...........cccerierieriieiieeienieniieieeie e 324
Figure 10.8 Example of DMA Transfer Timing in Single Address Mode...........c.cccccvenenennenne. 324
Figure 10.9 DMA Transfer Example in the Cycle-Steal Normal Mode
(Dual Address, DREQ Low Level Detection)cc.cocveeceeecieeecieeeieeeieesieesveenenenn 325
Figure 10.10 Example of DMA Transfer in Cycle Steal Intermittent Mode
(Dual address, DREQ low level detection).........cceecveeiieeeiienieenieeieecie e 326
Figure 10.11 DMA Transfer Example in the Burst Mode
(Dual Address, DREQ low level detection)..........cccevevuieriieieniesieniieieeie e 326
Figure 10.12 Bus State when Multiple Channels Are Operating...........ccccveeveeeveeciervereeneennennnn. 328
Figure 10.13 Example of DREQ Input Detection in Cycle Steal Mode Edge Detection............ 329
Figure 10.14 Example of DREQ Input Detection in Cycle Steal Mode Level Detection........... 329
Figure 10.15 Example of DREQ Input Detection in Burst Mode Edge Detection 329
Figure 10.16 Example of DREQ Input Detection in Burst Mode Level Detection 330
Figure 10.17 Example of DMA Transfer End Signal Timing in Cycle Steel Mode Level
DIELECLION ...ttt ettt sttt st ettt et b i 330
Figure 10.18 BSC Ordinary Memory Access
(No wait, Idle Cycle 1, Longword Access to 16-bit Device)..........ccecuevuereererueaene 331
Section 11 Clock Pulse Generator (CPG)
Figure 11.1 Block Diagram of Clock Pulse Generatorccecveieeienieenieecieeienieseeeeeee e 334
Figure 11.2 Note on Using a Crystal RESONAtOrccceevieriieiiieiieiecieseeeee et 344
Figure 11.3 Note on Using a PLL Oscillator CirCUitccecvervieviieieeienierieeieeieseeseesseesesenas 345
Section 12 Watchdog Timer (WDT)
Figure 12.1 Block Diagram of the WDTccociiiiiiiiiiiiieeee e 348
Figure 12.2 Writing to WTCNT and WTCSRcc.oiiiiiiiiee et 352

Rev. 1.00, 02/04, page xxv of xxxviii
RENESANS

Section 13
Figure 13.1
Figure 13.2

Section 14
Figure 14.1
Figure 14.2
Figure 14.3
Figure 14.4
Figure 14.5
Figure 14.6

Section 15
Figure 15.1
Figure 15.2
Figure 15.3
Figure 15.4
Figure 15.5
Figure 15.6
Figure 15.7
Figure 15.8
Figure 15.9
Figure 15.10
Figure 15.11
Figure 15.12
Figure 15.13
Figure 15.14
Figure 15.15
Figure 15.16
Figure 15.17
Figure 15.18
Figure 15.19
Figure 15.20
Figure 15.21
Figure 15.22
Figure 15.23

Section 16
Figure 16.1
Figure 16.2
Figure 16.3
Figure 16.4

Figure 16.5

Power-Down Modes

Canceling Standby Mode with STBCR.STBYc.cooiiiiiiiiieiiieieeeeeee e 368
Transitions DEtWeen MOdES........c.eeieiriiriieie et 369
Timer Unit (TMU)
TMU BIOCK DIagIamccueevieiiiieiiesiieseeie ettt ae e e 372
Setting Count OPEration.........cuecueerieererrierierieseeieereereseeeseeeseesesaesseesseessesssesnnes 377
Auto-Reload Count OPeration..........c.ecevereerieniieieeieseesieesseeseseeseesseessesnesseesseenne 378
Count Timing when Internal Clock Is Operatingccccoceveroerieieneneneneieees 378
UNF SEt TIMINE ..c.eeetieiieieee ettt ettt st sb e see ettt sbee e 379
Status Flag Clear TIMINg........cccveoeeiiiieniere et 379
Serial I/0 with FIFO (SIOF)
Block Diagram Of STOFccoeoiiiiiiieieeeeee et 382
Serial CLOCK SUPPLY ...icviiiiiieiieiieieeie ettt be e saaesenas 410
Serial Data Synchronization TIMINGcccceceeeeieieriereie e 411
SIOF Transmit/Receive TImMiNgcceoeririiieieieieieiese et 412
Transmit/Receive Data Bit AligNmentcooveiieiiniiinieneee e 414
Control Data Bit ALINMENTc.ccceeriierierieii ettt 415
Control Data Interface (S1ot POSItion).........cccccvevvieciiecieeieniesieeee e 416
Control Data Interface (Secondary FS)cccooiiiieiiieciiiiiiiesiee e 417
Example of Transmit Operation in Master Mode...........ccoccveveevieniiecieeeeeeeeeenenn, 419
Example of Receive Operation in Master Modecccoeevveviiiinienieeniieieeeeeeeens 420
Example of Transmit Operation in Slave Mode..........cccceevieiiiiinienieieeeeee 421
Example of Receive Operation in Slave Modecccoeveviieieieienieieiieieeieieane 422
Transmit and Receive Timing (8-Bit Monaural Data (1))........cccceceevvenevienenennnn 426
Transmit and Receive Timing (8-Bit Monaural Data (2))........ccceeeevvieriiecreevennnnns 426
Transmit and Receive Timing (16-Bit Monaural Data (1))......c.ccccceeeeveienenenene 427
Transmit and Receive Timing (16-Bit Stereo Data (1))ccceovriiniininniniinienens 427
Transmit and Receive Timing (16-Bit Stereo Data (2))cccecveeevienieiieiiiieeee 428
Transmit and Receive Timing (16-Bit Stereo Data (3))coccevevereeerneenienicnennenn 428
Transmit and Receive Timing (16-Bit Stereo Data (4))ccccocevereeeeneeiencnennenn 429
Transmit and Receive Timing (16-Bit Stereo Data)..........cceevveevvvcienieviieiinienienns 429
Example of Configuration in SPIMode.........cccceeieiiiiiniiiiiiiiceeeee e 430
SPI Data/Clock Timing 1 (CPHA = 0)..cccooieiiiiieieeeeee e 432
SPI Data/Clock Timing 2 (CPHA = 1) .cc.eeiiiieiieeeeeeeeee e 432
Serial Communication Interface with FIFO (SCIF)
Block Diagram Of SCIF..........cccoeoiieiieieieeeie ettt 437
Sample SCIF Initialization Flowchart...........ccccccveviiiiinienieieiceceeeeee e 466
Sample Serial Transmission FIOwchart............cccooieviiiiiiiiniicicecececeeeee 467
Example of Transmit Operation
(Example with 8-Bit Data, Parity, One Stop Bit)cccceoveriiiiiniinieieeeeeeee 469
Example of Transmit Data Stop FUnctionc.ccccevveviveiiieciinienieceeeeeeene 469

Rev. 1.00, 02/04, page xxvi of xxxviii

RENESANS

Figure 16.6

Figure 16.7

Figure 16.8

Figure 16.9

Figure 16.10
Figure 16.11
Figure 16.12
Figure 16.13
Figure 16.13
Figure 16.13
Figure 16.14
Figure 16.14
Figure 16.15
Figure 16.15
Figure 16.16
Figure 16.16

Figure 16.17

Transmit Data Stop Function Flowchart
Sample Serial Reception Flowchart (1)
Sample Serial Reception Flowchart (2)
Example of SCIF Receive Operation
(Example with 8-Bit Data, Parity, One Stop Bit)
CTS Control Operation
RTS CONrol OPEIALIONvevveveeeeeeeeeeeeeeeeeeeee e ees e
Data Format in Clock Synchronous Communication
Sample SCIF Initialization Flowchart (1) (Transmission)
Sample SCIF Initialization Flowchart (2) (Reception)
Sample SCIF Initialization Flowchart (3)
(Simultaneous Transmission and Reception)
Sample Serial Transmission Flowchart (1)
(First Transmission after Initialization)
Sample Serial Transmission Flowchart (2)
(Second and Subsequent Transmission)
Sample Serial Reception Flowchart (1)
(First Reception after Initialization)ccceeveiieoiieieniieeeeee e
Sample Serial Reception Flowchart (2)
(Second and Subsequent Reception)
Sample Simultaneous Serial Transmission and Reception Flowchart (1)
(First Transfer after Initialization)
Sample Simultaneous Serial Transmission and Reception Flowchart (2)
(Second and Subsequent Transfer)ccoccveeereeerienierieeeeeeeee e
Receive Data Sampling Timing in Asynchronous Mode

Section 17 Boot Function (BOOT)

Figure 17.1
Figure 17.2
Figure 17.3

Block Diagram of Boot Function
External Memory Space in Boot Mode
Procedure for Execution of Boot Processing

Section 18 USB Pin Multiplex Controller (USBPM)

Figure 18.1
Figure 18.2

Figure 18.3

Figure 18.4

Block Diagram of this USB.........cccoociiiiiieiieiicieeeeee et
Example 1 of Connection between USB Function Controller
and EXternal CirCUIL.......ooouiriiiiiiieiieieee ettt ettt
Example 2 of Connection between USB Function Controller
and EXterNal CITCUIL......couevueriieiiiieieierieeiesi ettt sttt ettt
Example of Connection USB Host Controller and External Circuit

Section 20 USB Function Controller (USBF)

Figure 20.1
Figure 20.2
Figure 20.3
Figure 20.4

Block Diagram of USB Function Controller
Example of Endpoint Configuration (1)
Example of Endpoint Configuration (2)
Cable Connection Operation

Rev. 1.00, 02/04, page xxvii of xxxviii

RENESANS

Figure 20.5 Cable Disconnection OPeration...........ccccevererereeeeieienienienieniesreeseeeeeeseneenieseeseesnes 587

Figure 20.6 Transfer Stages in Control Transfercccoooeiiiiiiniiiiiiiieceeeeens 587
Figure 20.7 Setup Stage OPeration.........ccoeeruieuiriirieniienieeieeeeste sttt ettt sieesie et ebeeneeseeens 588
Figure 20.8 Data Stage (Control-In) Operationceceerueereererienieneeneeree e siee e 589
Figure 20.9 Data Stage (Control-Out) OPerationcceeceerueeeieriereereeneeseeeeeseeseeseeeseeenens 590
Figure 20.10 Status Stage (Control-In) OPeration............ceeceeevereereereerieereseeseesieeeeeeeseeneeens 591
Figure 20.11 Status Stage (Control-Out) OPerationc.eceeeveeveereereereenreeseeeeeseesseesseenens 592
Figure 20.12 EP1 Interrupt-In Transfer Operationccoceeveriereenienieieiieneenieeieeie e 593
Figure 20.13 EP2 Bulk-In Transfer Operationcocceeeeoierierienieneerie oo sieenieens 594
Figure 20.14 EP20 Bulk-Out Transfer Operation............ccceceereeeeriereeneeneee e eeesieeseeie e 595
Figure 20.15 Operation of Isochronous-In Transfercecveeereieriierieniec e 597
Figure 20.16 Operation of EP30 Isochronous-Out Transfer............ccocvevvreiinienienieieeieeieienns 599
Figure 20.17 Forcible Stall by APPlICAtIONcccvvevieieriiriieriieieeie et seesre e eee e see e ee s 603
Figure 20.18 Automatic Stall by USB Function Module...........ccccocieieniiiininiiiiieiecee e 604
Figure 20.19 Example of USB Function Module External Circuitryccecceeeevierienienenennenne. 605
Figure 20.20 Set Timing of TR Interrupt Flag........ccooiieiiiiiieee e 608
Figure 20.21 Example Flow of Clearing and Transition to Software Standby Mode................. 609
Section 21 Bluetooth Interface (BT)
Figure 21.1 Block Diagram of Bluetooth Interface (BT)........ccceoeeiiereninininincieieiceeee, 612
Figure 21.2 Example of Connection to RF ICcccooiiiiiiiiiiiiiieeeeeeeee e 614
Figure 21.3 Example of Connection to Voice Codec (STLCT7550)ccciriririreeieieieneseeeene. 616
Figure 21.4 (1) Example of Connection to Voice Codec (MC145483)cccveiiriinieniieiieienienns 617
Figure 21.4 (2) Timing chart for connection to Voice Codec (MC145483).....cccccevevincncnnenne. 617
Figure 21.5 Function of Frequency-Conversion CirCUit..........ccvevereveriereerueeeeeieseesieeeesaenenens 619
Figure 21.6 Errors in Pseudo-32-kHz Clock Obtained by Conversion

from 32.768-KHZ ClOCK.......cceeuiiiiiiieie st 620
Figure 21.7 Note on Using Crystal ReSonator...........cccoeveiiiiiinieniiniiecececeecesceceeene 621
Figure 21.8 Timing Chart of Reset Signal..........ccooiiiiiiiiiiiiee e 622
Section 22 D/A Converter (DAC)
Figure 22.1 Block Diagram 0f DAC........cccoooieiiieiieieeieceeieee ettt 623
Figure 22.2 D/A Converter Operation EXample..........cccoveveiiirienieniiiieiieeieseeieeee e eveeseeennens 626
Section 23 1/O Ports
FAgUIe 23.1 POTt A .ottt sttt et et et b et e et ebeenbeen 627
Figure 23.2 POIt B ..ottt ettt et nneen 629
Figure 23.3 POTt D c.eoiiiiieieeee ettt et et n et enaeeraens 631
Figure 23.4 POTt E...oooeeeeieeeee ettt ettt e s e st e et e enaennaens 633
FIgUIE 23.5 POIt G oottt e e ste e be e aeesseesseesaesseenseenseessensaens 635
FIigure 23.6 POrt Hoo..ooeiiiiieie ettt ettt 637

Rev. 1.00, 02/04, page xxviii of xxxviii
RENESANS

Section 25 User Break Controller

Figure 25.1 Block Diagram of User Break Controller............coooiiiiriiieiiieieesese e 656
Section 26 User Debugging Interface (H-UDI)
Figure 26.1 Block Diagram of H-UDI..........cccooiiiiiiiiiiiee e 683
Figure 26.2 TAP Controller State TranSitionsc.eceecveeierierieesiereeseeseesseeseeeeesseesseeeeenens 692
Figure 26.3 H-UDI Data Transfer Timing.........cccccerieriieiierieniienieieee e see s esee e see e 693
Figure 26.4 Example of Connecting Reset Signals without Mutual Interference....................... 696
Section 28 Electrical Characteristics
Figure 28.1 EXTAL Clock INput Timingccccoeririiiiieiieieee e 737
Figure 28.2 CKIO Clock INput Timing........cccueerueeuerieiiieniieie ettt 737
Figure 28.3 CKIO Clock Output TimiNg.........cccveruiereieieeieniesiiesieeiesaesaeseesseeaeesessaesseesseensens 737
Figure 28.4 Power-On Oscillation Settling Timeccccceeviireiiriierienieireie e 737
Figure 28.5 Oscillation Settling Time on Return from Standby (Return by Reset).................... 738
Figure 28.6 Oscillation Settling Time on Return from Standby (Return by NMI or IRQ)......... 738
Figure 28.7 PLL Synchronization Settling Time at Power-On Resetcccceoevieierincneneenne. 738
Figure 28.8 PLL Synchronization Settling Time in Case of Reset or NMI Interrupt 739
Figure 28.9 Reset and BOOT-E Input Timing..........ccceecverierieniieieeieniesiieieeie e seeeseeesseeee s 741
Figure 28.10 Interrupt Signal Input TiMing.......cccccvevierieniesieieeieseee e 741
Figure 28.11 TRQOUT TIMUNEcccvertierrierieieeteeieseesteeseeteseeesseesseesseeseessesssesssessesssesssesssessnes 741
Figure 28.12 REFOUT TIMING....ccottirtietieiieieeitenitenteerteete ettt sttt ettt ssee st nbe et eeaeseaesaees 742
Figure 28.13 Bus Release TImiNg.........cooueiiiiirierieieeiieieeitetieieie ettt 742
Figure 28.14 Pin Drive Timing at Standbyccccoeiieiiiiiiieeeeeee e 742
Figure 28.15 Basic Bus Cycle in Normal Space (No Wait).........cccoeeierienieriecieeienieseeeeee e 745
Figure 28.16 Basic Bus Cycle in Normal Space (Software Wait 1)cccceevveverienieneereneeen. 746
Figure 28.17 Basic Bus Cycle in Normal Space (Asynchronous External Wait 1 Input)........... 747
Figure 28.18 Basic Bus Cycle in Normal Space (Software Wait 1, Asynchronous External Wait

Valid (WM Bit = 0), No Idle CYCle)......ceoeiririeiniiieiniiecnieieceeceeeceeee 748
Figure 28.19 CS Extended Bus Cycle in Normal Space

(SW =1 Cycle, HW =1 Cycle, Asynchronous External Wait 1 Input) 749
Figure 28.20 Bus Cycle of SRAM with Byte Selection

(SW =1 Cycle, HW =1 Cycle, Asynchronous External Wait 1 Input,

BAS =0 (UB and LB in Write Cycle Controlled))cccccooereniriniienieienieee 750
Figure 28.21 Bus Cycle of SRAM with Byte Selection

(SW =1 Cycle, HW =1 Cycle, Asynchronous External Wait 1 Input,

BAS =1 (WE in Write Cycle Controlled)).........ccoecuerieriereeiirienieieeieeie e 751
Figure 28.22 Read Bus Cycle of Burst ROM (Software Wait 1, Asynchronous External Wait 1

Input, Burst Wait 1, Number of Burst 2)ccccoeviivienieiieiecieseeieeee e 752
Figure 28.23 Single Read Bus Cycle of Synchronous DRAM

(Auto Precharge Mode, CAS Latency 2, TRCD = 1 Cycle, TRP = 1 Cycle)........ 753
Figure 28.24 Single Read Bus Cycle of Synchronous DRAM

(Auto Precharge Mode, CAS Latency 2, TRCD =2 Cycle, TRP =2 Cycle)........ 754

Rev. 1.00, 02/04, page xxix of xxxviii
RENESANS

Figure 28.25
Figure 28.26
Figure 28.27
Figure 28.28
Figure 28.29
Figure 28.30

Figure 28.31

Figure 28.32

Figure 28.33

Figure 28.34
Figure 28.35
Figure 28.36
Figure 28.37
Figure 28.38
Figure 28.39
Figure 28.40
Figure 28.41
Figure 28.42
Figure 28.43

Figure 28.44

Figure 28.45

Burst Read Bus Cycle of Synchronous DRAM (Single Read x 4)

(Auto Precharge Mode, CAS Latency 2, TRCD = 1 Cycle, TRP =2 Cycle)........ 755
Burst Read Bus Cycle of Synchronous DRAM (Single Read x 4)

(Auto Precharge Mode, CAS Latency 2, TRCD = 2 Cycle, TRP =1 Cycle)........ 756
Single Write Bus Cycle of Synchronous DRAM

(Auto Precharge Mode, TRWL =1 Cycle)....cccccvvvirriirieniecieneeeee e 757
Single Write Bus Cycle of Synchronous DRAM

(Auto Precharge Mode, TRCD =3 Cycle, TRWL =1 Cycle)ccccceverererencaene 758
Burst Write Bus Cycle of Synchronous DRAM (Single Write x 4)

(Auto Precharge Mode, TRCD =1 Cycle, TRWL =1 Cycle)cceccvrvrrerrrennnne. 759
Burst Write Bus Cycle of Synchronous DRAM (Single Write x 4)

(Auto Precharge Mode, TRCD =1 Cycle, TRWL =1 Cycle)cceevverevrvererannenne. 760

Burst Read Bus Cycle of Synchronous DRAM (Single Read x 4)

(Bank Active Mode: ACTV + READ Command, CAS Latency 2,

TRECD =1 CYCLE) ittt ettt sttt ettt sbe e 761
Burst Read Bus Cycle of Synchronous DRAM (Single Read x 4)

(Bank Active Mode: READ Command, Same Row Address, CAS Latency 2,
TRCD = 1 CYCLE).uietieiieiieie ettt ettt ettt nneeseenaeens 762
Burst Read Bus Cycle of Synchronous DRAM (Single Read x 4)

(Bank Active Mode: PRE + ACTV + READ Command, Different Row Address,

CAS Latency 2, TRCD =1 CYCle) ..eerueiiriiiiieiieieeieieee ettt 763
Burst Write Bus Cycle of Synchronous DRAM (Single Write x 4)
(Bank Active Mode: ACTV + WRIT Command, TRCD = 1 Cycle) 764
Burst Write Bus Cycle of Synchronous DRAM (Single Write x 4)
(Bank Active Mode: ACTV + WRIT Command, TRCD =1 Cycle) 765

Burst Write Bus Cycle of Synchronous DRAM (Single Write x 4)
(Bank Active Mode: PRE + ACTV + WRIT Command, TRCD = 1 Cycle)......... 766

Auto Refresh Timing of Synchronous DRAM (TRP =2 Cycle)cccevvevvenenen. 767
Self Refresh Timing of Synchronous DRAM (TRP =2 Cycle)......ccceevvvrverirennnnne 768
Power-On Sequence of Synchronous DRAM

(Mode Write Timing, TRP =2 CYCle)...ccccviviirieiieiieiecieseee e 769
Access Timing in Low-Frequency Mode of Synchronous DRAM

(Auto Precharge Mode, TRWL =1 Cycle).....cccevieiiniiniiniiiececceece 770
Auto Refresh Timing in Low-Frequency Mode of Synchronous DRAM

(TRP =2 CYCLE)utietieiieie ettt ettt et st eeneense s 771
Self Refresh Timing in Low-Frequency Mode of Synchronous DRAM

(TRP =2 CYCLE).cutieuiieiiiiecie sttt ettt ettt st reeteeaessaesaeessaenseenns 772
Power-On Sequence in Low-Frequency Mode of Synchronous DRAM

(Mode Write Timing, TRP =2 Cycle)......ccooirieiieieieeieeeeieeeeeee e 773
Write to Read Bus Cycle in Power-Down Mode of Synchronous DRAM

(Auto Precharge Mode, TRCD =1 Cycle, TRP =1 Cycle, TRWL =1 Cycle)..... 774
Read to Write Bus Cycle in Power-Down Mode of Synchronous DRAM
(Auto Precharge Mode, TRCD = 1 Cycle, TRP = 1 Cycle, TRWL =1 Cycle)..... 775

Rev. 1.00, 02/04, page xxx of xxxviii

RENESANS

Figure 28.460 1/O POt TIMINGcveevieiieeiieitieieeie e seestee st esteesreeeresseesseesseesseessesssessaesseesseensessens 776
Figure 28.47 DREQ Input Timing (DREQ Low Level is Detected)cceoeverenencieieneene 776
Figure 28.48 DACK and TEND Output Timing.........ccceeeeuieieieieieiesiesieee e see e 776
Figure 28.49 SIOF _MCLK INput TimMing........cecoeeruerieiierieneeie e eiesiee e 777
Figure 28.50 SIOF Transmission/Reception Timing

(Master Mode 1, Falling Edge Sampling)..........cccecceeevirienienieeiesiesienieie e 778
Figure 28.51 SIOF Transmission/Reception Timing

(Master Mode 1, Rising Edge Sampling)ccccereneniiinenieieieeeeee e 778
Figure 28.52 SIOF Transmission/Reception Timing

(Master Mode 2, Falling Edge Sampling).........cccoeeeeiirienieneeeniecierceieee e 779
Figure 28.53 SIOF Transmission/Reception Timing

(Master Mode 2, Rising Edge Sampling)cceceeierieiiecienieniereec e 779
Figure 28.54 SIOF Transmission/Reception Timing (Slave Mode 1, Slave Mode 2) 780
Figure 28.55 SIOF Transmission/Reception Timing

(SPI Mode, CPHA =0, SSAST1 and SSASTO = 01) ..cceoveereneeenicencrccneenes 780
Figure 28.56 SIOF Transmission/Reception Timing

(SPI Mode, CPHA =1, SSAST1 and SSASTO = 01)..c..cccevivininininenieecieennes 781
Figure 28.57 SCIF Input CloCK CYCIEooviiiiiieeieiieieeie ettt 782
Figure 28.58 Input/Output Timing in SCIF Synchronous Modecccecverveviiecienieneenneenenen. 782
Figure 28.59 USB CIOCK TIMINGc.ciutetiiieieieieie sttt ettt eee e e e sae e e s ens 783
Figure 28.60 USB Transceiver TIMING........ccceeuerieriiriiieiie ettt 784
Figure 28.61 USB Transceiver Characteristics Testing Circuit (Full-Speed)..........cccccceveeeenee. 784
Figure 28.62 USB Transceiver Characteristics Testing Circuit (Low-Speed)........ccceevvervvennnee. 784
Figure 28.63 Bluetooth Module Clock Timing..........ceecvevuieriireierienierieieeie e 785
Figure 28.64 Bluetooth Interface Module Low Power Clock Timingccceevevveeveervenreennens 786
Figure 28.65 Bluetooth Interface (BT) Voice CODEC (STLC7550) Interface Signal

TIMIILE .ottt sttt ettt et b e bt e bt et st st esbe e e enee 787
Figure 28.66 Bluetooth Interface (BT) Voice CODEC (MC145483) Interface Signal

THMIIIE c.venvieieete ettt ettt et et e e st esaee st esseesseeabessaeseenseensesnsesneesseenseenes 787
Figure 28.67 SPI Interface Signal Timing for Bluetooth Interface (BT) RFcccccccveennne. 788
Figure 28.68 Bluetooth Interface (BT) Receive Data Timingccoccvevveevieienienienieeieeieeen. 788
Figure 28.69 Output Load CirCUit.........eiueitieriiiieiieiie ettt 789
Appendix
Figure C.1 Package Dimensions (TBP-208A).......cccooiiiiiiiiieieeeeee et 797

Rev. 1.00, 02/04, page xxxi of xxxviii
RENESANS

Rev. 1.00, 02/04, page xxxii of xxxviii
RENESANS

Section 1 Overview

Table 1.1 SH76060 FEAUIES.....c..cvitereieiieiieiieiertente sttt ettt sttt sttt ettt st sbe i 2
Table 1.2 Pin Functions and Initial Valuesc.ccoceveiiiiriiiieniininenceeeceeeee e 10
Table 1.3 Pin FUNCHOMNS ...ttt ettt eee e 21
Section 2 CPU

Table 2.1 Register Initial Values.........coooiieiiiiiiieeeee e s 36
Table 2.2 Addressing Modes and Effective Addresses..........ccvveverierieciieiienieniieieeee e 49
Table 2.3 INStruction FOTMALSco.eeviiiiiiiiiiiie ettt 53
Table 2.4 CPU INStrUCION TYPES..cviiitiiiieiiiieiiestieit et eteettesteereeteseeseesaeesseesseessesseessaensens 56
Table 2.5 Data Transfer INStrUCTIONS.cc.eeiuieiiiieiierieeee et 60
Table 2.6 Arithmetic Operation INSTIUCHONScoveevuieiiiierieiteere ettt ere e eeee e sreese e 62
Table 2.7 Logic Operation INStIUCLIONSccuieiueriiiieiieie et 64
Table 2.8 Shift INSEIUCHIONS ...cuvevitiiieeiieiteiteteree sttt 65
Table 2.9 Branch INSrUCHIONSc.ovuiiiriririeieeneene ettt 66
Table 2.10 System Control INSrUCHIONS.........ccueiierierieeriieieeieeeeeteeteeie e saeseesree e eaeesnesreens 67
Table 2.11 Operation Code MaP.........ccoviiiiiiiereereereeeeeie et seesaeebe e reesreebeesbeessessseseeas 70
Section 3 DSP Operating Unit

Table 3.1 Virtual Address SPACE.cevueeiieiieiieetierieee ettt ettt e 75
Table 3.2 Operation of SR Bits in Each Processing Modecccoocvevirciinienienieieeieneeenn 79
Table 3.3 RS and RE Setting RUIC.........cccoeiiiiiieeeeceee e 85
Table 3.4 Repeat Control INSTIUCTIONSeccvieveeiieriieieeie e sieseeste et eeeesteesteesseeesessaeseeeeas 85
Table 3.5 Repeat CONtrol MACTOSccveecvieeriieeeiiieieeieereeiee st steeeeeesesreesreesseessesssesasesseesseennas 86
Table 3.6 DSP Mode Extended System Control InStructionscceceeeeeeieniesienenenenenae 87
Table 3.7 PC Value during Repeat Control (When RC[11:0]22) ...ccooiiiiiiieiiiiieeee, 90
Table 3.8 Extended Repeat Control INStruCtionsScecuevverieriieriieieeiesieieeie e 94
Table 3.9 Extended System Control Instructions in DSP Modeccccccevinininincncnnnnenee. 99
Table 3.10 Overview of Data Transfer INStructions.............ccccoverererenieienieneneneneseseeeene 101
Table 3.11 Modulo Addressing Control INStructions...........ccceoeeverierieniereseeeeeeeeeee e 103
Table 3.12 Double Data Transfer Instruction FOrmatscccocceievininininieeeeeceee, 105
Table 3.13 Single Data Transfer Instruction FOrmatsccooceeiieiiiiinienieeeeeceeee, 106
Table 3.14 Destination Register in DSP INStructions............cceceeeveeienenenenenencnieeeienieneenne 108
Table 3.15 Source Register in DSP Operationscceevereereeneeeienienienieesieeie e seee e 108
Table 3.16 DSR RegIStEr BitS.....c.cccuiiiiiiieiieiieie ettt ebe e seaesnees 109
Table 3.17 DSP Instruction FOIMALS.........ceeiieieieieiesiee et 112
Table 3.18 Correspondence between DSP Instruction Operands and Registers...................... 112
Table 3.19 DC Bit Update Definitions..........ccecueeeerierieiieieeie et 114
Table 3.20 Examples of NOPX and NOPY Instruction Codes..........ccoceverireeienienencnennene. 116
Table 3.21 Variation of ALU Fixed-Point Operations............cccecvereeruienierieseeneesieeeeeienenens 119
Table 3.22 Correspondence between Operands and Registers..........coeververieecienieneenieenennnn. 119

Rev. 1.00, 02/04, page xxxiii of xxxviii
RENESANS

Table 3.23 Variation of ALU Integer OPerations...........cceeeveecuereereeseesreenseeeeseeseesseessesnens 124
Table 3.24 Variation of ALU Logical Operationscccereruereeereeieieeieniesiesiese e 125
Table 3.25 Variation of Fixed-Point Multiply Operationccccevoererieieeenieieienese e 127
Table 3.26 Correspondence between Operands and Registersccoeeeveevieneeiriceneeneene 127
Table 3.27 Variation of Shift OPerations.............cceeveruieriieienienieseeie et 129
Table 3.28 Operation Definition 0of PDMSBccoiiiiiiiieiieieceeee e 134
Table 3.29 Variation of PDMSB OPeration..........c.cccuerveerieevieiierienieenieeseeeeseesseesseessesssessnens 134
Table 3.30 Variation of Rounding OPerationc.ccoceeeeieierierieniese et 136
Table 3.31 Definition of Overflow Protection for Fixed-Point Arithmetic Operations.......... 136
Table 3.32 Definition of Overflow Protection for Integer Arithmetic Operations.................. 137
Table 3.33 Variation of Local Data Move Operations............cceeceeeeerieereeeeueseeseeneensesnneseenns 137
Table 3.34 Correspondence between Operands and Registersccoecveveevieneenienceeneeenne, 138
Table 3.35 DSP Mode Extended System Control InStructions...........c.cceveeververeeieeieneeninns 139
Table 3.36 Double Data Transfer INStruCtioncccoveeirieieieieieiesese e 141
Table 3.37 Single Data Transfer INStrUCtiONScoerieieiieiieiereee st 142
Table 3.38 Correspondence between DSP Data Transfer Operands and Registers 143
Table 3.39 DSP Data Operation INStruCtiONS..........ccveevieiieienieriieieeie e seeesieesee e see e ens 144
Table 3.40 Operation Code MapP........ccceecueiierieniieie et eeee et eae e seesseesesaesneesneeneeenes 150
Section 4 Exception Handling
Table 4.1 Exception EVEnt VECIOTSccvieciiiiiieeiie ettt n 162
Table 4.2 Instruction Positions regarding a repeat loop and Restriction Types.................... 169
Table 4.3 SPC Value when a Re-Execution Type Exception Occurs in Repeat Control...... 171
Table 4.4 Restrictions of Exception Acceptance in the Repeat Loop........cccevveveveieeevennenne. 173
Table 4.5 Instruction Where a Specific Exception Occurs When a Memory Access

Exception Occurs in Repeat Control (SR.RC[11:0] = 1) cceecvvviereeiiiiicieiiene, 174
Section 5 Cache
Table 5.1 LRU and Way Replacement (when Cache Locking Mechanism is Disabled)...... 178
Table 5.2 Way Replacement when a PREF Instruction Misses the Cache..............ccccc....... 181
Table 5.3 Way Replacement when Instructions other than the PREF Instruction Miss the

CACKE ...ttt 182
Table 5.4 LRU and Way Replacement (when W2LOCK = 1 and W3LOCK =0)................ 182
Table 5.5 LRU and Way Replacement (when W2LOCK = 0 and W3LOCK =1)................ 182
Table 5.6 LRU and Way Replacement (when W2LOCK =1 and W3LOCK =1)................ 182
Section 6 X/Y Memory
Table 6.1 X/Y Memory Virtual Addressesccvvvverierienienieeiieie et 191
Table 6.2 CaAChE SELLINES ...veetieieeie ettt ettt e et e e eneeesbesse e seenseensesnnes 194
Section 7 U Memory
Table 7.1 U Memory Virtual AddreSSesooueiireririeieieieieie et 195
Table 7.2 CACKE SELHNES ..e.eeeienieiieieeee ettt ettt bttt et e et ebenbenee e 197

Rev. 1.00, 02/04, page xxxiv of xxxviii

RENESANS

Section 8 Interrupt Controller (INTC)

Table 8.1 Pin ConfigUIation..........cooiuieeruieieieee ettt e 201
Table 8.2 Interrupt Sources and IPRA t0 IPRH...........cocooviiiiiiiiiicieceeeceee e 203
Table 8.3 Correspondence between Interrupt Sources and IMRO to IMR9/IMCRO
£0 IMICRO ...t 209
Table 8.4 Interrupt Exception Handling Sources and Prioritycoccecevveverieneeicncnennnn 213
Section 9 Bus State Controller (BSC)
Table 9.1 Pin ConfigUIation..........cooiuieiiuieieieee ettt 220
Table 9.2 Address Space Map of External Address Spacecoveevieeeieeneeniienieeieeieeieen, 223
Table 9.3 16-Bit External Device/Big Endian Access and Data Alignment......................... 248
Table 9.4 8-Bit External Device/Big Endian Access and Data Alignment.........c..cccceeeueeee. 249
Table 9.5 16-Bit External Device/Little Endian Access and Data Alignment....................... 249
Table 9.6 8-Bit External Device/Little Endian Access and Data Alignment......................... 250
Table 9.7 Relationship between CS3BCR.BSZ[1:0], SDCR.A3ROW[1:0],
SDCR.A3COL[1:0], and Address Multiplex Output (1)-1......ccccevevrievrirererannne. 261
Table 9.7 Relationship between CS3BCR.BSZ[1:0], SDCR.A3ROW[1:0],
SDCR.A3COL[1:0], and Address Multiplex Output (1)-2......cccccververrrcverrennnnne. 262
Table 9.8 Relationship between CS3BCR.BSZ[1:0], SDCR.A3ROW[1:0],
SDCR.A3COL[1:0], and Address Multiplex Output (2)-1......cccccververrreeerrennennn. 263
Table 9.8 Relationship between CS3BCR.BSZ[1:0], SDCR.A3ROW[1:0],
SDCR.A3COL[1:0], and Address Multiplex Output (2)-2......ccccvvevreevrreveeeenennn. 264
Table 9.9 Relationship between CS3BCR.BSZ[1:0], SDCR.A3ROW[1:0],
SDCR.A3COL[1:0], and Address Multiplex Output (3)-1.....ccceeeverrerrrcrerranenne. 265
Table 9.9 Relationship between CS3BCR.BSZ[1:0], SDCR.A3ROW[1:0],
SDCR.A3COL[1:0], and Address Multiplex Output (3)-2......cceeeververreeceereennenn. 266
Table 9.10 Relationship between Access Size and Number of Bursts............ccccceevvveieeiennenns 267
Table 9.11 Access Address in SDRAM Mode Register WIitecocoeeveriinienieneenienieneens 283
Table 9.12 Relationship between Data Bus Width, Access Size, and Number of Bursts 285
Section 10 Direct Memory Access Controller (DMAC)
Table 10.1 Pin Configuration.........c.cecveeiieriieiieieeiesieeeie ettt st e et eeensessnenseens 299
Table 10.2 DMARS SEINES ...ccouveriieiieiieieeieseeseeie e etesetesree e esteebeesseessessaessaesseessesssessnas 312
Table 10.3 Selecting External Request Modes with the RS Bitscccooceeieieieiininiiee, 315
Table 10.4 Selecting External Request Detection with DL, DS Bitscccceoeieiieninencnee. 316
Table 10.5 Selecting External Request Detection with DO Bitcccoocieinieiienieicee, 316
Table 10.6 Selecting On-Chip Peripheral Module Request Modes with the RS3
£0 RSO BIES. ...ttt ettt e 317
Table 10.7 Supported DMA Transfers.........ccccvecveivieiienienieeie ettt eee e e sesaesenes 321
Table 10.8 Relationship of Request Modes and Bus Modes by DMA Transfer Category327
Section 11 Clock Pulse Generator (CPG)
Table 11.1 Clock Pulse Generator Pins Configurationcoeceeveererienieneeneee e 336
Table 11.2 Clock Operating MOAESccuieverieriieiieieeieeeesee st eseeeae e eeeseee e enseenseesaessaens 337

Rev. 1.00, 02/04, page xxxv of xxxviii
RENESANS

Table 11.3 Possible Combination of Clock Modes and FRQCR Values...........cccceeevvreveennnen. 338

Section 13 Power-Down Modes

Table 13.1 States of POWer-DOWn MOdEScceeirieirieieiesiee et 356
Table 13.2 Pin ConfigUration..........cceeiieieeiieiiesiiesie ettt e e 358
Table 13.3 Register States in Software Standby Mode..........ccoevvvriiirienienieiee e 367
Section 14 Timer Unit (TMU)

Table 14.1 TMU INtEITUPE SOUICES ...vveuvieniieiiiieiierieeteereeee et e bt esbeeebeseaesreesseesseeseesseesseenseenns 380
Section 15 Serial I/0 with FIFO (SIOF)

Table 15.1 Pin Configuration........c.oeeiiiieieieieesese sttt ettt eb et see e 383
Table 15.2 Operation in Each Transfer Mode............cccoooiriiiiiiieiieeeeeee e 386
Table 15.3 SIOF Serial Clock FIEqUENCYccuevveiieriieiieie ettt 410
Table 15.4 Serial Transfer MOAES.......cccooivereiiiiiniiirincneeeet ettt 412
Table 15.5 Frame Length.......c.cccooiioiiiiiiiieieceeieeeee ettt ssaesraens 413
Table 15.6 Audio Mode Specification for Transmit Data..........c.cceeveeierienieneiieieecreee, 414
Table 15.7 Audio Mode Specification for Receive Data..........ccceeeveeeviiieniienieeieeie e, 415
Table 15.8 The Number of Channels in Control Data Setting............ccccceveeereenienreieneeene 415
Table 15.9 Conditions to Issue Transmit Requestccoevveeierieiiieiieiierieseee e 417
Table 15.10 Conditions to Issue Receive RequUestc.oecvevieriieiiieiinierieeee e 418
Table 15.11 Transmit and Receive ReSetcccoeviiiriiiniiieieeeeecceeeeee e 423
Table 15.12 STIOF INtEITUPE SOUICES ...cuvvevvieeiieiriieieiieerieeie e et steeveereeebeseeeseaesteesseesseennas 424
Table 15.13 States of Transmit and Receive Operations in SPI Mode..........ccccovevreevennenne. 431
Section 16 Serial Communication Interface with FIFO (SCIF)

Table 16.1 Pin Configuration..........cccueruieriiesieeie ettt eae e sse e enes 438
Table 16.2 ~ SCSMR Settings for Serial Transfer Format Selection..........c..ccceecveveevienincnennen. 463
Table 16.3 Serial Transfer FOIMALScooviiiriiiiiiieieeeseeee e 464
Table 16.4 SCIF INtEITUPE SOUICES ...veevieeriivieieieitieiieitietteeteesreeteereetsesteesteesseesseseeesreesseenseenns 486
Section 17 Boot Function (BOOT)

Table 17.1 INPUt/OULPUL PIN .o 493
Table 17.2 Clock frequency and data transfer rate of SCIF when boot function is used........ 498
Section 18 USB Pin Multiplex Controller (USBPM)

Table 18.1 Pin Configuration (Analog Transceiver Signal)c.cccceevveveeriiicieiceereeneeieeeenns 501
Table 18.2 Pin Configuration (Power Control signal)cccceeeeriiiirinenieniiieieieiesee e 501
Table 18.3 Pin Configuration (Clock Control signal)..........cceceeoierieiinenieiienieieeieieee e 501
Section 19 USB Host Controller (USBH)

Table 19.1 Pin Configuration..........cccuevuieriieiieiieeiereeie ettt esne s enes 510
Section 20 USB Function Controller (USBF)

Table 20.1 Pin ConfigUuration........c.cccuerieriieiiiiieiiese ettt ettt eere e sreesreeaeesaesseesseeseenns 549
Table 20.2 Restrictions of Settable Valuesccooceiiiiiiiiieieeee e 581
Table 20.3 Example of Endpoint Configuration (1)c.cooceeieieiieieneneie e 581

Rev. 1.00, 02/04, page xxxvi of xxxviii
RENESANS

Table 20.4
Table 20.5
Table 20.6
Table 20.7

Section 21
Table 21.1
Table 21.2

Section 22
Table 22.1

Section 23
Table 23.1
Table 23.2
Table 23.3
Table 23.4
Table 23.5
Table 23.6

Section 24
Table 24.1

Section 25
Table 25.1
Table 25.2
Table 25.3

Section 26
Table 26.1
Table 26.2
Table 26.3
Table 26.4

Section 28
Table 28.1
Table 28.2
Table 28.2
Table 28.2
Table 28.2
Table 28.3
Table 28.4
Table 28.5
Table 28.6
Table 28.7
Table 28.8
Table 28.9

Example of Setting of Endpoint Configuration Information (1)........cccceeerennnee. 583
Example of Endpoint Configuration (2)cccceeerieieiiesieneseseeeeeeee e 584
Example of Setting of Endpoint Configuration Information (2)........cc.ccecceeuenen. 585
Command Decoding on Application Side..........cccceeveeiieiiriienieieeeee e 601
Bluetooth Interface (BT)
INPUt/OULPUL PINS ..ottt enne s 613
Settings and FUNCHIONSccveviieiiiieiiesieeie ettt 618
D/A Converter (DAC)
Pin Configuration.........cooieiieriieiieieeiesieceee ettt et 624
I/O Ports
Port A Data Register (PADR) Read/Write Operationscccceevevvervenvenenennnn 628
Port B Data Register (PBDR) Read/Write Operations............cceccevevereeniereniennenn 630
Port D Data Register (PDDR) Read/Write Operations............cceeeveevereerveecvennnnns 632
Port E Data Register (PEDR) Read/Write Operations.............ccoeeerereeerceeennene 634
Port G Data Register (PGDR) Read/Write Operationscccceevereeneeniereeneennnne 636
Port H Data Register (PHDR) Read/Write Operations............ccceeeeeeeeseerueeeennenns 638
Pin Function Controller (PFC)
IMULEPLEX PINS...eiiiiiiieiieie ettt st sttt e e e sseenseenseas 639
User Break Controller
Specifying Break Address REZISterccooiririiieieiiieie e 660
Specifying Break Data REGIStErccuoruiiiiiiiiiiieieee et 662
Data Access Cycle Addresses and Operand Size Comparison Conditions........... 673
User Debugging Interface (H-UDI)
Pin Configuration.........c.cocueeieriieiieieeiesieeeie ettt et e et eeeensesnaenseens 684
JTAG COMMEANGS ..c.enviiieiieieiesieeereetee ettt sttt 686
Correspondence between Pins of SH7660 and Boundary Scan Register.............. 687
Reset CONTIGUIATION ...c..ieiiiiiiiiiiiieiieet ettt 693
Electrical Characteristics
Absolute Maximum Ratingsccceevierierieiinieiiecienieee et 729
DC Characteristics (1) Common [emScceecverieriierieriiesiesieneesie e eeeneeens 731
DC Characteristics (2-a) Except DAC and USB Related Pins..........c.cceevvennennnn. 732
DC Characteristics (2-b) USB Related Pins*...........ccooeovieiiiieniciieiecieeeeieeene 733
DC Characteristics (2-¢) USB Transceiver Related Pins*cccocovevveveiinennen. 734
Permissible Output Current Values..........coceeeuerierienieriee e 734
Operating FIEQUENCIESc.eeveiieiieiieie ettt ae e s enes 735
CLOCK TIMUINEZ ...vteivieeieeiieeiieteeie ettt ettt e et et e enteenaeesaesseesseenseensesnnesnnanes 736
Control Signal TIMINGcc.eecviveveiierieerieeie ettt eee e e e e e eaesee e esseenseens 740
BUS TIMINE cnteeitiiiieite ettt et sttt et saee b 743
Peripheral Module Signal Timing.........cccceeeeieierienene e 776
SIOF Module Signal Timingcccceereeruerierieneenie et eeeesie e enees 777

Rev. 1.00, 02/04, page xxxvii of xxxviii
RENESANS

Table 28.10 SCIF Module Signal Timing...........ccceeeverieriieriieieeienienieereeresneseesseesseeseennas 781

Table 28.11 USB Module Clock TImiNgccevueeuiriieieieieiesiesie ettt see e sieeaeenens 782
Table 28.12 USB Module Clock TImiNgceeueeuerieieieieiesiesie st eieeteeee e see e eaeeneens 782
Table 28.13 USB Transceiver Timing (Full-Speed).........cccoerieiiiinieieieeieeeeeeeee 783
Table 28.14 USB Transceiver Timing (LOW-Speed)cccccevierieriirierierieie e 783
Table 28.15 Bluetooth Interface Module Clock Timing..........cceevervvereesieniiesieneeneeeeeeenne 785
Table 28.16 Bluetooth Interface Module Clock Timing...........ceeveveerieeriercieneeseeneeneenens 785
Table 28.17 Bluetooth Interface Module Low Power Clock Timingccccceceveeeveeennnnne 785
Table 28.18 Bluetooth Interface Module Low Power Clock Timingcccccecevereneeeennne 786
Table 28.19 Bluetooth Interface (BT) Voice CODEC Interface Signal Timing................... 786
Table 28.20 SPI Interface Signal Timing for Bluetooth Interface (BT) RF..........cccccceeeeee 787
Table 28.21 Receive Data TIMINGccveeveeiieiieieeie ettt saeseee e eseenes 788
Table 28.22 D/A Converter CharacteriStiCs........c.ueruerererenereeieieienie ettt 790
Appendix

110 S0 2 U OO U S S USROS 791

Rev. 1.00, 02/04, page xxxviii of xxxviii
RENESANS

Section 1 Overview

1.1 SH7660 Features

This LSI is a RISC (Reduced Instruction Set Computer) microcomputer that integrates a 32-bit
RISC-type SuperH architecture CPU and digital signal processing (DSP) extended function as its
core, together with 16-kbyte cache memory, 16-kbyte X/Y memory, and 128-kbyte U memory, as
well as peripheral functions required for system configuration such as an interrupt controller.

High-speed data transfers can be performed by an on-chip direct memory access controller
(DMAC) and a direct connection to various memories can be performed by the external memory
access support function. Moreover, this LSI also includes powerful peripheral functions that are
essential to system configuration, such as the USB (host/function), high-speed (921 kbits/s)
asynchronous serial interface circuit, voice/audio CODEC serial interface circuit, and D/A
converter.

This LSI also supports the Bluetooth™ interface as one of peripheral functions and provides the
Bluetooth protocol stack function including firmware up to the HCI layer as a standard function.
Moreover, this LSI has extra processing power to perform the upper protocol stack and various
application profiles to implement the whole Bluetooth baseband functions. The API is also
provided to handle the protocol stack function below the HCI layer so that this Bluetooth interface
can easily be handled like the conventional peripheral functions. This Bluetooth interface can be
connected directly to the RF chip such as the HD157100NP or HD157102NP (manufactured by
Renesas Technology).

Note: Bluetooth is a registered trademark of Bluetooth SIG, Inc., USA. Renesas Technology
uses Bluetooth by entering into licensing agreements.

The features of this LSI are listed in table 1.1.

Rev. 1.00, 02/04, page 1 of 804
RENESANS

Tablel.1 SH7660 Features

Item Features

CPU .
[]

Renesas Technology Original SuperH architecture

Compatible with SH-1, SH-2 and SH-3 at object code level

32-bit internal data bus

Supports various registers

Sixteen 32-bit general registers (including eight 32-bit bank registers)
Five 32-bit control registers

Four 32-bit system registers

Supports RISC-type instruction set

Instruction length: 16-bit fixed length for improved code efficiency
Load/store architecture

Delayed branch instructions

Instruction set suitable for C language

Supports barrel shift instructions and multiply-and-accumulate instructions
Instruction execution time: One instruction/cycle for basic instructions
Logical address space: 4 Gbytes

Five-stage pipeline

DSP unit .

Mixture of 16-bit and 32-bit instructions

32-/40-bit internal data bus

Employs multiplier, ALU, and barrel shifter

16-bit x 16-bit — 32-bit one cycle multiplier

Employs large-capacity DSP data register files

Six 32-bit data registers

Two 40-bit data registers

Extended harvard architecture for DSP data bus

Two data buses

One instruction bus

Maximum four parallel operations: ALU, multiply, and two load or store
Two addressing units to generate addresses for two memory access

DSP data addressing modes: Increment and indexing (with or without
modulo addressing)

Zero-overhead repeat loop control
Conditional execution instructions
User DSP mode and privileged DSP mode

Rev. 1.00, 02/04, page 2 of 804

RENESANS

Item Features

Cache memory e 16-kbyte cache, unified of instructions and data
e 256 entries, 4-way set associative, and 16-byte block length
e Write-back, write-through, and LRU replacement algorithm
e 1-stage write-back buffer
e Maximum 2 ways can be protected

X/Y memory e Three independent read/write ports

8-/16-/32-bit access from the CPU
Maximum two 16-bit accesses from the DSP
8-/16-/32-bit access from the DMAC
8-/32-bit access from the USBH

e Atotal of 16 kbytes (4 kbytes x 4)

¢ No interrupt requests

o No DMA transfer requests (accessible as a transfer source or destination)

U memory e Two independent read/write ports

8-/16-/32-bit access from the CPU
16-/32-bit access from the DSP
8-/16-/32-bit access from the DMAC
8-/32-bit access from the USBH

e As large as 128-kbyte memory

e No interrupt requests

* No DMA transfer requests (accessible as a transfer source or destination)

Interrupt ¢ Five external interrupt pins (NMI, IRQ4 to IRQ2, IRQO)
controlier (INTC) One interrupt request output pin (IRQOUT)
e On-chip peripheral interrupt: Priority is independently selected for each
module

e Selection of falling/rising edge sense and high/low level sense

Rev. 1.00, 02/04, page 3 of 804
RENESANS

Iltem Features

Bus state e Physical address space is divided into three areas: Area 0, area 3, area 4;
controller (BSC) each a maximum of 16 Mbytes
e The following features are settable for each area:
Bus size (8 or 16 bits); The supported bus size may differ for each area

Number of access wait cycles (Numbers of wait-state cycles during reading
and writing are independently selectable for some areas.)

Setting of idle wait cycles (for the same area or different area)

Specifying the memory to be connected to each area allows direct
connection to SRAM, SRAM with byte selection, SDRAM, or burst ROM

Outputs chip select signals (CS0, CS3, CS4) for corresponding area (Can be
turned by the program CSn assert/negate timing.)

o SDRAM refresh function
Auto-refresh and self-refresh modes

e SDRAM burst access function

e Big endian or little endian can be set.

Direct memory e Four channels (for one channel, external requests can be accepted)

access controller Burst mode and cycle-steal mode

(DMAC)

¢ Intermittent cycle-steal mode
Clock pulse e Clocks can be input from an external pin (EXTAL or CKIO) or crystal unit
generator (CPG)

e Three clocks generated:
Internal clock: 120 MHz
Bus clock: 60 MHz
Peripheral clock: 30 MHz

e Supports power-down modes:
Software standby mode
Sleep mode
Module standby mode

e Three clock modes (PLL1 and PLL2 multiplication ratio, clock, and crystal
unit can be selected)

¢ One frequency-divider mode

Watchdog timer e One-channel watchdog timer

(WDT) ¢ Watchdog timer mode and interval timer mode can be selected

¢ Ininterval timer mode, interrupts can be generated

Rev. 1.00, 02/04, page 4 of 804
RENESANS

Item

Features

Timer unit (TMU)

Three channels of 32-bit timer

Four input clocks can be selected for each channel counter

32-bit down counter of the auto-reload type

On-chip prescaling by P¢

Interrupt requests: Interrupt requests are generated by underflow of 32-bit
down counter

Serial I1/0 with
FIFO (SIOF)

One channel
16-stage 32-bit FIFOs (independent for reception and transmission)
8-/16-/16-bit stereo-audio input/output supported

Synchronization method: Frame synchronized pulse and switching
between left and right channels

Supports a CODEC control data interface
Can be connected to linear, audio, A-Law, or u-Law CODEC chip
Supports master and slave modes

Sampling rate clock can be generated from P¢ or be input from external
pin (max. 48 kHz)

On-chip prescaler from P¢
Module standby function
Capable of interrupt requests and DMAC requests

Serial
communication
interface with
FIFO

(SCIF0, SCIF1)

Two channels

Supports asynchronous mode and clocked synchronous mode
64-byte transmit/receive FIFOs

High-speed UART

Supports CTS/RTS

On-chip prescaler from P¢

Capable of interrupt requests and DMAC requests

Boot function
(BOOT)

Normal mode or boot mode at a power-on reset
Automatic fetching of initial write program from SCIFO
Downloading of program to on-chip memory (U memory)
Auto-running function of downloaded program

Rev. 1.00, 02/04, page 5 of 804
RENESANS

Item Features

USB host .
controller (USBH)

Register set conforming to OHCI version 1.0

Conforms to USB 1.1

Supports 127 endpoints

Supports control/bulk/interrupt/isochronous modes

Bus master controller

One-port USB transceiver (sharing with USB function controller)
Selectable module input clock: 48-MHz external input or on-chip DLL

Capable of issuing interrupt requests

USB function °
controller (USBF)

Conforms to USB 1.1

One-port USB transceiver (sharing with USB host controller)
Supports six endpoints, the number of endpoints is selectable
Supports isochronous, totally 2 endpoints

Supports control (endpoint 0)/bulk (2 endpoints)/interrupt (1 endpoint)

The USB standard commands are supported, and class and vendor
commands are handled by firmware

On-chip FIFO buffer for endpoints (bulk, isochronous: 128 bytes/endpoint)
Selectable module input clock: 48-MHz external input or on-chip DLL

Capable of issuing interrupt requests and DMAC requests

Bluetooth °
interface (BT)

Supports Bluetooth version 1.1

Supports direct interface with the HD157100NP or HD157102NP (Renesas)
RF IC

Supports direct interface with the STLC7550 or MC 145483 voice CODEC IC
Supports four voice CODEC formats (A-law/u-law/CVSD/linear PCM)
Supports ACL and SCO links (SCI over HCI possible)

Frequency hopping within 79 channels as a form of spread-spectrum
modulation

Use of the 32.768-kHz clock for RTC (Realtime Clock) as the clock for
power-down mode

Selectable clock for power-down mode: Crystal oscillator mode or external
direct input mode

Supports three power-down modes: Hold/sniff/park

D/A converter .
(DAC)

Two channels of 8 bit D/A converters
Output range: 0 to AVcc

I/0 port/pin o
function
controller (PFC)

Bitwise selection of input/output

Rev. 1.00, 02/04, page 6 of 804

RENESANS

Item Features

User break .
controller (UBC)

Address, data value, access type, and data size are available for setting as
break conditions

Supports the sequential break function

Two break channels

User debugging e
interface (H-UDI)

Supports the E10A emulator
Realtime branch trace
1-kbyte of on-chip RAM for executing the high-speed emulation program

Package .

208-pin BGA (pin pitch: 0.65 mm)

Power-supply .
voltage

1/0: 8.0 to 3.6 V (some parts: 2.7 to 3.0 V)

Internal: on-chip regulator provides, or 1.4 to 1.6 V external power supply
can be selected.

Operating .
temperature
range

—40°C to +85°C (except USB)
—20°C to +85°C (for USB only)

Notes: 1. This LSI does not support the MMU and TLB functions, therefore, the LDTLB instruction
provided by the SH-3 CPU is not available.
2. Since the on-chip AUD and ASERAM modules are used for debugging, related
descriptions are omitted in this manual. For details, refer to the user’'s manual related to
development tools.

Rev. 1.00, 02/04, page 7 of 804
RENESANS

12

Block Diagram

Figure 1.1 shows an internal block diagram of the SH7660.

— —i SH3
XYCNT |——— = CPU
— —
BT
we f— , | 5T |
Qo
= -
CCN — 3 UBC
— /| © %]
CACHE [—= —— AU I
— =[]
=3
©
;
CPG/WDT
BSC
DAC
External bus - | l/Oport |/
interface (PFC) |——
Legend:
ASERAM : ASE memory H-UDI : User debugging interface
AUD : Advanced user debugger INTC : Interrupt controller
BOOT : Boot loader PFC : Pin function controller
BSC : Bus state controller SCIF : Serial communication interface with FIFO
BT : Bluetooth interface SIOF : Serial I/0 with FIFO
CACHE : Cache memory TMU : 16-bit Timer unit
CCN : Cache memory controller UBC : User break controller
CPG/WDT : Clock pulse generator/watchdog timer UMC : U memory controller
CPU : Central processing unit UMEM : U memory
DAC : D/A converter USBH/USBF : Universal serial bus host/universal serial bus function
DMAC : Direct memory access controller XYCNT: X/Y memory controller
DSP: Digital signal processor XYMEM: X/Y memory

Note: Since the on-chip AUD and ASERAM modules are used for debugging, related descriptions are omitted in this manual.

For details, refer to the user's manual related to development tools.

Figurel.1 Block Diagram of SH7660

Rev. 1.00, 02/04, page 8 of 804

RENESANS

1.3 Pin Assignment

Figure 1.2 shows the pin assignment. Table 1.2 shows pin functions and initial values.

|
12 3 456 7 8 9 10111213 141516 17

OOOOOOOO&OOOOOOOO
(OXONOXONOXOXONONONOXOXOXOXOXONOXO)
(OXONONONONOXOXOXONOXOXOXONOXONOXNO)
OXONONONOXOXONOXONOXOXOXONOXONOXNO)

0000 0000
0000 0000
0000 ! 0000
0000 SH7660 0000
6000 -Beaws— - —OO 00—
0000 (Top View) 0000
0000 ' 0000
0000 0000
0000 0000

OXONONONOXOXONOXONOXOXOXONOXONOXNO)
OXONONONOXOXOXOXONOXOXOXONOXONOXO)
0O0000000VOO000O000O0
OOOOOOOO?OOOOOOOO

c—u:onzzn—xci_zm-nmoom>

Figurel.2 Pin Assignment

Rev. 1.00, 02/04, page 9 of 804
RENESANS

Tablel1.2

Pin Functions and Initial Values

Pin No. Pin Name Description
A1l PTH4/SCIF1_CTS Port H/CTS input for SCIF1
Though this pin is fixed to input and enters the output Hi-
Z state in the initial state, the internal pull-up MOS is
turned on.
A2 NMI Nonmaskable interrupt request
When this pin is not used, it should be fixed to high.
A3 PTB1/IRQ2 Port B/external interrupt request input
Though this pin is fixed to input and enters the output Hi-
Z state in the initial state, the internal pull-up MOS is
turned on.
A4 RTCSELO Test pin
This pin must be fixed to low.
A5 NC Reserved
This pin should be open.
A6 NC Reserved
This pin should be open.
A7 AVss (DAC) Analog power supply for D/A converter (DAC) (0 V)
A8 XTAL Crystal unit pin
A9 EXTAL External clock input/crystal unit pin
A10 EXTAL2 External clock input/crystal unit pin for Bluetooth power-
down state
When RTCSELO = high, this pin enters the non-active
state.
A1 RDI_TXTRDATA*' Transmit/receive data I/O for RF IC
The initial state is output.
A12 Vss_28 Power supply for I/0O pins with RF IC (0 V)
A13 RDI_REFCLK_IN*' Clock input for data I/0 with RF IC
This pin is always input.
Al4 RCI_SPI_TXRX*' SPI serial data 1/0 with RF IC
The initial state is output.
A15 USB_N D- 1/O for on-chip USB transceiver
The initial state is Hi-Z.
A16 USB_P D+ 1/O for on-chip USB transceiver
The initial state is Hi-Z.
A17 AVss (USB) Analog power supply for USB transceiver (0 V)

Rev. 1.00, 02/04, page 10 of 804

RENESANS

Pin No. Pin Name Description

B1 NC Reserved
This pin should be open.

B2 ASEMDO ASE mode control input
This pin should be fixed to high in the normal state.

B3 PTGO0/SCIFO_SCK/IRQ3 Port G/clock 1/O for SCIFO/external interrupt request
input
Though this pin is fixed to input and enters the output Hi-
Z state in the initial state, the internal pull-up MOS is
turned on.

B4 RREF Test pin
This pin should be pulled-up.

B5 NC Reserved
This pin should be open.

B6 Vss (DLL) Power supply for internal regulator (DLL) (0 V)

B7 DAO D/A converter (DAC) output (channel 0)

B8 Vcce (1/0) Power supply for 1/0 (3.3 V)

B9 Vss Power supply (0 V)

B10 XTAL2 Crystal unit pin for Bluetooth power-down state
When RTCSELO = high, this pin enters the non-active
state.

B11 RDI_RXBDW_OUT*' Packet control output for RF IC

B12 Vcc_28 Power supply for I/0O pin with RF IC (2.8 V/3.3 V)

B13 RCI_SPI_CLK*' SPI interface clock output with RF IC

B14 NC Reserved
This pin should be open.

B15 NC Reserved
This pin should be open.

B16 NC Reserved
This pin should be open.

B17 NC Reserved
This pin should be open.

C1 PTH1/SCIF1_TxD Port H/transmit data output for SCIF1

This pin is fixed to input and enters the output Hi-Z state
in the initial state.

Rev. 1.00, 02/04, page 11 of 804
RENESANS

Pin No. Pin Name Description

c2 PTH2/SCIF1_RxD Port H/receive data input for SCIF1

Though this pin is fixed to input and enters the output Hi-
Z state in the initial state, the internal pull-up MOS is
turned on.

C3 PTH3/SCIF1_RTS Port H/RTS output for SCIF1

Though this pin is fixed to input and enters the output Hi-
Z state in the initial state, the internal pull-up MOS is
turned on.

C4 PTB0/IRQO Port B/external interrupt request input

Though this pin is fixed to input and enters the output Hi-
Z state in the initial state, the internal pull-up MOS is

turned on.
C5 Vss (SREG) Power supply for internal regulator (sub) (0 V)
Cé6 V,, (DLL) Power-supply output from internal regulator /
power-supply input (DLL) (1.5 V)
Cc7 DA1 D/A converter (DAC) output (channel 1)
C8 Vss Power supply (0 V)
C9 NC Reserved
This pin should be open.
C10 Vss Power supply (0 V)
C11 RDI_CTRL3*' Strobe output for enabling RF-IC oscillator
Cci12 Vss_28 Power supply for I/O pin with RF IC (0 V)
C13 RCI_SPI_ENB*' SPI interface enable output with RF IC
Ci14 AVcc (USB) Analog power supply for USB transceiver (3.3 V)
C15 NC Reserved
This pin should be open.
C16 UCLK External clock input for USB

When initialized, the internal DLL clock is valid and this
pin is internally fixed to input.

Cc17 USB_OVR_CRNT/ Over current detection input for USB/USB-cable
USB_VBUS connection monitor input

Even if this pin is not used, this pin should be driven by
an appropriate level.

D1 PTG2/SCIFO_RxD Port G/receive data input for SCIFO

Though this pin is fixed to input and enters the output Hi-
Z state in the initial state, the internal pull-up MOS is
turned on.

Rev. 1.00, 02/04, page 12 of 804
RENESANS

Pin No. Pin Name Description

D2 PTG3/SCIFO_ RTS Port G/RTS output for SCIFO
Though this pin is fixed to input and enters the output Hi-
Z state in the initial state, the internal pull-up MOS is
turned on.

D3 PTG4/SCIFO_CTS Port G/CTS input for SCIFO
Though this pin is fixed to input and enters the output Hi-
Z state in the initial state, the internal pull-up MOS is
turned on.

D4 PTHO/SCIF1_SCK/IRQ4 Port H/clock I/O for SCIF1/external interrupt request
input
Though this pin is fixed to input and enters the output Hi-
Z state in the initial state, the internal pull-up MOS is
turned on.

D5 Vcc (SREG) Power supply for internal regulator (sub) (3.3 V)

D6 Vcce (DLL) Power supply for internal regulator (DLL) (3.3 V)

D7 Vss Power supply (0 V)

D8 AVce (DAC) Analog power supply for D/A converter (DAC) (3.3 V)

D9 Vce (I/0) Power supply for I/O (3.3 V)

D10 NC Reserved
This pin should be open.

D11 RDI_CTRL4*' Reset control for RF IC and power-down control output

D12 Vce_28 Power supply for I/O pin with RF IC (2.8 V/3.3 V)

D13 RESETP Power-on reset input

D14 USB_PWR_EN/ USB power-supply application enable control output/pull-

USB_PULLUP up control output for USB

The initial state is low-level output.

D15 Vcece (PLL) Power supply for internal regulator (PLL1/PLL2) (3.3 V)

D16 Vo (PLL) Power supply output from internal regulator/power-
supply input (PLL1/PLL2) (1.5 V)

D17 Vss (PLL) Power supply for internal regulator (PLL1/PLL2) (0 V)

E1 PTA6/SIOF_SS2 Port A/SPI mode slave device select for SIOF
Though this pin is fixed to input and enters the output Hi-
Z state in the initial state, the internal pull-up MOS is
turned on.

E2 PTG1/SCIFO_TxD Port G/transmit data output for SCIFO
This pin is fixed to input and enters the output Hi-Z state
in the initial state.

ES3 Vss Power supply (0 V)

Rev. 1.00, 02/04, page 13 of 804
RENESANS

Pin No. Pin Name Description

E4 Vcce (1/0) Power supply for 1/0O (3.3 V)

E14 Vcc (internal) Power supply for internal regulator (3.3 V)

E15 Vo Power-supply output from internal regulator/power-
supply input (1.5 V)

E16 Vss Power supply (0 V)

E17 CKIO System clock 1/0

F1 PTA5/SIOF_SS1 Port A/SPI mode slave device select for SIOF
Though this pin is fixed to input and enters the output Hi-
Z state in the initial state, the internal pull-up MOS is
turned on.

F2 Vss Power supply (0 V)

F3 Vo Power-supply output from internal regulator/power-
supply input (1.5 V)

F4 Vcc (internal) Power supply for internal regulator (3.3 V)

F14 Vcce (1/0) Power supply for 1/0O (3.3 V)

F15 Vss Power supply (0 V)

F16 NC Reserved
This pin should be open.

F17 MD5 Endian set input

G1 PTA2/SIOF_RXD (MISO) Port A/receive data input for SIOF
Though this pin is fixed to input and enters the output Hi-
Z state in the initial state, the internal pull-up MOS is
turned on.

G2 PTA3/SIOF_SYNC Port A/frame synchronization signal output for SIOF

(SIOF_SS0) (SPI mode slave device select for SIOF)

Though this pin is fixed to input and enters output Hi-Z
state in the initial state, the internal pull-up MOS is
turned on.

G3 PTA4/SIOF_SCK (SCK) Port A/serial clock I/O for SIOF
Though this pin is fixed to input and enters output Hi-Z
state in the initial state, the internal pull-up MOS is
turned on.

G4 NC Reserved
This pin should be open.

G14 MD2 Clock mode set input

G15 MD1 Clock mode set input

Rev. 1.00, 02/04, page 14 of 804

RENESANS

Pin No. Pin Name

Description

G16 PTE6/RDI_CTRL2*' Port E/external power amplifier control output for RF IC
/IRQOUT /IRQOUT
Though this pin is fixed to input and enters output Hi-Z
state in the initial state, the internal pull-up MOS is
turned on.

G17 PTEO Port E/power-down control output for voice CODEC IC

/VCI_CODEC_PWRDWN** /DMA transfer end flag output

/TEND Though this pin is fixed to input and enters output Hi-Z
state in the initial state, the internal pull-up MOS is
turned on.

H1 TEST_REG Built-in regulator selection pin. The built-in power supply
regulator is used when this pin is high, external power
input is used when this pin is low for the internal power
(VDD=1.5V).

H2 NC Reserved
This pin should be open.

H3 PTAO/SIOF_MCLK Port A/master clock input for SIOF
Though this pin is fixed to input and enters output Hi-Z
state in the initial state, the internal pull-up MOS is
turned on.

H4 PTA1/SIOF_TXD (MOSI) Port A/transmit data output for SIOF
Though this pin is fixed to input and enters output Hi-Z
state in the initial state, the internal pull-up MOS is
turned on.

H14 Vcc (internal) Power supply for internal regulator (3.3 V)

H15 Voo Power-supply output from internal regulator/power-
supply input (1.5 V)

H16 Vss Power supply (0 V)

H17 PTE1/VCI_SCO_TX**/DACK Port E/transmit data input from voice CODEC IC
/DMA transfer request accept
Though this pin is fixed to input and enters output Hi-Z
state in the initial state, the internal pull-up MOS is
turned on.

Ji TRST H-UDI reset input
This pin is internally pulled up. When a boundary scan
function is not used in normal mode (ASEMDO = high),
this pin should be fixed to low.

J2 ASEBRKAK ASE break acknowledge output

J3 TDO H-UDI data output

Rev. 1.00, 02/04, page 15 of 804

RENESANS

Pin No. Pin Name Description
J4 TEST Test input
This pin should always be fixed to high.
J14 Vcce (1/0) Power supply for 1/0 (3.3 V)
J15 PTE2/VCI_SCO_RX** Port E/receive data output to voice CODEC IC
/DREQ /DMA transfer request input
Though this pin is fixed to input and enters output Hi-Z
state in the initial state, the internal pull-up MOS is
turned on.
J16 PTE4 Port E/frame synchronization signal output for voice
/NVCI_SCO_SYNC_OuUT*? CODEC IC/bus mastership request input
/BREQ The bus mastership request input is valid in the initial
state.
J17 PTE3 Port E/clock output for voice CODEC IC/bus release
/VCI_SCO_CLK_OuUT** acknowledge output
/BACK The bus release acknowledge output is valid in the initial
state.
K1 TDI H-UDI test data input
This pin is internally pulled up.
K2 TCK H-UDI clock input
This pin is internally pulled up.
K3 Vss Power supply (0 V)
K4 Vce (I/0) Power supply for I/O (3.3 V)
K14 AUDATAS AUD data bus (bit 3) output
K15 AUDSYNC AUD synchronization signal output
K16 PTE5/VCI_HWC** Port E/operating mode select output for voice CODEC
IC
Though this pin is fixed to input and enters output Hi-Z
state in the initial state, the internal pull-up MOS is
turned on.
K17 Vss Power supply (0 V)
L1 TMS H-UDI test mode switch
This pin is internally pulled up.
L2 Vss Power supply (0 V)
L3 Vo Power-supply output from internal regulator/Power-
supply input (1.5 V)
L4 Vcc (internal) Power supply for internal regulator (3.3 V)
L14 Vcce (1/0) Power supply for 1/0O (3.3 V)

Rev. 1.00, 02/04, page 16 of 804

RENESANS

Pin No. Pin Name Description

L15 Vss Power supply (0 V)

L16 AUDATA1 AUD data bus (bit 1) output

L17 AUDATA2 AUD data bus (bit 2) output

M1 NC Reserved
This pin should be open.

M2 BOOT_E Boot mode enable control input
This pin is internally pulled up.

M3 CSo Chip select 0 signal output

M4 CS3 Chip select 3 signal output

M14 PTB7/BS Port B/bus cycle start signal output
The bus cycle start signal output is valid in the initial
state.

M15 RD Read strobe signal output

M16 AUDCK AUD clock output

M17 AUDATAO AUD data bus (bit 0) output

N1 CS4 Chip select 4 signal output

N2 DO Data bus (bit 0)

N3 D1 Data bus (bit 1)

N4 D2 Data bus (bit 2)

N14 Vcc (internal) Power supply for internal regulator (3.3 V)

N15 Voo Power-supply output from internal regulator/Power-
supply input (1.5 V)

N16 Vss Power supply (0 V)

N17 PTB6/REFOUT Port B/bus release request output
The bus release request output is valid in the initial
state.

P1 D3 Data bus (bit 3)

P2 D4 Data bus (bit 4)

P3 Vce (I/0) Power supply for I/O (3.3 V)

P4 D5 Data bus (bit 5)

P5 D13 Data bus (bit 13)

P6 Vcce (1/0) Power supply for 1/0O (3.3 V)

P7 A3 Address bus (bit 3)

P8 Vce (I/0) Power supply for I/O (3.3 V)

P9 A8 Address bus (bit 8)

Rev. 1.00, 02/04, page 17 of 804
RENESANS

Pin No. Pin Name Description

P10 Vcce (1/0) Power supply for 1/0O (3.3 V)

P11 A15 Address bus (bit 15)

P12 Vcce (1/0) Power supply for 1/0O (3.3 V)

P13 PTDS3/A21 Port D/address bus (bit 21)

The A21 output is valid in the initial state.

P14 PTB4/RAS Port B/RAS (SDRAM) output
The RAS output is valid in the initial state.

P15 Vce (1/0) Power supply for I/O (3.3 V)

P16 Vss Power supply (0 V)

P17 WAIT Hardware wait request
This pin is internally pulled up.

R1 Vss Power supply (0 V)

R2 REG_PD_MAIN This pin should be fixed to high when the external power
supply is used for the internal power (VDD=1.5V). This
pin should be open when the internal power supply
regulator is used.

R3 D10 Data bus (bit 10)

R4 Vcce (1/0) Power supply for 1/0O (3.3 V)

R5 D14 Data bus (bit 14)

R6 Vss Power supply (0 V)

R7 A4 Address bus (bit 4)

R8 Vss Power supply (0 V)

R9 A1 Address bus (bit 11)

R10 REG_PD_BGR This pin should be fixed to high when the external power
supply is used for the internal power (VDD=1.5V). This
pin should be open when the internal power supply
regulator is used.

R11 A4 Address bus (bit 14)

R12 A18 Address bus (bit 18)

R13 PTD2/A20 Port D/address bus (bit 20)

The A20 output is valid in the initial state.

R14 Vcce (1/0) Power supply for 1/0O (3.3 V)

R15 PTB2/CKE Port B/clock enable (SDRAM) output
The CKE output is valid in the initial state.

R16 WEO/DQMO D7 to DO select signal/DQM (SDRAM) output

R17 WE1/DQM1 D15 to D8 select signal/DQM (SDRAM) output

Rev. 1.00, 02/04, page 18 of 804

RENESANS

Pin No. Pin Name Description

T1 D6 Data bus (bit 6)

T2 D7 Data bus (bit 7)

T3 NC Reserved
This pin should be open.

T4 D11 Data bus (bit 11)

T5 D15 Data bus (bit 15)

T6 A1l Address bus (bit 1)

T7 A5 Address bus (bit 5)

T8 REG_PD_VREF This pin should be fixed to high when the external power
supply is used for the internal power (VDD=1.5V). This
pin should be open when the internal power supply
regulator is used.

T9 A9 Address bus (bit 9)

T10 NC Reserved
This pin should be open.

T11 A13 Address bus (bit 13)

T12 A17 Address bus (bit 17)

T13 PTD1/A19 Port D/address bus (bit 19)

The A19 output is valid in the initial state.

T14 PTD5/A23 Port D/address bus (bit 23)

The A23 output is valid in the initial state.

T15 PTB5/RD/WR Port B/read/write output
The read/write output is valid in the initial state.

T16 VBB Test pin
This pin should be connected to Vss.

T17 NC Reserved
This pin should be open.

U1 D8 Data bus (bit 8)

u2 D9 Data bus (bit 9)

u3 Vss Power supply (0 V)

U4 D12 Data bus (bit 12)

us PTDO/AO Port D/address bus (bit 0)

The AO output is valid in the initial state.

U6 A2 Address bus (bit 2)

u7z A6 Address bus (bit 6)

Rev. 1.00, 02/04, page 19 of 804
RENESANS

Pin No. Pin Name Description
us A7 Address bus (bit 7)
U9 A10 Address bus (bit 10)
u1o0 A12 Address bus (bit 12)
U1 Vss Power supply (0 V)
ui2 A16 Address bus (bit 16)
u13 Vss Power supply (0 V)
ut4 PTD4/A22 Port D/address bus (bit 22)
The A22 output is valid in the initial state.
u15 Vss Power supply (0 V)
ui6e PTB3/CAS Port B/CAS (SDRAM) output
The CAS output is valid in the initial state.
ui7z VBBENB Test pin
This pin should be connected to Vss.
Notes: 1. These pins are connected to the RF IC. For details on the connection, refer to section
21, Bluetooth Interface (BT).
2. These pins are connected to the voice CODEC IC. For details on the connection, refer

Rev. 1.00, 02/04, page 20 of 804

to section 21, Bluetooth Interface (BT).

RENESANS

14 Pin Functions

Table 1.3 lists the pin functions.

Table1.3 Pin Functions

Classification Symbol

110

Name

Function

Power supply Vop*'

Output/
Input

Power supply

Power output of the built-in
regulator, or power input from an
external power supply (for internal
circuit). A pin function is specified
with the TEST_REG pin.

Vcc (internal)

Input

Power supply

Power supply for internal regulator.
Connect all Vce pins to the system
power supply. There will be no
operation if any pins are open.

Vce (I/0)

Input

Power supply

Power supply for I/0O pins. Connect
all Vcc pins to the system power
supply. There will be no operation
if any pins are open.

Vss

Input

Ground

Ground pin. Connect all Vss pins to
the system power supply (0 V).
There will be no operation if any
pins are open.

TEST_REG

Input

Power supply
selection

Built-in regulator selection pin. The
built-in power supply regulator is
used when this pin is high, external
power input is used when this pin
is low for the internal power
(VDD=1.5V). The level of this pin
should not be changed during
operation

REG_PD_MAIN Input/NC

Power supply
control

Built-in regulator control. This pin
should be fixed to high when the
external power supply is used for
the internal power (VDD=1.5V).
This pin should be open when the
built-in power supply regulator is
used.

REG_PD_BGR Input/NC

Power supply
control

Built-in regulator control. This pin
should be fixed to high when the
external power supply is used for
the internal power (VbD=1.5V).
This pin should be open when the
built-in power supply regulator is
used.

RENESANS

Rev. 1.00, 02/04, page 21 of 804

Classification ~ Symbol

I/10

Name

Function

Power supply REG_PD_VREF

Input/NC

Power supply
control

Built-in regulator control. This pin
should be fixed to high when the
external power supply is used for
the internal power (VDD=1.5V).
This pin should be open when the
built-in power supply regulator is
used.

Clock Vee (PLL)

Input

PLL1/PLL2
power supply

Power supply for on-chip
PLL1/PLL2 oscillator

VoD (PLL)*'

Output/
Input

Power supply

Power output of the built-in
regulator for PLL1/PLL2 oscillator,
or power input from an external
power supply. A pin function is
specified with the TEST_REG pin.

Vss (PLL)

Input

PLL1/PLL2
ground

Ground pin for on-chip PLL1/PLL2
oscillator

EXTAL

Input

Crystal input
(clock input)

For connection to the crystal
resonator. Also, this pin can input
external clocks.

For connection to the crystal
resonator and connection of the
input of external clocks, refer to
section 11, Clock Pulse Generator
(CPG).

XTAL

Output

Crystal output

For connection to the crystal
resonator.

For connection to the crystal
resonator and connection of the
input of external clocks, refer to
section 11, Clock Pulse Generator
(CPG).

CKIO

I/0

Clock I/0

Supplies system clocks to external
devices or used for external clock
input.

Operating mode
control

MDS5,
MD2,
MD1

Input

Mode control

Sets the operating mode. The level
on these pins should not be
changed during operation.

MD2 and MD1 set the clock mode
and MD5 sets the endian.

Rev. 1.00, 02/04, page 22 of 804

RENESANS

Classification ~ Symbol 1/0 Name Function
System control RESETP Input Power-on reset When this pin goes low, the system
enters the power-on reset state.

BOOT_E Input Boot control Boot mode enable control input.

When this pin goes low at a power-
on reset, the system enters the
boot mode and runs the boot
loader after reset processing.
When this pin goes high at a
power-on reset, the normal reset
sequence is executed.

BREQ Input Bus mastership This pin is set to low when an
request external device requests the bus

mastership release.

BACK Output Bus mastership Indicates that bus mastership is
request externally released. A device which
acknowledge has output the BREQ signal knows

that the bus mastership is acquired
by receiving the BACK signal.
Interrupts NMI Input Nonmaskable = Nonmaskable interrupt request pin.
interrupt request This pin should be fixed to high
when not in use.

IRQ4 to IRQ2, Input Interrupt Maskable interrupt request pins.

IRQO requests Selectable as level input or edge
4102,0 input. The rising edge, falling edge,

and both edges are selectable as
edges.

IRQOUT Output Bus mastership Notifies an external device of
request interrupt source occurrence.

Address bus A23 to AO Output Address bus Outputs addresses.

Data bus D15 to DO I/0 Data bus 16-bit bidirectional bus

Bus control CS0, CS3, CS4 Output Chip select Chip select signal for external
0,34 memory or devices

RD Output Read Indicates reading of data from

external devices.

RD/WR Output Read/write Read/write signal pin

BS Output Bus start Bus cycle start signal pin

E1 Output Write upper bits Indicates that bits 15 to 8 of the

data in the external memory or
device are being written.

RENESANS

Rev. 1.00, 02/04, page 23 of 804

Classification ~ Symbol 1/0 Name Function

Bus control WEO Output Write lower bits Indicates that bits 7 to 0 of the data
in the external memory or device
are being written.

CAS Output Data enable CAS signal of SDRAM

RAS Output Data enable RAS signal of SDRAM

CKE Output Clock enable Clock enable signal pin of SDRAM

DQM1 Output DQ mask Indicates that bits 15 to 8 of the
data in SDRAM are selected.

DQMO Output DQ mask Indicates that bits 7 to 0 of the data
in SDRAM are selected.

REFOUT Output Bus release Indicates that a refresh request has

request occurred during bus mastership
release.

WAIT Input Wait Inserts a wait cycle into the bus
cycles during access to the
external space.

Direct memory DREQ Input DMA transfer Input pin for an external DMA

access controller request transfer request

(DMAC) DACK Output DMA transfer ~ Output pin for external DMA
request transfer request acceptance
acceptance

TEND Output DMA transfer Indicates that DMA transfer ends.

end
Serial /0 with SIOF_TXD Output Transmitdata Transmit data pin
FIFO (MOSI)
(SIOF) SIOF_RXD Input Receive data Receive data pin

(MISO)

SIOF_SCK I/0 Serial clock Clock 1/0 pin

(SCK)

SIOF_MCLK Input Master clock Master clock input pin

SIOF_SYNC I/0 Frame Frame synchronization signal pin

(SIOF_SS0) synchronization 1, sp| mode, selects the slave

signal device 0.)
(slave device 0
select)
SIOF_SS1 Output Slave device 1 In SPI mode, selects the slave
select device 1.
SIOF_SS2 OQutput Slave device 2 In SPI mode, selects the slave

select

device 2.

Rev. 1.00, 02/04, page 24 of 804

RENESANS

Classification ~ Symbol 1/0 Name Function
Serial SCIFO_TxD, Output Transmitdata Transmit data pin
communication SCIF1_TxD
interface with SCIFO0_RxD, Input Receive data Receive data pin
FIFO SCIF1_RxD
(SCIF0, SCIF1) -
SCIF0_SCK, /10 Serial clock Clock 1/0 pin
SCIF1_SCK
SCIFO_RTS, Output Transmit Modem control pin
SCIF1_RTS request
SCIFO_CTS, Input Transmit enable Modem control pin
SCIF1_CTS
uSB UCLK Input USB clock USB clock input pin (48-MHz input)
USB_PWR_EN/ Output USB power Host: USB power supply application
USB_PULLUP supply control enable control
Function: USB pull-up control
USB_OVR_CR Input USB power Host: Over current detection

NT/USB_VBUS

supply detection

Function: USB-cable connection
monitor pin

USB_N I/0 D-1/0 D- 1/0 for on-chip USB transceiver
USB_P I/0 D+ 1/0 D+ I/O for on-chip USB transceiver
AVcc (USB) Input Analog power Analog power supply pin for USB
supply for USB transceiver
transceiver
AVss (USB) Input Analog ground Analog ground pin for USB
for USB transceiver
transceiver Connect to the system ground (Vss).
Vce (DLL) Input 3.3-V power Power supply pin for the 48-MHz
supply for USB clock multiplication circuit of the
clock uSB
multiplication et to the system power supply
circuit (Veo).
VDD (DLL)*’ Output/ Power supply Power output of the built-in regulator
Input for 48MHz clock frequency multiplier
circuit of USB, or power input from
an external power supply. A pin
function is specified with the
TEST_REG pin.
Vss (DLL) Input Ground for USB Ground pin for the 48-MHz clock

clock
multiplication
circuit

multiplication circuit of the USB
Connect to the system ground (Vss).

RENESANS

Rev. 1.00, 02/04, page 25 of 804

Classification ~ Symbol 1/0 Name Function
Bluetooth RDI_ I/0 Data bus for Bus for data transmission/reception
interface (BT) TXTRDATA*? transmission/ with the RF IC
reception
RDI_RXBDW_ Output Packet control Signal for notifying the RF IC of the
ouT# packet processing state of the BT
RDI_REFCLK_ Input BT clock input Input the BT operating clock.
IN**
RDI_CTRL2** OQutput RF IC control 2 Used for external power amplifier
control when supporting class 1.
RDI_CTRL3** Output RF IC control 3 Strobe signal for enabling the RF
IC oscillator
RDI_CTRL4** Output RFIC control 4 Reset control and power-down
control output for RF IC
RCI_SPI_CLK** Qutput SPI clock Serial interface clock
RCI_SPI_ I/0 SPI data Serial interface data
TXRX*
RCI_SPI_ENB** Quiput SPI enable Serial interface enable signal
VCI_SCO_ Output VCI clock Supplies a clock to the voice
CLK_OuT#® CODEC IC.
VCI_SCO_ Output VCI Supplies a frame-synchronization
SYNC_OuT*® synchronization signal to the voice CODEC IC.
VCI_SCO_TX** Input SCO transmit Inputs SCO data to be transmitted
data from the voice CODEC IC.
VCI_SCO_RX** Output SCO receive Outputs received SCO data to the
data voice CODEC IC.
VCI_HWC*® Output VCI mode select Selects operating mode of the
voice CODEC IC (STLC7550).
VCI_CODEC_ Output VCI power down Controls power-down for the voice
PWRDWN*® CODEC IC.
RTCSELO Input Test pin Test pin
This pin should be fixed to low.
RREF Input Test pin Test pin
This pin should be pulled-up.
EXTAL2 Input Crystal For connection to a crystal
XTAL2 Output resonator resonator for a low-power clock.

connection for

When RTCSELO = high, these pins

low-power clock are inactive.

Rev. 1.00, 02/04, page 26 of 804

RENESANS

Classification ~ Symbol 1/0 Name Function
Bluetooth Vce_28 Input Power supply Power supply pin for the RF-IC
interface (BT) connection pin
The same level should be supplied
as the RF IC.
Vss_28 Input Ground Ground pin for the RF-IC
connection pin
D/A converter DA1, DAO Output Analog output ~ Analog output pin for the D/A
(DAC) pin converter
AVcc (DAC) Input D/A analog Power supply pin for the D/A
power supply converter. When the D/A converter
is not in use, connect this pin to the
port power supply (Vcc).
AVss (DAC) Input D/A analog Ground pin for the D/A converter.
ground Connect this pin to the system
power supply (Vss).
1/0 port PTA6 to PTAO 1I/O General port 7-bit general 1/0 port pin
PTB7 to PTBO I/O General port 8-bit general I/O port pin
PTD5 to PTDO I/O General port 6-bit general I/O port pin
PTE6 to PTEO 1I/O General port 7-bit general 1/0 port pin
PTG4 to PTGO /O General port 5-bit general I/O port pin
PTH4 to PTHO 1/O General port 5-bit general 1/0 port pin
User debugging TCK Input Test clock Test-clock input pin
interface (H-UDI) TMS Input Test mode Inputs the test-mode select signal.
select
TDI Input Test data input Serial input pin for instructions and
data
TDO Output Test data Serial output pin for instructions
output and data
TRST Input Test reset Initialization-signal input pin
Advanced user AUDATAS to Output AUD data Destination-address output pin for
debugger AUDATAO branch instruction
(AUD) AUDCK Output AUD clock Synchronization clock output pin
AUDSYNC Output AUD Data start-position acknowledge-

synchronization
signal

signal output pin

RENESANS

Rev. 1.00, 02/04, page 27 of 804

Classification ~ Symbol 1/0 Name Function

E10A interfface ASEBRKAK Output Break mode Indicates that the E10A emulator
acknowledge has entered its break mode.

For the connection with the E10A,
refer to the SH7660 E10A
Emulator User's Manual (tentative
title).

ASEMDO Input ASE mode Sets the ASE mode.

Notes: 1. VbD, VDD (PLL), and VbD (DLL) should not connect mutually in the short distance,
should separate as much as possible, and give the noise measures.
2. These pins are connected to the RF IC. For details on the connection, refer to section
21, Bluetooth Interface (BT).
3. These pins are connected to the voice CODEC IC. For details on the connection, refer
to section 21, Bluetooth Interface (BT).

Rev. 1.00, 02/04, page 28 of 804
RENESANS

Section 2 CPU

2.1 Processing States and Processing M odes

211 Processing States

This LSI supports four types of processing states: a reset state, an exception handling state, a
program execution state, and a power-down state, according to the CPU processing states.

Reset State: In the reset state, the CPU is reset. The LSI supports two types of resets: power-on
reset and manual reset. For details on resets, refer to section 4, Exception Handling.

In a power-on reset, the registers and internal statuses of all LSI on-chip modules are initialized.
In a manual reset, the register contents of a part of the LSI on-chip modules, such as the bus state
controller (BSC), are retained. For details, refer to section 27, List of Registers.

The CPU internal statuses and registers are initialized both in a power-on reset and manual reset.
After initialization, the program branches to address H'A0000000 to pass control to the reset
processing program defined by the user to be executed.

Exception Handling State: In the exception handling state, the CPU processing flow is changed
temporarily by a general exception or interrupt exception processing. The program counter (PC)
and status register (SR) are saved in the save program counter (SPC) and save status register
(SSR), respectively. The program branches to an address obtained by adding a vector offset to the
vector base register (VBR) and passes control to the exception handling program defined by the
user to be executed.

For details on exception handling states, refer to section 4, Exception Handling.
Program Execution State: The CPU executes programs sequentially.

Power-Down State: The CPU stops operation to reduce power consumption. The power-down
state can be entered by executing the SLEEP instruction. For details on the power-down state,
refer to section 13, Power-Down Modes.

Figure 2.1 shows a status transition diagram.

CPUS3D0S_0100200302000 Rev. 1.00, 02/04, page 29 of 804
RENESAS

(From any states)
Power-on reset
Manual reset

Reset processing

routine starts

Reset state Program execution state

Exception
handling
Multiple routine starts

exceptions

SLEEP instruction

An exception
is accepted

Exception handling state Power-down mode

An exception
is accepted

Figure2.1 Processing State Transitions

212 Processing Modes (User M ode/Privileged Mode)

This LSI supports two processing modes: user mode and privileged mode. These processing
modes can be determined by the processing mode bit (MD) in the status register (SR). If the MD
bit is cleared to 0, user mode is selected. If the MD bit is set to 1, privileged mode is selected.
The CPU automatically enters privileged mode by a transition to the reset state or exception
handling state. In privileged mode, any registers and resources in address spaces can be accessed.
For details on differences of registers and address spaces which can be accessed by the CPU in
each processing mode, refer to section 2.2, Memory Map and section 2.3, Register Descriptions.

Writing 0 to the MD bit in SR puts the CPU in user mode. In user mode, some of the registers,
including SR, and some of the address spaces cannot be accessed by the user program and system
control instructions cannot be executed. This function effectively protects the system resources
from the user program. To change the processing mode from user to privileged mode, a transition
to the exception handling state is required.*'**

Notes: 1. To call a service routine used in privileged mode from user mode, the LSI supports an
unconditional trap instruction (TRAPA).

2. When a transition from user mode to privileged mode occurs, the contents of SR and
PC are saved. A program execution in user mode can be resumed by restoring the
contents of SR and PC. To return from an exception handling program, the LSI
supports an RTE instruction.

Rev. 1.00, 02/04, page 30 of 804
RENESAS

2.2 Memory Map

The address spaces that can be accessed by the CPU mounted on this LSI differ depending on the
processing mode as described above, and the address space handled by the CPU may not match
the physical address space. To avoid misunderstandings, the address space which is output by the
CPU is referred to as the logical address space while the actual physical address space is referred
to as the physical address space. Furthermore, among the physical address space, the space to
which this LSI can make external access is referred to as the external address space. These terms
are used hereafter in this manual.

221 Logical Address Space

The address space which is output by the CPU is referred to as the logical address space. The CPU
of this LSI supports a 32-bit logical address space and accesses system resources using the 4
Gbytes of logical address space. User programs and data are accessed from the logical address
space. From the hardware view, the addresses output from the CPU are used on the L bus (see
figure 1.1 in section 1, Overview). The logical address space is divided into several areas and
managed as shown in figure 2.2.

In privileged mode, 4 Gbytes of space from PO area to P4 area can be accessed.

In user mode, 2 Gbytes of space in U0 area can be accessed. When the DSP bit in SR is set to 1,
16 Mbytes of space in Uxy area can be also accessed. If areas other than U0Q and Uxy are accessed
in user mode, an address error occurs.

Rev. 1.00, 02/04, page 31 of 804
RENESAS

H'00000000

PO area (2 Gbytes) U0 area (2 Gbytes)
Cacheable Cacheable

H'80000000
P1 area (512 Mbytes)
Cacheable Address error
H'A0000000 ‘
P2 area (512 Mbytes) Uxy area H'A5000000
Not cacheable Not cacheable H'ASFFFFFF
H'C0000000
P3 area (512 Mbytes)
Cacheable
H'E0000000 Address error
P4 area (512 Mbytes)
Not cacheable
HFFFFFFFF

In privileged mode In user mode

Note: * Exists only when the DSP bit in SR is 1.

Figure2.2 Logical Address Space

PO/UO Area: This area is called the PO area when the CPU is in privileged mode and the U0 area
when in user mode. For the PO and UQ areas, access using the cache is enabled.*

P1 Area: The P1 area is defined as a privileged area that is cacheable.* Normally, this area
contains programs that operate at high-speed in privileged mode, such as the kernel of the
operating system (OS) and the exception handler.

P2 Area: The P2 area is defined as a privileged area that is not cacheable. The reset processing
program that is initiated when a transition is made to the reset state is written from the start
address of the P2 area (H'A0000000). Normally, this area contains programs that are needed to
initiate the OS, such as the system initial setting routine. Note that access to several on-chip I/O
registers requires the program to be saved in the P2 area.

P3 Area: The P3 area is defined as a privileged area that is cacheable.*

P4 Area: The P4 area is a control space that is not cacheable and can be accessed only in
privileged mode. Figure 2.3 shows the P4 area in detail. Several on-chip I/O registers are assigned
to this area. For details on I/O registers which are assigned to this area, see section 27, List of
Registers.

Rev. 1.00, 02/04, page 32 of 804
RENESAS

H'E0000000

Reserved area
(256 Mbytes)

H'FO000000
Cache address area

(16 Mbytes)
H'F1000000
Cache data array area
(16 Mbytes)
H'F2000000
Reserved area
(160 Mbytes)
H'FC000000

Control register area
(64 Mbytes)

HFFFFFFFF

Figure2.3 P4 Area

Uxy Area: The Uxy area that can be used when the DSP bit in SR is set to 1 in user mode is
mapped to the on-chip memory of this LSI. Accessing this area when the DSP bit is O in user
mode will result in an address error. This area cannot be accessed through the cache. For details on
the Uxy area, see section 6, X/Y Memory and section 7, U Memory. For details on the DSP bit,
see section 3, DSP Operating Unit.

Note: * Whether the cache is used or not is determined according to the CE bit in the cache
control register (CCR1).

222 Physical Address Space

The physical address space obtained by address translation of addresses output from the CPU is
referred to as the physical address space. From the hardware view, the addresses of the physical
address space are used on the I bus. Similar to the logical address space, this LSI supports a 32-bit
physical address space. However, as shown in figure 2.4, the upper three bits of the 32 bits are
masked and handled as a shadow. Therefore, only 29 bits are actually used to access the physical
address space and 0.5 Gbytes of physical memory can be accessed. Replacing the upper three bits
of an address in this area with Os makes the address in the corresponding physical address space.*
For details on the physical address space, see section 9, Bus State Controller (BSC).

Bus masters other than the CPU, e.g. DMAC, are directly connected to the I bus. Therefore,
instead of handling the logical address space, they directly handle the physical address space.

Note: * Since the on-chip I/O registers can be accessed only if the upper three bits of a logical
address are set to 111 (corresponding to the P4 area in privileged mode), the upper three
bits are output with the same values of 111 on the I bus.

Rev. 1.00, 02/04, page 33 of 804
RENESAS

H'00000000
29-bit (512-Mbyte)
physical address space
H'20000000
Shadow space for 29-bit
physical address space
H'40000000
Shadow space for 29-bit
physical address space
H'60000000
Shadow space for 29-bit
physical address space
H'80000000
Shadow space for 29-bit
physical address space
H'A0000000
Shadow space for 29-bit
physical address space
H'C0000000
Shadow space for 29-bit
physical address space
H'E0000000
On-chip I/O area
HFFFFFFFF

Figure2.4 Physical Address Space

223 External Address Space

The physical address space is divided into eight areas as shown in figure 2.5. Area 1 is used as the
on-chip I/O space, and most of the on-chip registers of this LSI are mapped to this area*. In this
LSI, areas 2 and 5 to 7 are reserved areas. The remaining three areas, areas 0, 3, and 4, are used as
the external address space. Each area of the external address space can be connected to different
types of memory (for details, see section 9, Bus State Controller (BSC)).

The upper three bits of a logical address are normally masked from the CPU and treated as a
shadow. In privileged mode, for example, logical addresses H'00000100 in the PO area,
H'80000100 in the P1 area, H'A0000100 in the P2 area, and H'C0000100 in the P3 area are all
mapped to the same external address H'00000100 in area 0. However, since addresses cannot be
mapped to the P4 area, the external address space cannot be accessed by an access to the P4 area.

The three areas (areas 0, 3, and 4) to which the external memory can be connected are each a 64-
Mbyte external address space. Since this LSI has 24 address pins, a maximum of 16 Mbytes of
memory can be mounted for each area. Figure 2.5 shows the mounted space corresponding to area
0.

Note: * To access an on-chip I/O register mapped to area 1 of the external address space, make
an access from the P2 area of the logical address space that is not cacheable.

Rev. 1.00, 02/04, page 34 of 804
RENESAS

29-bit (512-Mbyte)
physical address space

H'00000000

H'04000000

Area 0

H'00000000

Area 1

\

\
\
\

\
\
\

\
\
\

\
v
\

H'1C000000
v

\
\

H'0C000000
v
H'10000000
H'14000000
v

H'18000000

H'08000000

(On-chip registers
and memories)

Area 2
(Reserved area)

Area 3

Area 4

Area 5

(Reserved area)

Area 6
(Reserved area)

H1FFFFFFF

Area 7
(Reserved area)

H'01000000

External address space

Mounted space

(Max. 16 Mbytes)

Figure2.5 External Address Space and Mounted Space (Area 0)

HOBFFFFFF)

RENESAS

Rev. 1.00, 02/04, page 35 of 804

2.3 Register Descriptions

The CPU of this LSI provides thirty-three 32-bit registers: 24 general registers, five control
registers, three system registers, and one program counter.

General Registers: This LSI incorporates 24 general registers: RO_BANKO to R7_BANKO,
RO_BANKI1 to R7_BANKI1, and R8 to R15. R0 to R7 are banked. The processing mode and the
register bank (RB) bit in the status register (SR) determine which set of banked registers
(RO_BANKO to R7_BANKO or RO_BANKI1 to R7_BANKI) are accessed as general registers.

System Registers: This LSI incorporates the multiply and accumulate registers (MACH/MACL)
and procedure register (PR) as system registers. These registers can be accessed regardless of the
processing mode.

Program Counter: The program counter (PC) stores the value obtained by adding 4 to the current
instruction address.

Control Registers: This LSI incorporates the status register (SR), global base register (GBR),
save status register (SSR), save program counter (SPC), and vector base register (VBR) as control
registers. Only GBR can be accessed in user mode. Control registers other than GBR can be
accessed only in privileged mode.

Table 2.1 shows the register values after a reset. Figure 2.6 shows the register configurations in
each processing mode.

Table2.1 Register Initial Values

Register Type Registers Initial Values*

General registers R0_BANKO to R7_BANKO, Undefined
RO_BANK1 to R7_BANK1,

R8 to R15
System registers MACH, MACL, PR Undefined
Program counter PC H'A0000000
Control registers SR MD bit = 1, RB bit = 1, BL bit = 1, 13 to |0 bits =
B'1111 (H'F), DSP bit = 0, reserved bits = all 0,
other bits = undefined
GBR, SSR, SPC Undefined
VBR H'00000000

Note: * Initialized by a power-on reset or manual reset.

Rev. 1.00, 02/04, page 36 of 804
RENESAS

Notes: 1.

31

31

RO_BANKO'""2 RO_BANK1*""3 RO_BANKO™"*
R1_BANKO0™2 R1_BANK1™ R1_BANKO™
R2_BANKO0™ R2_BANK1%3 R2_BANKO0™
R3_BANKO0™ R3_BANK1"3 R3_BANKO™
R4_BANKO0™2 R4_BANK1™ R4_BANKO™
R5_BANKO0™2 R5_BANK1™ R5_BANKO™
R6_BANKO0™ R6_BANK1"3 R6_BANKO™
R7_BANKO0™ R7_BANK13 R7_BANKO™

R8 R8 R8
R9 R9 R9
R10 R10 R10
R11 R11 R11
R12 R12 R12
R13 R13 R13
R14 R14 R14
R15 R15 R15
| SR SR SR
SSR SSR
GBR GBR GBR
MACH MACH MACH
MACL MACL MACL
PR PR PR
VBR VBR
| PC PC PC
SPC SPC
RO_BANKO™"™ RO_BANK1™""3
R1_BANKO™ R1_BANK17
R2_BANKO™ R2_BANK1™3
R3_BANKO™ R3_BANK1™
R4_BANKO™ R4_BANK1™
R5_BANKO™ R5_BANK1™
R6_BANKO™ R6_BANK1™3
R7_BANKO0™ R7_BANK1%3

(a) User mode register

(b) Privileged mode register
configuration

configuration (RB = 1)

(c) Privileged mode register
configuration (RB = 0)

The RO register is used as an index register in indexed register indirect addressing mode
and indexed GBR indirect addressing mode.

Bank register

Bank register

Accessed as a general register when the RB bit is set to 1 in SR.

Accessed only by LDC/STC instructions when the RB bit is cleared to 0.

Bank register

Accessed as a general register when the RB bit is cleared to 0 in SR.

Accessed only by LDC/STC instructions when the RB bit is set to 1.

Figure2.6 Register Configuration in Each Processing Mode

Rev. 1.00, 02/04, page 37 of 804
RENESAS

231 General Registers

There are twenty-four general registers: RO_BANKO to R7_BANKO0, RO_BANKI1 to R7_BANKI,
and R8 to R15. Figure 2.7 shows the general register configuration. RO to R7 are banked. The
processing mode and the register bank (RB) bit in the status register (SR) determine which set of
banked registers (RO_BANKO to R7_BANKO or RO_BANKI1 to R7_BANKI1) are accessed as
general registers. RO to R7 registers in the selected bank are accessed as RO to R7. RO to R7 in the
non-selected bank is accessed as RO_BANK to R7_BANK by the control register load instruction
(LDC) and control register store instruction (STC).

In user mode, bank 0 is selected regardless of the RB bit value. Sixteen registers: RO_BANKO to
R7_BANKO and RS to R15 are accessed as general registers RO to R15. RO_BANKI to
R7_BANKI registers in bank 1 cannot be accessed.

In privileged mode that is entered by a transition to the exception handling state, the RB bit is set
to 1 to select bank 1. In this case, sixteen registers: RO_BANKI to R7_BANKI in bank 1 and RS
to R15 are accessed as general registers RO to R15. A bank is switched automatically when an
exception handling state is entered, registers RO to R7 need not be saved by the exception handling
routine. RO_BANKQO to R7_BANKO in bank O can be accessed as RO_BANK to R7_BANK by
the LDC or STC instructions.

In privileged mode, bank O can also be used as general registers by clearing the RB bit to 0. In
this case, sixteen registers: RO_BANKO to R7_BANKO in bank 0 and R8 to R15 are accessed as
general registers RO to R15. RO_BANKI1 to R7_BANKI in bank 1 can be accessed as RO_BANK
to R7_BANK by the LDC or STC instructions.

The general registers RO to R15 are used as equivalent registers for almost all instructions. In
some instructions, RO is implicitly used or only RO may be used as source or destination registers.

Rev. 1.00, 02/04, page 38 of 804
RENESAS

31 0

RO*1"2 General Registers: Undefined after reset
R1"2
R2*2 Notes: 1. RO functions as an index register in the indexed
R32 register-indirect addressing mode and indexed
Ra? GBR-indirect addressing mode. In some
_ instructions, only RO can be used as the source
R5™ or destination register.
R6"2 2. RO to R7 are banked registers.
R7°2 In privileged mode, either RO_BANKO to
RS R7_BANKO or RO_BANKT1 to R7_BANK1
Ro is selected by the RB bit in SR.
R10
R11
R12
R13
R14
R15

Figure2.7 General Registers

232 System Registers

The system registers which are the following two registers can be accessed by the LDS or STS
instructions. Figure 2.8 shows the system register configuration.

Multiply and Accumulate Registers: The multiply and accumulate registers store the results of
multiplication and accumulation instructions or multiplication instructions. These registers also
store additional values for the multiplication and accumulation instructions. After a reset, these
registers are undefined.

The multiply and accumulate registers consist of the multiply and accumulate high register
(MACH) which stores the upper 32 bits and multiply and accumulate low register (MACL) which
stores lower 32 bits.

Procedure Register: The procedure register (PR) stores the return address for a subroutine call
using the BSR, BSRF, or JSR instruction. The return address stored in PR is restored to the
program counter (PC) by the RTS (return from the subroutine) instruction. After a reset, this
register is undefined.

Rev. 1.00, 02/04, page 39 of 804
RENESAS

233 Program Counter

The program counter (PC) stores the value obtained by adding 4 to the current instruction address.
Figure 2.8 shows the PC configuration. There is no instruction to read PC directly. Before an
exception handling state is entered, the PC is saved in the save program counter (SPC). Before a
subroutine call is executed, PC is saved in the procedure register (PR). In addition, PC can be

used for PC relative addressing mode.

Multiply and accumulate registers (MAC)

31 0
MACH
MACL
Procedure register (PR)
31 0
| o |

Program counter (PC)
31 0

I PC |

Figure2.8 System Registersand Program Counter

Rev. 1.00, 02/04, page 40 of 804
RENESAS

234 Control Registers

The control registers can be accessed by the LDC or STC instruction in privileged mode. The
global base register (GBR) can also be accessed in user mode. The control registers are the
following five registers.

Status Register (SR): SR stores various information which indicates the system status. SR can be
accessed only in privileged mode.

Rev. 1.00, 02/04, page 41 of 804
RENESAS

Initial

Bit Bit Name Value R/W Description

31 — 0 R Reserved
This bit is always read as 0. The write value should always
be 0. When 1 is written to this bit, operation cannot be
guaranteed.

30 MD 1 R/W Processing Mode
Indicates the CPU processing mode.
0: User mode
1: Privileged mode
The MD bit is set to 1 after a reset or in an exception
handling state.

29 RB 1 R/W Register Bank
The general registers RO to R7 are banked registers. The
RB bit selects a bank used in privileged mode.
0: Selects bank 0 registers. In this case, RO_BANKO to
R7_BANKO and R8 to R15 are used as general registers.
RO_BANK1 to R7_BANKT1 can be accessed by the LDC or
STC instruction.
1: Selects bank 1 registers. In this case, RO_BANK1 to
R7_BANK1 and R8 to R15 are used as general registers.
RO_BANKO to R7_BANKO can be accessed by the LDC or
STC instruction.
The RB bit is set to 1 after a reset or in an exception handling
state.

28 BL 1 R/W Block
0: Enables an interrupt or user break.
1: Disables an interrupt or user break.
The BL bit is set to 1 after a reset or in an exception handling
state.

27t010 — A0 R Reserved*

These bits are always read as 0. The write value should
always be 0. When 1 is written to these bits, operation
cannot be guaranteed.

Rev. 1.00, 02/04, page 42 of 804

RENESAS

Initial
Bit Bit Name Value R/W Description
9 M — R/W M Bit*'
8 Q — R/W Q Bit*'
These bits are used by the DIV0OS, DIVOU, and DIV1
instructions. These bits can be changed even in user mode
by executing these instructions. These bits are undefined at

a reset. These bits do not change in an exception handling
state.

7 13 1 R/W Interrupt Mask Bits

6 12 1 R/W The 4-bit data indicates the interrupt mask level. These bits

5 I 1 R/W do not change even if an interrupt occurs. At a reset, these
bits are initialized to B'1111. These bits are not affected in

4 10 1 RW an exception handling state.

3,2 — AllO R Reserved*

These bits are always read as 0. The write value should
always be 0. When 1 is written to these bits, operation
cannot be guaranteed.

1 S — R/W Saturation Mode*"'

Specifies saturation mode for multiply instructions or multiply
and accumulate instructions. This bit can be specified by the
SETS and CLRS instructions in user mode.

At a reset, this bit is undefined. This bit is not affected in an
exception handling state.

0 T — R/W T Bit*'

Indicates true or false for compare instructions or carry or
borrow occurrence for an operation instruction with carry or
borrow. This bit can be specified by the SETT and CLRT
instructions in user mode.

At a reset, this bit is undefined. This bit is not affected in an
exception handling state.

Notes: 1. The M, Q, S, and T bits can be set/cleared by the user mode specific instructions.
Other bits can be read or written in privileged mode.

2. When DSP is used, this bit is extended. Refer to section 3.2.3, CPU Register Sets.

Save Status Register (SSR): The save status register (SSR) can be accessed only in privileged
mode. Before entering the exception handling state, the contents of SR are saved. At a reset, the
SSR initial value is undefined.

Save Program Counter (SPC): The save program counter (SPC) can be accessed only in
privileged mode. Before entering the exception handling state, the contents of PC are saved. Ata
reset, the SPC initial value is undefined.

Rev. 1.00, 02/04, page 43 of 804
RENESAS

Global Base Register (GBR): The global base register (GBR) is referenced as a base register in
GBR indirect addressing mode. At a reset, the GBR initial value is undefined.

Vector Base Register (VBR): The vector base register (VBR) can be accessed only in privileged
mode. If a transition from a state other than a reset state to exception handling state occurs, this
register is referenced as a base address of the branch destination. For details, refer to section 4,
Exception Handling. At a reset, VBR is initialized to H'00000000.

Figure 2.9 shows the control register configuration.

Save status register (SSR)
31

| SSR |

Save program counter (SPC)
31 0
| SPC |

Global base register (GBR)
31 0

| GBR |

Vector base register (VBR)
31 0
| VBR |

Status register (SR)
31 0

| 0[MD[RBJ[BL| 0 o[M[Q[13 1211 10]0[0[S[T]

Figure2.9 Control Register Configuration

Rev. 1.00, 02/04, page 44 of 804
RENESAS

2.4 Data Formats

241 Register Data For mat

Register operands are always longwords (32 bits). When the memory operand is only a byte (8
bits) or a word (16 bits), it is sign-extended into a longword when loaded into a register.

Longword |

24.2 Memory Data For mats

Memory data formats are classified into byte, word, and longword. Memory can be accessed in
bytes, words, and longwords. When the memory operand is only a byte (8 bits) or a word (16
bits), it is sign-extended into a longword when loaded into a register.

Word operand must be accessed from word boundary (even address in two bytes: address 2n) and
longword operand must be accessed from longword boundary (even address in four bytes: address
4n). Otherwise, an address error will occur and an exception handling state will be entered. Byte
operand can be accessed from any address.

When a word or longword operand is accessed, the byte positions on the memory corresponding to
the word or longword data on the register is determined according to the specified endian mode
(big endian or little endian).

Figure 2.10 shows a byte correspondence in big endian mode. In big endian mode, the MSB byte
in the register corresponds to the lowest address in the memory, and the LSB byte in the register
corresponds to the highest address. For example, if the contents of the general register RO is
stored at an address indicated by the general register R1 in longwords, the MSB byte in RO is
stored at the address indicated by the R1 and the LSB byte in RO is stored at the address indicated
by the (R1 + 3).

The on-chip device registers assigned to memory are accessed in big endian mode. Note that the
available access size (byte, word, or longword) differs in each register.

Note: The CPU instruction codes of this LSI must be stored in words. In big endian mode, the
instruction code must be stored from upper byte to lower byte in this order from the word
boundary on the memory.

Rev. 1.00, 02/04, page 45 of 804
RENESAS

31 23 15 7 0

Byte position | | |
in RO

lea | [|

|[15:8] | [7:0] | | [31:241| [23:16]| [15:8] | [7:0] |

Byte position
in memory

1 T

| |[15:8] |[7:O] | |

| | [31:24] | [23:16]| [15:8] | [7:0] |

@(R1+0) @(R1+1) @(R1+2) @(R1+3)

(a) Byte access

Example: MOV.B RO, @R1
(R1 = Address 4n)

@(R1+0) @(R1+1) @(R1+2) @(R1+3)

(b) Word access

Example: MOV.W RO, @R1
(R1 = Address 4n)

@(R1+0) @(R1+1) @(R1+2) @(R1+3)

(c) Longword access

Example: MOV.L RO, @R1
(R1 = Address 4n)

Figure2.10 Data Format on Memory (Big Endian Mode)

The little endian mode can also be specified as data format. Either big endian or little endian mode
should be selected according to the external pin (MDS5 pin) at a power-on reset. When the MD5
pin goes low, the processor operates in big endian mode. When the MDS5 pin goes high, the
processor operates in little endian mode. The endian mode cannot be changed dynamically.

In little endian mode, the MSB byte in the register corresponds to the highest address in the
memory, and the LSB byte in the register corresponds to the lowest address (figure 2.11). For
example, if the contents of the general register RO is stored at an address indicated by the general
register R1 in longwords, the MSB byte of RO is stored at the address indicated by the (R1 + 3)
and the LSB byte of RO is stored at the address indicated by R1.

If little endian mode is selected, the on-chip memory of this LSI is accessed in little endian mode.
However, the on-chip device registers assigned to memory are accessed in big endian mode. Note
that the available access size (byte, word, or longword) differs in each register.

Note: The CPU instruction codes of this LSI must be stored in words. In little endian mode, the
instruction code must be stored from lower byte to upper byte in this order from the word

boundary on the memory.

R 23 15 7
Byte posiion | | | |[7:o1 | | |[15:s1 | [7:0] | | [31:24] | [23:1e1| [15:8] | [7:0] |
Byte position | | | | [7:01 | | | |[15:8] | [7:01 | | [31:24] | [23:16] | [15:8] | [7:01 |

in memory

@(R1+3) @(R1+2) @(R1+1) @(R1+0)

(a) Byte access

Example: MOV.B RO, @R1
(R1 = Address 4n)

@(R1+3) @(R1+2) @(R1+1) @(R1+0)

(b) Word access

Example: MOV.W RO, @R1
(R1 = Address 4n)

@(R1+3) @(R1+2) @(R1+1) @(R1+0)

(c) Longword access

Example: MOV.L RO, @R1
(R1 = Address 4n)

Figure2.11 Data Format on Memory (Little Endian M ode)

Rev. 1.00, 02/04, page 46 of 804

RENESAS

25 Features of | nstructions

251 Instruction Execution Method

Instruction Length: All instructions have a fixed length of 16 bits and are executed in the
sequential pipeline. In the sequential pipeline, almost all instructions can be executed in one
cycle. All data are handled in longwords (32 bits). Memory can be accessed in bytes, words, or
longwords. In this case, byte or word data is sign-extended and handled as longword data.
Immediate data is sign-extended to longword size for arithmetic operations (MOV, ADD, and
CMP/EQ instructions) or zero-extended to longword size for logical operations (TST, AND, OR,
and XOR instructions).

L oad/Store Ar chitecture: Basic operations are executed between registers. In operations
involving memory, data is first loaded into a register (load/store architecture). However, bit
manipulation instructions such as AND are executed directly on memory.

Delayed Branching: Unconditional branch instructions are executed as delayed branches. With a
delayed branch instruction, the branch is made after execution of the instruction immediately
following the delayed branch instruction. This minimizes disruption of the pipeline when a branch
is made. An example is shown below. This LSI supports two types of conditional branch
instructions: delayed branch instruction and normal branch instruction.

BRA TRGET

ADD R1, RO ; ADD instruction is executed before
branching to the TRGET.

T Bit: The result of a comparison is indicated by the T bit in the status register (SR), and a
conditional branch is performed according to whether the result is True or False. Processing speed
has been improved by keeping the number of instructions that modify the T bit to a minimum. An
example of using the T bit is shown below.

ADD #1, RO ; The T bit cannot be modified by the
ADD instruction.

CMP/EQ #0, RO ; The T bit is set to 1 if RO is 0.

BT TRGET ; Branch to the TRGET if the T bit is
set to 1 (RO = 0).

Rev. 1.00, 02/04, page 47 of 804
RENESAS

Literal Constant: Byte literal constant is placed inside the instruction code as immediate data.
Since the instruction length is fixed to 16 bits, word or longword literal constant is not placed
inside the instruction code, but stored as a table in main memory. The table in memory is
referenced with a MOV instruction using PC-relative addressing mode with displacement. An
example is shown below.

MOV.W @(disp, PC), RO

Absolute Addresses: The absolute address value should be placed in a table in main memory as
well as word or longword literal constant. This value is transferred to a register and the operand
access is specified using indexed register indirect addressing mode. The absolute address value is
stored in a register during execution of an instruction. This is also applied to the word or longword
immediate data.

16-Bit/32-Bit Displacement: When data is referenced with a 16- or 32-bit displacement, the
displacement value is placed in a table in memory beforehand. As well as the absolute addresses,
this value is transferred to a register and the operand access is specified using indexed register
indirect addressing mode. The displacement value is stored in a register during execution of an
instruction. This is also applied to the word or longword immediate data.

Rev. 1.00, 02/04, page 48 of 804
RENESAS

252 Addressing Modes
Table 2.2 shows addressing modes and effective address calculation methods.

Table2.2 Addressing Modesand Effective Addresses

Addressing Instruction

Mode Format Effective Address Calculation Method Calculation Formula
Register Rn Effective address is register Rn. —

direct (Operand is register Rn contents.)

Register @Rn Effective address is register Rn contents. Rn

indirect

Register @Rn+ Effective address is register Rn contents. A Rn

indirept with constapt is added to Rn after instruction After instruction
post-increment execution: 1 for a byte operand, 2 for a word execution

operand, or 4 for a longword operand.
Byte:Rn+1 — Rn

Word: Rn +2 — Rn

Longword: Rn + 4 — Rn

Register @-Rn Effective address is register Rn contents, Byte: Rn—1 — Rn
indirect with decremented by a constant beforehand: 1\ .. R _5 , Rn
pre-decrement for a byte operand, 2 for a word operand, or

4 for a longword operand. Longword: Rn -4 — Rn

(Instruction executed with
Rn after calculation)

Rn—1/2/4

Rev. 1.00, 02/04, page 49 of 804
RENESAS

Addressing Instruction Effective Address Calculation

Mode Format Method Calculation Formula
Register @ (disp:4, Rn) Effective address is register Rn Byte: Rn + disp

|qd|rect with coqteqts with . Word: Rn + disp x 2
displacement 4-bit displacement disp added. After

disp is zero-extended, it is multiplied by Longword: Rn + disp x 4
1 (byte), 2 (word), or 4 (longword),
according to the operand size.

Rn

disp
+ disp x 1/2/4

(zero-extended)
Indexed @ (RO, Rn) Effective address is sum of register Rn Rn + RO
register indirect and RO contents.

®

[R]
GBRindirect @(disp:8, GBR) Effective address is register GBR Byte: GBR + disp
with contents with 8-bit displacement disp Word: GBR + disp x 2
displacement added. After disp is zero-extended, it is '

multiplied by 1 (byte), 2 (word), or 4 Longword: GBR + disp x 4
(longword), according to the
operand size.

GBR
+ disp x 1/2/4

disp

(zero-extended)

Rev. 1.00, 02/04, page 50 of 804
RENESAS

Addressing Instruction
Mode Format Effective Address Calculation Method Calculation Formula

Indexed GBR @ (RO, GBR) Effective address is sum of register GBR and GBR + RO
indirect RO contents.

GBR + RO

PC-relative = @(disp:8, PC) Effective address is register PC with 8-bit Word: PC + disp x 2
with displacement disp added. After disp is zero- Longword:
displacement extended, it is multiplied by 2 (word) or 4 PC&HFFFFEFFC
(longword), according to the operand size.
With a longword operand,
the lower 2 bits of PC are masked.

+ disp x 4

PC + disp x 2
or
PC &
HFFFFFFFC

+dispx 4

HFFFFFFFC

disp

(zero-extended)

*: With longword operand

PC-relative disp:8 Effective address is register PC with 8-bit PC + disp x 2
displacement disp added after being sign-
extended and multiplied by 2.

disp

PC +disp x 2

(sign-extended)

Rev. 1.00, 02/04, page 51 of 804
RENESAS

Addressing Instruction

Calculation

Mode Format Effective Address Calculation Method Formula
PC-relative disp:12 Effective address is register PC with 12-bit PC + dispx 2
displacement disp added after being sign-
extended and multiplied by 2.
disp
(sign-extended)
Rn Effective address is sum of register PCand Rn PC + Rn
contents.
Immediate #imm:8 8-bit immediate data imm of TST, AND, OR, —
or XOR instruction is zero-extended.
#imm:8 8-bit immediate data imm of MOV, ADD, or —
CMP/EQ instruction is sign-extended.
#imm:8 8-bit immediate data imm of TRAPA instruction —

is zero-extended and multiplied by 4.

Note: For addressing modes with displacement (disp) as shown below, the assembler description
in this manual indicates the value before it is scaled (x 1, x 2, or x 4) according to the
operand size to clarify the LS| operation. For details on actual assembler description, refer
to the description rules in each assembler.

@ (disp:4, Rn) ; Register indirect with displacement

@ (disp:8, GBR)

; GBR indirect with displacement

@ (disp:8, PC) ; PC relative with displacement
disp:8, disp:12 ; PC relative

Rev. 1.00, 02/04, page 52 of 804

RENESAS

253

Instruction Formats

Table 2.3 shows the instruction formats and the meaning of the source and destination operands.
The meaning of the operands depends on the instruction code. The following symbols are used in

the table.
XXXX: Instruction code
mmmm: Source register
nnnn: Destination register
iiii: Immediate data
dddd: Displacement
Table2.3 Instruction Formats
Source Destination
Instruction Format Operand Operand Sample Instruction
0 type — — NOP
15 0
n type — nnnn: register MOVT Rn
15 0 direct
Control register or nnnn: register STS MACH,Rn
system register direct
Control register or nnnn: pre- STC.L SR,@-Rn
system register decrement register
indirect
m type mmmm: register ~ Control register or LDC Rm,SR
15 0 direct system register
mmmm: post- Control registeror LDC.L @Rm+,SR
increment register system register
indirect
mmmm: register — JMP @Rm
indirect
mmmm: PC- — BRAF Rm

relative using Rm

Rev. 1.00, 02/04, page 53 of 804

RENESAS

Source Destination

Instruction Format Operand Operand Sample Instruction
nm type mmmm: register nnnn: register ADD Rm,Rn
15 0 direct direct
mmmm: register nnnn: register MOV.L Rm,@Rn
direct indirect
mmmm: post- MACH, MACL MAC.W @Rm+,@Rn+

increment register
indirect (multiply-
and-accumulate
operation)

nnnn: *post-
increment register
indirect (multiply-
and-accumulate

operation)
mmmm: post- nnnn: register MOV.L @Rm+,Rn
increment register direct
indirect
mmmm: register nnnn: pre- MOV.L Rm,@-Rn
direct decrement register
indirect
mmmm: register nnnn: indexed MOV.L Rm, @ (RO0,Rn)
direct register indirect
md type mmmmdddd: RO (register direct) MOV.B @ (disp,Rm),R0
15 0 register indirect
dddd with displacement
nd4 type RO (register direct) nnnndddd: MOV.B RO, @ (disp,Rn)
15 0 register indirect
dddd with displacement
nmd type mmmm: register nnnndddd: MOV.L Rm, @ (disp,Rn)
15 0 direct register indirect
with displacement
mmmmdddd: nnnn: register MOV.L @ (disp,Rm),Rn

register indirect direct
with displacement

Rev. 1.00, 02/04, page 54 of 804
RENESAS

Source Destination

Instruction Format Operand Operand Sample Instruction
d type dddddddd: GBR RO (register direct) MOV.L @ (disp,GBR),R0
15 0 indirect with
displacement
RO (register direct) dddddddd: GBR MOV.L RO, @(disp,GBR)
indirect with
displacement
dddddddd: RO (register direct) MOVA @ (disp,PC),R0

PC-relative with
displacement

dddddddd: — BF label
PC-relative
di12 type dddddddddddd: — BRA label
15 0 PC-relative (label=disp+PC)
nd8 type dddddddd: PC- nnnn: register MOV.L @ (disp,PC),Rn
15 0 relative with direct
displacement
i type iiiiiiii: immediate Indexed GBR AND.B #imm, @ (R0,GBR)
15 0 indirect
[ooo oo i1 iiiiiiii: immediate RO (register directy AND #imm,R0
iiiiiiii: immediate — TRAPA #imm
ni type iiiiiiii: immediate nnnn: register ADD #imm,Rn
15 0 direct
e ETEIEE

Note: * In multiply-and-accumulate instructions, nnnn is the source register.

Rev. 1.00, 02/04, page 55 of 804
RENESAS

2.6 Instruction Set

261 Instruction Set Based on Functions
Table 2.4 lists the instruction types based on functions.

Table24 CPU Instruction Types

Kinds of Number of

Type Instruction Op Code Function Instructions
Data transfer 5 MOV Data transfer 39
instructions MOVA Effective address transfer

MOVT T bit transfer

SWAP Upper/lower swap

XTRCT Extraction of middle of linked registers
Arithmetic 21 ADD Binary addition 33
pperatiqn ADDC Binary addition with carry
instructions

ADDV Binary addition with overflow

CMP/cond Comparison

DIV1 Division

DIVOS Signed division initialization

DIvou Unsigned division initialization

DMULS Signed double-precision multiplication

DMULU Unsigned double-precision multiplication

DT Decrement and test

EXTS Sign extension

EXTU Zero extension

MAC Multiply-and-accumulate, double-

precision multiply-and-accumulate

MUL Double-precision multiplication
(32 x 32 bits)

Rev. 1.00, 02/04, page 56 of 804
RENESAS

Kinds of

Number of

Type Instruction Op Code Function Instructions
Arithmetic 21 MULS Signed multiplication (16 x 16 bits) 33
pperatign MULU Unsigned multiplication (16 x 16 bits)
instructions

NEG Sign inversion

NEGC Sign inversion with borrow

SuB Binary subtraction

SUBC Binary subtraction with borrow

SUBV Binary subtraction with underflow
Logic 6 AND Logical AND 14
pperatign NOT Bit inversion
instructions

OR Logical OR

TAS Memory test and bit setting

TST Logical AND and T bit setting

XOR Exclusive logical OR
Shift 12 ROTCL 1-bit left rotate with T bit 16
instructions ROTCR 1-bit right rotate with T bit

ROTL 1-bit left rotate

ROTR 1-bit right rotate

SHAD Arithmetic dynamic shift

SHAL Arithmetic 1-bit left shift

SHAR Arithmetic 1-bit right shift

SHLD Logical dynamic shift

SHLL Logical 1-bit left shift

SHLLn Logical n-bit left shift

SHLR Logical 1-bit right shift

SHLRn Logical n-bit right shift

Rev. 1.00, 02/04, page 57 of 804
RENESAS

Kinds of Number of

Type Instruction Op Code Function Instructions
Branch 9 BF Conditional branch, delayed conditional 11
instructions branch (T = 0)

BT Conditional branch, delayed conditional

branch (T =1)

BRA Unconditional branch

BRAF Unconditional branch

BSR Branch to subroutine procedure

BSRF Branch to subroutine procedure

JMP Unconditional branch

JSR Branch to subroutine procedure

RTS Return from subroutine procedure
System 14 CLRMAC MAC register clear 74
F:ontrol . CLRS S bit clear
instructions

CLRT T bit clear

LDC Load into control register

LDS Load into system register

NOP No operation

PREF Data prefetch to cache

RTE Return from exception handling
SETS S bit setting
SETT T bit setting
SLEEP Transition to power-down mode

STC Store from control register

STS Store from system register

TRAPA Trap exception handling

Total: 67 187

The instruction code, operation, and number of execution states of the CPU instructions are shown
in tables 2.5 to 2.10, classified by instruction type, using the format shown below.

Rev. 1.00, 02/04, page 58 of 804
RENESAS

Execution

Instruction Instruction Code Operation Privilege states T Bit
Indicated by mnemonic. Indicated in MSB < Indicates summary of Indicatesa Value Value of T
LSB order. operation. privileged whenno bit after
instruction. wait states instruction
are is executed
inserted*'
Legend Legend Legend insere Legend
OP.Sz SRC, DEST mmmm: Source register —, < Transfer direction —: No
P: ti h
gz- gi;;zra fon code nnnn: Destination register (xx): Memory operand change
SRC: Source ggg?f ?? M/Q/T: Flag bits in SR
DEST: Destination)
""""" &: Logical AND of each bit
Rm: Source register 1111: R15
| Logical OR of each bit
Rn: Destination register iiii: Immediate data
A: Exclusive logical OR of
imm: Immediate data dddd: Displacement** each bit
disp: Displacement ~: Logical NOT of each bit
<<n: n-bit left shift
>>n: n-bit right shift
Notes: 1. The table shows the minimum number of execution states. In practice, the number of
instruction execution states will be increased in cases such as the following:
a. When there is a conflict between an instruction fetch and a data access
b. When the destination register of a load instruction (memory — register) is also

used by the following instruction
2. Scaled (x 1, x 2, or x 4) according to the instruction operand size, etc.

Rev. 1.00, 02/04, page 59 of 804
RENESAS

Table2.5

Data Transfer Instructions

Privileged
Instruction Instruction Code Operation Mode Cycles T Bit
MOV #imm,Rn 1110nnnniiiiiiii imm — Sign extension — Rn — 1 —
MOV.W @(disp,PC),Rn 1001nnnndddddddda (disp x 2+PC)—Sign extension — 1 —
—Rn
MOV.L @(disp,PC),Rn 1101nnnnddddddad (disp x 4+PC)—Rn — 1 —
MOV Rm,Rn 0110nnnnmmmm0011 ~ Rm—Rn — 1 —
MOV.B Rm,@Rn 0010nnnnmmmm0000 Rm—(Rn) — 1 —
MOV.W Rm,@Rn 0010nnnnmmmm0001 Rm—(Rn) — 1 —
MOV.L Rm,@Rn 0010nnnnmmmm0010 Rm—(Rn) — 1 —
MOV.B @Rm,Rn 0110nnnnmmmm0000 (Rm)—Sign extension—Rn — 1 —
MOV.W @Rm,Rn 0110nnnnmmmm0001 (Rm)—Sign extension—Rn — 1 —
MOV.L @Rm,Rn 0110nnnnmmmm0010 (Rm)—Rn — 1 —
MOV.B Rm,@-Rn 0010nnnnmmmm0100 Rn—1—Rn, Rm—(Rn) — 1 —
MOV.W Rm,@-Rn 0010nnnnmmmm0101 Rn—-2—Rn, Rm—(Rn) — 1 —
MOV.L Rm,@-Rn 0010nnnnmmmm0110 Rn—4—Rn, Rm—(Rn) — 1 —
MOV.B @Rm+,Rn 0110nnnnmmmm0100 (Rm)—Sign extension—Rn, — 1 —
Rm+1—Rm
MOV.W @Rm+,Rn 0110nnnnmmmm0101 (Rm)—Sign extension—Rn, — 1 —
Rm+2—Rm
MOV.L @Rm+,Rn 0110nnnnmmmm0110 (Rm)—Rn, Rm+4—Rm — 1 —
MOV.B RO,@(disp,Rn) 10000000nnnnddad RO—(disp+Rn) — 1 —
MOV.W RO,@(disp,Rn) 10000001nnnndddad RO—(disp x 2+Rn) — 1 —
MOV.L Rm,@(disp,Rn) 0001lnnnnmmmmdddd Rm—(disp x 4+Rn) — 1 —
MOV.B @(disp,Rm),R0 10000100mmmmdddd (disp+Rm)—Sign extension—>R0 — 1 —
MOV.W @(disp,Rm),R0 10000101mmmmdddd (disp x 2+Rm)—Sign — 1 —
extension—R0
MOV.L @(disp,Rm),Rn 0101nnnnmmmmddad (disp x 4+Rm)—Rn — 1 —
MOV.B Rm,@(R0,Rn) 0000nnnnmmmm0100 Rm—(RO+RnN) — 1 —
MOV.W Rm,@(R0,Rn) 0000nnnnmmmm0101 Rm—(RO+Rn) — 1 —
MOV.L Rm,@(RO,Rn) 0000nnnnmmmm0110 Rm—(RO+Rn) — 1 —

Rev. 1.00, 02/04, page 60 of 804

RENESAS

Privileged

Instruction Instruction Code Operation Mode Cycles T Bit

MOV.B @(R0,Rm),Rn 0000nnnnmmmm1100 (RO+Rm)—Sign extension—>Rn — 1 —

MOV.W @(R0,Rm),Rn 0000nnnnmmmm1101 (RO+Rm)—Sign extension—>Rn — 1 —

MOV.L @(R0,Rm),Rn 0000nnnnmmmm1110 (RO+Rm)—Rn — 1 —

MOV.B RO, @(disp,GBR) 11000000dddaddad RO—(disp+GBR) — 1 —

MOV.W RO0,@(disp,GBR) 11000001ddddadda RO—(disp x 2+GBR) — 1 —

MOV.L RO,@(disp,GBR) 11000010dddaddad RO—(disp x 4+GBR) — 1 —

MOV.B @(disp,GBR),RO 11000100dddddddd (disp+GBR)—Sign — 1 —
extension—R0

MOV.W @(disp,GBR),RO 11000101ddddddda (disp x 2+GBR)—Sign — 1 —
extension—R0

MOV.L @(disp,GBR),RO 11000110ddddadadda (disp x 4+GBR)—R0 — 1 —

MOVA @ (disp,PC),R0 11000111ddaddaddad disp x 4+PC—RO0 — 1 —

MOVT Rn 0000nnnn00101001 T—RN — 1 —

SWAP.B Rm,Rn 0110nnnnmmmm1000 Rm—Swap lowest two — 1 —
bytes—Rn

SWAP. Rm,Rn 0110nnnnmmmm1001 Rm—Swap two consecutive — 1 —

w words—Rn

XTRCT Rm,Rn 0010nnnnmmmm1101 Rm: Middle 32 bits of Rn - Rn — 1 —

RENESAS

Rev. 1.00, 02/04, page 61 of 804

Table2.6 Arithmetic Operation Instructions

Privileged
Instruction Instruction Code Operation Mode Cycles T Bit
ADD Rm,Rn 0011lnnnnmmmm1100 Rn+Rm—Rn — 1 —
ADD #imm,Rn 01llnnnniiiiiiii Rn+imm—Rn — 1 —
ADDC Rm,Rn 0011nnnnmmmm1110 Rn+Rm+T—Rn, Carry—>T — 1 Carry
ADDV Rm,Rn 0011nnnnmmmm1111 Rn+Rm—Rn, Overflow—T — 1 Overflow
CMP/EQ #imm,R0O 10001000iiiiiiii I RO=imm,1 > T — 1 Comparison
result
CMP/EQ Rm,Rn 0011nnnnmmmm0000 IfRn=Rm,1 > T — 1 Comparison
result
CMP/HS Rm,Rn 0011nnnnmmmm0010 If Rn > Rm with unsigned — 1 Comparison
data,1 > T result
CMP/GE Rm,Rn 0011lnnnnmmmm0011 If Rn > Rm with signed data, 1 — 1 Comparison
-T result
CMP/HI Bm,Rn 0011nnnnmmmm0110 If Rn > Rm with unsigned — 1 Comparison
data,1 > T result
CMP/GT Rm,Rn 0011lnnnnmmmm0111 If Rn > Rm with signed data, 1 — 1 Comparison
-T result
CMP/PL Rn 0100nnnn00010101 IfRNn>0,1—>T — 1 Comparison
result
CMP/PZ Rn 0100nnnn00010001 fRNn>0,1->T — 1 Comparison
result
CMP/ST Rm,Rn 0010nnnnmmmm1100 If Rn and Rm have an — 1 Comparison
R equivalentbyte, 1 > T result
DIV1 Rm,Rn 0011lnnnnmmmm0100 Single-step division (Rn/Rm) — 1 Calculation
result
DIVOS Rm,Rn 0010nnnnmmmm0111 MSB of Rn —» Q, MSB of Rm — 1 Calculation
SM,MAQ ST result
DIVoU 0000000000011001 0 — M/Q/T — 1 0
DMULS.L Rm,Rn 001lnnnnmmmml1101 Signed operation of Rn x Rm — 2 (to 5)* —
-
MACH, MACL 32 x 32 — 64
bits
DMULU.L Rm,Rn 0011lnnnnmmmm0101 Unsigned operation of Rn x — 2 (to 5)* —
Rm — MACH, MACL 32 x 32
— 64 bits
DT Rn 0100nnnn00010000 Rn—1—=Rn,ifRn=0,1 - — 1 Comparison
T,else0—>T result

Rev. 1.00, 02/04, page 62 of 804

RENESAS

Privileged

Instruction Instruction Code Operation Mode Cycles T Bit
EXTS.B Rm,Rn 0110nnnnmmmm1110 A byte in Rm is sign-extended — 1 —
— Rn
EXTS.W Rm,Rn 0110nnnnmmmm1111 A word in Rm is sign- — 1 —
extended — Rn
EXTU.B Rm,Rn 0110nnnnmmmm1100 A byte in Rm is zero-extended — 1 —
— Rn
EXTU.W Rm,Rn 0110nnnnmmmm1101 A word in Rm is zero- — 1 —
extended — Rn
MAC.L @Rm+, @Rn+ 0000nnnnmmmm1111 Signed operation of (Rn) x — 2 (to 5)* —
(Rm) + MAC —» MAC, Rn + 4
— Rn, RBm +4 — Rm
32 x 32 + 64 — 64 bits
MAC.W @Rm+, @Rn+ 0100nnnnmmmm1111 Signed operation of (Rn) x — 2 (to 5)* —
(Rm) + MAC — MAC, Rn + 2
— Rn, Rm +2 — Rm
16 x 16 + 64 — 64 bits
MUL.L Rm,Rn 0000nnnnmmmm0111 Rnx Rm — MACL — 2 (to 5)* —
32 x 32 — 32 bits
MULS.W Rm,Rn 0010nnnnmmmm1111 Signed operation of Rn x Rm — 1 (to 3)* —
— MACL
16 x 16 — 32 bits
MULU.W Rm,Rn 0010nnnnmmmm1110 Unsigned operation of — 1 (to 3)* —
Rn x Rm — MACL
16 x 16 — 32 bits
NEG Rm,Rn 0110nnnnmmmm1011 0—Rm—Rn — 1 —
NEGC Rm,Rn 0110nnnnmmmm1010 0—Rm-T—Rn, Borrow—T — 1 Borrow
SUB Rm,Rn 0011nnnnmmmm1000 Rn—Rm—Rn — 1 —
SUBC Rm,Rn 0011nnnnmmmm1010 Rn—Rm-T—Rn, Borrow -T — 1 Borrow
SuUBvV Rm,Rn 0011lnnnnmmmml1011 Rn-Rm—Rn, Underflow—T — 1 Underflow
Note: * The number of execution cycles indicated within the parentheses () are required when

the operation result is read from the MACH/MACL register immediately after the

instruction.

Rev. 1.00, 02/04, page 63 of 804

RENESAS

Table2.7

Logic Operation Instructions

Privileged
Instruction Instruction Code Operation Mode Cycles T Bit
AND Rm,Rn 0010nnnnmmmm1001 Rn & Rm — Rn — 1 —
AND #imm,R0O 11001001iiiiiiii RO & imm — RO — 1 —
AND.B #imm, 11001101iiiiiiii (RO+GBR) & imm — — 3 —
@ (R0, GBR) (RO+GBR)
NOT Rm,Rn 0110nnnnmmmm0111 "Rm — Rn — 1 —
OR Rm,Rn 0010nnnnmmmm1011 RN | Rm — Rn — 1 —
OR #mm,RO 11001011iiiiiiii RO|imm — RO — 1 —
OR.B #imm, 11001111iiiiiiii (RO+GBR) [imm — (RO+GBR) — 3 —
@ (R0, GBR)
TAS.B @Rn 0100nnnn00011011 If(Rn)is0,1 > T;1 >MSB — 4 Test result
of (Rn)
TST Rm,Rn 0010nnnnmmmm1000 Rn & Rm; if the resultis 0,1 — 1 Test result
->T
TST #imm,R0 11001000iiiiiiii RO & imm; if the resultis 0,1 — 1 Test result
-T
TST.B #imm, 11001100iiiiiiii (RO + GBR) & imm; if the — 3 Test result
@ (R0, GBR) resultis0,1—>T
XOR Rm,Rn 0010nnnnmmmm1010 Rn /A Rm — Rn — 1 —
XOR #imm,R0O 11001010iiiiiiii RO~ imm — RO — 1 —
XOR.B #imm, 11001110iiiiiiii (RO+GBR) A imm — — 3 —
@(R0, GBR) (RO+GBR)

Rev. 1.00, 02/04, page 64 of 804

RENESAS

Table2.8

Shift Instructions

Privileged
Instruction Instruction Code Operation Mode Cycles T Bit
ROTL Rn 0100nnnn00000100 T<«-Rn«MSB — 1 MSB
ROTR Rn 0100nnnn00000101 LSB—Rn—>T — 1 LSB
ROTCL Rn 0100nnnn00100100 T«-Rn«T — 1 MSB
ROTCR Rn 0100nnnn00100101 T—>Rn->T — 1 LSB
SHAD Rm, Rn 0100nnnnmmmm1100 Rm 2> 0: Rn << Rm — Rn — 1 —
Rm < 0: Rn >> Rm — [MSB — Rn]
SHAL Rn 0100nnnn00100000 T<«Rn«0 — 1 MSB
SHAR Rn 0100nnnn00100001 MSB—Rn—>T — 1 LSB
SHLD Rm, Rn 0100nnnnmmmm1101 Rm 2> 0: Rn << Rm — Rn — 1 —
Rm < 0: Rn >> Rm — [0 — Rn]
SHLL Rn 0100nnnn00000000 T«-Rn«0 — 1 MSB
SHLR Rn 0100nnnn00000001 0—RN->T — 1 LSB
SHLL2 Rn 0100nnnn00001000 Rn<<2 — Rn — 1 —
SHLR2 Rn 0100nnnn00001001 Rn>>2 — Rn — 1 —
SHLL8 Rn 0100nnnn00011000 Rn<<8 — Rn — 1 —
SHLR8 Rn 0100nnnn00011001 Rn>>8 — Rn — 1 —
SHLL16 Rn 0100nnnn00101000 Rn<<16 — Rn — 1 —
SHLR16 Rn 0100nnnn00101001 Rn>>16 — Rn — 1 —

RENESAS

Rev. 1.00, 02/04, page 65 of 804

Table2.9 Branch Instructions

Privileged
Instruction Instruction Code Operation Mode Cycles T Bit
BF disp 10001011dddddddd If T=0, branch to disp x 2 + PC — 3/1* —
if T=1, nop
BF/S disp 10001111ddadddda Delayed branch, — 2/1% —
if T=0, branch to disp x2 + PC
if T=1, nop
BT disp 10001001ddadddda If T=1, branch to disp x 2 + PC — 3/1* —
if T=0, nop
BT/S disp 10001101dddddaddd Delayed branch, — 2/1% —
if T=1, branch to disp x2 + PC
if T=0, nop
BRA disp 1010ddddddadddda Delayed branch, branch to disp x 2 + PC — 2 —
BRAF Rm 0000mmmm00100011 Delayed branch, branch to Rm + PC — 2 —
BSR disp 1011dddddddddddd Delayed branch, reload next instruction — 2 —
address after delayed slot instruction —
to PR, and branch to disp x 2 + PC
BSRF Rm 0000mmmm00000011 Delayed branch, reload next instruction — 2 —
address after delayed slot instruction —
to PR, and branch to Rm + PC
JMP @Rm 0100mmmm00101011 Delayed branch, branch to Rm — 2 —
JSR @Rm 0100mmmm00001011 Delayed branch, reload next instruction — 2 —
address after delayed slot instruction —
to PR, and branch to Rm
RTS 0000000000001011 Delayed branch, branch to PR — 2 —

Note: * One cycle when the branch is not executed.

Rev. 1.00, 02/04, page 66 of 804
RENESAS

Table2.10 System Control Instructions

Privileged
Instruction Instruction Code Operation Mode Cycles T Bit
CLRMAC 0000000000101000 0—»MACH,MACL — 1 —
CLRS 0000000001001000 0—8 — 1 —
CLRT 0000000000001000 0—>T — 1 0
LDC Rm,SR 0100mmmm00001110 Rm—SR Y 6 LSB
LDC Rm,GBR 0100mmmm00011110 Rm—GBR — 4 —
LDC Rm,VBR 0100mmmm00101110 Rm—VBR Y 4 —
LDC Rm,SSR 0100mmmm00111110 RmM—SSR y 4 —
LDC Rm,SPC 0100mmmm01001110 Rm—SPC v 4 —
LDC Rm,RO_BANK 0100mmmm10001110 Rm—RO_BANK y 4 —
LDC Rm,R1_BANK 0100mmmm10011110 Rm—R1_BANK v 4 —
LDC Rm,R2_BANK 0100mmmm10101110 Rm—R2_BANK Y 4 —
LDC Rm,R3_BANK 0100mmmm10111110 Rm—R3_BANK v 4 —
LDC Rm,R4_BANK 0100mmmm11001110 Rm—R4_BANK v 4 —
LDC Rm,R5_BANK 0100mmmm11011110 Rm—R5_BANK y 4 —
LDC Rm,R6_BANK 0100mmmm11101110 Rm—R6_BANK v 4 —
LDC Rm,R7_BANK 0100mmmm11111110 Rm—R7_BANK Y 4 —
LDC.L @Rm+,SR 0100mmmm00000111 (Rm)—SR, Rm+4—Rm v 8 LSB
LDC.L @Rm+,GBR 0100mmmm00010111 (Rm)—>GBR, Rm+4—Rm — 4 —
LDC.L @Rm+,VBR 0100mmmm00100111 (Rm)—>VBR, Rm+4—Rm v 4 —
LDC.L @Rm+,SSR 0100mmmm00110111 (Rm)—>SSR,Rm+4—Rm v 4 —
LDCL @Rm+SPC 0100mmmm01000111 (RM)—>SPC,Rm+4—Rm v 4 —
LDC.L @Rm+, 0100mmmm10000111 (Rm)—R0_BANK,Rm+4—Rm v 4 —
RO_BANK
LDC.L @Rm+, 0100mmmm10010111 (Rm)—>R1_BANK,Rm+4—Rm 4 —
R1_BANK
LDC.L @Rm+, 0100mmmm10100111 (Rm)—R2_BANK,Rm+4—Rm 4 —
R2_BANK
LDCL @Rm+, 0100mmmm10110111 (Rm)—>R3_BANK, v 4 —
R3_BANK Rm+4—Rm
LDC.L @Rm+, 0100mmmm11000111 (Rm)—R4_BANK, Y 4 —
R4_BANK Rm+4—Rm
LDC.L @Rm+, 0100mmmm11010111 (Rm)—R5_BANK, v 4 —
R5_BANK Rm+4—Rm

RENESAS

Rev. 1.00, 02/04, page 67 of 804

Privileged

Instruction Instruction Code Operation Mode Cycles T Bit
LDC.L @Rm+, 0100mmmm11100111 (Rm)—>R6_BANK, Rm+4—»Rm 4 —
R6_BANK
LDC.L @Rm+, 0100mmmm11110111 (Rm)—R7_BANK, Rm+4—Rm Y 4 —
R7_BANK
LDS Rm,MACH 0100mmmm00001010 Rm—MACH — 1 —
LDS Rm,MACL 0100mmmm00011010 Rm—MACL — 1 —
LDS Rm,PR 0100mmmm00101010 Rm—PR — 1 —
LDS.L @RBRm+MACH 0100mmmm00000110 (Rm)—>MACH, Rm+4—Rm — 1 —
LDS.L @Rm+,MACL 0100mmmm00010110 (Rm)—>MACL, Rm+4—Rm — 1 —
LDS.L @Rm+,PR 0100mmmm00100110 (Rm)—PR, Rm+4—Rm — 1 —
NOP 0000000000001001 No operation — 1 —
PREF @Rm 0000mmmm10000011 (Rm) — cache — 1 —
RTE 0000000000101011 Delayed branch, SSR — SR, 5 —
branch to SPC

SETS 0000000001011000 1S — 1 —
SETT 0000000000011000 15T — 1 1
SLEEP 0000000000011011 Sleep v 4% —
STC SR,Rn 0000nnnn00000010 SR—RN v 1 —
STC GBR,Rn 0000nnnn00010010 GBR—RN — 1 —
STC VBR,Rn 0000nnnn00100010 VBR—RN v 1 —
STC SSR, Rn 0000nnnn00110010 SSR—RN \ 1 —
STC SPC,Rn 0000nnnn01000010 SPC—RN y 1 —
STC RO_BANK,Rn 0000nnnn10000010 RO_BANK—Rn v 1 —
STC R1_BANK,Rn 0000nnnn10010010 R1_BANK—Rn y 1 —
STC R2_BANK,Rn 0000nnnn10100010 R2_BANK—Rn v 1 —
STC R3_BANK,Rn 0000nnnn10110010 R3_BANK—Rn Y 1 —
STC R4_BANK,Rn 0000nnnn11000010 R4_BANK—Rn v 1 —
STC R5_BANK,Rn 0000nnnn11010010 R5_BANK—Rn v 1 —
STC R6_BANK,Rn 0000nnnn11100010 R6_BANK—Rn y 1 —
STC R7_BANK,Rn 0000nnnn11110010 R7_BANK—Rn v 1 —
STC.L SR,@-Rn 0100nnnn00000011 Rn—4—Rn, SR—(Rn) v 1 —
STC.L GBR,@-Rn 0100nnnn00010011 Rn—4—Rn, GBR—(Rn) — 1 —
STC.L VBR,@-Rn 0100nnnn00100011 Rn—4—Rn, VBR—(RN) v 1 —

Rev. 1.00, 02/04, page 68 of 804

RENESAS

Privileged

Instruction Instruction Code Operation Mode Cycles T Bit
STC.L SSR,@-Rn 0100nnnn00110011 Rn—4—Rn, SSR—(Rn) S 1 —
STC.L SPC,@-Rn 0100nnnn01000011 Rn—4—Rn, SPC—(Rn) v 1 —
STC.L RO_BANK,@-Rn 0100nnnn10000011 Rn—4—Rn, RO_BANK—(Rn) < 1 —
STC.L R1_BANK,@-Rn 0100nnnn10010011 Rn-4—Rn, R1_BANK—(Rn) v 1 —
STC.L R2_BANK,@-Rn 0100nnnn10100011 Rn—-4—Rn, R2_BANK—(Rn) v 1 —
STC.L R3_BANK,@-Rn 0100nnnn10110011 Rn-4—Rn, R3_BANK—(Rn) v 1 —
STC.L R4_BANK,@-Rn 0100nnnn11000011 Rn—4—Rn, R4_BANK—(Rn) < 1 —
STC.L R5_BANK,@-Rn 0100nnnn11010011 Rn—4—Rn, R5_BANK—(Rn) < 1 —
STC.L R6_BANK,@-Rn 0100nnnn11100011 Rn—4—Rn, R6_BANK—(Rn) < 1 —
STC.L R7_BANK,@-Rn 0100nnnn11110011 Rn-4—Rn, R7_BANK—(Rn) v 1 —
STS MACH,Rn 0000nnnn00001010 MACH—RnN — 1 —
STS MACL,Rn 0000nnnn00011010 MACL—Rn — 1 —
STS PR,Rn 0000nnnn00101010 PR—RnN — 1 —
STS.L MACH,@-Rn 0100nnnn00000010 Rn—4—Rn, MACH—(Rn) — 1 —
STS.L MACL,@-Rn 0100nnnn00010010 Rn—4—Rn, MACL—(Rn) — 1 —
STS.L PR,@-Rn 0100nnnn00100010 Rn—4—Rn, PR—(Rn) — 1 —
TRAPA #imm 11000011iiiiiiii Unconditional trap exception — 8 —
occurs*?
Notes: *1 Minimum number of cycles before the chip enters the sleep state.

*2 For details, refer to section 4, Exception Handling.

1. The table shows the minimum number of cycles required for execution. In practice, the

number of execution cycles will be increased in the following conditions.
a. If there is a conflict between an instruction fetch and a data access

b. If the destination register of a load instruction (memory — register) is also used by

the following instruction.
2. For addressing modes with displacement (disp) as shown below, the assembler

description in this manual indicates the value before it is scaled (x 1, x 2, or x 4)

according to the operand size to clarify the LS| operation. For details on assembler
description, refer to the description rules in each assembler.

@ (disp:4, Rn) ; Register indirect with displacement
@ (disp:8, GBR) ; GBR indirect with displacement
@ (disp:8, PC) ; PC relative with displacement
disp:8, disp:12; PC relative

Rev. 1.00, 02/04, page 69 of 804

RENESAS

26.2 Operation Code Map

Table 2.11 shows the operation code map.

Table2.11 Operation Code Map

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011 to 1111
MSB LSB MD: 00 MD: 01 MD: 10 MD: 11

0000 Rn Fx 0000

0000 Rn Fx 0001

0000 Rn 0OMD 0010 STC SR, Rn STC GBR, Rn STC VBR, Rn STC SSR, Rn
0000 Rn 01MD 0010 STC SPC, Rn

0000 Rn 10MD 0010 STC RO_BANK,Rn STC R1_BANK, Rn STC R2_BANK, Rn STC R3_BANK, Rn
0000 Rn 11MD 0010 STC R4_BANK,Rn STC R5_BANK, Rn STC R6_BANK, Rn STC R7_BANK, Rn
0000 Rm 00MD 0011 BSRF Rm BRAF Rm

0000 Rm 10MD 0011 PREF @Rm

0000 Rn Rm 01MD MOV.B Rm, @(R0O, Rn) MOV.W Rm, @(RO, Rn) MOV.L Rm, @ (RO, Rn) MUL.LRm, Rn

0000 0000 OOMD 1000 CLRT SETT CLRMAC LDTLB

0000 0000 O1MD 1000 CLRS SETS

0000 0000 Fx 1001 NOP DIVoU

0000 0000 Fx 1010

0000 0000 Fx 1011 RTS SLEEP RTE

0000 Rn Fx 1000

0000 Rn Fx 1001 MOVT Rn

0000 Rn Fx 1010 STS MACH, Rn STS MACL, Rn STS PR, Rn

0000 Rn Fx 1011

0000 Rn Rm 11MD MOV.B @(RO, Rm), Rn MOV.W @(R0O, Rm), Rn MOV.L @(R0O, Rm), Rn MAC.L @Rm+,@Rn+
0001 Rn Rm disp MOV.L Rm, @(disp:4, Rn)

0010 Rn Rm 00MD MOV.B Rm, @Rn MOV.W Rm, @Rn MOV.L Rm, @Rn

0010 R Rm 01MD MOV.B Rm, @-Rn MOV.W Rm, @-Rn MOV.L Rm, @-Rn DIVOS Rm, Rn
0010 Rn Rm 10MD TST Rm, Rn AND Rm, Rn XOR Rm, Rn OR Rm, Rn
0010 Rn Rm 11MD CMP/STRRm, Rn XTRCT Rm, Rn MULU.W Rm, Rn MULSW Rm, Rn

0011 Rn Rm 00MD CMP/EQ Rm, Rn

CMP/HS Rm, Rn

CMP/GE Rm, Rn

Rev. 1.00, 02/04, page 70 of 804

RENESAS

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011 to 1111

MSB LSB MD: 00 MD: 01 MD: 10 MD: 11

0011 Rn Rm 01MD DIV1 Rm, Rn DMULU.L Rm,Rn CMP/HI Rm, Rn CMP/GT Rm, Rn
0011 Rn Rm 10MD SUB Rm, Rn SUBC Rm, Rn SUBV Rm, Rn
0011 Rn Rm 11MD ADD Rm, Rn DMULS.L Rm,Rn ADDC Rm, Rn ADDV Rm, Rn
0100 Rn Fx 0000 SHLL Rn DT Rn SHAL Rn

0100 Rn Fx 0001 SHLR Rn CMP/PZ Rn SHAR Rn

0100 Rn Fx 0010 STS.L MACH, @-Rn STS.L MACL, @-Rn STS.L PR, @-Rn

0100 Rn 00OMD 0011 STC.L SR, @-Rn STC.L GBR,@-Rn STC.L VBR, @-Rn STC.L SSR, @-Rn

0100 Rn 01MD 0011 STC.L SPC, @-Rn

0100 Rn 10MD 0011 STC.L STC.L STC.L STC.L
RO_BANK, @-Rn R1_BANK, @-Rn R2_BANK, @-Rn R3_BANK, @-Rn
0100 Rn 11MD 0011 STC.L STC.L STC.L STC.L
R4_BANK, @-Rn R5_BANK, @-Rn R6_BANK, @-Rn R7_BANK, @-Rn
0100 Rn Fx 0100 ROTL Rn ROTCL Rn
0100 Rn Fx 0101 ROTR Rn CMP/PL Rn ROTCR Rn
0100 Rm Fx 0110 LDS.L @Rm+, MACH LDS.L @Rm+, LDS.L @Rm+, PR
MACL

0100 Rm 00MD 0111 LDC.L @Rm+, SR LDC.L @Rm+, GBR LDC.L @Rm+,VBR LDC.L @Rm+, SSR

0100 Rm 01MD 0111 LDC.L @Rm+, SPC

0100 Rm 10MD 0111 LDC.L LDC.L LDC.L LDC.L
@Rm+, RO_BANK @Rm+, R1_BANK @Rm+, R2_BANK @Rm+, R3_BANK
0100 Rm 11MD 0111 LDC.L LDC.L LDC.L LDC.L
@Rm+, R4_BANK @Rm+, R5_BANK @Rm+, R6_BANK @Rm+, R7_BANK
0100 Rn Fx 1000 SHLL2 Rn SHLL8 Rn SHLL16 Rn
0100 Rn Fx 1001 SHLR2 Rn SHLR8 Rn SHLR16 Rn
0100 Rm Fx 1010 LDS Rm, MACH LDS Rm, MACL LDS Rm, PR
0100 Rm/ Fx 1011 JSR @Rm TAS.B @Rn JMP @Rm
Rn

Rev. 1.00, 02/04, page 71 of 804
RENESAS

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011 to 1111
MSB LSB MD: 00 MD: 01 MD: 10 MD: 11
0100 Rn Rm 1100 SHAD Rm, Rn
0100 Rn Rm 1101 SHLD Rm,Rn
0100 Rm 0OMD 1110 LDC Rm, SR LDC Rm, GBR LDC Rm, VBR LDC Rm, SSR
0100 Rm 01MD 1110 LDC Rm, SPC
0100 Rm 10MD 1110 LDC Rm, RO_BANK LDC Rm, R1_BANK LDC Rm, R2_BANK LDC Rm, R3_BANK
0100 Rm 11MD 1110 LDC Rm, R4_BANK LDC Rm, R5_BANK LDC Rm, R6_BANK LDC Rm, R7_BANK
0100 Rn Rm 1111 MACW @Rm+, @Rn+
0101 Rn Rm disp MOV.L @(disp:4, Rm), Rn
0110 Rn Rm 0OOMD MOV.B @Rm, Rn MOV.W @Rm, Rn MOV.L @Rm, Rn MOV Rm, Rn
0110 Rn Rm 01MD MOV.B @Rm+, Rn MOV.W @Rm+,Rn MOV.L @Rm+,Rn NOT Rm, Rn
0110 Rn Rm 10MD SWAP.B Rm, Rn SWAP.WRm, Rn NEGC Rm, Rn NEG Rm, Rn
0110 Rn Rm 11MD EXTU.B Rm, Rn EXTU.W Rm, Rn EXTS.B Rm, Rn EXTS.W Rm, Rn
0111 Rn imm ADD #imm: 8, Rn
1000 OOMD Rn disp MOV.B MOV. W
RO, @(disp: 4, Rn) RO, @ (disp: 4, Rn)
1000 01MD Rm disp MOV.B MOV.W
@(disp:4, Rm), RO @(disp: 4, Rm), RO
1000 10MD imm/disp CMP/EQ #imm:8, RO BT disp: 8 BF disp: 8
1000 11MD imm/disp BT/S disp: 8 BF/S disp: 8
1001 Rn disp MOV.W @(disp: 8, PC), Rn
1010 disp BRA disp: 12
1011 disp BSR disp: 12
1100 OOMD imm/disp MOV.B MOV.W MOV.L TRAPA #imm: 8
RO, @(disp: 8, GBR) RO, @(disp: 8, GBR) RO, @(disp: 8, GBR)
1100 O1MD disp MOV.B MOV.W MOV.L MOVA
@(disp: 8, GBR), RO @(disp: 8, GBR), R0 @(disp: 8, GBR), R0 @(disp: 8, PC), RO
1100 10MD imm TST #imm: 8, RO AND #imm: 8, RO XOR #imm: 8, RO OR #imm: 8, RO
1100 11MD imm TST.B AND.B XOR.B OR.B
#mm: 8, @ R0, GBR) #imm: 8, @(R0, GBR) #imm: 8, @(R0, GBR) #mm: 8, @(R0, GBR)
1101 Rn disp MOV.L @ (disp: 8, PC), Rn
1110 Rn imm MOV #imm:8, Rn
1119 s
Note: For details, refer to the SH-3/SH-3E/SH3-DSP Programming Manual.

Rev. 1.00, 02/04, page 72 of 804

RENESAS

Section 3 DSP Operating Unit

3.1 DSP Extended Functions

This LSI incorporates a DSP unit and XY memory directly connected to the DSP unit. This LSI
supports the DSP extended function instruction sets needed to control the DSP unit and XY
memory. The DSP extended function instructions are classified into four groups (figure 3.1).

Extended System Control Instructionsfor the CPU: If the DSP extended function is enabled,
the following extended system control instructions can be used for the CPU.

e Repeat loop control instructions and repeat loop control register access instructions are added.
Looped programs can be executed efficiently by using the zero-overhead repeat control unit.
For details, refer to section 3.3, CPU Extended Instructions.

e Modulo addressing control instructions and control register access instructions are added.
Function allows access to data with a circular structure. For details, refer to section 3.4, DSP
Data Transfer Instructions.

e DSP unit register access instructions are added. Some of the DSP unit registers can be used in
the same way as the CPU system registers. For details, refer to section 3.4, DSP Data Transfer
Instructions.

Data Transfer Instructionsfor Data Transfers between DSP Unit and On-Chip XY
Memory: Data transfer instructions for data transfers between the DSP unit and on-chip XY
memory are called double-data transfer instructions. Instruction codes for these double-transfer
instructions are 16-bit codes as well as CPU instruction codes. These data transfer instructions
perform data transfers between the DSP unit and on-chip XY memory that is directly connected to
the DSP unit. These data transfer instructions can be described in combination with other DSP
unit operation instructions. For details, refer to section 3.4, DSP Data Transfer Instructions.

Data Transfer Instructionsfor Data Transfers between DSP Unit Registersand All Virtual
Address Spaces; Data transfer instructions for data transfers between DSP unit registers and all
virtual address spaces are called single-data transfer instructions. Instruction codes for the double-
transfer instructions are 16-bit codes as well as CPU instruction codes. These data transfer
instructions performs data transfers between the DSP unit registers and all virtual address spaces.
For details, refer to section 3.4, DSP Data Transfer Instructions.

DSP Unit Operation Instructions: DSP unit operation instructions are called DSP operation
instructions. These instructions are provided to execute digital signal processing operations at
high speed using the DSP. Instruction codes for these instructions are 32 bits. The DSP
operation instruction fields consist of two fields: field A and field B. In field A, a function for
double data transfer instructions can be descried. In field B, ALU operation instructions and
multiply instructions can be described. The instructions described in fields A and B can be
executed in parallel. A maximum of four instructions (ALU operation, multiply, and two data

DSPS301S_010020030200 Rev. 1.00, 02/04, page 73 of 804
RENESANS

transfers) can be executed in parallel. For details, refer to section 3.5, DSP Data Operation
Instructions.

Notes: 1. 32-bit instruction codes are handled as two consecutive 16-bit instruction codes.
Accordingly, 32-bit instruction codes can be assigned to a word boundary. 32-bit
instruction codes must be stored in memory, upper word and lower word, in this order,
in word units.

2. Inlittle endian, the upper and lower words must be stored in memory as data to be
accessed in word units.

15 12 11 0
0000
CPU core instruction ¥
1110
15 10 9 0
Double-data transfer instruction | 111100 | A Field |
15 10 9 0
Single-data transfer instruction | 111101 | A Field |
31 26 25 1615 0
DSP data operation instruction | 111110 | A Field | B Field

Figure3.1 DSP Instruction Format

Rev. 1.00, 02/04, page 74 of 804
RENESANS

3.2 DSP Mode Resour ces

321 Processing M odes

The CPU processing modes can be extended using the mode bit (MD) and DSP bit (DSP) of the
status register (SR), as shown below.

Description

Access of Resources
Protected in Privileged Mode

MD DSP or Privileged Instruction DSP Extended
Bit Bit Processing Mode Execution Functions

0 0 User mode Prohibited Invalid

0 1 User DSP mode Prohibited Valid

1 0 Privileged mode Allowed Invalid

1 1 Privileged DSP mode Allowed Valid

As shown above, the extension of the DSP function by the DSP bit can be specified independently
of the control by the MD bit. Note, however, that the DSP bit can be modified only in privileged
mode. Before the DSP bit is modified, a transition to privileged mode or privileged DSP mode is
necessary.

322 DSP Mode Memory Map

In DSP mode, a part of the P2 area in the virtual address space can be accessed in user DSP mode
(H'A5000000 to H'ASFFFFFF of H'A0000000 to HBFFFFFFF can be accessed) as shown in
figure 3.1. When this area is accessed in user DSP mode, this area is referred to as a Uxy area.
X/Y memory is then assigned to this Uxy area. Accordingly, X/Y memory can also be accessed in
user DSP mode.

Table3.1 Virtual Address Space

Address Range Name Protection Description

H'A5000000 to H'ASFFFFFF P2/Uxy Privileged mode 16-Mbyte physical address space,
or DSP mode non-cacheable

Can be accessed in privileged mode
and DSP modes (privileged DSP
mode and user DSP mode)

Rev. 1.00, 02/04, page 75 of 804
RENESANS

323 CPU Register Sets

In DSP mode, the status register (SR) in the CPU unit is extended to add control bits and three
control registers: a repeat start register (SR), repeat end register (RE), and modulo register are

added as control registers (figure 3.2).

3130 29 28 27 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 0 |MD|RB|BL| RC[11:0] | 0 | 0 | 0 |DSP|DMY|DM>4 M| Q | |3| |2| I | 10 |RF1|RFO| S | T
31 0

| RS | Repeat Start register (RS)

31 0

| RE | Repeat End register (RE)

31 16 15 0

| ME | MS | MODulo register (MOD)

Status Register
(SR)

Figure3.2 CPU Registersin DSP Mode

Rev. 1.00, 02/04, page 76 of 804
RENESANS

Extension of Status Register (SR): In DSP mode, the following control bits are added to the
status register (SR). These added bits are called DSP extended bits. These DSP extended bits are
valid only in DSP mode.

Initial
Bit Bit Name Value R/W Description

31t028 — — — For details, refer to section 2, CPU.
271016 RC11to RCO AllI0 R/W Repeat Counter

Holds the number of repeat times in order to perform loop
control, and can be modified in privileged mode, privileged
DSP mode, or user DSP mode. At reset, this bit is
initialized to 0. This bit is not affected in the exception
handling state.

15t0 13 — — — For details, refer to section 2, CPU.
12 DSP 0 R/W DSP

Enables or disables the DSP extended functions. If this bit
is set to 1, the DSP extended functions are enabled. This
bit can be modified in privileged mode and privileged DSP
mode; not in user DSP mode. At reset, this bit is initialized
to 0. This bit is not affected in the exception handling state.

11 DMY 0 R/W Modulo Control

10 DMX 0 R/W Enable or disable modulo addressing for X/Y memory
access. These bits can be modified in privileged mode,
privileged DSP mode, or user DSP mode. At reset, these
bits are initialized to 0. These bits are not affected in the
exception handling state.

9to4 — — — For details, refer to section 2, CPU.
3 FR1 0 R/W Repeat Flag
2 FRO 0 R/W Used by repeat control instructions. These bits can be

modified in privileged mode, privileged DSP mode, or user
DSP mode. At reset, these bits are initialized to 0. These
bits are not affected in the exception handling state.

1to0 — — — For details, refer to section 2, CPU.

Note: When data is written to the SR register, 0 should be written to reserved bits (bits 31, 15 to
13).

Rev. 1.00, 02/04, page 77 of 804
RENESANS

Repeat Start Register (RS): RS holds the start address of the repeat loop that is controlled by the
zero overhead repeat control function. This register can be accessed in DSP mode. At reset, the
initial value of this register is undefined. This register is not affected in the exception handling
state.

Repeat End Register (RE): RE holdsthe addressfor detecting the execution of the end
instruction of repeat loop that is controlled by the zero overhead repeat control function.
This register can be accessed in DSP mode. At reset, this register is initialized to 0. This register
is not affected in the exception handling state.

Modulo Register (MOD): MOD stores the modulo end address and modulo start address for
modulo addressing in upper and lower 16 bits. The upper and lower 16 bits of the MOD register
are referred to as the ME register and MS register, respectively. This register can be accessed in
DSP mode. At reset, the initial value of this register is undefined. This register is not affected in
the exception handling state.

The above registers can be accessed by the control register load instruction (LDC) and store
instruction (STC). Note that the LDC and STC instructions for the RS, RE, and MOD registers
can be used only in privileged DSP mode and user DSP mode. The LDC and STC instruction for
the SR register can be executed only when the MD bit is set to 1 or in user DSP mode. Note,
however, that the LDC and STC instructions can modify only the RC11 to RCO, RF1 to RFO0,
DMX, and DMY bits in the SR, as described below.

e In user mode, if the LCD and STC instructions are used for the SR, an illegal instruction
exception occurs.

e In privileged and privileged DSP modes, all SR bits can be modified.
e In user DSP mode, the SR can be read by the STC instruction.

In user DSP mode, the LDC instruction can be issued to the SR but only the DSP extension
bits can be modified.

Rev. 1.00, 02/04, page 78 of 804
RENESANS

Table3.2 Operation of SR Bitsin Each Processing Mode

Privil d Privil d U DSP Access to

rivilege rivilege ser ~

Mode User Mode DSP Mode Mode gﬁs\ﬁﬁlated

MD=1& MD=0& MD=1& MD=0& Dedicated Initial Value

Bit DSP =0 DSP =0 DSP=1 DSP=1 Instruction after Reset

MD S:OK,L: OK S, L: lllegal S:OK,L: OK S: OK, L:NG 1
instruction

RB S:OK,L: OK S, L: lllegal S:OK,L:OK S: 0K, L:NG 1
instruction

BL S:OK,L: OK S, L: lllegal S:OK,L: OK S: OK, L: NG 1
instruction

RC S:OK,L: OK S, L: lllegal S:0K,L:OK R:OK,L:OK SETRC B'000000000000

[11:0] instruction instruction

DSP S:OK,L: OK S, L: lllegal S:OK,L:OK S: OK, L: NG 0
instruction

DMY S:OK,L: OK S, L: lllegal S: OK,L: OK R:OK, L: OK 0
instruction

DMX S:OK,L: OK S, L: lllegal S: 0K, L: OK R:OK, L: OK 0
instruction

Q S:OK,L: OK S, L: lllegal S:OK,L:OK S:OK, L: NG X
instruction

M S:OK,L: OK S, L: lllegal S:0OK,L: OK S:OK, L: NG X
instruction

1[3:0] S:OK,L: OK S, L: lllegal S:OK,L: OK S: OK, L:NG B'1111
instruction

RF[1:0] S:OK,L: OK S, L: lllegal S:0K,L:OK R:OK,L:OK SETRC X
instruction instruction

S S:OK,L: OK S, L: lllegal S:OK,L: OK S: 0K, L:NG X
instruction

T S:OK,L: OK S, L: lllegal S: OK,L: OK S: OK, L: NG X
instruction

Legend

S: STC instruction

L: LDC instruction

OK: STC/LDC operation is enabled.

Invalid instruction: Exception occurs when an illegal instruction is executed.

NG: Previous value is retained. No change.

X: Undefined

Before entering the exception handling state, all bits including the DSP extended bits of the SR
registers are saved in the SSR. Before returning from the exception handling, all bits including the
DSP extended bits of the SR must be restored. If the repeat control must be recovered before
entering the exception handling state, the RS and RE registers must be recovered to the value that
existed before exception handling. In addition, if it is necessary to recover modulo control before
entering the exception handling state, the MOD register must be recovered to the value that existed
before exception handling.

Rev. 1.00, 02/04, page 79 of 804
RENESANS

324 DSP Registers

The DSP unit incorporates eight data registers (A0, Al, X0, X1, YO, Y1, MO, and M1) and a status
register (DSR). Figure 3.3 shows the DSP register configuration. These are 32-bit width registers
with the exception of registers A0 and Al. Registers AO and Al include 8 guard bits (fields AOG
and A1G), giving them a total width of 40 bits. The DSR register stores the DSP data operation
result (zero, negative, others). The DSP register has a DC bit whose function is similar to the T bit
of the CPU register. For details on DSR bits, refer to section 3.5, DSP Data Operation Instructions.

39 32 31 0
A0G A0
A1G Al
MO
M1

Initial value
X0 DSR: AllO
X1 Others: Undefined

YO0
Y1

(a) DSP data registers

31 12 11 9 8
.. | TS[2:0] |TC|GT| z | N | V| CS[2:0] |DC|

(b) DSP status register (DSR)

Figure3.3 DSP Register Configuration

Rev. 1.00, 02/04, page 80 of 804
RENESANS

3.3 CPU Extended I nstructions

331 DSP Repeat Control

In DSP mode, a specific function, zero overhead repeat control function, is provided to execute
repeat loops efficiently. By using this function, loop programs can be executed without overhead
caused by the compare and branch instructions. When describing the repeat loop, the repeat
control instructions in table 3.4, the repeat control macro instructions in table 3.5, and the DSP
mode extended system control instructions in table 3.6 are used.

Examples of Repeat L oop Programs: Examples of repeat loop programs are shown below.

e Example 1: Repeat loop consisting of 4 or more instructions

LDRS RptStart ; Sets repeat start instruction address
to the RS register
LDRE RptStart +4 ; Sets (repeat detection instruction
address + 4) to the RE register
SETRC #4 ; Sets the number of repetitions (4) to
the RC[11:0] bits of the SR register
Instr0 ; At least one instruction is required
from SETRC instruction to [Repeat start
instruction]
RptStart: instrl ; [Repeat start instruction]
RptDtct: instr(N-3) ; [Repeat start instruction]

Three instruction prior to the repeat
end instruction is regarded as repeat
detection instruction
RptEnd2: instr(N-2) H
RptEndl: instr (N-1) ;

RptEnd: instrN ; [Repeat end instruction]

In the above program example, instructions from the RptStart address (instr] instruction) to the
RptEnd address (instrN instruction) are repeated four times. These repeated instructions in the
program are called repeat loop. The start and end instructions of the repeat loop are called the
repeat start instruction and repeat end instruction, respectively. The CPU sequentially executes
instructions and starts repeat loop control if the CPU detects the completion of a specific
instruction. This specific instruction is called the repeat detection instruction. In a repeat loop
consisting of four or more instructions, an instruction three instructions prior to the repeat end
instruction is regarded as the repeat detection instruction. In a repeat loop consisting of four or

Rev. 1.00, 02/04, page 81 of 804
RENESANS

more instructions, the same instruction is regarded as the RptStart instruction and RptDtct
instruction.

To control the repeat loop, the DSP extended control registers, such as the RE register and RS
register and the RC[11:0] and RF[1:0] bits of the SR register, are used. These registers can be
specified by the LDRE, LDRS, and SETRC instructions.

e Repeat end register (RE)

The RE register is specified by the LDRE instruction. The RE register specifies (repeat
detection instruction address +4). In a repeat loop consisting of 4 or more instructions, an
instruction three instructions prior to the repeat end instruction is regarded as the repeat
detection instruction. A repeat loop consisting of three or less instructions is described later.

e Repeat start register (RS)

The RE register is specified by the LDRS instruction. In a repeat loop consisting of 4 or more
instructions, the RS register specifies the repeat start instruction address. In a repeat loop
consisting of three or less instructions, a specific address is specified in the RS. This is
described later.

e Repeat counter (RC[11:0] bits of the SR)

The repeat counter is specifies the number of repetitions by the SETRC instruction. During
repeat loop execution, the RC holds the remaining number of repetitions.

e Repeat flags (RF[1:0] bits of the SR)
The repeat flags are automatically specified according to the RS and RE register values during
SETRC instruction execution. The repeat flags store information on the number of instructions
included in the repeat loop. Normally, the user cannot modify the repeat flag values.

The CPU always executes instructions by comparing the RE register to program counter values.
Because the PC stores (the current instruction address +4), if the RE matches the PC during repeat
instruction detection execution, a repeat detection instruction can be detected. If a repeat detection
instruction is executed without branching and if RC[11:0] > 0, then repeat control is performed. If
RC[11:0] = 2 when the repeat end instruction is completed, the RC[11:0] is decremented by 1 and
then control is passed to the address specified by the RS register.

Examples 2 to 4 show program examples of the repeat loop consisting of three instructions, two
instructions, and one instruction, respectively. In these examples, an instruction immediately prior
to the repeat start instruction is regarded as a repeat detection instruction. The RS register
specifies the specific value that indicates the number of repeat instructions.

Rev. 1.00, 02/04, page 82 of 804
RENESANS

e Example 2: Repeat loop consisting of three instructions

LDRS RptStart +4 ; Sets (repeat detection instruction

address + 4) to the RS register

LDRE RptStart +4 ; Sets (repeat detection instruction
address + 4) to the RE register

SETRC #4 ; Sets the number of repetitions (4) to

the RC[11:0] bits of the SR register

; If RE-RS==0 during SETRC instruction
execution, the repeat loop is regarded
as three-instruction repeat.

RptDtct: instr0 ; [Repeat start instruction]

An instruction prior to the Repeat
start instruction is regarded as a
repeat detection instruction.

At least one instruction is required

from LDRC instruction to [Repeat start

instruction]

RptStart: instrl ; [Repeat start instruction]

Instr2

7

RptEnd: instr3 ; [Repeat end instruction]

e Example 3: Repeat loop consisting of two instructions

LDRS RptStart +6 ; Sets (repeat detection instruction

address + 6) to the RS register

LDRE RptStart +4 ; Sets (repeat detection instruction

address + 4) to the RE register

SETRC #4 ; Sets the number of repetitions (4) to

the RC[11:0] bits of the SR register

; If RE-RS==-2 during SETRC instruction
execution, the repeat loop is regarded
as two-instruction repeat.

RptDtct: instr0 ; [Repeat start instruction]

An instruction prior to the Repeat
start instruction is regarded as a
repeat detection instruction.

At least one instruction is required

from LDRC instruction to [Repeat start

instruction]

RptStart: instrl ; [Repeat start instruction]

RptEnd: instr2 ; [Repeat end instruction]

Rev. 1.00, 02/04, page 83 of 804
RENESANS

e Example 4: Repeat loop consisting of one instruction

LDRS RptStart +8 ; Sets (repeat detection instruction
address + 8) to the RS register

LDRE RptStart +4 ; Sets (repeat detection instruction
address + 4) to the RE register

SETRC #4 ; Sets the number of repetitions (4) to
the RC[11:0] bits of the SR register

; If RE-RS==-4 during SETRC instruction
execution, the repeat loop is regarded
as one-instruction repeat.

RptDtct: instr0 ; [Repeat start instruction]
An instruction prior to the Repeat
start instruction is regarded as a
repeat detection instruction.
At least one instruction is required
from LDRC instruction to [Repeat start
instruction]

RptStart:

RptEnd: instrl ; [Repeat start instruction] ==
[Repeat end instruction]

In repeat loops consisting of three instructions, two instructions and one instruction, specific
addresses are specified in the RS register. RE — RS is calculated during SETRC instruction
execution, and the number of instructions included in the repeat loop is determined according to
the result. A value of 0, —2,and —4 in the result correspond to 3 instructions, two instructions, and
one instruction, respectively.

If repeat instruction execution is completed without branching and if RC[11:0] > 0, an instruction
following the repeat detection instruction is regarded as a repeat start instruction and instruction
execution is repeated for the number of times corresponding to the recognized number of
instructions. If RC[11:0] = 2 when the repeat end instruction is completed, the RC[11:0] is
decremented by 1 and then control is passed to the address specified by the RS register. If
RC[11:0] ==1(or 0) when the repeat end instruction is completed, the RC[11:0] is cleared to 0 and
then the control is passed to the next instruction following the repeat end instruction.

Note: If RE — RS is a positive value, the CPU regards the repeat loop as a four-instruction repeat
loop. (In arepeat loop consisting of four or more instructions, RE — RS is always a
positive value. For details, refer to example 1 above.) If RE — RS is positive, or a value
other than 0, —2,and —4, correct operation cannot be guaranteed.

Rev. 1.00, 02/04, page 84 of 804
RENESANS

The rule is shown in table 3.3.

Table3.3 RSand RE Setting Rule

Number of Instructions in Repeat Loop

Register 1 2 3 24
RS RptStart0 + 8 RptStart0 + 6 RptStart0 + 4 RptStart
RE RptStart0 + 4 RptStart0 + 4 RptStart0 + 4 RptEnd3 + 4

Note: The terms used above in table 3.3, are defined as follows.
RptStart: Address of the repeat start instruction
RptStart0: Address of the instruction one instruction prior to the repeat start instruction
RptEnd3: Address of the instruction three instructions prior to the repeat end instruction

Repeat Control Instructions and Repeat Control Macros. To describe a repeat loop, the RS
and RE registers must be specified appropriately by the LDRS and LDRE instructions and then the
number of repetitions must be specified by the SERTC instruction. An 8-bit immediate data or a
general register can be used as an operand of the SETRC instruction. To specify the RC as a value
greater than 256, use SETRC Rm type instructions.

Table3.4 Repeat Control Instructions

Number of
Execution
Instruction Operation States
LDRS @(disp,PC) Calculates (disp x 2 + PC) and stores the result to the RS 1
register
LDRE @(disp,PC) Calculates (disp x 2 + PC) and stores the result to the RE 1
register
SETRC #imm Sets 8-bit immediate data imm to the RC[11:0] bits of the SR 1

register and sets the information related to the number of
repetitions to the RF[1:0] bits of the SR.

RC[11:0] can be specified as 0 to 255.

SETRC Rm Sets the[11:0] bits of the Rm register to the RC[11:0] bits of 1
the SR register and sets the information related to the
number of repetitions to the RF[1:0] bits of the SR.

RC[11:0] can be specified as 0 to 4095.

The RS and RE registers must be specified appropriately according to the rules shown in table 3.3.
The SH assembler supports control macros (REPEAT) as shown in table 3.5 to solve problems.

Rev. 1.00, 02/04, page 85 of 804
RENESANS

Table3.5 Repeat Control Macros

Instruction

Number of
Operation Execution States

REPEAT RptStart, RptEnd,
#imm

Specifies RptStart as repeat start instruction, 3
RptEnd as repeat end instruction, and 8-bit
immediate data #imm as number of repetitions.
This macro is extended to three instructions:
LDRS, LDRE, and SETRC which are

converted correctly.

REPEAT RptStart, RptEnd,
Rm

Specifies RptStart as repeat start instruction, 3
RptEnd as repeat end instruction, and the

[11:0] bits of Rm as number of repetitions.

This macro is extended to three instructions:
LDRS, LDRE, and SETRC which are

converted correctly.

Using the repeat macros shown in table 3.5, examples 1 to 4 shown above can be simplified to
examples 5 to 8 as shown below.

e Example 5: Repeat loop consisting of 4 or more instructions (extended to the instruction
stream shown in example 1, above)

REPEAT RptStart, RptEnd, #4

Instr0

RptStart: instrl

instr (N-3)

instr (N-2)

instr (N-1)
RptEnd: instrN

7

; [Repeat start instruction]

; [Repeat detection instruction]

; [Repeat end instruction]

e Example 6: Repeat loop consisting of three instructions (extended to the instruction stream

shown in example 2, above)

REPEAT RptStart, RptEnd, #4

instr0
RptStart: instrl
Instr2
RptEnd: instr3

; [Repeat detection instruction]
; [Repeat start instruction]

; [Repeat end instruction]

Rev. 1.00, 02/04, page 86 of 804

RENESANS

e Example 7: Repeat loop consisting of two instructions (extended to the instruction stream
shown in example 3, above)
REPEAT RptStart, RptEnd, #4
instr0 ; [Repeat detection instruction]
RptStart: instrl ; [Repeat start instruction]

RptEnd: instr2 ; [Repeat end instruction]

e Example 8: Repeat loop consisting of one instruction instructions (extended to the instruction
stream shown in example 3, above)
REPEAT RptStart, RptEnd, #4
instr0 ; [Repeat detection instruction]
RptStart:
RptEnd: instrl ; [Repeat start instruction] ==
[Repeat end instruction]

In the DSP mode, the system control instructions (LDC and STC) that handle the RS and RE
registers are extended. The RC[11:0] bits and RF[1:0] bits of the SR can be controlled by the
LDC and STC instructions for the SR register. These instructions should be used if an exception
is enabled during repeat loop execution. The repeat loop can be resumed correctly by storing the
RS and RE register values and RC[11:0] bits and RF[1:0] bits of the SR register before exception
handling and by restoring the stored values after exception handling. However, note that there are
some restrictions on exception acceptance during repeat loop execution. For details refer to section
3.3.1 (3), Restrictions on Repeat Loop Control and section 4, Exception Handling.

Table3.6 DSP Mode Extended System Control Instructions

Instruction Operation Number of Execution States
STC RS, Rn RS—Rn 1
STC RE, Rn RE—Rn 1
STC.LRS, @-Rn Rn-4—Rn, RS—(Rn) 1
STC.LRE, @-Rn Rn-4—Rn, RE—(Rn) 1
LDC.L @Rn+, RS (Rn)—RS, Rn+4—Rn 4
LDC.L @Rn+, RE (Rn)—>RE, Rn+4—Rn 4
LDC Rn,RS Rn—RS 4
LDC Rn, RE Rn—RE 4

Rev. 1.00, 02/04, page 87 of 804
RENESANS

Restrictions on Repeat L oop Control

1.

Repeat control instruction assignment
The SETRC instruction must be executed after executing the LDRS and LDRE instructions.
In addition, note that at least one instruction is required between the SETRC instruction and a

repeat start instruction.
Illegal instruction one or more instructions following the repeat detection instruction
If one of the following instructions is executed between an instruction following a repeat
detection instruction to a repeat end instruction, an illegal instruction exception occurs.
— Branch instructions
BRA, BSR, BT, BF, BT/S, BF/S, BSRF, RTS, BRAF, RTE, JSR, JMP, TRAPA
— Repeat control instructions
SETRC, LDRS, LDRE
— Load instructions for SR, RS, and RE registers
LDC Rn,SR, LDC @Rn+,SR, LDC Rn,RE, LDC @Rn+,RE, LDC Rn,RS, LDC @Rn+,RS

Note: This restriction applies to all instructions for a repeat loop consisting of one to three

instructions and to three instructions including a repeat end instruction.

Instructions prohibited during repeat loop (In a repeat loop consisting of four or more
instructions)
The following instructions must not be placed between the repeat start instruction and repeat
detection instruction in a repeat loop consisting of four or more instructions. Otherwise, the
correct operation cannot be guaranteed.
— Repeat control instructions

SETRC, LDRS, LDRE
— Load instructions for SR, RS, and RE registers

LDC Rn,SR, LDC @Rn+,SR, LDC Rn,RE, LDC @Rn+,RE, LDC Rn,RS, LDC @Rn+,RS

Note: Multiple repeat loops cannot be guaranteed. Describe the inner loop by repeat control

instructions, and the external loop by other instructions such as DT or BF/S.

4. Branching to an instruction following the repeat detection instruction and restriction on an

exception acceptance

Execution of a repeat detection instruction must be completed without any branch so that the

CPU can recognize the repeat loop. Therefore, when the execution branches to an instruction

following the repeat detection instruction, the control will not be passed to a repeat start

instruction after executing a repeat end instruction because the repeat loop is not recognized by

the CPU. In this case, the RC[11:0] bits of the SR register will not be changed.

— If a conditional branch instruction is used in the repeat loop, an instruction before a repeat
detection instruction must be specified as a branch destination.

Rev. 1.00, 02/04, page 88 of 804

RENESANS

— If a subroutine call is used in the repeat loop, a delayed slot instruction of the subroutine
call instruction must be placed before a repeat detection instruction.

Here, a branch includes a return from an exception handling routine. If an exception whose return
address is placed in an instruction following the repeat detection instruction occurs, the repeat
control cannot be returned correctly. Accordingly, an exception acceptance is restricted from the
repeat detection instruction to the repeat end instruction. Exceptions such as interrupts that can be
retained by the CPU are retained. For exceptions that cannot be retained by the CPU, a transition
to an exception occurs but a program cannot be returned to the previous execution state correctly.
For details, refer to section 4, Exception Handling.

Notes: 1. If a TRAPA instruction is used as a repeat detection instruction, an instruction
following the repeat detection instruction is regarded as a return address. In this case, a
control cannot be returned to the repeat control correctly. In a TRAPA instruction, an
address of an instruction following the repeat detection address is regarded as return
address. Accordingly, to return to the repeat control correctly, place a return address
prior to the repeat detection instruction.

2. If a SLEEP instruction is placed following a repeat detection instruction, a transition to
the power-down state or an exception acceptance such as interrupts can be performed
correctly. In this case, however, the repeat control cannot be returned correctly. To
return to the repeat control correctly, the SLEEP instruction must be placed prior to the
repeat detection instruction.

5. Branch from a repeat detection instruction

If a repeat detection instruction is a delayed slot instruction of a delayed branch instruction or a
branch instruction, a repeat loop can be acknowledged when a branch does not occur in a
branch instruction. If a branch occurs in a branch instruction, a repeat control is not
performed and a branch destination instruction is executed.

6. Program counter during repeat control

If RC[11:0] = 2, the program counter (PC) value is not correct for instructions two instructions
following a repeat detection instruction. In a repeat loop consisting of one to three
instructions, the PC indicates the correct value (instruction address + 4) for an instruction
(repeat start instruction) following a repeat detect ion instruction but the PC continues to
indicate the same address (repeat start instruction address) from the subsequent instruction to a
repeat end instruction. In a repeat loop consisting of four or more instructions, the PC
indicates the correct value (instruction address + 4) for an instruction following a repeat detect
ion instruction, but PC indicates the RS and (RS +2) for instructions two and three instructions
following the repeat detection instruction. The correct operation cannot be guaranteed for the
incorrect PC values.

Accordingly, PC relative addressing instructions placed two or more instructions following the
repeat detection instruction cannot be executed correctly and the correct results cannot be
obtained.

Rev. 1.00, 02/04, page 89 of 804
RENESANS

— PC relative addressing instructions
MOV.A @(disp, PC), Rn
MOV.W @(disp, PC), Rn
MOV.L @(disp, PC), Rn

(Including the case when the MOV #imm,Rn is extended to MOV.W @(disp, PC), Rn or
MOV.L @(disp, PC), Rn)

Table3.7 PC Valueduring Repeat Control (When RC[11:0] = 2)

Number of Instructions in Repeat Loop

1 2 3 >4
RptDtct RptDtct + 4 RptDtct + 4 RptDtct + 4 RptDtct +4
RptDtct1 RptDtct1 + 4 RptDtct1+ 4 RptDtct1 + 4 RptDtct1 + 4
RptDtct2 — RptDtct1+ 4 RptDtct1 + 4 RS
RptDtct3 — — RptDtct1 + 4 RS + 2

Note: In table 3.7, the following symbols are used.
RptDtct: An address of the repeat detection instruction

RptDtct1: An address of the instruction one instruction following the repeat start
instruction (In a repeat loop consisting of one to three instructions, RptStart is
a repeat start instruction)

RptDtct2: An address of the instruction two instruction following the repeat start
instruction

RptDtct3: An address of the instruction three instruction following the repeat start
instruction

7. Repeat counter and repeat control

The CPU always executes a program with comparing the repeat end register (RE) and the
program counter (PC). If the PC matches the RE while the RC[11:0] bits of the SR register are
other than 0, the repeat control function is initiated.

— If RC =2, a control is passed to a repeat start instruction after a repeat end instruction has
been executed. The RC is decremented by 1 at the completion of the repeat end instruction.
In this case, restrictions (a) to (f) are also applied.

— If RC == 1, the RC is decremented to O at the completion of the repeat end instruction and
a control is passed to the subsequent instruction. In this case, restrictions (a) to (f) are also
applied.

— If RC == 0, the repeat control function is not initiated even if a repeat detection instruction
is executed. The repeat loop is executed once as normal instructions and a control is not be
passed to a repeat start instruction even if a repeat end instruction is executed.

Rev. 1.00, 02/04, page 90 of 804
RENESANS

332 Extended Repeat Control I nstructions

In the repeat control function described in section 3.3.1, Repeat Control Instructions, there are
some restrictions. To reduce these restrictions, this LSI supports the extended repeat instructions
to extend the repeat control function that are shown in table 3.8. These extended repeat control
instructions were not supported in the conventional SH-DSP. To keep compatibility with the
conventional SH-DSP, use the conventional repeat control instructions called compatible repeat
control instructions.

Program Examples Using the Extended Repeat Control Instructions. Examples of repeat loop
programs using the extended repeat control instructions are shown below.

e Example 1: Repeat loop consisting of 4 or more instructions

LDRS RptStart ; Sets repeat start instruction address
to the RS register

LDRE RptEnd ; Sets repeat end instruction address

to the RE register

LDRC #4 ; Sets the number of repetitions (4) to
the RC[11:0] bits of the SR register

instr0 ; At least one instruction is required
from LDRC instruction to [Repeat start
instruction]

RptStart: instrl ; [Repeat start instruction]
instr (N-3) ; [Repeat detection instruction]

An instruction three instructions prior to the
repeat end instruction is regarded as a
repeat detection instruction.

instr (N-2) H
instr (N-1) ;

RptEnd: instrN ; [Repeat end instruction]

Rev. 1.00, 02/04, page 91 of 804
RENESANS

e Example 2: Repeat loop consisting of three instructions

LDRS RptStart ; Sets repeat start instruction address
to the RS register

LDRE RptEnd ; Sets repeat end instruction address
to the RE register

LDRC #4 ; Sets the number of repetitions (4) to
the RC[11:0] bits of the SR register

instr0 ; [Repeat detection instruction]
An instruction prior to the Repeat start
instruction is regarded as a repeat detection
instruction.
At least one instruction is required
from LDRC instruction to [Repeat start

instruction]
RptStart: instrl ; [Repeat start instruction]
instr2 :
RptEnd: instr3 ; [Repeat end instruction]

e Example 3: Repeat loop consisting of two instructions

LDRS RptStart ; Sets repeat start instruction address
to the RS register

LDRE RptEnd ; Sets repeat end instruction address
to the RE register

LDRC #4 Sets the number of repetitions (4) to

the RC[11:0] bits of the SR register

instr0 [Repeat detection instruction]

An instruction prior to the Repeat

start instruction is regarded as a repeat
detection instruction.

At least one instruction is required
from LDRC instruction to [Repeat start

instruction]

RptStart: instrl ; [Repeat start instruction]

RptEnd: instr2 ; [Repeat end instruction]

Rev. 1.00, 02/04, page 92 of 804
RENESANS

e Example 4: Repeat loop consisting of two instructions

LDRS RptStart ; Sets repeat start instruction address

to the RS register

LDRE RptEnd ; Sets repeat end instruction address

to the RE register

LDRC #4 ; Sets the number of repetitions (4) to
the RC[11:0] bits of the SR register

instr0 ; [Repeat detection instruction]
An instruction prior to the Repeat
start instruction is regarded as a
repeat detection instruction. At least
one instruction is required from LDRC

instruction to
instruction]
RptStart:

[Repeat start

RptEnd: instrl ; [Repeat start instruction]==

[Repeat end instruction]

In extended repeat control instructions, a repeat start instruction address and a repeat end
instruction address are stored in the RS register and RE register, respectively, regardless of the
number of repeat instructions. In addition, the extended repeat control can be performed by using
the LDRC instruction instead of the SETRC instruction. During the extended repeat control, a
repeat loop can be recognized by executing a repeat end instruction. Therefore, there is no

restriction on branches or exceptions.

Extended Repeat Control Instructions: To describe the extended repeat loop, the repeat start
and end addresses must be specified to the RS and RE registers by the LDRS and LDRE
instructions, respectively. For the LDRS and LDRE instructions of the extended repeat control
instructions, the LDRS and LDRE instructions of the compatible repeat control instructions are
used. The number of repetitions are specified by the LDRC instruction. An 8-bit immediate data
or the general register values can be used as an operand of the LDRC instruction. If 256 or greater

value is specified to the RC, use the LDRC Rm type instructions.

RENESANS

Rev. 1.00, 02/04, page 93 of 804

Table3.8 Extended Repeat Control Instructions

Number of

Instruction Operation Execution States
LDRS @(disp,PC) Calculates (disp x 2 + PC) and stores the result to the 1

RS register
LDRE @(disp,PC) Calculates (disp x 2 + PC) and stores the result to the 1

RE register
LDRC #imm Sets 8-bit immediate data imm to the RC[11:0] bits of 1

the SR register and sets the information related to the

number of repetitions to the RF[1:0] bits of the SR.

RC[11:0] can be specified as 0 to 255.

During extended repeat control, bit 0 of the RE register

issetto 1.
LDRC Rm Sets the[11:0] bits of the Rm register to the RC[11:0] 1

bits of the SR register and sets the information related
to the number of repetitions to the RF[1:0] bits of the
SR. RC[11:0] can be specified as 0 to 4095.

During extended repeat control, bit 0 of the RE register
is setto 1.

By executing the LDRC instruction, the CPU performs the extended repeat control function. To
indicate that the CPU is being in extended repeat control, bit O of the RE register is set to 1 by
executing the LDRC instruction. To change the RE register value by a process such as an
exception handling, bit O of the RE register must be saved and restored correctly. By saving and
restoring the RC[11:0] bits, DSP bit, and RF[1:0] bits of the SR register, RE register, and RS
register correctly, a control is returned to the extended repeat function correctly after processing
such as exception handling.

Rev. 1.00, 02/04, page 94 of 804
RENESANS

Restrictions on Extended Repeat L oop Control:

1. Extended repeat control instruction assignment
The LDRC instruction must be executed after executing the LDRS and LDRE instructions. In
addition, note that at least one instruction is required between the LDRC instruction and a
repeat start instruction.
2. lllegal instruction one or more instructions following the repeat end instruction
If one of the following instructions is executed as a repeat end instruction, an illegal instruction
exception occurs.
— Delayed branch instructions
BRA, BSR, BT/S, BF/S, BSRF, RTS, BRAF, RTE, JSR, JMP
— Repeat control instructions
SETRC, LDRS, LDRE, LDRC
— Load instructions for SR, RS, and RE registers
LCD Rn,SR, LDC @Rn+,SR, LDC Rn,RE, LDC @Rn+,RE, LDC Rn,RS, LDC @Rn+,RS

Note: A branch instruction without delay (BT, BF, TRAPA) can be placed as a repeat end
instruction. A delay stop of a delayed branch instruction can also be placed as a repeat
end instruction. In this case, the RC[11:0] value is decremented by 1 regardless of branch
occurrence. If no branch occurs, a control returns to a repeat start instruction. If a branch
occurs, a control is passed to a branch destination.

3. Repeat counter and repeat control

The CPU always execute a program with comparing the repeat end register (RE) and the (PC —

4) (current instruction address). If the (PC —4) [31:1] matches the RE [31:1] while bit 0 of RE

register is set to 1, the extended repeat control function is initiated.

— If RC > 2, a control is passed to a repeat start instruction after a repeat end instruction has
been executed. The RC is decremented by 1 at the completion of the repeat end instruction.

— If RC == 1, the RC is decremented to O at the completion of the repeat end instruction and
a control is passed to the subsequent instruction.

— If RC == 0, the repeat control function is not initiated even if a repeat detection instruction
is executed. The repeat loop is executed once as normal instructions and a control is not be
passed to a repeat start instruction even if a repeat end instruction is executed.

Rev. 1.00, 02/04, page 95 of 804
RENESANS

34 DSP Data Transfer Instructions

In DSP mode, data transfer instructions are added for the DSP unit registers. The newly added
instructions are classified into the following three groups.

1. Double data transfer instructions

The DSP unit is connected to the X memory and Y memory via the specific buses called X bus
and Y bus. By using the data transfer instructions using the X and Y buses, two data items can
be transferred between the DSP unit and X/Y memories simultaneously. These instructions are
called double data transfer instructions. These double data transfer instructions can be
described in combination with the DSP operation instructions to execute data transfer and data
operation in parallel.

2. Single data transfer instructions
The DSP unit is also connected to the L bus that is used by the CPU. The DSP registers other
than the DSR can access any virtual addresses generated by the CPU. In this case, the single
data transfer instructions are used. The single data transfer instructions cannot be used in
combination with the DSP operation instructions and can access only one data item at a time.
3. System control instructions
Some of the DSP unit registers are handled as the CPU system registers. To control these

system registers, the system control registers are supported. The DSP registers are connected
to the CPU general registers via the data transfer bus (C bus).

In any DSP data transfer instructions, an address to be accessed is generated and output by the
CPU. For DSP data transfer instructions, some of the CPU general registers are used for address
generation and specific addressing modes are used.

Rev. 1.00, 02/04, page 96 of 804
RENESANS

LAB
CPU [31:0]
LDB
XAE YAl.B CDB [31:0]
[15:0] [15:0] [31:0]
DSP unit DSR
¥ A0OG
XDB | A0
[15:0]
—> X memory - [} A1G
YDB Al
[15:0] Mo
L Y memory M1
X0
- X1
YO
Y1
Legend

XAB : X bus (address)
XDB : X bus (data)
YAB :Y bus (address)
YDB :Y bus (data)
LAB : L bus (address)
LDB : L bus (data)
CDB : C bus (data)

Figure3.4 DSP Registersand Bus Connections

Double data transfer instructions (MOVX.W, MOVY.W, MOVX.L,and MOVY.L):
Instruction formats of double data transfer instructions are shown in table 3.12. With double data
transfer group instructions, X memory and Y memory can be accessed in parallel.

In this case, the specific buses called X bus and Y bus are used to access X memory and Y
memory, respectively. To fetch the CPU instructions, the L bus is used. Accordingly, no conflict
occurs among X, Y, and L buses.

Load instructions for X memory specify the X0 or X1 register as the destination operand. Load
instructions for Y memory specify the YO or Y1 register as the destination operand. Store
registers for X or Y memory specify the AO or Al register as the source operand. The double data
transfer instructions use only word data (16 bits). When a word data transfer instruction is
executed, the upper word of register operand is used. To load word data, data is loaded to the
upper word of the destination register and the lower word of the destination register is
automatically cleared to 0.

Double data transfer instructions can be described in parallel to the DSP operation instructions.
Even if a conditional operation instruction is specified in parallel to a double data transfer

Rev. 1.00, 02/04, page 97 of 804
RENESANS

instruction, the specified condition does not affect the data transfer operations. For details, refer to
section 3.5, DSP Data Operation Instructions.

Double data transfer instructions can access only the X memory or Y memory and cannot access
other memory space. The X bus and Y bus are 16 bits and support 64-kbyte address spaces
corresponding to address areas H'A5000000 to H'ASOOFFFF and H'A5010000 to H'A501FFFF,
respectively. Because these areas are included in the P2/Uxy area, they are not affected by the
cache and address translation unit.

Single data transfer instructions: The instruction formats of single data transfer instructions are
shown in table 3.13. The single data transfer instructions access any memory location. All DSP
registers* other than the DSR can be specified as source and destination operands. Guard bit
registers AOG and A1G can also be specified as two independent registers. Because the single
data transfer instructions use the L bus (LAB and LDB), these instructions can access any virtual
space handled by the CPU. If these instructions access the cacheable area while the cache is
enabled, the area accessed by these instructions are cached. The X memory and Y memory are
mapped to the virtual address space and can also be accessed by the single data transfer
instructions. In this case, bus conflict may occur between data transfer and instruction fetch
because the CPU also uses the L bus for instruction fetches.

The single data transfer instructions can handle both word and longword data. In word data
transfer, only the upper word of the operand register is valid. In word data load, word data is
loaded into the upper word of the destination registers and the lower word of the destination is
automatically cleared to 0. If the guard bits are supported, the sign bit is extended before storage.
In longword data load, longword data is loaded into the upper and lower word of the destination
register. If the guard bits are supported, the sign bit is extended before storage. When the guard
register is stored, the sign bit is extended to the upper 24 bits of the LDB and are loaded onto the
LDB bus.

Notes: * Because the DSR register is defined as the system register, it can be accessed by the
LDS or STS instruction.
1. Any data transfer instruction is executed at the MA stage of the pipeline.
2. Any data transfer instruction does not modify the condition code bits of the DSR
register.
System control instructions: The DSR, A0, X0, X1, YO0, and Y1 registers in the DSP unit can
also be used as the CPU system registers. Accordingly, data transfer operations between these
DSP system registers and general registers or memory can be executed by the STS and LDS

instructions. These DSP system registers can be treated as the CPU system register such as PR,
MACL and MACH and can use the same addressing modes.

Rev. 1.00, 02/04, page 98 of 804
RENESANS

Table3.9

Extended System Control Instructionsin DSP Mode

Instruction Operation Execution States
STS DSR,Rn DSR — Rn 1
STS AO,Rn A0 - Rn 1
STS X0,Rn X0 — Rn 1
STS X1,Rn X1 - Rn 1
STS YO,Rn Y0 — Rn 1
STS Y1,Rn Y1 —= Rn 1
STS.L DSR,@-Rn Rn -4 — Rn, DSR — (Rn) 1
STS.L A0,@-Rn Rn -4 — Rn, A0 — (Rn) 1
STS.L X0,@-Rn Rn —4 — Rn, X0 — (Rn) 1
STS.L X1,@-Rn Rn -4 — Rn, X1 — (Rn) 1
STS.L YO0,@-Rn Rn -4 — Rn, YO — (Rn) 1
STS.L Y1,@-Rn Rn—-4— Rn, Y1 — (Rn) 1
LDS.L @Rn+,DSR (Rn) - DSR, Rn +4 — Rn 1
LDS.L @Rn+,A0 (Rn) - A0, Rn + 4 - Rn 1
LDS.L @Rn+X0 (Rn) — X0, Rn + 4 — Rn 1
LDS.L @Rn+,X1 (Rn) - X1, Rn +4 > Rn 1
LDS.L @Rn+Y0 (Rn) - Y0, Rn + 4 - Rn 1
LDS.L @Rn+,Y1 (Rn) > Y1,Rn +4 —» Rn 1
LDS Rn,DSR Rn — DSR 1
LDS Rn,AQ Rn — A0 1
LDS Rn,X0 Rn — X0 1
LDS Rn,X1 Rn — X1 1
LDS Rn,YO Rn — Y0 1
LDS Rn,Y1 Rn — Y1 1
34.1 General Registers

The DSP instructions 10 general registers in the 16 general registers as address pointers or index
registers for double data transfers and single data transfers. In the following descriptions, another
register function in the DSP instructions is also indicated within parentheses [].

e Double data transfer instructions (X memory and Y memory are accessed simultaneously)

In double data transfers, X memory Y memory can be accessed simultaneously. To specify X

and Y memory addresses, two address pointers are supported.

RENESANS

Rev. 1.00, 02/04, page 99 of 804

Memory to be Accessed Address Pointer Index Register

X memory (MOVX.W) R4,R5[Ax] R8 [Ix]

Y memory (MOVY.W) R6,R7[Ay] RO [ly]

e Single data transfer instructions

In single data transfer, any virtual address space can be accessed via the L bus. The following
address pointers and index registers are used.

Address to be Accessed Address Pointer Index Register
Any virtual space (MOVS.W/L) R4,R5, R2, R3[As] R8 [Is]
31 0
RO General registers (DSP mode)
R1
R2 [As2] Double data transfers:
R3 [As3] R4, 5 [Ax] :Address register set for the X memory
R4 [AsO] R8 [Ix] :Index register for X address register set Ax
R5 [As1, Ax1] _
R6 [AyO] R6, 7 [Ay] :Address register set for the Y memory
R7 [Ay1] R9 [ly] :Index register forY address register set Ay
R8 [lx, Is]
RO [ly] Single data transfers:
RO R4, 5,2,3 [As] :Address register set for all data memories
R10 R8 [Is] :Index register used for single data transfers
R11
R12
R13
R14
R15

Figure3.5 General Registers(DSP Mode)

In assembler, RO to R9 are used as symbols. In the DSP data transfer instructions, the following
register names (alias) can also be used. In assembler, described as shown below.

Ix: REG (R8)
Ix indicates the alias of register 8. Other aliases are shown below.
Ax0: .REG (R4)
Ax1: .REG (RS)
Ix: REG (RS)
Ay0: .REG (R6)

Ayl: REG(R7)

Rev. 1.00, 02/04, page 100 of 804
RENESANS

Iy: .REG (R9)

As0: .REG (R4); This definition is used for if the alias is required in the single data transfer

Asl: REG (RS) ; This definition is used for if the alias is required in the single data transfer

As2: REG (R2)

As3: .REG (R3)

Is: .REG (R8) ; This definition is used for if the alias is required in the single data transfer

34.2

DSP Data Addressing

Table 3.10 shows the relationship between the double data transfer instructions and single data

transfer instructions.

Table3.10 Overview of Data Transfer Instructions

Double Data Transfer
Instructions

Single Data Transfer
Instructions

MOVX.W, MOVY.W

MOVS.W, MOVS.L

Address register Ax: R4, R5, As: R2, R3, R4, R5
Ay: R6, R7

Index register Ix: R8, Is: R8
ly: R9

Addressing

Nop/Inc (+2)/index addition:
post-increment

Nop/Inc (+2, +4)/index addition:
post-increment

Dec (-2, —4): pre-decrement

Modulo addressing Possible Not possible

Data bus XDB, YDB LDB

Data length 16 bits (word) 16/32 bits (word/longword)

Bus conflict No Yes

Memory X/Y data memory Entire memory space

Source register Dx, Dy: A0, A1 Ds: A0O/A1, MO/M1, X0/X1, YO/Y1,

AQG, A1G

Destination register Dx: X0/X1 Ds: A0/A1, MO/M1, X0/X1, YO/Y1,

Dy: YO/Y1 AQG, A1G

RENESANS

Rev. 1.00, 02/04, page 101 of 804

Addressing Mode for Double Data Transfer Instructions: The double data transfer instructions
supports the following three addressing modes.

e Non-update address register addressing
The Ax and Ay registers are address pointers. They are not updated.

e Increment address register addressing
The Ax and Ay registers are address pointers. After a data transfer, they are each incremented
by 2 (post- increment).

e Addition index register addressing

The Ax and Ay registers are address pointers. After a data transfer, the value of the Ix or Iy
register is added to each (post-increment). The double data transfer instructions do not supports
decrement addressing mode. To perform decrementing, —2 is set in the index register and
addition index register addressing is specified.

When using X/Y memory addressing, bit O of the address pointer is invalid. Accordingly, bit O of
the address pointer and index register must be cleared to 0 in X/Y memory addressing. If 1 is
written to the bit, correct operation cannot be guaranteed.

When accessing X and Y memories using the X and Y buses, the upper word of Ax and Ay are
ignored. The result of Ay + 2 or Ay + ly is stored in the lower word of Ay, while the upper word
retains its original value. The Ax + 2 and Ax + Ix operations are executed in longword (32 bits)
and the upper word may be changed according to the result.

Addressing Modefor Single Data Transfer I nstructions: The following four kinds of
addressing can be used with single data transfer instructions.

e Non-update address register addressing
The As register is an address pointer. An access to @As is performed but As is not updated.
e Increment address register addressing:

The As register is an address pointer. After an access to @As, the As register is incremented
by 2 or 4 (post-increment).

e Addition index register addressing:

The As register is an address pointer. After an access to @ As, the value of the Is register is
added to the As register (post-increment).

e Decrement address register addressing:

The As register is an address pointer. Before a data transfer, —2 or —4 is added to the As
register (i.e. 2 or 4 is subtracted) (pre-decrement).

In single data transfer instructions, all bits in 32-bit address are valid.

Rev. 1.00, 02/04, page 102 of 804
RENESANS

34.3 Modulo Addressing

In double data transfer instructions, a modulo addressing can be used. The modulo addressing
control instructions are listed in table 3.11. If the address pointer value reaches the preset modulo
end address while a modulo addressing mode is specified, the address pointer value becomes the
modulo start address.

To control modulo addressing, the modulo register (MOD) extended in the DSP mode and the
DMX and DMY bits of the SR register are used.

The MOD register is provided to set the start and end addresses of the modulo address area. The
upper and lower words of the MOD register store modulo start address (MS) and modulo end
address (ME), respectively. The LDC and STC instructions are extended for MOD register
handling.

If the DMX bit of the SR register is set, the modulo addressing is specified for the X address
register. If the DMY bit of the SR register is set, the modulo addressing is specified for the Y
address register. Modulo addressing is valid for either the X or the Y address register, onlys; it
cannot be set for both at the same time. Therefore, DMX and DMY cannot both be set
simultaneously (if they are, the DMY setting will be valid). (In the future, this specification may
be changed.) The DMX and MDY bits of the SR can be specified by the STC or LDC instruction
for the SR register.

If an exception is accepted during modulo addressing, the MDX and MDY bits of the SR and
MOD register must be saved. By restoring these register values, a control is returned to the
modulo addressing after an exception handling.

Table3.11 Modulo Addressing Control Instructions

Instruction Operation Execution States
STC MOD,Rn MOD — Rn 1
STC.L MOD,Rn Rn -4 — Rn, MOD — (Rn) 1
LDC @Rn+,MOD (Rn) > Rn, Rn +4 — Rn 4
LDC Rn+,MOD Rn — MOD 4

Rev. 1.00, 02/04, page 103 of 804
RENESANS

An example of the use of modulo addressing is shown below.

MOV.L #H’70047000, R10 ;Specify MS=H’7000 ME = H’'7004
LDC Rn,MOD ;Specify ME:MS to MOD register

STC SR, R10 ;

MOV.L #H’'FFFFF3FF, R11 ;

MOV.L #H’00000400, R12 ;

AND R11, RI10 ;

OR R12, R10 ;

LDC R10, SR ; Specify SR.MDX=1, SR.MDY=0, and
X modulo addressing mode

MOV.L #H’'A5007000, R14

MOVX.W @R4+,X0 ; R4: H'A5007000— H’'A5007002
MOVX.W @R4+,X0 ; R4: H'’A5007002— H’'A5007004
MOVX.W @R4+,X0 ; R4: H'A5007004— H’'A5007000
(Matches to ME and MS is set)
MOVX.W @R4+,X0 ; R4: H'’A5007000— H’'A5007002

The start and end addresses are specified in MS and ME, then the DMX or DMY bit is set to 1.
When the X or Y data transfer instruction specified by the DMX or DMY is executed, the address
register contents before updating are compared with ME*, and if they match, start address MS is
stored in the address register as the value after updating.

When the addressing type of the X/Y data transfer instruction is no-update, the X/Y data transfer
instruction is not returned to MS even if they match ME. When the addressing type of the X/Y
data transfer is adding index register, address pointer is may not match and exceed ME. In this
case, the modulo start address is not set as the address pointer.

The maximum modulo size is 64 kbytes. This is sufficient to access the X and Y data memory.

Note: Not only with modulo addressing, but when X and Y data addressing is used, bit O is
ignored. 0 must always be written to bit 0 of the address pointer, index register, MS, and
ME.

Rev. 1.00, 02/04, page 104 of 804
RENESANS

344 Memory Data For mats

Memory data formats that can be used in the DSP instructions are classified into word and
longword. An address error will occur if word data starting from an address other than 2n is
accessed by MOVS.W instruction or longword data starting from an address other than 4n is
accessed by MOVS.L, LDS.L, or STS.L instruction. In such cases, the data accessed cannot be
guaranteed

An address error will not occur if word data starting from an address other than 2n is accessed by
the MOVX.W or MOVY.W instruction. When using the MOVX.W or MOVY.W instruction, an
address must be specified on the boundary 2n. If an address is specified other than 2n, the data
accessed cannot be guaranteed.

345 Instruction Formats of Double and Single Data Transfer Instructions

The format of double data transfer instructions is shown in tables 3.12, and that of single data
transfer instructions in table 3.13.

Table3.12 Double Data Transfer Instruction Formats

Type Mnemonic 15\14|13|12\11 \10 9 81716 |5 (4 |3 \2 1 \o

X memory [NOPX 11 1 1 0 0|0 0 0 O

?rzt:sfer MOVX.W @Ax,Dx ax| [bx| [o]| [o 1
MOVX.W @Ax+,Dx 1.0
MOVX.W @ Ax+Ix,Dx 1 1
MOVX.W Da, @ Ax Dal [1] [0 1
MOVX.W Da, @ Ax+ 10
MOVX.W Da, @ Ax+Ix 1 1

Y memory [NOPY 11 1 1 0 O 0 0 0 0 0

?rzt:sfer MOVY.W @Ay,Dy ay|l [py| (o | 0 1
MOVY.W @Ay+,Dy 1.0
MOVY.W @Ay+ly,Dy 11
MOVY.W Da, @Ay Da| |1 | 0 1
MOVY.W Da, @Ay+ 1.0
MOVY.W Da,@Ay+ly 1 1

Note: Ax: 0=R4,1=R5
Ay: 0=R6,1=R7
Dx: 0 = X0, 1 =X1
Dy:0=Y0,1=Y1
Da: 0=A0,1=A1

Rev. 1.00, 02/04, page 105 of 804
RENESANS

Table3.13 Single Data Transfer Instruction Formats

Type Mnemonic 15\14|13|12\11 \10 9 ‘8 7 ‘6 |5 |4 3 \2
Single MOVSW @-AsDs (1 1 1 1 0 1 |As Ds 0:(*) 0 0
fri;asfer MOVS.W @As,Ds 0:R4 1 |0 1
MOVS.W @As+,Ds 1:R5 2:(%) 10
MOVS.W @As+Is,Ds 2:R2 3:(*) 1 1
MOVS.W Ds,@-As 3:R3 4:(*) 0 O
MOVS.W Ds,@As 5:A1 o 1
MOVS.W Ds, @As+ 6:(*) 10
MOVS.W Ds, @As+ls 7:A0 1 1
MOVS.L @-As,Ds 8:X0 0 0
MOVS.L @As,Ds 9:X1 o 1
MOVS.L @As+,Ds A:YO 1 0
MOVS.L @As+ls,Ds B:Y1 1 1
MOVS.L Ds,@-As C:M0 0 0
MOVS.L Ds,@As D:A1G |0 1
MOVS.L Ds,@As+ E:M1 1 0
MOVS.L Ds,@As+ls F:A0G 1 1
Note: * Codes reserved for system use.

Rev. 1.00, 02/04, page 106 of 804

RENESANS

35 DSP Data Operation I nstructions

351 DSP Registers

There are eight data registers (A0, Al, X0, X1, YO, Y1, MO and M1) and one control register
(DSR) as DSP registers (figure 3.3).

Four kinds of operation access the DSP data registers. The first is DSP data processing. When a
DSP fixed-point arithmetic operation instruction uses A0Q or A1 as the source register, it uses the
guard bits (bits 39 to 32). When it uses AO or A1l as the destination register, guard bits 39 to 32 are
valid. When a DSP fixed-point arithmetic operation instruction uses a DSP register other than AQ
or Al as the source register, it sign-extends the source register value to bits 39 to 32. When it uses
one of these registers as the destination register, bits 39 to 32 of the result are discarded.

The second kind of operation is an X or Y data transfer operation, MOVX.W, MOVY.W. This
operation accesses the X and Y memories through the 16-bit X and Y data buses (figure 3.4). The
register to be loaded or stored by this operation always comprises the upper 16 bits (bits 31 to 16).
X0 or X1 can be the destination register of an X memory load and YO or Y1 can be the destination
of a Y memory load, but no other register can be the destination register in this operation. When
data is read into the upper 16 bits of a register (bits 31 to 16), the lower 16 bits of the register (bits
15 to 0) are automatically cleared. AO and A1 can be stored in the X or Y memory by this
operation, but no other registers can be stored.

The third kind of operation is a single-data transfer instruction, MOVS.W or MOVS.L. These
instructions access any memory location through the LDB (figure 3.4). All DSP registers connect
to the LDB and can be the source or destination register of the data transfer. These instructions
have word and longword access modes. In word mode, registers to be loaded or stored by this
instruction comprise the upper 16 bits (bits 31 to 16) for DSP registers except AOG and A1G.
When data is loaded into a register other than AOG and A1G in word mode, the lower half of the
register is cleared. When AQO or Al is used, the data is sign-extended to bits 39-32 and the lower
half is cleared. When AOG or A1G is the destination register in word mode, data is loaded into an
8-bit register, but A0 or Al is not cleared. In longword mode, when the destination register is AOQ
or Al, it is sign-extended to bits 39 to 32.

The fourth kind of operation is system control instructions such as LDS, STS, LDS.L, or STS.L.
The DSR, A0, X0, X1, Y0, and Y1 registers of the DSP register can be treated as system registers.
For these registers, data transfer instructions between the CPU general registers and system
registers or memory access instructions are supported.

Tables 3.14 and 3.15 show the data type of registers used in DSP instructions. Some instructions
cannot use some registers shown in the tables because of instruction code limitations. For
example, PMULS can use Al as the source register, but cannot use AQ. These tables ignore details
of register selectability.

Rev. 1.00, 02/04, page 107 of 804
RENESANS

Table3.14 Destination Register in DSP Instructions

Guard Bits Register Bits
Registers Instructions 39 3231 16 15
AOQ, A1 DSP Fixed-point, PSHA, Sign-extended 40-bit result
operation PMULS
Integer, PDMSB Sign-extended 24-bit result Cleared
Logical, PSHL Cleared 16-bit result Cleared
Data MOVS.W Sign-extended 16-bit data Cleared
transfer “ovs.L Sign-extended 32-bit data
AOG, A1G Data MOVS.W 8-bit data No update
transfer MOVS.L 8-bit data No update
X0, X1 DSP Fixed-point, PSHA, 32-bit result
YO, Y1 operation PMULS
MO, M1 Integer, logical, 16-bit result Cleared
PDMSB, PSHL
Data MOVX/Y.W, MOVS.W 16-bit data Cleared
transfer “viovs.L 32-bit data
Table3.15 SourceRegister in DSP Operations
Guard Bits Register Bits
Registers Instructions 39 3231 16 15
A0, A1 DSP Fixed-point, PDMSB, 40-bit data
operation PSHA
Integer 24-bit data
Logical, PSHL, PMULS 16-bit data
Data MOVX/Y.W, MOVS.W 16-bit data
transfer “viovs.L 32-bit data
A0G, A1G Data MOVS.W 8-bit data
transfer “viovs.L 8-bit data
X0, X1 DSP Fixed-point, PDMSB, Sign* 32-bit data
YO’ Y1 operation PSHA
MO, M1 Integer Sign* 16-bit data
Logical, PSHL, PMULS 16-bit data
Data MOVS.W 16-bit data
transfer “viovs.L 32-bit data

Note: * The data is sign-extended and input to the ALU.

Rev. 1.00, 02/04, page 108 of 804
RENESANS

The DSP unit incorporates the DSP status register (DSR) which is used as a control register. The
DSR register stores the DSP data operation result (zero, negative, others). The DSR register also
has the DC bit whose function is similar to the T bit of the CPU register. The DC bit functions as
status flag. Conditional DSP data operations are controlled based on the DC bit. These operation
control affects only the DSP unit instructions. In other words, these operations control affects
only the DSP registers and does not affect address register update and CPU instructions such as
load and store instructions. A condition to be reflected on the DC bit should be specified to the
DC status selection bits (CS[2:0]).

The unconditional DSP type data operation instructions other than PMULS, MOVX, MOVY, and
MOVS change the condition flag and DC bit. However, the CPU instructions including the MAC
instruction do not modify the DC bit. In addition, conditional DSP data operation instructions do
not modify the DSR.

Table3.16 DSR Register Bits

Initial
Bits Bit Name Value R/W Function
31to12 — AllO R Reserved
These bits are always read as 0. The write value
should always be 0. If 1 is written to these bits, correct
operation cannot be guaranteed.
11to9 TS2to AllO R/W T Bit Status Selection

TS0 Specifies the operation result status to be setinthe T

bit in the SR register if the TC bit is 1. If the S bit of
the SR register is set to 1, an overflow is detected.

000: Carry/borrow mode
001: Negative value mode
010: Zero mode
011: Overflow mode
100: Signed greater mode
101: Signed greater than or equal to mode
110: Reserved (setting prohibited)
111: Reserved (setting prohibited)
8 TC 0 R/W TC Bit

0: The T bit of the SR register is not affected by the
DSP instruction.

1: The T bit of the SR register changes according to
the TS bit of the DSR register while the DSP
instruction is executed. Note, however, the T bit
does not change during conditional DSP instruction
execution.

Rev. 1.00, 02/04, page 109 of 804
RENESANS

Initial
Bits Bit Name Value

R/W

Function

7 GT 0

RW

Signed Greater Bit

Indicates that the operation result is positive (except
0), or that operand 1 is greater than operand 2

1: Operation result is positive, or operand 1 is greater
than operand 2

R/W

Zero Bit

Indicates that the operation result is zero (0), or that
operand 1 is equal to operand 2

1: Operation result is zero (0), or operands are equal

R/W

Negative Bit

Indicates that the operation result is negative, or that
operand 1 is smaller than operand 2

1: Operation result is negative, or operand 1 is
smaller than operand 2

R/W

Overflow Bit
Indicates that the operation result has overflowed
1: Operation result has overflowed

3to1 CS AllO

R/W

DC Bit Status Selection

Designate the mode for selecting the operation result
status to be set in the DC bit

000: Carry/borrow mode

001: Negative value mode

010: Zero mode

011: Overflow mode

100: Signed greater mode

101: Signed greater than or equal to mode
110: Reserved (setting prohibited)

111: Reserved (setting prohibited)

Rev. 1.00, 02/04, page 110 of 804

RENESANS

Initial
Bits Bit Name Value R/W Function
0 DC 0 R/W DSP Status Bit

Sets the status of the operation result in the mode
designated by the CS bits

0: Designated mode status has not occurred (false)

1: Designated mode status has occurred

Indicates the operation result by carry or borrow
regardless of the CS bit status after the PADDC or
PSUBC instruction has been executed.

The DSR is assigned to the system registers. For the DSR, the following load and store
instructions are supported.

STS DSR,Rn;
STS.L DSR,@-Rn;
LDS Rn,DSR;

LDS.L @Rn+,DSR;

If the DSR is read by the STS instruction, upper bits (bits 31 to 16) are all 0

352 DSP Instruction Set

DSP instructions are instructions for digital signal processing performed by the DSP unit. These
instructions have a 32-bit instruction code, and multiple instructions can be executed in parallel.
The instruction code is divided into an A field and B field; a parallel data transfer instruction is
specified in the A field, and a single or double data operation instruction in the B field.
Instructions can be specified independently, and are also executed independently.

B-field data operation instructions are of three kinds: double data operation instructions,
conditional single data operation instructions, and unconditional single data operation instructions.
The formats of the DSP operation instructions are shown in table 3.17. The respective operands
are selected independently from the DSP registers. The correspondence between DSP instruction
operands and registers is shown in table 3.18.

Parallel processing only instructions in the A field (without those in the B field) can be executed
(transferring data in parallel without DSP data operation instructions).

Rev. 1.00, 02/04, page 111 of 804
RENESANS

Table3.17 DSP Instruction Formats

Type Instruction Formats

Double data operation instructions ALUop. Sx, Sy, Du
MLTop. Se, Df, Dg

Single data Conditional single data DCT ALUop. Sx, Sy, Dz
operation operation instructions

X X DCF ALUop. Sx, Sy, Dz
instructions

DCT ALUop. Sx, Dz
DCF ALUop. Sx, Dz
DCT ALUop. Sy, Dz
DCF ALUop. Sy, Dz

Unconditional single ALUop. Sx, Sy, Dz
data operation

X . ALUop. Sx, Dz
instructions

ALUop. Sy, Dz
MLTop. Se, Sf, Dg

Table3.18 Correspondence between DSP Instruction Operands and Registers

ALU, Shift Operations Multiply Operations
Register SX Sy Dz Du Se Sf Dg
A0 Yes — Yes Yes — — Yes
Al Yes — Yes Yes Yes Yes Yes
MO — Yes Yes — — — Yes
M1 — Yes Yes — — — Yes
X0 Yes — Yes Yes Yes Yes —
X1 Yes — Yes — Yes — —
YO0 — Yes Yes Yes Yes Yes —
Y1 — Yes Yes — — Yes —

When writing parallel instructions, the B-field instruction is written first, followed by the A-field
instruction. A sample parallel processing program using DSP instructions is shown in figure 3.6.
Parallel processing only instructions in the A field (without those in the B field) can be executed
(transferring data in parallel without DSP data operation instructions)

PADD A0, MO, A0 PMULS X0, YO, MO MOVX.W @R4+, X0 MOVY.W @R6+, YO
DCF PINC M1, A1 MOVX.W @R5+R8, X0 MOVY.W @R7+, Y1
PCMP M1, MO MOVX.W @R4, X1 [NOPY]

Figure3.6 Sample Parallel DSP Instruction Program

Rev. 1.00, 02/04, page 112 of 804
RENESANS

Square brackets mean that the contents can be omitted.

The no operation instructions NOPX and NOPY can be omitted. For details on the B field in DSP
instructions, refer to section 3.6.4, DSP Data Operation Instruction Set.

The DSR register condition code bit (DC) is always updated on the basis of the result of an
unconditional ALU or shift operation instruction. Conditional instructions do not update the DC
bit. Multiply instructions, also, do not update the DC bit. DC bit updating is performed by means
of the CS[2:0] bits in the DSR register. The DC bit update rules are shown in table 3.19.

Rev. 1.00, 02/04, page 113 of 804
RENESANS

Table3.19 DC Bit Update Definitions

CS[2:0] Condition Mode Description
0 O 0 Carryorborrow The DC bit is set if an ALU arithmetic operation generates a carry
mode or borrow, and is cleared otherwise.
When a PSHA or PSHL shift instruction is executed, the last bit
data shifted out is copied into the DC bit.
When an ALU logical operation is executed, the DC bit is always
cleared.

0 O 1 Negative value When an ALU or shift (PSHA) arithmetic operation is executed,

mode the MSB of the result, including the guard bits, is copied into the
DC bit.
When an ALU or shift (PSHL) logical operation is executed, the
MSB of the result, excluding the guard bits, is copied into the DC
bit.

0 1 0 Zerovalue mode The DC bit is set if the result of an ALU or shift operation is all-
zeros, and is cleared otherwise.

0 1 1 Overflow mode The DC bit is set if the result of an ALU or shift (PSHA) arithmetic
operation exceeds the destination register range, excluding the
guard bits, and is cleared otherwise.

When an ALU or shift (PSHL) logical operation is executed, the
DC bit is always cleared.
1 0 O Signed greater-than This mode is similar to signed greater-or-equal mode, but DC is
mode cleared if the result is all-zeros.
DC = ~{(negative value ~ over-range) | zero value};
In case of arithmetic operation
DC = 0; In case of logical operation
1 0 1 Signed greater-or- If the result of an ALU or shift (PSHA) arithmetic operation

equal mode

exceeds the destination register range, including the guard bits
(over-range), the definition is the same as in negative value
mode. If the result is not over-range, the definition is the opposite
of that in negative value mode.

When an ALU or shift (PSHL) logical operation is executed, the
DC bit is always cleared.

DC = ~(negative value ~ over-range);
In case of arithmetic operation

DC =0 In case of logical operation

1 1 0 Reserved (setting prohibited)

11 1

Reserved (setting prohibited)

Rev. 1.00, 02/04, page 114 of 804

RENESANS

Conditional Operations and Data Transfer

Some instructions belonging to this class can be executed conditionally, as described earlier.
The specified condition is valid only for the B field of the instruction, and is not valid for data

transfer instructions for which a parallel specification is made. Examples are shown in figure
3.7.

DCT PADD X0,Y0,A0 MOVX.W @R4+,X0 MOVY.W AO,@R6+R9

When condition is True

Before execution: X0=H'33333333, Y0=H'55555555, A0=H'1234567894,
R4=H'00008000, R6=H'00005000, R9=H'00000004,
(R4)=1111 (R6)=2222

After execution: X0=H'11110000, YO0=H'55555555, A0=H'0088888888,
R4=H'00008002, R6=H'00005004, R9=H'00000004,
(H'00008000)=H'1111 (H'00008233)=H'2222

When condition is False

Before execution: X0=H'33333333, Y0=H'55555555, A0=H'1234567894,
R4=H'00008000, R6=H'00005000, R9=H'00000004,
(R4)=1111, (R6)=2222

After execution: X0=H'11110000, YO0=H'55555555, A0=H'123456789A,
R4=H'00008002, R6=H'00005004, R9=H'00000004,
(H'00008000)=H'1111 (H'00008233)=H'2222

Figure3.7 Examplesof Conditional Operationsand Data Transfer Instructions

Assignment of NOPX and NOPY Instruction Codes

When there is no data transfer instruction to be parallel-processed simultaneously with a DSP
data operation instruction, an NOPX or NOPY instruction can be written as the data transfer
instruction, or the instruction can be omitted. The instruction code is the same whether an
NOPX or NOPY instruction is written or the instruction is omitted. When there in no DSP data
operation instruction to be parallel-processed simultaneously with a data transfer instruction,
an NOPX or NOPY instruction can be written or the instruction can be omitted. Examples of
NOPX and NOPY instruction codes are shown in table 3.20.

Rev. 1.00, 02/04, page 115 of 804
RENESANS

Table3.20 Examplesof NOPX and NOPY Instruction Codes

Instruction Code
PADD X0,Y0,A0 MOVX.W @R4+,X0 MOVY.W @R6+R9,YO0 1111100000001011
10110001000001112
PADD X0,Y0,A0 NOPX MOVY.W @R6+R9,Y0 1111100000000011
1011000100000111
PADD X0,Y0,A0 NOPX NOPY 1111100000000000
1011000100000111
PADD X0,Y0,A0 NOPX 1111100000000000
10110001000001112
PADD X0,Y0,A0 1111100000000000
10110001000001112
MOVX.W @R4+,X0 MOVY.W @R6+R9,YO0 1111000000001011
MOVX.W @R4+,X0 NOPY 1111000000001000
MOVS.W @R4+,X0 1111010010001000
NOPX MOVY.W @R6+R9, YO0 11110000000000112
MOVY.W @R6+R9,Y0 1111000000000011
NOPX NOPY 1111000000000000
NOP 0000000000001001

353 DSP-Type Data Formats

This LSI has several different data formats that depend on the instruction. This section explains
the data formats for DSP type instructions.

Figure 3.8 shows three DSP-type data formats with different binary point positions. A CPU-type
data format with the binary point to the right of bit O is also shown for reference.

The DSP-type fixed point data format has the binary point between bit 31 and bit 30. The DSP-
type integer format has the binary point between bit 16 and bit 15. The DSP-type logical format
does not have a binary point. The valid data lengths of the data formats depend on the instruction
and the DSP register.

Rev. 1.00, 02/04, page 116 of 804
RENESANS

DSP type fixed point

39 31 30 0
With guard bits ~ |[8] | | | 2% to +28 - 21
A
31 30 0
Without guard bits [s] | -1t0+1 -2
A
39 31 30 16 15 0
Multiplier input | ls| | -1to+1-25
A
DSP type integer
39 32 31 16 15 0
with guard bits~ |[s| | | | 222 t0 42231
A
31 16 15 0
Without guard bits [s] | | 215t +215 -1
A
Shift amount for 31 2216 15 0
arithmetic shift (PSHA) | Is| | | -s2t0 +32
A
Shift amount for 31 2116 15 0
logical shift (PSHL) [Is[| | -1610+16
A
39 31 16 15 0
DSP type logical I |
CPU type integer
yp g 31 0
Longword [s] 23110 +2%1 — 1
A
S: Sign bit A : Binary point I:I : Does not affect the operations

Figure3.8 Data Formats

The shift amount for the arithmetic shift (PSHA) instruction has a 7-bit field that can represent
values from —64 to +63, but =32 to +32 are valid numbers for the instruction. Also the shift
amount for a logical shift operation has a 6-bit field, but —16 to +16 are valid numbers for the
instruction. The results when an invalid shift amount is specified cannot be guaranteed.

Rev. 1.00, 02/04, page 117 of 804
RENESANS

354 ALU Fixed-Point Arithmetic Operations

Figure 3.9 shows the ALU fixed-point arithmetic operation flow. Table 3.21 shows the variation
of this type of operation and table 3.22 shows the correspondence between each operand and
registers.

39 31 0 39 31 0
|Guard | | |Guard|
Source 1 Source 2
A Yy
Vv
ALU | [GT] z [N]V [DC|
DSR
\ Destination
|Guard| | |
39 31 0

Figure3.9 ALU Fixed-Point Arithmetic Operation Flow

Note: The ALU fixed-point arithmetic operations are basically 40-bit operation; 32 bits of the
base precision and 8 bits of the guard-bit parts. So the signed bit is copied to the guard-bit
parts when a register not providing the guard-bit parts is specified as the source operand.
When a register not providing the guard-bit parts is specified as a destination operand, the
lower 32 bits of the operation result are input into the destination register.

ALU fixed-point operations are executed between registers. Each source and destination operand
are selected independently from one of the DSP registers. When a register providing guard bits is
specified as an operand, the guard bits are activated for this type of operation. These operations are
executed in the DSP stage, as shown in figure 3.10. The DSP stage is the same stage as the MA
stage in which memory access is performed.

Rev. 1.00, 02/04, page 118 of 804
RENESANS

Table3.21 Variation of ALU Fixed-Point Operations

Mnemonic Function Source 1 Source 2 Destination
PADD Addition Sx Sy Dz or Du
PSUB Subtraction Sx Sy Dz or Du
PADDC Addition with carry Sx Sy Dz
PSUBC Subtraction with borrow Sx Sy Dz
PCMP Comparison Sx Sy —
PCOPY Data copy Sx AllO Dz

All O Sy Dz
PABS Absolute Sx AllO Dz

All O Sy Dz
PNEG Negation Sx AllO Dz

All O Sy Dz
PCLR Clear AllO AllO Dz

Table3.22 Correspondence between Operands and Registers

Register Sx Sy Dz Du
AO Yes — Yes Yes
A1 Yes — Yes Yes
Mo — Yes Yes —
M1 — Yes Yes —
X0 Yes — Yes Yes
X1 Yes — Yes —
YO — Yes Yes Yes
Y1 — Yes Yes —

As shown in figure 3.10, data loaded from the memory at the MA stage to X0 by the data transfer
instruction (MOVX.W @R4+,X0) which is programmed at the same line as the ALU operation
(PADD X0,Y0,A0) , is not used as a source operand for this operation, even though the destination
operand X0 of the data load operation is identical to the source operand of the ALU operation. In
this case, results of previous operation (MOVX.W @R4+,X0) are used as the source operands for
the ALU operation, and then updated as the destination operand X0 of the data transfer instruction
(MOVX.W @R4+,X0). .

Rev. 1.00, 02/04, page 119 of 804
RENESANS

Operation Sequence Example

MOVX.W @R4+, X0
PADD X0,Y0, A0 MOVX.W @R4+, X0

w2« | 2 [o [& | s | & |
IF | MOVX MOVX & PADD
ID MOVX |MOVX & PADD
EX Addressing | Addressing
MA/DSP MOVX MOVX & PAI?Dl

Previous cycle result is USN

Figure3.10 Operation Sequence Example

Every time an ALU arithmetic operation is executed, the DC, N, Z, V, and GT bits in DSR are
basically updated in accordance with the operation result. However, in case of a conditional
operation, they are not updated even though the specified condition is true and the operation is
executed. In case of an unconditional operation, they are always updated in accordance with the
operation result. The definition of a DC bit is selected by CS[2:0] (condition selection) bits in
DSR. The DC bit result is as follows:

Carry or Borrow Mode: CS[2:0] = B'000: The DC bit indicates that carry or borrow is
generated from the most significant bit of the operation result, except the guard-bit parts. Some
examples are shown in figure 3.11. This mode is the default condition. When the input data is
negative in a PABS or PNEG instruction, carry is generated.

Rev. 1.00, 02/04, page 120 of 804
RENESANS

Example 1

Guard bits

1
00000000 1111111111 111111
+) 0000 0000 0000 0000 0000 0001

Example 2

Guard bits

1
1111111101110000 0000 0000
+) 0011111100010000 0000 0000

0000 0001 0000 0000 0000 0000

Carry detecting point

Carry is detected

Example 3

Guard bits

1
0000 0000 0000 0000 0000 0001
—) 0000 0000 0000 0000 0000 0001

(1)001111101000 0000 0000 0000

Carry detecting point

Carry is not detected

Example 4

Guard bits

1
0000 0000 0001 0000 0000 0001
—) 0000 0000 0001 0000 0000 0010

0000 0000 0000 0000 0000 0000 1111111111111 1111111

Borrow detecting point Borrow detecting point

Borrow is not detected Borrow is detected

Figure3.11 DC Bit Generation Examplesin Carry or Borrow Mode

Negative Value Mode: CS[2:0] = B'001: The DC flag indicates the same value as the MSB of the
operation result. When the result is a negative number, the DC bit shows 1. When it is a positive
number, the DC bit shows 0. The ALU always executes 40-bit arithmetic operation, so the sign bit
to detect whether positive or negative is always got from the MSB of the operation result
regardless of the destination operand. Some examples are shown in figure 3.12.

Example 1 Example 2

Guard bits

1
0011 0000 0000 0000 0000 0000
+) 0000 0000 1000 0000 0000 0001

0011 0000 1000 0000 0000 0001

Guard bits

1

1100 0000 0000 0000 0000 0000
+) 0000 0000 0000 0000 0000 0001

1100 0000 0000 0000 0000 0001

Sign bit Sign bit

Negative value Positive value

Figure3.12 DC Bit Generation Examplesin Negative Value M ode

ZeroValueMode: CS[2:0] = B'010: The DC flag indicates whether the operation result is 0 or
not. When the result is 0, the DC bit shows 1. When it is not 0, the DC bit shows 0.

Overflow Mode: CY2:0] =B'011: The DC bit indicates whether or not overflow occurs in the
result. When an operation yields a result beyond the range of the destination register, except the
guard-bit parts, the DC bit is set. Even though guard bits are provided in the destination register,
the DC bit always indicates the result of when no guard bits are provided. So, the DC bit is always

Rev. 1.00, 02/04, page 121 of 804
RENESANS

set if the guard-bit parts are used for large number representation. Some DC bit generation
examples in overflow mode are shown in figure 3.13.

Example 1 Example 2

Guard bits Guard bits

[— [—

1111111111111 1111111111 1111111111111 11111111111
+) 111111111000000000000000 +) 111111111000000000000001

1111111101111 11111111111 111111111000000000000000

Overflow detecting field Overflow detecting field
Overflow case Non overflow case

Figure3.13 DC Bit Generation Examplesin Overflow Mode

Signed Greater Than Mode: CS[2:0] = B'100: The DC bit indicates whether or not the source 1
data (signed) is greater than the source 2 data (signed) as the result of compare operation PCMP.
Therefore, the PCMP operation should be executed before the conditional operation is executed
under this condition mode. This mode is similar to the Negative Value Mode described before,
because the result of a compare operation is a positive value if the source 1 data is greater than the
source 2 data. However, the signed bit of the result shows a negative value if the compare
operation yields a result beyond the range of the destination operand, including the guard-bit parts
(called “Over-range”), even though the source 1 data is greater than the source 2 data. The DC bit
is updated concerning this type of special case in this condition mode. The equation below shows
the definition of getting this condition:

DC = ~ {(Negative ~ Over-range) | Zero}

When the PCMP operation is executed under this condition mode, the result of the DC bit is the
same as the T bit’s result of the CMP/GT operation of the CPU instruction.

Signed Greater Than or Equal Mode: CS§[2:0] = B'101: The DC bit indicates whether the
source 1 data (signed) is greater than or equal to the source 2 data (signed) as the result of compare
operation PCMP. Therefore, the PCMP operation should be executed before the conditional
operation is executed under this condition mode. This mode is similar to the Signed Greater Than
Mode described before but the equal case is also included in this mode. The equation below shows
the definition of getting this condition:

DC = ~ (Negative A Over-range)

When the PCMP operation is executed under this condition mode, the result of the DC bit is the
same as the T bit’s result of a CMP/GE operation of the CPU instruction.

The N bit always indicates the same state as the DC bit set in negative value mode by the CS[2:0]
bits. See the negative value mode part above. The Z bit always indicates the same state as the DC
bit set in zero value mode by the CS[2:0] bits. See the zero value mode part above. The V bit

Rev. 1.00, 02/04, page 122 of 804
RENESANS

always indicates the same state as the DC bit set in overflow mode by the CS[2:0] bits. See the
overflow mode part above. The GT bit always indicates the same state as the DC bit set in signed
greater than mode by the CS[2:0] bits. See the signed greater than mode part above.

Note: The DC bit is always updated as the carry flag for ‘PADDC’ and is always updated as the
carry/borrow flag for ‘PSUBC’ regardless of the CS[2:0] state.

e Overflow Protection

The S bit in SR is effective for any ALU fixed-point arithmetic operations in the DSP unit. See
section 3.5.11, Overflow Protection, for details.

355 ALU Integer Operations

Figure 3.14 shows the ALU integer arithmetic operation flow. Table 3.23 shows the variation of
this type of operation. The correspondence between each operand and registers is the same as
ALU fixed-point operations as shown in table 3.22.

39 31 16 0 39 31 16 0
|Guard | | | |Guard |
Source 1 Source 2
A Yy
ALU [GT] z [N] Vv [DC|
DSR
| Destination

|:| Ignored
|Guard| | | |:| Cleared to 0

39 31 16 0

Figure3.14 ALU Integer Arithmetic Operation Flow

Rev. 1.00, 02/04, page 123 of 804
RENESANS

Table3.23 Variation of ALU Integer Operations

Mnemonic Function Source 1 Source 2 Destination
PINC Increment by 1 Sx +1 Dz

+1 Sy Dz
PDEC Decrement by 1 Sx —1 Dz

-1 Sy Dz

Note: The ALU integer operations are basically 24-bit operation, the upper 16 bits of the base
precision and 8 bits of the guard-bits parts. So the signed bit is copied to the guard-bit parts
when a register not providing the guard-bit parts is specified as the source operand. When
a register not providing the guard-bit parts is specified as a destination operand, the upper
word excluding the guard bits of the operation result are input into the destination register.

In ALU integer arithmetic operations, the lower word of the source operand is ignored and the
lower word of the destination operand is automatically cleared. The guard-bit parts are effective in
integer arithmetic operations if they are supported. Others are basically the same operation as
ALU fixed-point arithmetic operations. As shown in table 3.23, however, this type of operation
provides two kinds of instructions only, so that the second operand is actually either +1 or —1.
When a word data is loaded into one of the DSP unit’s registers, it is input as an upper word data.
When a register providing guard bits is specified as an operand, the guard bits are also activated.
These operations, as well as ALU fixed-point arithmetic operations, are executed in the DSP stage,
as shown in figure 3.10. The DSP stage is the same stage as the MA stage in which memory
access is performed.

Every time an ALU arithmetic operation is executed, the DC, N, Z, V, and GT bits in DSR are
basically updated in accordance with the operation result. This is the same as ALU fixed-point
arithmetic operations but the lower word of each source and destination operand is not used in
order to generate them. See section 3.5.4, ALU Fixed-Point Arithmetic Operations, for details.

In case of a conditional operation, they are not updated even though the specified condition is true
and the operation is executed. In case of an unconditional operation, they are always updated in
accordance with the operation result. See section 3.5.4, ALU Fixed-Point Arithmetic Operations,
for details.

e Overflow Protection

The S bit in SR is effective for any ALU integer arithmetic operations in DSP unit. See section
3.5.11, Overflow Protection, for details.

Rev. 1.00, 02/04, page 124 of 804
RENESANS

35.6 ALU Logical Operations

Figure 3.15 shows the ALU logical operation flow. Table 3.24 shows the variation of this type of
operation. The correspondence between each operand and registers is the same as the ALU fixed-
point arithmetic operations as shown in table 3.21.

The ALU logical operation is executed between registers. Each source operand and destination
operand is selected independently from one of the DSP registers. As shown in figure 3.15, this
type of operation uses only the upper word of each operand. The lower word and guard-bit parts
are ignored for the source operand and those of the destination operand are automatically cleared.
These operations are also executed in the DSP stage, as shown in figure 3.10. The DSP stage is the
same stage as the MA stage in which memory access is performed.

Source 1 Source 2

|GT] z [N |V [DC|

DSR
Destination
| | | | |:| Ignored
39 T o 0 I:l Cleared to 0

Figure3.15 ALU Logical Operation Flow

Table3.24 Variation of ALU Logical Operations

Mnemonic Function Source 1 Source 2 Destination
PAND Logical AND Sx Sy Dz
POR Logical OR Sx Sy Dz
PXOR Logical exclusive OR Sx Sy Dz

Every time an ALU logical operation is executed, the DC, N, Z, V, and GT bits in the DSR
register are basically updated in accordance with the operation result. In case of a conditional
operation, they are not updated even though the specified condition is true and the operation is
executed. In case of an unconditional operation, they are always updated in accordance with the
operation result. The definition of the DC bit is selected by the CS[2:0] (DC bit condition
selection) bits in DSR. The DC bit result is:

Rev. 1.00, 02/04, page 125 of 804
RENESANS

Carry or Borrow Mode: CS[2:0] = B'000: The DC bit is always cleared to 0.
Negative Value Mode: CS2:0] = B'001: Bit 31 of the operation result is loaded into the DC bit.

ZeroValueMode: CS[2:0] = B'010: The DC bit is set tol when the operation result is zero;
otherwise it is cleared to 0.

Overflow Mode: CS2:0] = B'011: The DC bit is always cleared to 0.
Signed Greater Than Mode: CS[2:0] = B'100: The DC bit is always cleared to 0.
Signed Greater Than or Equal Mode: CS[2:0] = B'101: The DC bit is always cleared to 0.

The N bit always indicates the same state as the DC bit set in negative value mode by the CS[2:0]
bits. See the negative value mode part above. The Z bit always indicates the same state as the DC
bit set in zero value mode by the CS[2:0] bits. See the zero value mode part above. The V bit
always indicates the same state as the DC bit set in overflow mode by the CS[2:0] bits. See the
overflow mode part above. The GT bit always indicates the same state as the DC bit set in signed
greater than mode by the CS[2:0] bits. See the signed greater than mode part above.

357 Fixed-Point M ultiply Operation

Figure 3.16 shows the fixed-point multiply operation flow. Table 3.25 shows the variation of this
type of operation and table 3.26 shows the correspondence between each operand and registers.
The multiply operation of the DSP unit is single-word signed single-precision multiplication. The
fixed-point multiply operations are executed in the DSP stage, as shown in figure 3.10. The DSP
stage is the same stage as the MA stage in which memory access is performed.

If a double-precision multiply operation is needed, the CPU double-word multiply instructions can
be made of use.

Rev. 1.00, 02/04, page 126 of 804
RENESANS

39 31 16 0 39 31 16 0

L s | | L s |
Source 1 Source 2
o \
Y Y Y) .
Point position
V V S: Signed bit
MAC
\ Destination
|<f|8: | :Ol [] 1gnored
39 31 10

Figure3.16 Fixed-Point Multiply Operation Flow

Table3.25 Variation of Fixed-Point Multiply Operation

Mnemonic Function Source 1 Source 2 Destination

PMULS Signed multiplication Se Sf Dg

Table3.26 Correspondence between Operands and Registers

Register Se Sf Dg
AO — — Yes
A1l Yes Yes Yes
MO — — Yes
M1 — — Yes
X0 Yes Yes —
X1 Yes — —
YO Yes Yes —
Y1 — Yes —

Note: The multiply operations basically generate 32-bit operation results. So when a register
providing the guard-bit parts are specified as a destination operand, the guard-bit parts will
copy bit 31 of the operation result.

The multiply operation of the DSP unit side is not integer but fixed-point arithmetic. So, the upper
words of each multiplier and multiplicand are input into a MAC unit as shown in figure 3.16. In
the CPU instruction multiply operations, the lower words of both source operands are input into a
MAC unit. The operation result is also different from the CPU’s case. The CPU instruction
multiply operation result is aligned to the LSB of the destination, but the fixed-point multiply
operation result of DSP unit is aligned to the MSB, so that the LSB of the fixed-point multiply
operation result is always 0.

Rev. 1.00, 02/04, page 127 of 804

RENESANS

Multiply is always unconditional, but does not affect any condition code bits, DC, N, Z, V, and
GT, in DSR.

e Overflow Protection
The S bit in SR is effective for this multiply operation in the DSP unit. See section 3.5.11,
Overflow Protection, for details.
If the S bit is 0, overflow occurs only when H' 8000*H' 8000 ((-1.0)*(-1.0))
operation is executed as signed fixed-point multiply. The resultis H' 00 8000 0000 but it
does not mean (+1 . 0). If the S bit is 1, overflow is prevented and the resultisH' 00 7FFF
FEFFF.

Rev. 1.00, 02/04, page 128 of 804
RENESANS

358 Shift Operations

Shift operations barrel shift and can use either register or immediate value as the shift amount
operand. Other source and destination operands are specified by the register. There are two kinds
of shift operations of arithmetic and logical shifts. Table 3.27 shows the variation of this type of
operation. The correspondence between each operand and registers, except for immediate
operands, is the same as the ALU fixed-point operations as shown in table 3.21.

Table3.27 Variation of Shift Operations

Mnemonic Function Source 1 Source 2 Destination

PSHA Sx, Sy, Dz Arithmetic shift Sx Sy Dz

PSHL Sx, Sy, Dz Logical shift Sx Sy Dz

PSHA #lmm1, Dz Arithmetic shift with Dz Imm1 Dz
immediate

PSHL #lmm2, Dz Logical shift with Dz Imm2 Dz
immediate

-32 <Imm1<+32,-16 <Imm2 < +16

Arithmetic Shift: Figure 3.17 shows the arithmetic shift operation flow.

Left shift Right shift

39 32 31 16 15 0 39 32 31 16 15 0
3 + 0 %

(MSB copy) \

Shift out \ / Shift out

>=0 <0
N ~
+3210-32 Updated | [GT[Z] NV [DC]
39 32 31 2322 1615 0 DSR
Shift amount data | | | Sy | |
(source 2) 6 0
D Ignored

Figure3.17 Arithmetic Shift Operation Flow

Note: The arithmetic shift operations are basically 40-bit operation, that is, the 32 bits of the
base precision and eight bits of the guard-bit parts. So the signed bit is copied to the guard-
bit parts when a register not providing the guard-bit parts is specified as the source
operand. When a register not providing the guard-bit parts is specified as a destination
operand, the lower 32 bits of the operation result are input into the destination register.

In this arithmetic shift operation, all bits of the source 1 and destination operands are activated.
The shift amount is specified by the source 2 operand as an integer data. The source 2 operand can
be specified by either a register or immediate operand. The available shift range is from —32 to

Rev. 1.00, 02/04, page 129 of 804
RENESANS

+32. Here, a negative value means the right shift, and a positive value means the left shift. It is
possible for any source 2 operand to specify from —64 to +63 but the result is unknown if an
invalid shift value is specified. In case of a shift with an immediate operand instruction, the source
1 operand must be the same register as the destination’s. This operation is executed in the DSP
stage, as shown in figure 3.10 as well as in ALU fixed-point arithmetic operations. The DSP stage
is the same stage as the MA stage in which memory access is performed.

Every time an arithmetic shift operation is executed, the DC, N, Z, V, and GT bits in DSR are
basically updated in accordance with the operation result. In case of a conditional operation, they
are not updated even though the specified condition is true and the operation is executed. In case
of an unconditional operation, they are always updated in accordance with the operation result.
The definition of the DC bit is selected by the CS[2:0] (DC bit condition selection) bits in DSR.
The DC bit result is:

1. Carry or Borrow Mode: CS[2:0] = B'000
The DC bit indicates the last shifted out data as the operation result.
2. Negative Value Mode: CS[2:0] = B'001

The DC bit is set to 1 when the operation result is a negative value, and cleared to 0 when the
operation result is zero or a positive value.

3. Zero Value Mode: CS[2:0] = B'010
The DC bit is set to 1 when the operation result is zero; otherwise it is cleared to 0.
4. Overflow Mode: CS[2:0] =B'011
The DC bit is set to 1 when an overflow occurs.
5. Signed Greater Than Mode: CS[2:0] = B'100
The DC bit is always cleared to 0.
6. Signed Greater Than or Equal Mode: CS[2:0] = B'101
The DC bit is always cleared to 0.

The N bit always indicates the same state as the DC bit set in negative value mode by the CS[2:0]
bits. See the negative value mode part above. The Z bit always indicates the same state as the DC
bit set in zero value mode by the CS[2:0] bits. See the zero value mode part above. The V bit
always indicates the same state as the DC bit set in overflow mode by the CS[2:0] bits. See the
overflow mode part above. The GT bit always indicates the same state as the DC bit set in signed
greater than mode by the CS[2:0] bits. See the signed greater than mode part above.

e Overflow Protection

The S bit in SR is also effective for arithmetic shift operation in the DSP unit. See section
3.5.11, Overflow Protection, for details.

Logical Shift: Figure 3.18 shows the logical shift operation flow.

Rev. 1.00, 02/04, page 130 of 804
RENESANS

:I Cleared to 0 Left shift

Right shift
39 32 31 16 15 0 39 32 31 16 15 0
|
I ~ \ | I P i\
Shift out 0 0 Shift out
=0 0
~ Updated [IGT] Z [N]V [DC]
+16to-16 DSR
39 32 31 2221 1615 0
Shift amount data | | Sy | |
(source 2) s 5 I:I Ignored

Figure3.18 Logical Shift Operation Flow

As shown in figure 3.18, the logical shift operation uses the upper word of the source 1 operand
and the destination operand. The lower word and guard-bit parts are ignored for the source
operand and those of the destination operand are automatically cleared as in the ALU logical
operations. The shift amount is specified by the source 2 operand as an integer data. The source 2
operand can be specified by either the register or immediate operand. The available shift range is
from —16 to +16. Here, a negative value means the right shift, and a positive value means the left
shift. It is possible for any source 2 operand to specify from —32 to +31, but the result is unknown
if an invalid shift value is specified. In case of a shift with an immediate operand instruction, the
source 1 operand must be the same register as the destination’s. These operations are executed in
the DSP stage, as shown in figure 3.10. The DSP stage is the same stage as the MA stage in which
memory access is performed.

Every time a logical shift operation is executed, the DC, N, Z, V, and GT bits in DSR are basically
updated in accordance with the operation result. In case of a conditional operation, they are not
updated even though the specified condition is true and the operation is executed. In case of an
unconditional operation, they are always updated in accordance with the operation result. The
definition of the DC bit is selected by the CS[2:0] (DC bit condition selection) bits in DSR. The
DC bit result is:

1. Carry or Borrow Mode: CS[2:0] = B'000
The DC bit indicates the last shifted out data as the operation result.
2. Negative Value Mode: CS[2:0] = B'001
Bit 31 of the operation result is loaded into the DC bit.
3. Zero Value Mode: CS[2:0] =B'010
The DC bit is set to 1 when the operation result is zero; otherwise it is cleared to 0.

Rev. 1.00, 02/04, page 131 of 804
RENESANS

4. Overflow Mode: CS[2:0] =B'011
The DC bit is always cleared to 0.

5. Signed Greater Than Mode: CS[2:0] = B'100
The DC bit is always cleared to 0.

6. Signed Greater Than or Equal Mode: CS[2:0] = B'101
The DC bit is always cleared to 0.

The N bit always indicates the same state as the DC bit set in negative value mode by the CS[2:0]
bits. See the negative value mode part above. The Z bit always indicates the same state as the DC
bit set in zero value mode by the CS[2:0] bits. See the zero value mode part above. The V bit
always indicates the same state as the DC bit set in overflow mode by the CS[2:0] bits, but it is
always cleared in this operation. So is the GT bit.

359 Most Significant Bit Detection Operation

The PDMSB, most significant bit detection operation, is used to calculate the shift amount for
normalization. Figure 3.19 shows the PDMSB operation flow and table 3.28 shows the operation
definition. Table 3.29 shows the possible variations of this type of operation. The correspondence
between each operand and registers is the same as for ALU fixed-point operations, as shown in
table 3.21.

Note: The result of the MSB detection operation is basically 24 bits as well as ALU integer
operation, the upper 16 bits of the base precision and eight bits of the guard-bit parts.
When a register not providing the guard-bit parts is specified as a destination operand, the
upper word of the operation result is input into the destination register.

As shown in figure 3.19, the PDMSB operation uses all bits as a source operand, but the
destination operand is treated as an integer operation result because shift amount data for
normalization should be integer data as described in section 3.5.8, Arithmetic Shift. These
operations are executed in the DSP stage, as shown in figure 3.10. The DSP stage is the same
stage as the MA stage in which memory access is performed.

Every time a PDMSB operation is executed, the DC, N, Z, V, and GT bits in DSR are basically

updated in accordance with the operation result. In case of a conditional operation, they are not

updated, even though the specified condition is true, and the operation is executed. In case of an
unconditional operation, they are always updated with the operation result.

Rev. 1.00, 02/04, page 132 of 804
RENESANS

39 31 16 15 0
|Guard |

Source 1 or 2

Priority encoder > [GT[z | N[V |DC|
DSR
\ Destination
|G“ard| | | [] cleared to 0
39 31 16 0

Figure3.19 PDM SB Operation Flow

The definition of the DC bit is selected by the CS[2:0] (DC bit condition selection) bits in DSR.
The DC bit result is

Carry or Borrow Mode: CS[2:0] = B'000: The DC bit is always cleared to 0.

Negative Value Mode: CS[2:0] = B'001: The DC bit is set to 1 when the operation result is a
negative value, and cleared to O when the operation result is zero or a positive value.

ZeroValueMode: CS[2:0] = B'010: The DC bit is set to 1 when the operation result is zero;
otherwise it is cleared to 0.

Overflow Mode: CS2:0] = B'011: The DC bit is always cleared to 0.

Signed Greater Than Mode: CS[2:0] = B'100: The DC bit is set to 1 when the operation result is
a positive value; otherwise it is cleared to 0.

Signed Greater Than or Equal Mode: CS§[2:0] = B'101: The DC bit is set to 1 when the
operation result is zero or a positive value; otherwise it is cleared to 0.

Rev. 1.00, 02/04, page 133 of 804
RENESANS

Table3.28 Operation Definition of PDM SB

Source Data Result for DST
Guard
Guard Bit Upper Word Lower Word (Bit Upper Word
39 ‘38 | |33 ‘32 31 |3o ‘29 |28 ‘ ‘3 |2 ‘1 ‘o 39-32 31—22‘21 ‘20 ‘19 ‘18 ‘17 ‘16 |Decimal
o 0o ..0 OO0 OO O .. 0 O O O (A0 AlO 0o 1 1 1 1 1 +31
0 O 0O 0|0 0 0 O 0O 0 0O 1 |AIO AlIO 0 1 1 1 1 0 +30
0 O 0O 0|0 0 0 O 0O 0 1 = |AIO AlIO 0 1 1 1 0 1 +29
0 O 0O 0|0 0 0 O o 1 * * JAIO AlIO 0 1 1 1 0O O +28
0 O 0O 0|0 0 0 1 .. = == = * |A]IQ AIO 0 0 0 O 1 0O +2
0 O o o |0 0o 1 =* . * * x & A]Q AIO 0O 0 O O O 1 +1
0 0 0O 0 |0 1 = = . x= % % % AQ AlIO 0 0 0 0O 0O O O
0 O 0O 0 |1 == = =*= % &k % ok Al Al 1 1 1 1 1 1 -
0 0 0 1 |* * * % ® ook ow ok A Alt 1.1 1 1 1 0 -2
0 1 ..ok kR R w0k ko kA At 1 1 1 0 0 O -8
10 ..ok E |Eoox ok ow ww ww Al Al 1 1 1 0 0 0 -8
1 1 .1 0 |* = % = ox ox x ox Al Al 1 1 1 1 1 0 -2
11 .1 1 |0 * *= * ok x kw A Al 1 1 1 1 1 1 -
11 .1 1 |1 0 * * . * ® & x JAIQ AIO 0 0 0 0O O O O
11 .. 1 1 |1 1 0 * .. * * % = IAIO [AI0O 0 0 0 0O O 1 +1
11 .1 1 1 1 1 0 ... * *= * *= JAIQ AlIO 0O 0 0 O 1 O +2
1T 1 .1 111 1 1 ... 1 0 * * JAIO AlIO 0 1 1 1 0O O +28
11 ..t 111 1 11 .. 11 0 * [AlO |AIO 0O 1 1 1 0 1 +29
11 ..1 111 1 11 .. 1 1 1 0 |Al0O |AIO 0 1 1 1 1 0 +30
1T 1 .1 1t 11 1 1 ... 1 1 1 1 |AIO AlO 0 1 1 1 1 1 +31
Note: * means don’t care.
Table3.29 Variation of PDM SB Operation
Mnemonic Function Source Source 2 Destination
PDMSB MSB detection Sx — Dz
— Sy Dz

Rev. 1.00, 02/04, page 134 of 804
RENESANS

The N bit always indicates the same state as the DC bit set in negative value mode by the CS[2:0]
bits. See the negative value mode part above. The Z bit always indicates the same state as the DC
bit set in zero value mode by the CS[2:0] bits. See the zero value mode part above. The V bit is
always cleared. The GT bit always indicates the same state as the DC bit set in signed greater than
mode by the CS[2:0] bits. See the signed greater than mode part above.

35.10 Rounding Operation

The DSP unit provides the function that rounds from 32 bits to 16 bits. In case of providing guard-
bit parts, it rounds from 40 bits to 24 bits. When a round instruction is executed, H'00008000 is
added to the source operand data and then, the lower word is cleared. Figure 3.20 shows the
rounding operation flow and figure 3.21 shows the operation definition. Table 3.30 shows the
variation rounding operation. The correspondence between each operand and registers is the same
as ALU fixed-point operations as shown in table 3.21.

As shown in figure 3.21, the rounding operation uses full-size data for both source and destination
operands. These operations are executed in the DSP stage as shown in figure 3.10. The DSP stage
is the same stage as the MA stage in which memory access is performed.

The rounding operation is always executed unconditionally, so that the DC, N, Z, V, and GT bits
in DSR are always updated in accordance with the operation result. The definition of the DC bit is
selected by the CS[2:0] (DC bit condition selection) bits in DSR. The result of these condition
code bits is the same as the ALU-fixed point arithmetic operations.

39 31 16 15 0
[cuara | | | Hooooso00

Source 1 or 2

ALU [GT| z | N[V [DC|
DSR
Y Destination
|G“a’d| | | |:| Cleared to 0
39 31 16 0

Figure3.20 Rounding Operation Flow

Rev. 1.00, 02/04, page 135 of 804
RENESANS

Rounded result

H00 0003 -~ & -~~~

H'00 0002~ -~ -~~~

H'00 0001 --1- [
1 1 Analog value

True value

H'00 0001 8000
H'00 0002 0000- -|-
H'00 0002 8000

Figure3.21 Definition of Rounding Operation

Table3.30 Variation of Rounding Operation

Mnemonic Function Source 1 Source 2 Destination
PRND Rounding Sx — Dz
— Sy Dz

e Overflow Protection

The S bit in SR is effective for any rounding operations in the DSP unit. See section 3.5.11,
Overflow Protection, for details.

35.11 Overflow Protection

The S bit in SR is used as the overflow protection enable bit. The S bit is effective for any
arithmetic operations executed in the DSP unit, including the CPU instruction multiply and MAC
operations. The arithmetic operation overflows when the operation result exceeds the range of
two’s complement representation without guard-bit parts. Table 3.31 shows the definition of
overflow protection for fixed-point arithmetic operations, including fixed-point multiplication
described in section 3.5.7, Fixed-Point Multiply Operation. Table 3.32 shows the definition of
overflow protection for integer arithmetic operations. The lower word of the saturation value of
the integer arithmetic operation is don’t care. Lower word value cannot be guaranteed.

When the overflow protection is effective, overflow never occurs. So, the V bit is cleared, and the
DC bit is also cleared when the overflow mode is selected by the CS[2:0] bits.

Table3.31 Definition of Overflow Protection for Fixed-Point Arithmetic Operations

Sign Overflow Condition Fixed Value Hex Representation
Positive Result> 1 -2 1-2" 00 7FFF FFFF
Negative Result < —1 -1 FF 8000 0000

Rev. 1.00, 02/04, page 136 of 804
RENESANS

Table3.32 Definition of Overflow Protection for Integer Arithmetic Operations

Sign Overflow Condition Fixed Value Hex Representation
Positive Result > 2" — 1 2 -1 00 7FFF ##k
Negative Result < —2% -2 FF 8000

Note: * means don’t care.

3.5.12 Local DataMovelnstruction

The DSP unit of this LSI provides additional two independent registers, MACL and MACH, in
order to support CPU instruction multiply/MAC operations. They can be also used as temporary
storage registers by local data move instructions between MACH/L and other DSP registers.
Figure 3.22 shows the flow of seven local data move instructions. Table 3.33 shows the variation

of this type of instruction.

MACH
MACL
A
PSTS PLDS
)
X0 Y0
X1 Y1
A0 MO
Al M1
AOG/| A1G | DSR

|:| Cannot be used

Figure3.22 Local Data Move Instruction Flow

Table3.33 Variation of Local Data M ove Operations

Mnemonic Function Operand
PLDS Data move from DSP register to MACL/MACH Dz
PSTS Data move from MACL/MACH to DSP register Dz

This instruction is very similar to other transfer instructions. If either the AQ or A1 register is
specified as the destination operand of PSTS, the signed bit is sign-extended and copied into the
corresponding guard-bit parts, AOG or A1G. The DC bit in DSR and other condition code bits are
not updated regardless of the instruction result. This instruction can operate with MOVX and
MOVY in parallel.

Rev. 1.00, 02/04, page 137 of 804
RENESANS

35.13 Operand Conflict

When an identical destination operand is specified with multiple parallel instructions, data conflict
occurs. Table 3.34 shows the correspondence between each operand and registers.

Table3.34 Correspondence between Operands and Registers

X-Memory Y-Memory |6-Operand ALU| 3-Operand |3-Operand ALU
Load Load Instructions Multiply Instructions
Instructions Instructions Instructions
Ax |Ix |Dx |Ay |[ly |[Dy [Sx |Sy |Du |Se |Sf |Dg |Sx |Sy |Dz
DSP A0 *! 2 G *!
Registers [1 2 et & |x2 | 1
MO #! *! o [x
M1 ! ! w1 [
X0 #2 #1 *2 #1 #1 #1 #2
X1 *2 *#1 1 1 *2
YO e 1 *2 #1 #1 #1 ke
Y1 *2 *1 *1 1 *2

Notes: 1. Registers available for operands
2. Registers available for operands (when there is operand conflict)

There are three cases of operand conflict problems.

e When ALU and multiply instructions specify the same destination operand (Du and Dg)

e When X-memory load and ALU instructions specify the same destination operand (Dx and Du,
or Dz)

e When Y-memory load and ALU instructions specify the same destination operand (Dy and Du,
or Dz)

In these cases above, the result is not guaranteed.

Rev. 1.00, 02/04, page 138 of 804
RENESANS

3.6 DSP Extended Function I nstruction Set

3.6.1 CPU Extended I nstruction Set

Table3.35 DSP Mode Extended System Control Instructions

Execution
Instruction Instruction Code Operation States T Bit
SETRC #imm 1000001 Oiiiiiii imm—RC (of SR) 1 —
SETRC Rn 0100nnnNn00010100 Rn[11:0] -»RC (of SR) 1 —
LDRS @(disp,PC) 10001100dddddddd (disp x 2 + PC) -RS 1 —
LDRE @(disp,PC) 10001110dddddddd (disp x 2 + PC) —RE 1 —
STC MOD,Rn 0000nNNN01010010 MOD—Rn 1 —
STC RS,Rn 0000nNNN01100010 RS—Rn 1 —
STC RE,Rn 0000nNnn01110010 RE—Rn 1 —
STS DSR,Rn 0000nNNN01101010 DSR—Rn 1 —
STS AO,Rn 0000nnnn01111010 AO0—Rn 1 —
STS XO0,Rn 0000nNNNn10001010 X0—Rn 1 —
STS X1,Rn 0000nnnn10011010 X1-Rn 1 —
STS YO,Rn 0000nnnn10101010 Y0—Rn 1 —
STS Y1,Rn 0000nnnNn10111010 Y1—Rn 1 —
STS.L DSR,@-Rn 0100nnnNN01100010 Rn-4—Rn, DSR—(Rn) 1 —
STS.L A0,@-Rn 0100nnNN01110010 Rn-4—Rn, A0—(Rn) 1 —
STS.L X0,@-Rn 0100nnNN10000010 Rn-4—Rn, X0—(Rn) 1 —
STS.L X1,@-Rn 0100nnNN10010010 Rn-4—Rn, X1—(Rn) 1 —
STS.LY0,@-Rn 0100nnnn10100010 Rn-4—Rn, YO—(Rn) 1 —
STS.L Y1,@-Rn 0100nnNN10110010 Rn-4—Rn, Y1—(Rn) 1 —
STC.L MOD,@-Rn 0100nnnNn01010011 Rn-4—Rn, MOD—(Rn) 1 —
STC.L RS,@-Rn 0100nnNN01100011 Rn-4—Rn, RS—(Rn) 1 —
STC.L RE,@-Rn 0100nnNN01110011 Rn-4—Rn, RE—(Rn) 1 —
LDS.L @Rn +,DSR 0100nnnn01100110 (Rn) =DSR, Rn + 4—Rn 1 —
LDS.L @Rn +,A0 0100nnnn01110110 (Rn) A0, Rn + 4—>Rn 1 —
LDS.L @Rn + ,X0 0100nnnn10000110 (Rn) -X0, Rn + 4—Rn 1 —
LDS.L @Rn + ,X1 0100nnnn10010110 (Rn) -»X1, Rn + 4>Rn 1 —
LDS.L @Rn +,Y0 0100nnnNn10100110 (Rn) »YO, Rn + 4—>Rn 1 —

Rev. 1.00, 02/04, page 139 of 804

RENESANS

Execution

Instruction Instruction Code Operation States T Bit
LDS.L @Rn +,Y1 0100nnNnn10110110 (Rn) -Y1, Rn + 4>Rn 1 —
LDC.L @Rn +,MOD 0100nnnn01010111 (Rn) =MOD, Rn + 4—Rn 4 —
LDC.L @Rn +,RS 0100nnNn01100111 (Rn) -RS, Rn + 4—Rn 4 —
LDC.L @Rn + ,RE 0100nnnn01110111 (Rn) -RE, Rn + 4—Rn 4 —
LDS Rn,DSR 0100nnnn01101010 Rn—DSR 1 —
LDS Rn,A0 0100nnnn01111010 Rn—AO0 1 —
LDS Rn,X0 0100nnnn10001010 Rn—X0 1 —
LDS Rn,X1 0100nnnn10011010 Rn—X1 1 —
LDS Rn,YO 0100nnnn10101010 Rn—-YO0 1 —
LDS Rn,Y1 0100nnnn10111010 Rn—Y1 1 —
LDC Rn,MOD 0100nnnn01011110 Rn—MOD 4 —
LDC Rn,RS 0100nnnn01101110 Rn—RS 4 —
LDC Rn,RE 0100nnNnn01111110 Rn—RE 4 —

Rev. 1.00, 02/04, page 140 of 804

RENESANS

36.2

Double-Data Transfer Instruction Set

Table3.36 Double Data Transfer Instruction

Execution
Instruction Instruction Code Operation States DC
X NOPX 1111000*0*0%00** X memory no access 1 —
;"etmory MOVX.W @Ax,Dx 111100A*D*0*01%* (Ax) -5MSW of Dx, 0 >LSW of 1 —
ata Dx
transfer
MOVX.W @Ax + ,Dx 111100A*D*0*10** (Ax) -MSW of Dx, 0 — LSW of 1 —
Dx, Ax + 2 —-Ax
MOVX.W @Ax + Ix,Dx 111100A*D*0*11** (Ax) — MSW of Dx, 0 —-LSW of 1 —
Dx, Ax + Ix -AXx
MOVX.W Da, @Ax 111100A*D*1#01** MSW of Da —(AXx) 1 —
MOVX.W Da,@Ax + 111100A*D*1#10** MSW of Da —(Ax), Ax + 2 —-Ax 1 —
MOVX.W Da,@Ax + Ix 111100A*D*1*11#* MSW of Da —(Ax), Ax + Ix -Ax 1 —
Y NOPY 111100%0*0*0**00 Y memory no access 1 —
;"etmory MOVY.W @Ay,Dy 111100%A*D*0**01 (Ay) -»MSW of Dy, 0 -LSW of 1 —
ata Dy
transfer

MOVY.W @Ay + ,Dy 111100*A*D*0**10 (Ay) — MSW of Dy, 0 -LSW of 1 —
Dy, Ay + 2 Ay

MOVY.W @Ay + ly,Dy 111100*A*D*0**11 (Ay) —-MSW of Dy, 0 -LSW of 1 —
Dy, Ay + ly Ay

MOVY.W Da, @Ay 111100*A*D*1#+01 MSW of Da —(Ay) 1 —

MOVY.W Da, @Ay + 111100*A*D*1**¥10 MSW of Da —(Ay), Ay + 2 ->Ay 1 —

MOVY.W Da,@Ay + ly 111100*A*D*1**11 MSW of Da —(Ay), Ay + ly Ay 1 —

Rev. 1.00, 02/04, page 141 of 804

RENESANS

3.6.3

Single-Data Transfer Instruction Set

Table3.37 Single Data Transfer Instructions

Execution

Instruction Instruction Code Operation States DC
MOVS.W @-As,Ds 111101AADDDDO000 As-2 —As, (As) —» MSW of Ds, 0 - 1 —

> LSW of Ds
MOVS.W @As,Ds 111101AADDDDO100 (As) -MSW of Ds, 0 -LSW of Ds 1 —_
MOVS.W @As + ,Ds 111101AADDDD1000 (As) -»MSW of Ds, 0 -LSW of 1 —

Ds, As + 2 =As
MOVS.W @As + Ix,Ds 111101AADDDD1100 (Asc) —»MSW of Ds, 0 -LSW of 1 —_

Ds, As + Ix ->As
MOVS.W Ds, @-As* 111101AADDDDO0001 As-2 — MSW of Ds, As—(As) 1 —
MOVS.W Ds, @ As* 111101AADDDD0101 MSW of Ds—(As) 1 —_
MOVS.W Ds,@As + * 111101AADDDD1001 MSW of Ds —(As), As + 2 —As 1 —
MOVS.W Ds,@As + Ix* 111101AADDDD1101 MSW of Ds —(As), As + Ix —As 1 —
MOVS.L @-As,Ds 111101AADDDDO0010 As-4 —As, (As) —Ds 1 —
MOVS.L @As,Ds 111101AADDDDO0110 (As) —Ds 1 —
MOVS.L @As + ,Ds 111101AADDDD1010 (As) —Ds, As + 4 —As 1 —_
MOVS.L @As + Ix,Ds 111101AADDDD1110 (As) —Ds, As + Ix >As 1 —
MOVS.L Ds,@-As 111101AADDDDO0011 As-4 —As, Ds —(As) 1 —_
MOVS.L Ds,@As 111101AADDDDO111 Ds —(As) 1 —
MOVS.L Ds,@As + 111101AADDDD1011 Ds —(As), As + 4 V—>As 1 —
MOVS.L Ds,@As + Ix 111101AADDDD1111 Ds —(As), As + Ix —>As 1 —

Note: *

output to the LDB[7:0] bus and the sign bit is copied into the upper bits, [31:8].

If guard bit registers AOG and A1G are specified in source operand Ds, the data is

The correspondence between DSP data transfer operands and registers is shown in table 3.38.

Rev. 1.00, 02/04, page 142 of 804

RENESANS

Table3.38 Correspondence between DSP Data Transfer Operands and Registers

Register AX Ix Dx Ay ly Dy Da As Ds
CPU RO — — — — — — — — —
register R1 — — — — — — — _ —
R2 (As2) — — — — — — — Yes —
R3 (As3) — — — — — — — Yes —
R4 (Ax0, AsO) Yes — — — — — — Yes —
R5 (Ax1, As1) Yes — — — — — — Yes —
R6 (Ay0) — — — Yes — — — _ _
R7 (Ay1) — — — Yes — — — _ _
R8 (Ix) — Yes — — — — — _ _
RO (ly) — — — Yes — — — —
DSP A0 — — — — — — Yes — Yes
register A1 — — — — — — Yes — Yes
MO — — — — — — — — Yes
M1 — — — — — — — — Yes
X0 — — Yes — — — — — Yes
X1 — — Yes — — — — — Yes
YO — — — — — Yes — — Yes
Y1 — — — — — Yes — — Yes
A0OG — — — — — — — — Yes
A1G — — — — — — — — Yes

Rev. 1.00, 02/04, page 143 of 804
RENESANS

364 DSP Data Operation Instruction Set

Table3.39 DSP Data Operation I nstructions

Execution
Instruction Instruction Code Operation States DC
PMULS Se,Sf,Dg 11111035 Se*Sf—Dg (Signed) 1 —
0100eeff0000gg00
PADD Sx,Sy,Du 11111Q###xskxssk Gy + Sy—Du Se*Sf—Dg (Signed) 1 *
PMULS Se,Sf,Dg 0111eeffxxyygguu
PSUB Sx,Sy,Du 11111Q##sksssiis Gy-Sy—Du Se*Sf—Dg (Signed) 1 *
PMULS Se,Sf,Dg 0110eeffxxyygguu
PADD Sx,Sy,Dz 11111Q####kicksax Gy + Sy—Dz 1 *
10110001xxyyzzzz
DCT PADD Sx,Sy,Dz 111110##==s#sxs% |f DC=1, Sx + Sy—Dz If DC=0, nop 1 —
10110010xxyyzzzz
DCF PADD Sx,Sy,Dz 11111Q##==s#sss% |f DC=0, Sx + Sy—Dz If DC=1, nop 1 —
10110011xxyyzzzz
PSUB Sx,Sy,Dz 11111Q##ssskssss Gx-Sy—Dz 1 *
10100001xxyyzzzz
DCT PSUB Sx,Sy,Dz 111110 |f DC=1, Sx-Sy—Dz If DC=0, nop 1 —
10100010xxyyzzzz
DCF PSUB Sx,Sy,Dz 111110 |f DC=0, Sx-Sy—Dz If DC=1, nop 1 —
1010001 1xxyyzzzz
PSHA Sx,Sy,Dz 11111Q####xxsxxx | Sy>=0, Sx<<Sy—Dz (arithmetic shift) 1 *
10010001xxyyzzzz If Sy<0, Sx>>Sy—Dz
DCT PSHA Sx,Sy,Dz 11111Q##skskssssk |f DC=1 & Sy>=0, Sx<<Sy—Dz (arithmetic 1 —

10010010xxyyzzzz

shift)
If DC=1 & Sy<0, Sx>>Sy—Dz If DC=0, nop

Rev. 1.00, 02/04, page 144 of 804

RENESANS

Instruction

Instruction Code

Operation

Execution
States DC

DCF PSHA Sx,Sy,Dz

11199 Q skt

If DC=0 & Sy>=0, Sx<<Sy—Dz (arithmetic 1 —

shift)

10010011xxyyzzzz
If DC=0 & Sy<0, Sx>>Sy—Dz If DC=1, nop
PSHL Sx,Sy,Dz 11111 Qs If Sy>=0, Sx<<Sy—Dz (logical shift) 1 *
10000001xxyyzzzz If Sy<0, Sx>>Sy—Dz
DCT PSHL Sx,Sy,Dz 11111 Qksieisksiesieiesiesen If DC=1 & Sy>=0, Sx<<Sy—Dz (logical shift) 1 —
10000010xxyyzzzz If DC=1 & Sy<0, Sx>>Sy—Dz If DC=0, nop
DCF PSHL Sx,Sy,Dz 11111 Qksieisksiesiesiesiesen If DC=0 & Sy>=0, Sx<<Sy—Dz (logical shift) 1 —
10000011xxyyzzzz If DC=0 & Sy<0, Sx>>Sy—Dz If DC=1, nop
PCOPY Sx,Dz 11111 Qi Sx—Dz 1 *
11011001xx00zzzz
PCOPY Sy,Dz 117111 Qe Sy—Dz 1 *
1111100100yyzzzz
DCT PCOPY Sx,Dz 11111 Qs If DC=1, Sx—Dz If DC=0, nop 1 —
11011010xx00zzzz
DCT PCOPY Sy,Dz 11111 Qs If DC=1, Sy—Dz If DC=0, nop 1 —
1111101000yyzzzz
DCF PCOPY Sx,Dz 11111 Qi If DC=0, Sx—Dz If DC=1, nop 1 —
11011011xx00zzzz
DCF PCOPY Sy,Dz 11111 Qi If DC=0, Sy—Dz If DC=1, nop 1 —
1111101100yyzzzz
PDMSB Sx,Dz 11111 Qsieieisiesiesieiesieson Sx—Dz normalization count shift value 1 *
10011101xx00zzzz
PDMSB Sy,Dz 11111 Qkieisiesiesieiesiesen Sy—Dz normalization count shift value 1 *
1011110100yyzzzz
DCT PDMSB Sx,Dz 11111 Qsksisisksieseiesiese If DC=1, normalization count shift value 1 —
10011110xx00zzzz ~ SX D2 If DC=0, nop
DCT PDMSB Sy,Dz 11111 Qksieisksiesieiesiese If DC=1, normalization count shift value 1 —
1011111000yyzzzz ~ SY—Dz I DC=0, nop
DCF PDMSB Sx,Dz 111110kt If DC=0, normalization count shift value 1 —

10011111xx00zzzz

Sx—Dz If DC=1, nop

RENESANS

Rev. 1.00, 02/04, page 145 of 804

Instruction

Instruction Code Operation

Execution
States

DC

DCF PDMSB Sy,Dz

11117 Qs sk

If DC=0, normalization count shift value
Sy—Dz If DC=1, nop

1

1011111100yyzzzz

PINC Sx,Dz 111110 kiisx MSW of Sx+ 1—Dz 1 *
10011001xx00zzzz

PINC Sy,Dz 111110 skkisx MSW of Sy+ 1—Dz 1 *

1011100100yyzzzz

DCT PINC Sx,Dz

10011010xx00zzzz

If DC=1, MSW of Sx+ 1—Dz If DC=0, nop

DCT PINC Sy,Dz

1011101000yyzzzz

If DC=1, MSW of Sy+ 1—Dz If DC=0, nop

DCF PINC Sx,Dz

10011011xx00zzzz

If DC=0, MSW of Sx + 1—>Dz If DC=1, nop

'y

DCF PINC Sy,Dz

11110 *sssksksss

If DC=0, MSW of Sy+ 1—Dz If DC=1, nop

1011101100yyzzzz
PNEG Sx,Dz 111110 xssssekrnx 0-Sx—Dz 1 *
11001001xx00zzzz
PNEG Sy,Dz 11111 Qxxssssssss 0-Gy—Dz 1 *
1110100100yyzzzz
DCT PNEG Sx,Dz 111110 siiekanx |f DC=1, 0-Sx—Dz If DC=0, nop 1 —
11001010xx00zzzz
DCT PNEG Sy,Dz 111110 srsiekanx |f DC=1, 0-Sy—Dz If DC=0, nop 1 —
1110101000yyzzzz
DCF PNEG Sx,Dz 111110 srsiekanx |f DC=0, 0-Sx—Dz If DC=1, nop 1 —
11001011xx00zzzz
DCF PNEG Sy,Dz 11111 Qi |f DC=0, 0-Sy—Dz If DC=1, nop 1 —
1110101100yyzzzz
POR Sx,Sy,Dz 1111 1Q#x sk Gy | Sy—Dz 1 *
10110101xxyyzzzz
DCT POR Sx,Sy,Dz 111110 kiienx |f DC=1, Sx | Sy—Dz If DC=0, nop 1 —
10110110xxyyzzzz
DCF POR Sx,Sy,Dz 11111 Q##sicietanx |f DC=0, Sx | Sy—Dz If DC=1, nop 1 —

10110111xxyyzzzz

Rev. 1.00, 02/04, page 146 of 804

RENESANS

Execution

Instruction Instruction Code Operation States DC
PAND Sx,Sy,Dz 11111 Qkssksksisisission Sx & Sy—Dz 1 *
10010101xxyyzzzz
DCT PAND Sx,Sy,Dz 11111 Qe If DC=1, Sx & Sy—Dz If DC=0, nop 1 —
10010110xxyyzzzz
DCF PAND Sx,Sy,Dz 11111 Qe If DC=0, Sx & Sy—Dz If DC=1, nop 1 —
10010111xxyyzzzz
PXOR Sx,Sy,Dz 111110k Sx A Sy—Dz 1 *
10100101xxyyzzzz
DCT PXOR Sx,Sy,Dz 11111 Qe If DC=1, Sx ~ Sy—Dz If DC=0, nop 1 —
10100110xxyyzzzz
DCF PXOR Sx,Sy,Dz 11111 Qe If DC=0, Sx » Sy—Dz If DC=0, nop 1 —
10100111xxyyzzzz
PDEC Sx,Dz 11111 Qe Sx [39:16]-1—Dz 1 *
10001001xx00zzzz
DCT PDEC Sx,Dz 11111 Qe If DC=1, Sx [39:16]-1—>Dz If DC=0,nop 1 —
10001010xx00zzzz
DCF PDEC Sx,Dz 11111 Qoo If DC=0, Sx [39:16]-1—>Dz If DC=1,nop 1 —
10001011xx00zzzz
PDEC Sy,Dz 11111 Qe Sy [31:16]-1—Dz 1 *
1010100100yyzzzz
DCT PDEC Sy,Dz 11111 Qe If DC=1, Sy [31:16]-1—>Dz If DC=0,nop 1 —
1010101000yyzzzz
DCF PDEC Sy,Dz 11111 Qe If DC=0, Sy [31:16]-1—>Dz If DC=1,nop 1 —
1010101100yyzzzz
PCLR Dz 11111 Qoo h'00000000—Dz 1 *
100011010000zzzz
DCT PCLR Dz 11111 Qe If DC=1, h'00000000—Dz If DC=0, nop 1 —
100011100000zzzz
DCF PCLR Dz 11111 Qoo If DC=0, h'00000000—Dz If DC=1,nop 1 —

100011110000zzzz

RENESANS

Rev. 1.00, 02/04, page 147 of 804

Execution

Instruction Instruction Code Operation States DC
PSHA #imm,Dz 11111 Qo If imm>=0, Dz<<imm—Dz (arithmetic shift) 1 *
00010Qiiiiiiizzzz If imm<0, Dz>>imm—Dz
PSHL #imm,Dz 1111 sttt If imm>=0, Dz<<imm—Dz (logical shift)
00000iiiiiiizzzz If imm<0, Dz>>imm—Dz
PSTS MACH,Dz 11111Q##ssssissx MACH—Dz
110011010000zzzz

DCT PSTS MACH,Dz

110011100000zzzz

If DC=1, MACH—Dz
If DC = 0, nop

DCF PSTS MACH,Dz

110011110000zzzz

If DC=0, MACH—Dz
If DC = 1, nop

PSTS MACL,Dz

110111010000zzzz

MACL—Dz

DCT PSTS MACL,Dz

110111100000zzzz

If DC=1, MACL—Dz
If DC = 0, nop

DCF PSTS MACL,Dz

110111110000zzzz

If DC=0, MACL—Dz
If DC = 1, nop

PLDS Dz,MACH

111011010000zzzz

Dz—MACH

DCT PLDS Dz,MACH

If DC=1, Dz—MACH

111011100000zzzz |f DC = 0, nop
DCF PLDS Dz,MACH 11111Q###xssiieks |f DC=0, Dz—MACH
111011110000zzzz If DC =1, nop
PLDS Dz,MACL 11111Q##ksssssrt Dz—MACL
111111010000zzzz
DCT PLDS Dz,MACL 11111Qs#ssssiiis |f DC=1, Dz—MACL
111111100000zzzz If DC = 0, nop
DCF PLDS Dz,MACL 11111Qsssssiiis |f DC=0, Dz—MACL
111111110000zzzz I DC =1, nop
PADDC Sx,Sy,Dz 11111Q##kicikiciis Sy + Sy + DC—Dz Carry—DC
10110000xxyyzzzz

Rev. 1.00, 02/04, page 148 of 804

RENESANS

Execution

Instruction Instruction Code Operation States DC

PSUBC Sx,Sy, Dz 111110**##xxskxx Gx-Sy-DC—Dz Borrow—DC 1 Borrow
10100000xxyyzzzz

PCMP Sx,Sy 1111 10%xxsxx Gx-Gy—DC update* 1 *
10000100xxyy0000

PABS Sx,Dz 11111 Qs |f Sx<0, 0-Sx—Dz If Sx>=0, Sx—Dz 1 *
10001000xx00zzzz

PABS Sy,Dz 111110 xxsssnssnx |f Sy<0, 0-Sy—Dz If Sy>=0, Sy—Dz 1 *
1010100000yyzzzz

PRND Sx,Dz 11111 Qs Gx + h'00008000—Dz LSW of Dz—h'0000 1 *
10011000xx00zzzz

PRND Sy,Dz 111110kt Gy + h'00008000—Dz LSW of Dz—h'0000 1 *
1011100000yyzzzz

Notes * See table 3.19.
In the instruction column, the asterisks in upper line and the lower line indicate A field
and B field, respectively.

Rev. 1.00, 02/04, page 149 of 804
RENESANS

365

Operation Code Map in DSP Mode

Table 3.40 shows the operation code map including an instruction codes extended in the DSP
mode.

Table3.40 Operation Code Map

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011to 1111
MSB LSB MD: 00 MD: 01 MD: 10 MD: 11
0000 Rn Fx 0000
0000 Rn Fx 0001
0000 Rn 0OMD 0010 STC SR, Rn STC GBR,Rn STC VBR,Rn STC SSR, Rn
0000 Rn 01MD 0010 STC SPC,Rn STC MOD, Rn STC Rs,Rn STC RE,Rn
0000 Rn 10MD 0010 STC RO_BANK,Rn STC R1_BANK,Rn STC R2_BANK,Rn STC R3_BANK, Rn
0000 Rn 11MD 0010 STC R4 _BANK,Rn STC R5_BANK,Rn STC R6_BANK,Rn STC R7_BANK, Rn
0000 Rm 00MD 0011 BSRF Rm BRAF Rm
0000 Rm 10MD 0011 PREF @Rm
0000 Rn Rm 01MD MOV.B Rm, @(RO, Rn) MOV.W Rm, @(R0, MOV.L Rm,@(R0, Rn) MUL.LRm, Rn

Rn)

0000 0000 OOMD 1000 CLRT SETT CLRMAC LDTLB
0000 0000 01MD 1000 CLRS SETS
0000 0000 10MD 1000
0000 0000 11MD 1000
0000 0000 Fx 1001 NOP DIVOU
0000 0000 Fx 1010
0000 0000 Fx 1011 RTS SLEEP RTE
0000 Rn Fx 1000
0000 Rn Fx 1001 MOVT Rn
0000 Rn 0OMD 1010 STS MACH, Rn STS MACL, Rn STS PR,Rn
0000 Rn 01MD 1010 STS DSR,Rn STS A0, Rn
0000 Rn 10MD 1010 STS X0, Rn STS X1,Rn STS YO,Rn STS Y1,Rn
0000 Rn Fx 1011

Rev. 1.00, 02/04, page 150 of 804

RENESANS

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011to 1111

MSB LSB MD: 00 MD: 01 MD: 10 MD: 11
0000 R Rm 11MD MOV.B @(R0, Rm), MOV.W @(R0, Rm), MOV.L @(R0, Rm), Rn MAC.L @Rm+,@Rn+

Rn Rn
0001 Rn Rm disp MOV.LRm,

@(disp:4, Rn)
0010 Rn Rm 00OMD MOV.B Rm, @Rn MOV.W Rm, @Rn MOV.L Rm, @Rn
0010 Rn Rm 01MD MOV.B Rm, @-Rn MOV.W Rm, @-Rn MOV.L Rm, @-Rn DIVOS Rm, Rn
0010 Rn Rm 10MD TST Rm,Rn AND Rm, Rn XOR Rm, Rn OR Rm, Rn
0010 R Rm 11MD CMP/STR Rm,Rn XTRCT Rm,Rn MULU.W Rm, Rn MULSW Rm, Rn
0011 Rn Rm 00MD CMP/EQ Rm,Rn CMP/HS Rm, Rn CMP/GERm, Rn
0011 Rn Rm O01MD DIV1 Rm, Rn DMULU.L Rm,Rn CMP/HI Rm, Rn CMP/GT Rm, Rn
0011 Rn Rm 10MD SUB Rm, Rn SUBC Rm, Rn SUBV Rm, Rn
0011 Rn Rm 11MD ADD Rm,Rn DMULS.L Rm,Rn ADDC Rm, Rn ADDV Rm, Rn
0100 Rn Fx 0000 SHLL Rn DT Rn SHAL Rn
0100 Rn Fx 0001 SHLR Rn CMP/PZ Rn SHAR Rn
0100 Rn Fx 0010 STS.L MACH, STS.L MACL, @-Rn STS.L PR, @-Rn

@-Rn
0100 Rn 00OMD 0011 STC.LSR, @-Rn STC.L GBR, @-Rn STC.L VBR, @-Rn STC.L SSR, @-Rn
0100 Rn 01MD 0011 STC.LSPC, @-Rn STC.L MOD, @-Rn STC.L RS, @-Rn STC.L RE, @-Rn
0100 Rn 10MD 0011 STC.L STC.L STC.L STC.L

RO_BANK, @-Rn R1_BANK, @-Rn R2_BANK, @-Rn R3_BANK, @-Rn
0100 Rn 11MD 0011 STC.L STC.L STC.L STC.L

R4_BANK, @-Rn R5_BANK, @-Rn R6_BANK, @-Rn R7_BANK, @-Rn
0100 Rn Fx 0100 ROTL Rn SETRC Rn ROTCL Rn
0100 Rn Fx 0101 ROTR Rn CMP/PLRn ROTCR Rn
0100 Rm O00OMD 0110 LDS.L LDS.L @Rm+, MACL LDS.L @Rm+, PR

@Rm+, MACH
0100 Rm O01MD 0110 LDS.L @Rm, DSR LDS.L @Rm, A0
0100 Rm 10MD 0110 LDS.L @Rm, X0 LDS.L @Rm, X1 LDS.L @Rm, YO LDS.L @Rm, Y1

Rev. 1.00, 02/04, page 151 of 804

RENESANS

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011 to 1111

MSB LSB MD: 00 MD: 01 MD: 10 MD: 11

0100 Rm 00MD 0111 LDC.L @Rm+, SR LDC.L @Rm+, GBR LDC.L @Rm+, VBR LDC.L @Rm+, SSR

0100 Rm 01MD 0111 LDC.L @Rm+, SPC LDC.L @Rm+, MOD LDC.L @Rm+, RS LDC.L @Rm+, RE
0100 Rm 10MD 0111 LDC.L LDC.L LDC.L LDC.L

@Rm+, RO_BANK ~ @Rm+, R1_BANK @Rm+, R2_BANK @Rm+, R3_BANK
0100 Rm 11MD 0111 LDC.L LDC.L LDC.L LDC.L

@Rm+, R4_BANK @Rm+, R5_BANK @Rm+, R6_BANK @Rm+, R7_BANK
0100 Rn Fx 1000 SHLL2 Rn SHLL8 Rn SHLL16 Rn
0100 Rn Fx 1001 SHLR2 Rn SHLR8 Rn SHLR16Rn

0100 Rm 00MD 1010 LDS Rm, MACH LDS Rm, MACL LDS Rm, PR

0100 Rm 01MD 1010 LDS Rm, DSR LDS Rm, AO
0100 Rm 10MD 1010 LDS Rm, X0 LDS Rm, X1 LDS Rm, YO LDS Rm, Y1
0100 Rm/R Fx 1011 JSR @Rm TAS.B @Rn JMP @Rm

0100 Rn Rm 1100 SHAD Rm, Rn

0100 Rn Rm 1101 SHLD Rm, Rn

0100 Rm 00MD 1110 LDC Rm, SR LDC Rm, GBR LDC Rm, VBR LDC Rm, SSR

0100 Rm 01MD 1110 LDC Rm, SPC LDC Rm, MOD LDC Rm, RS LDC Rm, RE

0100 Rm 10MD 1110 LDC Rm, RO_BANK LDC Rm, R1_BANK LDC Rm, R2_BANK LDC Rm, R3_BANK

0100 Rm 11MD 1110 LDC Rm, R4_BANK LDC Rm, R5_BANK LDC Rm, R6_BANK LDC Rm, R7_BANK

0100 Rn Rm 1111 MACW @Rm+, @Rn+

0101 Rn Rm disp MOV.L (disp:4, Rm), Rn

0110 Rn Rm 00MD MOV.B @Rm,Rn MOV.W @Rm, Rn MOV.L @Rm, Rn MOV Rm, Rn
0110 Rn Rm 01MD MOV.B @Rm+, MOV.W @Rm+, Rn MOV.L @Rm+, Rn NOT Rm, Rn
Rn

0110 Rn Rm 10MD SWAP.B Rm, Rn SWAP.W Rm, Rn NEGC Rm, Rn NEG Rm, Rn
0110 Rn Rm 11MD EXTU.B Rm, Rn EXTU.WRm, Rn EXTS.B Rm, Rn EXTS.W Rm, Rn
0111 Rn imm ADD #imm : 8, Rn

1000 0OMD Rn disp MOV.B MOV.W SETRC #imm

imm RO, @(disp: 4, Rn) RO, @(disp: 4, Rn)

Rev. 1.00, 02/04, page 152 of 804
RENESANS

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011 to 1111
MSB LSB MD: 00 MD: 01 MD: 10 MD: 11
1000 01MD Rm disp MOV.B MOV.W

@ (disp:4, Rm), RO

@ (disp: 4, Rm), RO

1000 10OMD imm/disp CMP/EQ #imm:8, RO BT disp: 8 BF disp: 8
1000 11MD imm/disp LDRS @(disp:8,PC) BT/S disp: 8 LDRE @(disp:8,PC) BF/S disp: 8
1001 Rn disp MOV.W (disp : 8, PC), Rn
1010 disp BRA disp : 12
1011 disp BSR disp: 12
1100 OOMD imm/disp MOV.B MOV.W MOV.L TRAPA #mm: 8
RO, @(disp: 8, GBR) RO, @(disp: 8, GBR) RO, @(disp: 8, GBR)
1100 01MD disp MOV.B MOV.W MOV.L MOVA
@(disp: 8, GBR), RO @(disp: 8, GBR), RO @(disp: 8, GBR), RO @ (disp: 8, PC), RO
1100 10MD imm TST #imm: 8, RO AND #imm: 8, RO XOR #imm: 8, RO OR #imm: 8, RO
1100 11MD imm TST.B AND.B XOR.B OR.B
#imm: 8, @(RO, GBR) #imm: 8, @(R0, GBR) #imm: 8, @(R0, GBR) #imm: 8, @ (R0, GBR)
1101 Rn disp MOV.L @(disp: 8, PC), Rn
1110 Rn imm MOV #imm:8, Rn
1111 00#* ek MOVX.W, MOVY.W Double data transfer instruction
1111 Of#x ekwsss: MOVS.W, MOVS.L Single data transfer instruction
1111 0% el MOVX.W, MOVY.W Double data transfer instruction, with DSP parallel operation instruction (32-bit
instruction)
Notes: 1. For details, refer to the SH-3/SH-3E/SH3-DSP Programming Manual.

2. Instructions in the hatched areas are DSP extended instructions. These instructions

can be executed only when the DSP bit in the SR register is set to 1.

Rev. 1.00, 02/04, page 153 of 804
RENESANS

Rev. 1.00, 02/04, page 154 of 804
RENESANS

Section 4 Exception Handling

Exception handling is separate from normal program processing, and is performed by a routine
separate from the normal program. For example, if an attempt is made to execute an undefined
instruction code or an instruction protected by the CPU processing mode, a control function may
be required to return to the source program by executing the appropriate operation or to report an
abnormality and carry out end processing. In addition, a function to control processing requested
by LSI on-chip modules or an LSI external module to the CPU may also be required.

Transferring control to a user-defined exception handling routine and executing the process to
support the above functions are called exception handling. This LSI has two types of exceptions:
general exceptions and interrupts. The user can execute the required processing by assigning
exception handling routines corresponding to the required exception processing and then return to
the source program.

A reset input can terminate the normal program execution and pass control to the reset vector after
register initialization. This reset operation can also be regarded as an exception handling. This
section describes an overview of the exception handling operation. Here, general exceptions and
interrupts are referred to as exception handling. For interrupts, this section describes only the
process executed for interrupt requests. For details on how to generate an interrupt request, refer
to section 8, Interrupt Controller (INTC).

4.1 Register Descriptions

There are four registers for exception handling. A register with an undefined initial value should
be initialized by the software. Refer to section 27, List of Registers, for the register addresses and
register states in each process.

e TRAPA exception register (TRA)

e Exception event register (EXPEVT)
e Interrupt event register 2 (INTEVT2)
e Exception address register (TEA)

Rev. 1.00, 02/04, page 155 of 804
RENESANS

Figure 4.1 shows the bit configuration of each register.

31 10 9 210

| 0 | TRA | 0 | TRA

31 12 11 0

| 0 | EXPEVT | EXPEVT
31 12 11 0

| 0 | INTEVT2 INTEVT2
31 0

| TEA TEA

Figure4.1 Register Bit Configuration

41.1 TRAPA Exception Register (TRA)

TRA is assigned to address H'FFFFFFDO and consists of the 8-bit immediate data (imm) of the
TRAPA instruction. TRA is automatically specified by the hardware when the TRAPA
instruction is executed. Only bits 9 to 2 of the TRA can be re-written using the software.

Bit Bit Name Initial Value R/W Description

31to 10 — AllO R Reserved

These bits are always read as 0. The write value
should always be 0. If 1 is written to these bits,
correct operation cannot be guaranteed.

9to 2 TRA — R/W 8-bit Immediate Data
1 — All O R Reserved
0 These bits are always read as 0. The write value

should always be 0. If 1 is written to these bits,
correct operation cannot be guaranteed.

Rev. 1.00, 02/04, page 156 of 804
RENESANS

41.2 Exception Event Register (EXPEVT)

EXPEVT is assigned to address HFFFFFFD4 and consists of a 12-bit exception code. Exception
codes to be specified in EXPEVT are those for resets and general exceptions. These exception
codes are automatically specified by the hardware when an exception occurs. Only bits 11 to 0 of
EXPEVT can be re-written using the software.

Bit Bit Name Initial Value R/W Description
31to12 — AllO R Reserved

These bits are always read as 0. The write value
should always be 0. If 1 is written to these bits,
correct operation cannot be guaranteed.

11100 EXPEVT * R/W 12-bit Exception Code
Note: Initialized to H'000 at power-on reset and H'020 at manual reset.

413 Interrupt Event Register 2 (INTEVT2)

INTEVT?2 is assigned to address H'A4000000 and consists of a 12-bit exception code. Exception
codes to be specified in INTEVT?2 are those for interrupt requests. These exception codes are
automatically specified by the hardware when an exception occurs. INTEVT?2 cannot be modified
using the software.

Bit Bit Name Initial Value R/W Description
31to12 — All O R Reserved

These bits are always read as 0. The write value
should always be 0.

11t0o 0 INTEVT2 — R 12-bit Exception Code

414 Exception Address Register (TEA)

TEA is assigned to address H'FFFFFFFC and stores the virtual address for an exception
occurrence when an exception related to memory accesses occurs. TEA can be modified using the
software.

Bit Bit Name Initial Value R/W Description
31to0 TEA All O R/W Virtual Address For Exception

Rev. 1.00, 02/04, page 157 of 804
RENESANS

4.2 Exception Handling Function

421 Exception Handling Flow

In exception handling, the contents of the program counter (PC) and status register (SR) are saved
in the saved program counter (SPC) and saved status register (SSR), respectively, and execution of
the exception handler is invoked from a vector address. The return from exception handler (RTE)
instruction is issued by the exception handler routine on completion of the routine, restoring the
contents of PC and SR to return to the processor state at the point of interruption and the address
where the exception occurred.

A basic exception handling sequence consists of the following operations. If an exception occurs
and the CPU accepts it, operations 1 to 8 are executed.

The contents of PC are saved in SPC.

The contents of SR are saved in SSR.

The block (BL) bit in SR is set to 1, masking any subsequent exceptions.
The mode (MD) bit in SR is set to 1 to place the privileged mode.

The register bank (RB) bit in SR is set to 1.

When an exception source is a general exception, an exception code identifying the exception

SN A ol S

event is written to EXPEVT. When an exception source is an interrupt, an exception code is
written to INTEVT2.

7. If a TRAPA instruction is executed, an 8-bit immediate data specified by the TRAPA
instruction is set to TRA. For an exception related to memory accesses, the virtual address
where the exception occurred is written to TEA.

8. Instruction execution jumps to the designed exception vector address to invoke the handler
routine.

The above operations from 1 to 8 are executed in sequence. During these operations, no other
exceptions may be accepted unless multiple exception acceptance is enabled.

In an exception handling routine for a general exception, the appropriate exception handling must
be executed based on an exception source determined by the EXPEVT. In an interrupt exception
handling routine, the appropriate exception handling must be executed based on an exception
source determined by the INTEVT2. After the exception handling routine has been completed,
program execution can be resumed by executing an RTE instruction. The RTE instruction causes
the following operations to be executed.

Rev. 1.00, 02/04, page 158 of 804
RENESANS

1. The contents of the SSR are restored into the SR to return to the processing state in effect
before the exception handling took place.

2. A delay slot instruction of the RTE instruction is executed.*
3. Control is passed to the address stored in the SPC.

The above operations from 1 to 3 are executed in sequence. During these operations, no other
exceptions may be accepted. By changing the SPC and SSR before executing the RTE instruction,
a status different from that in effect before the exception handling can also be specified.

Note: * For details on the CPU processing mode in which RTE delay slot instructions are
executed, please refer to section 4.5, Usage Notes.

422 Exception Vector Addresses

A vector address for general exceptions is determined by adding a vector offset to a vector base
address. The vector offset for general exceptions is H'00000100. The vector offset for interrupts
is H'00000600. The vector base address is loaded into the vector base register (VBR) using the
software. The vector base address should reside in the virtual address (P1 or P2).

423 Exception Codes

The exception codes are written to bits 11 to 0 of the EXPEVT register (for reset or general
exceptions) or the INTEVT?2 register (for interrupt requests) to identify each specific exception
event. See section 8, Interrupt Controller (INTC), for details of the exception codes for interrupt
requests. Table 4.1 lists exception codes for resets and general exceptions.

424 Exception Request and BL Bit (Multiple Exception Prevention)

The BL bit in SR is set to 1 when a reset or exception is accepted. While the BL bit is set to 1,
acceptance of general exceptions is restricted as described below, making it possible to effectively
prevent multiple exceptions from being accepted.

If the BL bit is set to 1, an interrupt request is not accepted and is retained. The interrupt request
is accepted when the BL bit is cleared to 0. If the CPU is in power-down mode, an interrupt is
accepted even if the BL bit is set to 1 and the CPU returns from power-down mode.

A DMA address error is not accepted and is retained if the BL bit is set to 1 and accepted when the
BL bit is cleared to 0. User break requests generated while the BL bit is set are ignored and are
not retained. Accordingly, user breaks are not accepted even if the BL bit is cleared to 0.

If a general exception other than a DMA address error or user break occurs while the BL bit is set
to 1, the CPU enters a state similar to that in effect immediately after a reset, and passes control to
the reset vector (H'A0000000) (multiple exception). In this case, unlike a normal reset, modules

Rev. 1.00, 02/04, page 159 of 804
RENESANS

other than the CPU are not initialized, the contents of EXPEVT, SPC, and SSR are undefined, and
this status is not detected by an external device.

To enable acceptance of multiple exceptions, the contents of SPC and SSR must be saved while
the BL bit is set to 1 after an exception has been accepted, and then the BL bit must be cleared to
0. Before restoring the SPC and SSR, the BL bit must be set to 1.

425 Exception Sour ce Acceptance Timing and Priority

Exception Request of Instruction Synchronous Type and Instruction Asynchronous Type:
Resets and interrupts are requested asynchronously regardless of the program flow. In general
exceptions, a DMA address error and a user break under the specific condition are also requested
asynchronously. The user cannot expect on which instruction an exception is requested. For
general exceptions other than a DMA address error and a user break under a specific condition,
each general exception corresponds to a specific instruction.

Re-execution Type and Processing-completion Type Exceptions: All exceptions are classified
into two types: a re-execution type and a processing-completion type. If a re-execution type
exception is accepted, the current instruction executed when the exception is accepted is
terminated and the instruction address is saved to the SPC. After returning from the exception
processing, program execution resumes from the instruction where the exception was accepted. In
a processing-completion type exception, the current instruction executed when the exception is
accepted is completed, the next instruction address is saved to the SPC, and then the exception
processing is executed.

During a delayed branch instruction and delay slot, the following operations are executed. A re-
execution type exception detected in a delay slot is accepted before executing the delayed branch
instruction. A processing-completion type exception detected in a delayed branch instruction or a
delay slot is accepted when the delayed branch instruction has been executed. In this case, the
acceptance of delayed branch instruction or a delay slot precedes the execution of the branch
destination instruction. In the above description, a delay slot indicates an instruction following an
unconditional delayed branch instruction or an instruction following a conditional delayed branch
instruction whose branch condition is satisfied. If a branch does not occur in a conditional delayed
branch, the normal processing is executed.

Acceptance Priority and Test Priority: Acceptance priorities are determined for all exception
requests. The priority of resets, general exceptions, and interrupts are determined in this order: a
reset is always accepted regardless of the CPU status. Interrupts are accepted only when resets or
general exceptions are not requested.

If multiple general exceptions occur simultaneously in the same instruction, the priority is
determined as follows.

Rev. 1.00, 02/04, page 160 of 804
RENESANS

A processing-completion type exception generated at the previous instruction™
A user break before instruction execution (re-execution type)

An exception related to an instruction fetch (CPU address error)

i

An exception caused by an instruction decode (General illegal instruction exceptions and slot
illegal instruction exceptions: re-execution type, unconditional trap: processing-completion

type)
An exception related to data access (CPU address error)
Unconditional trap (processing-completion type)

A user break other than one before instruction execution (processing-completion type)

o N W

DMA address error (processing-completion type)

Note: * If a processing-completion type exception is accepted at an instruction, exception
processing starts before the next instruction is executed. This exception processing
executed before an exception generated at the next instruction is detected.

Only one exception is accepted at a time. Accepting multiple exceptions sequentially results in all
exception requests being processed.

Rev. 1.00, 02/04, page 161 of 804
RENESANS

Table4.1

Exception Event Vectors

Exception Current Exception Process Excep-tion Vector
Type Instruction Exception Event Priority*' Order at BL=1 Code*® Offset
Reset Aborted Power-on reset 1 1 Reset H'000 —
(Instruction Manual reset 1 2 Reset H'020 —
asynchro-
nous type)
General Re-executed User break(before 2 0 Ignored H'1EOQ H'00000100
exception instruction
events execution)
(InSt':Ct'on CPU address error 2 1 Reset H'0EO H'00000100
synchro- (instruction access)
nous type) 4
llegal general 2 2 Reset H'180 H'00000100
instruction
exception
lllegal slot 2 2 Reset H'1A0 H'00000100
instruction
exception
CPU address error 2 3 Reset H'0EOQ/ H'00000100
(data read/write)** H'100
Completed Unconditional trap 2 4 Reset H'160 H'00000100
(TRAPA
instruction)
User breakpoint 2 5 Ignored H'1E0 H'00000100
(After instruction
execution,
address)
General Completed User breakpoint 2 5 Ignored H'1E0 H'00000100
exception (Data break, I-BUS
events break)
(Instruction DMA address error 2 6 Retained H'5CO H'00000100
asynchro-
nous type)
Interrupt Completed Nonmaskable 32 — Retained —*° H'00000600
(Instruction interrupt (NMI)
asynchro- External hardware 4% — Retained —*° H'00000600
nous type) interrupt (IRQ
interrupt)
H-UDI interrupt 42 — Retained —*° H'00000600
On-chip peripheral 4% — Retained —*° H'00000600

module interrupt

Rev. 1.00, 02/04, page 162 of 804

RENESANS

Notes: 1.

Priorities are indicated from high to low, 1 being the highest and 4 the lowest. A reset
has the highest priority. An interrupt is accepted only when general exceptions are not
requested.

For details on priorities in multiple interrupt sources, refer to section 8, Interrupt
Controller (INTC).

If an interrupt is accepted, the exception event register (EXPEVT) is not changed. The
interrupt source code is specified in interrupt event register 2 (INTEVT2). For details,
refer to section 8, Interrupt Controller (INTC).

If one of these exceptions occurs in a specific part of the repeat loop, a specific code
and vector offset are specified.

Exception codes H'040, H'060, H'080, H'0AQ, H'0CO, H'0DO, H'120, H'140, and H'3EO
are reserved.

Rev. 1.00, 02/04, page 163 of 804
RENESANS

4.3 Individual Exception Operations

This section describes the conditions for specific exception handling, and the processor operations.
Resets and general exceptions are explained in this section. For details of interrupts, see section 8,
Interrupt Controller (INTC)

43.1 Resets
Power-On Reset:

e Conditions
RESETP is low, power-on reset by WDT is requested, H-UDI reset

e Operations
Set EXPEVT to H'000, initialize VBR and SR, and branch to PC = H'A0000000.*
The VBR register is cleared to H'00000000 by the initialization. In the SR register, the bits
MD, RB, and BL are set to 1, the DSP bit is cleared to 0, and interrupt mask bits (I3 to 10) are
setto B'1111.
Initialize the CPU and on-chip peripheral modules. For details, refer to the register
descriptions in the relevant sections.
Perform a reset by the RESETP pin low at power supply.

Note: * After a power-on reset, though address is HA0000000, if the BOOT_E pin is asserted
low, a branch is made to the ROM area for the boot function and the boot processing
starts (see section 17, Boot Function).

For the details of the H_UDI reset, see section 26, User Debugging Interface (H-UDI).

Manual Reset:

e Conditions
Manual reset by WDT is request

e Operations
Set EXPEVT to H’020, initialize VBR and SR, and branch to PC = H'A0000000.*
The VBR register is cleared to H'00000000 by the initialization. In the SR register, the bits
MD, RB, and BL are set to 1, the DSP bit is cleared to 0, and interrupt mask bits (I3 to 10) are
set to B'1111. Initialize the CPU and on-chip peripheral modules. A register initialized by a
power-on reset is different from that is initialized by a manual reset. For details, refer to the
register descriptions in the relevant sections.

Note: * After a manual reset, if the BOOT_E pin is asserted low, a branch is made to the ROM
area for the boot function and the boot processing starts as in the case of the power-on
reset.

Rev. 1.00, 02/04, page 164 of 804
RENESANS

432 General Exceptions
CPU addresserror:

e Conditions
— Instruction is fetched from odd address (4n + 1, 4n + 3)
— Word data is accessed from addresses other than word boundaries (4n + 1, 4n + 3)

— Longword is accessed from addresses other than longword boundaries (4n + 1, 4n + 2,
4n + 3)

— The area ranging from H'80000000 to HFFFFFFFF in logical space is accessed in user
mode

e Types
Instruction synchronous, re-execution type
e Save address
Instruction fetch: An instruction address to be fetched when an exception occurred

Data access: An instruction address where an exception occurs (a delayed branch instruction
address if an instruction is assigned to a delay slot)

e Exception code
An exception occurred during read: H'OEO
An exception occurred during write: H'100
e Remarks
The virtual address (32 bits) that caused the exception is set in TEA.

Illegal general instruction exception:

e Conditions
— When undefined code not in a delay slot is decoded
Delayed branch instructions: JMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT/S, BF/S

Note: For details on undefined code, refer to section 2.6.2, Operation Code Map. When an
undefined code other than HFCO00 to H'FFFF is decoded, operation cannot be guaranteed.

— When a privileged instruction not in a delay slot is decoded in user mode

Privileged instructions: LDC, STC, RTE, LDTLB, SLEEP; instructions that access GBR
with LDC/STC are not privileged instructions.

e Types
Instruction synchronous, re-execution type
e Save address

An instruction address where an exception occurs

Rev. 1.00, 02/04, page 165 of 804
RENESANS

Exception code
H'180
Remarks

None

Illegal dot instruction:

Conditions

— When undefined code in a delay slot is decoded

Delayed branch instructions: JMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT/S, BF/S

— When a privileged instruction in a delay slot is decoded in user mode

Privileged instructions: LDC, STC, RTE, LDTLB, SLEEP; instructions that access GBR
with LDC/STC are not privileged instructions.

— When an instruction that rewrites PC in a delay slot is decoded

Instructions that rewrite PC: JMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT, BF,
BT/S, BF/S, TRAPA, LDC Rm, SR, LDC.L @Rm+, SR

Types

Instruction synchronous, re-execution type
Save address

A delayed branch instruction address
Exception code

H'1A0

Remarks

None

Unconditional trap:

Conditions

TRAPA instruction executed

Types

Instruction synchronous, processing-completion type
Save address

An address of an instruction following TRAPA
Exception code

H'160

Remarks

The exception is a processing-completion type, so PC of the instruction after the TRAPA
instruction is saved to SPC. The 8-bit immediate value in the TRAPA instruction is set in
TRA[9:2].

Rev. 1.00, 02/04, page 166 of 804

RENESANS

User break point trap:

Conditions

When a break condition set in the user break controller is satisfied

Types

Break (L bus) before instruction execution: Instruction synchronous, re-execution type
Operand break (L bus): Instruction synchronous, processing-completion type

Data break (L bus): Instruction asynchronous, processing-completion type

I bus break: Instruction asynchronous, processing-completion type

Save address

Re-execution type: An address of the instruction where a break occurs (a delayed branch
instruction address if an instruction is assigned to a delay slot)

Completion type: An address of the instruction following the instruction where a break occurs
(a delayed branch instruction destination address if an instruction is assigned to a delay slot)

Exception code
H'1EO
Remarks

For details on user break controller, refer to section 25, User Break Controller (UBC).

DMA addresserror:

Conditions

— Word data accessed from addresses other than word boundaries (4n + 1, 4n + 3)

— Longword accessed from addresses other than longword boundaries (4n + 1, 4n + 2, 4n +
3)

Types

Instruction asynchronous, processing-completion type

Save address

An address of the instruction following the instruction where a break occurs (a delayed branch

instruction destination address if an instruction is assigned to a delay slot)

Exception code

H'5C0

Remarks

An exception occurs when a DMA transfer is executed while an illegal instruction address

described above is specified in the DMAC. Since the DMAC transfer is performed

asynchronously with the CPU instruction operation, an exception is also requested

asynchronously with the instruction execution. For details on DMAC, refer to section 10,

Direct Memory Access Controller (DMAC).

Note: Address error does not occurred in the USB host since the hardware automatically

recognizes the address and performs accessing data of enough bit length.

Rev. 1.00, 02/04, page 167 of 804
RENESANS

4.4 Exception Processing While DSP Extension Function isValid

In DSP mode (the DSP bit of SR is set to 1), some exception processing acceptance conditions or
exception processing may be changed.

441 lllegal Instruction Exception and Slot Illegal I nstruction Exception

In the DSP mode, a DSP extension instruction can be executed. If a DSP extension instruction is
executed when the DSP bit of SR is cleared to O (in a mode other than the DSP mode), an illegal
instruction exception occurs.

In the DSP mode, STC and LDC instructions for the SR register can be executed even in user
mode. (Note, however, that only the RC[11:0], DMX, DMY, and RF[1:0] bits in the DSP
extension bits can be changed.)

442 CPU AddressError

In the DSP mode, a part of the space P2 (Uxy area: H'A5000000 to H'ASFFFFFF) can be accessed
in user mode and no CPU address error will occur even if the area is accessed.

443 Exception in Repeat Control Period

If an exception is requested or an exception is accepted during repeat control, the exception may
not be accepted correctly or a program execution may not be returned correctly from exception
processing that is different from the normal state. These restrictions may occur from repeat
detection instruction to repeat end instruction while the repeat counter is 1 or more. In this section,
this period is called the repeat control period.

The following shows program examples where the number of instructions in the repeat loop is 4 or
more, 3, 2, and 1, respectively. In this section, a repeat detection instruction and its instruction
address are described as RptDtct. The first, second, and third instructions following the repeat
detection instruction are described as RptDtctl, RptDtct2, and RptDtct3. In addition, [A], [B],
[C1], and [C2] in the following examples indicate instructions where a restriction occurs. Table
4.2 summarizes the instruction positions regarding a repeat loop and restriction types.

Rev. 1.00, 02/04, page 168 of 804
RENESANS

Table4.2

Instruction Positionsregarding a repeat loop and Restriction Types

Instruction lllegal Interrupt, CPU Address
Position SPC** Instruction*? Break*® Error**
[A]
[B] Retained
[C1] Added Retained Instruction/data
[C2] lllegal Added Retained Instruction/data
Notes: 1. A specific address is specified in the SPC if an exception occurs while SR.RC[11:0] > 2.
2. Some of instructions are turned to be illegal instructions while SR.RC[11:0] > 1.
3. An interrupt, break or DMA address error request is retained while SR.RC[11:0] > 1.
4. A specific exception code is specified while SR.RC[11:0] > 1.

Example 1: Repeat loop consisting of four instructions

LDRS RptStart
LDRE RptDtct +
SETRC #4

instr0

RptStart: instrl

RptDtct: RptDtct

RptEnd:

RptDtctl
RptDtct2
RptDtct3

InstrNext

4

7

7
i
7

7

[Aa]
;o [A]
[Aa]
[A]
[A] [Repeat start instruction]
[A]
[A]

[B] A repeat detection
instruction is an
instruction three
instructions before a
repeat end instruction

[C1]
[C2]
[C2] [Repeat end instruction]

[a]

Rev. 1.00, 02/04, page 169 of 804
RENESANS

e Example 2: Repeat loop consisting of three instructions

LDRS RptDtct +

LDRE RptDtct +

SETRC #4
RptDtct: RptDtct

RptStart: RptDtctl
RptDtct2

RptEnd: RptDtct3
InstrNext

4
4

;o [A]
i [A]
[A]
[B] A repeat detection

instruction is an
instruction prior to a
repeat start instruction

[C1l] [Repeat start instruction]
[C2]
[C2] [Repeat end instruction]

[a]

e Example 3: Repeat loop consisting of two instructions

LDRS RptDtct +

LDRE RptDtct +

SETRC #4
RptDtct: RptDtct

RptStart: RptDtctl
RptEnd: RptDtct2

InstrNext

6
4

;o [A]
;o [A]
[A]
[B] A repeat detection

instruction is an
instruction prior to a

repeat start instruction
[C1l] [Repeat start instruction]

[C2] [Repeat end instruction]

[A]

e Example 4: Repeat loop consisting of one instruction

LDRS RptDtct +

LDRE RptDtct +

SETRC #4
RptDtct: RptDtct

RptStart:
RptEnd: RptDtctl

InstrNext

Rev. 1.00, 02/04, page 170 of 804

8
4

;o [A]
i [A]

[Aa]

[B] A repeat detection
instruction is an
instruction prior to a

repeat start instruction

[Cl] [Repeat start instruction]==
[Repeat end instruction]

[a]

RENESANS

SPC Saved by an Exception in Repeat Control Period: If an exception is accepted in the repeat
control period while the repeat counter (RC[11:0]) in the SR register is two or greater, the program
counter to be saved may not indicate the value to be returned correctly. To execute the repeat
control after returning from an exception processing, the return address must indicate an
instruction prior to a repeat detection instruction. Accordingly, if an exception is accepted in
repeat control period, an exception other than re-execution type exception by a repeat detection
instruction cannot return to the repeat control correctly.

Table4.3 SPC Valuewhen a Re-Execution Type Exception Occursin Repeat Control

Instruction Where an Number of Instructions in a Repeat Loop

Exception Occurs 1 2 3 4 or Greater
RptDtct RptDtct RptDtct RptDtct RptDtct
RptDtct1 RptDtct1 RptDtct1 RptDtct1 RptDtct1
RptDtct2 — RptDtct1 RptDtct1 RS-4
RptDtct3 — — RptDtct1 RS-2
Note: The following symbols are used here.

RptDtct: Repeat detection instruction address

RptDtct1: An instruction address one instruction following the repeat detection
instruction (In a repeat loop consisting of one to three instructions, RptDtct1 is
equal to RptStart.)

RptDtct2: An instruction address two instruction following the repeat detection

instruction

RptDtct3: An instruction address three instruction following the repeat detection
instruction

RS: Repeat start instruction address

If a re-execution type exception is accepted at an instruction in the hatched areas above, a
return address to be saved in the SPC is incorrect. If SR.RC[11:0] is 1 or 0, a correct return
address is saved in the SPC.

Rev. 1.00, 02/04, page 171 of 804
RENESANS

[llegal Instruction Exception in Repeat Control Period: If one of the following instructions is
executed at the address following RptDtctl, a general illegal instruction exception occurs. For
details on an address to be saved in the SPC, refer to section 4.4.3, Exception in Repeat Control
Period.

e Branch instructions
BRA, BSR, BT, BF, BT/S, BF/S, BSRF, RTS, BRAF, RTE, JSR, IMP, TRAPA
e Repeat control instructions
SETRC, LDRS, LDRE
e L oad instructions for SR, RS, and RE
LDC Rn,SR, LDC @Rn+,SR, LDC Rn,RE, LDC @Rn+,RE, LDC Rn,RS, LDC @Rn+, Rs

Note: In a repeat loop consisting of one to three instructions, some restrictions apply to repeat
detection instructions and all the remaining instructions. In a repeat loop consisting of
four or more instructions, restrictions apply to only the three instructions that include a
repeat end instruction.

An Exception Retained in Repeat Control Period: In the repeat control period, an interrupt or
some exception will be retained to prevent an exception acceptance at an instruction where
returning from the exception cannot be performed correctly. For details, refer to repeat loop
program examples (1) to (4). In the examples, exceptions generated at instructions indicated as
[B], and [C] ([C1] or [C2]) the following processing is executed.

e Interrupt, DMA address error

An exception request is not accepted and retained at instructions [B] and [C]. If an instruction
indicates as [A] is executed the next time, an exception request is accepted.” As shown in
examples (1) to (4), any interrupt or DMA address error cannot be accepted in a repeat loop
consisting of four instructions or less.

Note: An interrupt request or a DMA address error exception request is retained in the interrupt
controller (INTC) and the direct memory access controller (DMAC) until the CPU can
accept a request.

e User break before instruction execution

A user break before instruction execution is accepted at instruction [B], and an address of
instruction [B] is saved in the SPC. This exception cannot be accepted at instruction [C] but
the exception request is retained until an instruction [A] or [B] is executed the next time.
Then, the exception request is accepted before an instruction [A] or [B] is executed. In this
case, an address of instruction [A] or [B] is saved in the SPC.

Rev. 1.00, 02/04, page 172 of 804
RENESANS

e User break after instruction execution
A user break after instruction execution cannot be accepted at instructions [B] and [C] but the
exception request is retained until an instruction [A] or [B] is executed the next time. Then,
the exception request is accepted before an instruction [A] or [B] is executed. In this case, an
address of instruction [A] or [B] is saved in the SPC.

Table4.4 Restrictions of Exception Acceptancein the Repeat L oop

Exception Type Instruction [B] Instruction [C]
Interrupt Not accepted Not accepted
DMA address error Not accepted Not accepted
User break before instruction execution Accepted Not accepted
User break after instruction execution Not accepted Not accepted

CPU AddressError in Repeat Control Period: If a CPU address error occurs in the repeat
control period, the exception is accepted but an exception code (H'070) indicating the repeat loop
period is specified in the EXPEVT. If a CPU address error occurs in instructions following a
repeat detection instruction to repeat end instruction, an exception code for instruction access or
data access is specified in the EXPEVT.

The SPC is saved according to the description in section 4.4.3, SPC Saved by an Exception in
Repeat Control Period.

After the CPU address error exception processing, the repeat control cannot be returned correctly.
To execute a repeat loop correctly, care must be taken not to generate a CPU address error in the
repeat control period.

Note: In a repeat loop consisting of one to three instructions, some restrictions apply to repeat
detection instructions and all the remaining instructions. In a repeat loop consisting of
four or more instructions, restrictions apply to only the three instructions that include a
repeat end instruction. The restriction occurs when SR.RC[11:0] = 1.

Rev. 1.00, 02/04, page 173 of 804
RENESANS

Table4.5

Exception Occursin Repeat Control (SR.RC[11:0] = 1)

Instruction Where an

Instruction Wher e a Specific Exception Occurs When a Memory Access

Number of Instructions in a Repeat Loop

Exception Occurs 1 2 3 4 or Greater
RptDtct
RptDtct1 Instruction/data Instruction/data Instruction/data Instruction/data
access access access access
RptDtct2 — Instruction/data Instruction/data Instruction/data
access access access
RptDtct3 — — Instruction/data Instruction/data
access access
Note: The following symbols are used here.
RptDtct: Repeat detection instruction address
RptDtct1: An instruction address one instruction following the repeat detection
instruction
RptDtct2: An instruction address two instruction following the repeat detection
instruction
RptDtct3: An instruction address three instruction following the repeat detection

instruction

Rev. 1.00, 02/04, page 174 of 804

RENESANS

4.5

Usage Notes

An instruction assigned at a delay slot of the RTE instruction is executed after the contents of
the SSR is restored into the SR. An acceptance of an exception related to instruction access is
determined according to the SR before restore. An acceptance of other exceptions is
determined by the SR after restore, processing mode, and BL bit value. A processing-
completion type exception is accepted before an instruction at the RTE branch destination
address is executed. However, note that the correct operation cannot be guaranteed if a re-
execution type exception occurs.

In an instruction assigned at a delay slot of the RTE instruction, a user break cannot be
accepted.

If the MD and BL bits of the SR register are changed by the LDC instruction, an exception is
accepted according to the changed SR value from the next instruction.* A processing-
completion type exception is accepted after the next instruction is executed. An interrupt and
DMA address error in processing-completion type exceptions are accepted before the next
instruction is executed.

Note: * Ifan LDC instruction is executed for the SR, the following instructions are re-fetched

and an instruction fetch exception is accepted according to the modified SR value.

Rev. 1.00, 02/04, page 175 of 804
RENESANS

Rev. 1.00, 02/04, page 176 of 804
RENESANS

Section 5 Cache

51 Features

e Capacity: 16 kbytes

e Structure: Instructions/data mixed, 4-way set associative

e Locking: Way 2 and way 3 are lockable

e Line size: 16 bytes

e Number of entries: 256 entries/way

e Write system: Write-back/write-through is selectable for spaces PO, P1, P3, and U0
individually.
Group 1 (PO, P3, and UO areas)
Group 2 (P1 area)

e Replacement method: Least-recently used (LRU) algorithm

5.1.1 CacheStructure

The cache mixes instructions and data and uses a 4-way set associative system. It is composed of
four ways (banks), and each of which is divided into an address section and a data section. Each of
the address and data sections is divided into 256 entries. The entry data is called a line. Each line
consists of 16 bytes (4 bytes x 4). The data capacity per way is 4 kbytes (16 bytes X 256 entries) in
the cache as a whole (4 ways). The cache capacity is 16 kbytes as a whole. Figure 5.1 shows the
cache structure.

Address array (ways 0 to 3) Data array (ways 0 to 3) LRU
| —
1
Entry 0| v | U [Tag address Of Lwo | Lwi Lw2 | Lw3 0
Entry 1 1
Entry 255 | 255 | 255
24 (1 + 1+ 22) bits 128 (32 x 4) bits 6 bits
S ——— -t > -

LWO to LW3: Longword data 0 to 3

Figure5.1 Cache Structure

CASHO01B_00020030200 Rev. 1.00, 02/04, page 177 of 804
RENESANS

Address Array: The V bit indicates whether the entry data is valid. When the V bit is 1, data is
valid; when 0, data is not valid. The U bit indicates whether the entry has been written to in write-
back mode. When the U bit is 1, the entry has been written to; when 0, it has not. The tag address
holds the physical address used in the external memory access. It is composed of 22 bits (address
bits 31 to10 for memory access) used for comparison during cache searches.

In this LSI, the top three of 32 physical address bits are used as shadow bits (see section 9, Bus
State Controller (BSC)), and therefore the top three bits of the tag address are cleared to 0.

The V and U bits are initialized to 0 by a power-on reset, but are not initialized by a manual reset.
The tag address is not initialized by either a power-on or manual reset.

Data Array: Holds a 16-byte instruction or data. Entries are registered in the cache in line units
(16 bytes). The data array is not initialized by a power-on or manual reset.

L RU: With the 4-way set associative system, up to four instructions or data with the same entry
address can be registered in the cache. When an entry is registered, LRU shows which of the four
ways it is recorded in. There are six LRU bits, controlled by hardware. A least-recently-used
(LRU) algorithm is used to select the way.

Six LRU bits indicate the way to be replaced, when a cache miss occurs. Table 5.1 shows the
relationship between the LRU bits and the way to be replaced when the cache locking mechanism
is disabled. (For the relationship when the cache locking mechanism is enabled, refer to section
5.2.2, Cache Control Register 2.) If a bit pattern other than those listed in table 5.1 is set in the
LRU bits by software, the cache will not function correctly. When modifying the LRU bits by
software, set one of the patterns listed in table 5.1.

The LRU bits are initialized to B'000000 by a power-on reset, but are not initialized by a manual
reset.

Table5.1 LRU and Way Replacement (when Cache L ocking M echanism is Disabled)

LRU (Bits 5to 0) Way to be Replaced
000000, 000100, 010100, 100000, 110000, 110100 3
000001, 000011, 001011, 100001, 101001, 101011 2
000110, 000111, 001111, 010110, 011110, 011111 1
111000, 111001, 111011, 111100, 111110, 111111 0

Rev. 1.00, 02/04, page 178 of 804
RENESANS

5.2 Register Descriptions

The cache has the following registers. For details on register addresses and register access size,
refer to section 27, List of Registers.

e Cache control register 1 (CCR1)
e Cache control register 2 (CCR2)

521 CacheControl Register 1 (CCR1)

The cache is enabled or disabled using the CE bit in CCR1. CCR1 also has a CF bit (which
invalidates all cache entries), and WT and CB bits (which select either write-through mode or
write-back mode). Programs that change the contents of the CCR1 register should be placed in
address space that is not cached.

Initial
Bit Bit Name Value R/W Description
31to4 — All O R Reserved

These bits are always read as 0. The write value
should always be 0. If 1 is written to these bits,
correct operation cannot be guaranteed.

3 CF 0 R/W Cache Flush

Writing 1 flushes all cache entries (clears the V, U,
and LRU bits of all cache entries to 0). This bit is
always read as 0. Write-back to external memory is
not performed when the cache is flushed.

2 CB 0 R/W Write-Back
Indicates the cache’s operating mode for space P1.

0: Write-through mode
1: Write-back mode

1 WT 0 R/W Write-Through

Indicates the cache’s operating mode for spaces PO,
U0, and P3.

0: Write-back mode
1: Write-through mode

0 CE 0 R/W Cache Enable
Indicates whether the cache function is used.

0: The cache function is not used.
1: The cache function is used.

Rev. 1.00, 02/04, page 179 of 804
RENESANS

522 Cache Control Register 2 (CCR2)

The CCR?2 register controls the cache locking mechanism in DSP mode only. The CPU enters
DSP mode when the DSP bit (bit 12) in the status register (SR) is set to 1. The cache locking
mechanism is disabled in non-DSP mode (DSP bit = 0).

When a prefetch instruction (PREF@Rn) is issued in DSP mode and a cache miss occurs, the line
of data pointed to by Rn will be loaded into the cache, according to the setting of bits 9 and 8
(W3LOAD, W3LOCK) and bits 1 and 0 (W2LOAD, W2LOCK in CCR2).

Table 5.2 shows the relationship between the settings of bits and the way that is to be replaced
when the cache is missed by a prefetch instruction.

On the other hand, when the cache is hit by a prefetch instruction, new data is not loaded into the
cache and the valid entry is held. For example, a prefetch instruction is issued while bits
W3LOAD and W3LOCK are set to 1 and the line of data to which Rn points is already in way 0,
the cache is hit and new data is not loaded into way 3.

In DSP mode, bits W3LOCK and W2LOCK restrict the way that is to be replaced, when
instructions other than the prefetch instruction are issued. Table 5.3 shows the relationship
between the settings of bits in CCR2 and the way that is to be replaced when the cache is missed
by instructions other than the prefetch instruction.

Programs that change the contents of the CCR2 register should be placed in address space that is
not cached.

Rev. 1.00, 02/04, page 180 of 804
RENESANS

Bit Bit Name

Initial
Value

R/W

Description

31to10 —

AllO

Reserved

These bits are always read as 0. The write value
should always be 0. If 1 is written to these bits,
correct operation cannot be guaranteed.

W3LOAD
W3LOCK

R/W
R/W

Way 3 Load (W3LOAD)
Way 3 Lock (W3LOCK)

When the cache is missed by a prefetch instruction
while in DSP mode and when bits W3LOAD and
W3LOCK in CCR2 are set to 1, the data is always
loaded into way 3. Under any other condition, the
prefetched data is loaded into the way to which LRU
points.

7t02 —

AllO

Reserved

These bits are always read as 0. The write value
should always be 0. If 1 is written to these bits,
correct operation cannot be guaranteed.

W2LOAD
0 W2LOCK

R/W
R/W

Way 2 Load (W2LOAD)
Way 2 Lock (W2LOCK)

When the cache is missed by a prefetch instruction
while in DSP mode and when bits W2LOAD and
W2LOCK in CCR2 are set to 1, the data is always
loaded into way 2. Under any other condition, the
prefetched data is loaded into the way to which LRU
points.

Note: W2LOAD and W3LOAD should not be set to 1 at the same time.

Table5.2 Way Replacement when a PREF Instruction Missesthe Cache

DSP Bit W3LOAD W3LOCK W2LOAD W2LOCK Way to be Replaced

0 * * * * Determined by LRU (table 5.1)
1 * 0 * 0 Determined by LRU (table 5.1)
1 * 0 0 1 Determined by LRU (table 5.4)
1 0 1 * 0 Determined by LRU (table 5.5)
1 0 1 0 1 Determined by LRU (table 5.6)
1 0 * 1 1 Way 2

1 1 1 0 * Way 3

Note: * Don’t care

W3LOAD and W2LOAD should not be set to 1 at the same time.

Rev. 1.00, 02/04, page 181 of 804

RENESANS

Table5.3 Way Replacement when Instructions other than the PREF Instruction Missthe
Cache

DSP Bit W3LOAD W3LOCK W2LOAD W2LOCK Way to be Replaced

* * * * Determined by LRU (table 5.1)

ES *

Determined by LRU (table 5.1)

*

Determined by LRU (table 5.4)

ES k

Determined by LRU (table 5.5)

* *

0
1
1 ®
1
1

Al alo| O
-1 O| =] O

Determined by LRU (table 5.6)

Note: * Don’t care
W3LOAD and W2LOAD should not be set to 1 at the same time.

Table5.4 LRU and Way Replacement (when W2LOCK =1 and W3LOCK =0)

LRU (Bits 5to 0) Way to be Replaced

000000, 000001, 000100, 010100, 100000, 100001, 110000, 110100 3

000011, 000110, 000111, 001011, 001111, 010110, 011110, 011111 1

101001, 101011, 111000, 111001, 111011, 111100, 111110, 111111 0

Table55 LRU and Way Replacement (when W2LOCK =0and W3LOCK =1)

LRU (Bits 5 to 0) Way to be Replaced

000000, 000001, 000011, 001011, 100000, 100001, 101001, 101011 2

000100, 000110, 000111, 001111, 010100, 010110, 011110, 011111 1

110000, 110100, 111000, 111001, 111011, 111100, 111110, 111111 0

Table5.6 LRU and Way Replacement (when W2LOCK =1 and W3LOCK =1)

LRU (Bits 5to 0) Way to be Replaced

000000, 000001, 000011, 000100, 000110, 000111, 001011, 001111, 1
010100, 010110, 011110, 011111

100000, 100001, 101001, 101011, 110000, 110100, 111000, 111001, 0
111011, 111100, 111110, 111111

Rev. 1.00, 02/04, page 182 of 804
RENESANS

5.3 Operation

531 Sear ching the Cache

If the cache is enabled (the CE bit in CCR1 = 1), whenever instructions or data in spaces PO, P1,
P3, and UQ are accessed the cache will be searched to see if the desired instruction or data is in the
cache. Figure 5.2 illustrates the method by which the cache is searched. The cache is a physical
cache and holds physical addresses in its address section.

Entries are selected using bits 11 to 4 of the address (virtual) of the access to memory and the tag
address of that entry is read. The virtual address (bits 31 to 10) of the access to memory and the
physical address (tag address) read from the address array are compared. The address comparison
uses all four ways. When the comparison shows a match and the selected entry is valid (V =1), a
cache hit occurs. When the comparison does not show a match or the selected entry is not valid (V
= 0), a cache miss occurs. Figure 5.2 shows a hit on way 1.

Virtual address
31 12 11 4 3210

Entry selection

| Longword (LW) selection

Ways 0to 3 Ways 0to 3

e =

1
0 | V| U|Tag address LWO LWA1 Lw2 LW3

255 — |
Address for accessing
memory (bits 31 to 10)

CMPO|CMP1{CMP2|CMP3 1

Hit signal 1

CMPO: Comparison circuit 0
CMP1: Comparison circuit 1
CMP2: Comparison circuit 2
CMP3: Comparison circuit 3

Figure5.2 Cache Search Scheme

Rev. 1.00, 02/04, page 183 of 804
RENESANS

5.3.2 Read Access

Read Hit: In a read access, instructions and data are transferred from the cache to the CPU. The
LRU iS updated to indicate that the hit way is the most recently hit way.

Read Miss: An external bus cycle starts and the entry is updated. The way to be replaced is shown
in table 5.3. Entries are updated in 16-byte units. When the desired instruction or data that caused
the miss is loaded from external memory to the cache, the instruction or data is transferred to the
CPU in parallel with being loaded to the cache. When it is loaded to the cache, the U bit is cleared
to 0 and the V bit is set to 1 to indicate that the hit way is the most recently hit way. When the U
bit for the entry which is to be replaced by entry updating in write-back mode is 1, the cache-
update cycle starts after the entry is transferred to the write-back buffer. After the cache completes
its update cycle, the write-back buffer writes the entry back to the memory. Transfer is in 16-byte
units.

5.3.3 Prefetch Operation

Prefetch Hit: The LRU is updated to indicate that the hit way is the most recently hit way. The
other contents of the cache are not changed. Instructions and data are not transferred from the
cache to the CPU.

Prefetch Miss: Instructions and data are not transferred from the cache to the CPU. The way that
is to be replaced is shown in table 5.2. The other operations are the same as those for a read miss.

534 Write Access

Write Hit: In a write access in write-back mode, the data is written to the cache and no external
memory write cycle is issued. The U bit of the entry that has been written to is set to 1, and the
LRU is updated to indicate that the hit way is the most recently hit way. In write-through mode,
the data is written to the cache and an external memory write cycle is issued. The U bit of the
entry that has been written to is not updated, and the LRU is updated to indicate that the hit way is
the most recently hit way.

Write Miss: In write-back mode, an external cycle starts when a write miss occurs, and the entry
is updated. The way to be replaced is shown in table 5.3. When the U bit of the entry which is to
be replaced by entry updating is 1, the cache-update cycle starts after the entry has been
transferred to the write-back buffer. Data is written to the cache and the U bit and the V bit are set
to 1. The LRU is updated to indicate that the replaced way is the most recently updated way. After
the cache has completed its update cycle, the write-back buffer writes the entry back to the
memory. Transfer is in 16-byte units. In write-through mode, no write to cache occurs in a write
miss; the write is only to the external memory.

Rev. 1.00, 02/04, page 184 of 804
RENESANS

5.35 Write-Back Buffer

When the U bit of the entry to be replaced in write-back mode is 1, the entry must be written back
to the external memory. To increase performance, the entry to be replaced is first transferred to the
write-back buffer and fetching of new entries to the cache takes priority over writing back to the
external memory. After the fetching of new entries to the cache completes, the write-back buffer
writes the entry back to the external memory. During the write-back cycles, the cache can be
accessed. The write-back buffer can hold one line of cache data (16 bytes) and its physical
address. Figure 5.3 shows the configuration of the write-back buffer.

|PA (31to4) |Longword 0 |Longword 1 |Longword 2 | Longword 3|

PA (31 to 4): Physical address written to external memory
Longword 0 to 3: One line of cache data to be written to external
memory

Figure5.3 Write-Back Buffer Configuration

5.3.6 Coherency of Cacheand External Memory

Use software to ensure coherency between the cache and the external memory. When memory
shared by this LSI and another device is placed in an address space to which caching applies, use
the memory-mapped cache to make the data invalid and written back, as required. Memory that is
shared by this LSI’s CPU and DMAC should also be handled in this way.

Rev. 1.00, 02/04, page 185 of 804
RENESANS

54 Memory-Mapped Cache

To allow software management of the cache, cache contents can be read and written by means of
MOV instructions in privileged mode. The cache is mapped onto the P4 area in virtual address
space. The address array is mapped onto addresses HFO0O00000 to H'FOFFFFFF, and the data
array onto addresses H'F1000000 to H'F1FFFFFF. Only longword can be used as the access size
for the address array and data array, and instruction fetches cannot be performed.

54.1 AddressArray

The address array is mapped onto H'FO000000 to H'FOFFFFFF. To access an address array, the
32-bit address field (for read/write accesses) and 32-bit data field (for write accesses) must be
specified. The address field specifies information for selecting the entry to be accessed; the data
field specifies the tag address, V bit, U bit, and LRU bits to be written to the address array.

In the address field, specify the entry address for selecting the entry, W for selecting the way, A
for enabling or disabling the associative operation, and H'FO for indicating address array access.
As for W, B'00 indicates way 0, B'01 indicates way 1, B'10 indicates way 2, and B'11 indicates
way 3.

In the data field, specify the tag address, LRU bits, U bit, and V bit. Figure 5.4 shows the address
and data formats. Os should be specified in upper three bits (bits 31 to 29) of the tag address. The
following three operations are available in the address array.

Address-Array Read: Read the tag address, LRU bits, U bit, and V bit for the entry that
corresponds to the entry address and way specified by the address field of the read instruction. In
reading, the associative operation is not performed, regardless of whether the associative bit (A
bit) specified in the address is 1 or 0.

Address-Array Write (non-Associative Oper ation): Write the tag address, LRU bits, U bit, and
V bit, specified by the data field of the write instruction, to the entry that corresponds to the entry
address and way as specified by the address field of the write instruction. Ensure that the
associative bit (A bit) in the address field is set to 0. When writing to a cache line for which the U
bit =1 and the V bit =1, write the contents of the cache line back to memory, then write the tag
address, LRU bits, U bit, and V bit specified by the data field of the write instruction. When 0 is
written to the V bit, 0 must also be written to the U bit for that entry.

Address-Array Write (Associative Operation): When writing with the associative bit (A bit) of
the address = 1, the addresses in the four ways for the entry specified by the address field of the
write instruction are compared with the tag address that is specified by the data field of the write
instruction. Write the U bit and the V bit specified by the data field of the write instruction to the
entry of the way that has a hit. However, the tag address and LRU bits remain unchanged. When
there is no way that receives a hit, nothing is written and there is no operation. This function is

Rev. 1.00, 02/04, page 186 of 804
RENESANS

used to invalidate a specific entry in the cache. When the U bit of the entry that has received a hit
is 1 at this point, writing back should be performed. However, when 0 is written to the V bit, O
must also be written to the U bit of that entry.

542 DataArray

The data array is mapped onto HF1000000 to H'F1FFFFFF. To access a data array, the 32-bit
address field (for read/write accesses) and 32-bit data field (for write accesses) must be specified.
The address field specifies information for selecting the entry to be accessed; the data field
specifies the longword data to be written to the data array.

In the address field, specify the entry address for selecting the entry, L for indicating the longword
position within the (16-byte) line, W for selecting the way, and H'F1 for indicating data array
access. As for L, B'00 indicates longword 0, B'01 indicates longword 1, B'10 indicates longword
2, and B'11 indicates longword 3. As for W, B'00 indicates way 0, B'O1 indicates way 1, B'10
indicates way 2, and B'l1 indicates way 3).

Since access size of the data array is fixed at longword, bits 1 and O of the address field should be
set to B'00.

Figure 5.4 shows the address and data formats.

The following two operations on the data array are available. The information in the address array
is not affected by these operations.

Data-Array Read: Read the data specified by L of the address filed, from the entry that
corresponds to the entry address and the way that is specified by the address filed.

Data-Array Write: Write the longword data specified by the data filed, to the position specified
by L of the address field, in the entry that corresponds to the entry address and the way specified
by the address field.

Rev. 1.00, 02/04, page 187 of 804
RENESANS

(1) Address array access
(a) Address specification
Read access
31 24 23 14 13 12 11 4 3 2 0
| 11110000 | e | w | Entry address [o] = o o |

Write access
31 24 23 14 13 12 11 4 3 2 0

| 11110000 | eeeer | w | Entryaddress [A] = o o |

(b) Data specification (both read and write accesses)
31 30 29 10 9 4 3 2 1 0
[ofo]o] Tag address (28 to 10) | LRU X x | ul| v]|

(2) Data array access (both read and write accesses)
(a) Address specification
31 24 23 14 13 12 11 4 3 2 1 0
[11110001 [e | w | Entry address L 0 0

(b) Data specification

31 0

I Longword

*: Don’t care bit
X: 0 for read, don’t care for write

Figure5.4 Specifying Addressand Data for Memory-Mapped Cache Access

Rev. 1.00, 02/04, page 188 of 804
RENESANS

54.3 Usage Examples

Invalidating Specific Entries: Specific cache entries can be invalidated by writing 0 to the
entry’s V bit in the memory-mapped cache access. When the A bit is 1, the tag address specified
by the write data is compared to the tag address within the cache selected by the entry address, and
a match is found, the entry is written back if the entry’s U bitis 1 and the V bit and U bit specified
by the write data are written. If no match is found, there is no operation. In the example shown

below, RO specifies the write data and R1 specifies the address.

; RO=H'01100010; specification of data for address array access, tag
address=B’0 0001 0001 0000 0000 00, LRU = B’00 0001, U=0, V=0

R1=H'F0000088; specification of address to be accessed in address
way = B’00, entry address=B’00001000, A=1

;
array access,
;

MOV.L RO,@R1

Reading the Data of a Specific Entry: To read the data field of a specific entry is enabled by the
memory-mapped cache access. The longword indicated in the data field of the data array in figure
5.4 is read into the register. In the example shown below, RO specifies the address and R1 shows

what is read.

; RO=H'F100 004C; specification of address for data array access,
way=B’00, entry address=B’00000100, L=B’11

l

MOV.L @RO,R1 ; Longword 3 is read.

Rev. 1.00, 02/04, page 189 of 804
RENESANS

Rev. 1.00, 02/04, page 190 of 804
RENESANS

Section 6 X/Y Memory

This LSI has on-chip 8 kbytes of X-memory and Y-memory that can be used to store instructions

or data.

6.1 Features

e Page
There are four pages. The X memory is divided into two pages (pages 0 and 1) and the Y
memory is divided into two pages (pages 0 and 1).

e Memory map
The X/Y memory is located in the virtual address space, physical address space.
In the virtual address space, this memory is located in the addresses in P2/Uxy that are shown
in table 6.1. These addresses are included in space P2 (when SR.MD = 1) or Uxy (when
SR.MD =0 and SR.DSP = 1) according to the CPU operating mode.

Table6.1 X/Y Memory Virtual Addresses

Page Memory Size (16 kbytes in Total Four Pages)
Page 0 of X memory H'A5007000 to H'A5007FFF
Page 1 of X memory H'A5008000 to H'A5008FFF
Page 0 of Y memory H'A5017000 to H'A5017FFF
Page 1 of Y memory H'A5018000 to H'A5018FFF

On the other hand, virtual addresses shown in table 6.1 are located in a part of area 1 in the
physical address space. When this memory is accessed from the physical address space, addresses
in which the upper three bits are 0 in addresses shown in table 6.1 are used.

e Ports
Each page has three independent read/write ports and is connected to each bus. The X memory
is connected to the I bus, X bus, and L bus. The Y memory is connected to the I bus, Y bus,
and L bus. The L bus, X bus, and Y bus are used when this memory is accessed from the
virtual address space. The I bus is used when this memory is accessed from the physical
address space.

e Priority order
In the event of simultaneous accesses to the same page from different buses, the accesses are
processed according to the priority order. The priority order is: I bus > X bus > L bus in the X
memory and I bus > Y bus > L bus in the Y memory.

XYMOO10A_000020030200 Rev. 1.00, 02/04, page 191 of 804
RENESAS

6.2 Operation

6.2.1 Access from CPU

The 8/16/32-bit access by the CPU can be performed via the L bus or I bus. Methods for accessing
by the CPU are via the L bus from the virtual addresses, and via the I bus from the physical
addresses. As long as a conflict on the page does not occur, access via the L bus is performed in
one cycle. Several cycles are necessary for accessing via the I bus. According to the CPU
operating mode, access from the CPU is as follows:

Privileged mode and privileged DSP mode (SR. MD = 1): The X/Y memory can be accessed by
the CPU from spaces PO and P2.

User DSP mode (SR.MD = 0 and SR.DSP = 1): The X/Y memory can be accessed by the CPU
from spaces U0 and Uxy.

User mode (SR.MD =0and SR.DSP = 0): The X/Y memory can be accessed by the CPU from
space UO.

6.2.2 Accessfrom DSP

The16/32-bit access by the DSP can be performed via the L bus or I bus. A 16-bit access by the
DSP can be performed via the X and Y buses. Methods for accessing from the DSP differ
according to instructions.

With a X data transfer instruction and a Y data transfer instruction, the X/Y memory is always
accessed via the X bus or Y bus. As long as a conflict on the page does not occur, access via the X
bus or Y bus is performed in one cycle. The X memory access via the X bus and the Y memory
access via the Y bus can be performed simultaneously.

In the case of a single data transfer instruction, methods for accessing from the DSP are directly
via the L bus from the virtual addresses, and via the I bus from the physical addresses. As long as
a conflict on the page does not occur, access via the L bus is performed in one cycle. Several
cycles are necessary for accessing via the I bus. According to the CPU operating mode, access
from the CPU is as follows:

Privileged DSP mode (SR. MD =1 and SR.DSP = 1): The X/Y memory can be accessed by the
DSP from spaces PO and P2.

User DSP mode (SR.MD = 0 and SR.DSP = 1): The X/Y memory can be accessed by the DSP
from spaces UO and Uxy.

Rev. 1.00, 02/04, page 192 of 804
RENESAS

6.2.3 Accessfrom | BusMaster Module

The X/Y memory is always accessed by I bus master modules such as the DMAC and USBH via
the I bus, which is a physical address bus. The 8/16/32-bit access is performed by the DMAC and
8/32-bit access is performed by the USBH. When accessing other than the P4 area (A31 to A29 =
B'111), three most significant bits of the address are internally set to B'000 even if the logic
addresses are specified other than P4 area. Therefore, access is performed through I bus.

6.3 Usage Notes

6.3.1 PageConflict

In the event of simultaneous accesses to the same page from different buses, the conflict on the
pages occurs. Although each access is completed correctly, this kind of conflict tends to lower
X/Y memory accessibility. Therefore it is advisable to provide software measures to prevent such
conflict as far as possible. For example, conflict will not arise if different memory or different
pages are accessed by each bus.

6.3.2 BusConflict

The I bus is shared by several bus master modules. When the X/Y memory is accessed via the I
bus, a conflict between the other I-bus master modules may occur on the I bus. This kind of
conflict tends to lower X/Y memory accessibility. Therefore it is advisable to provide software
measures to prevent such conflict as far as possible. For example, by accessing the X/Y memory
by the CPU not via the I bus but from space P2 or Uxy via the L bus, conflict on the I bus can be
prevented.

6.3.3 Cache Settings

When the X/Y memory is accessed via the I bus using the cache from the CPU and DSP, correct
operation cannot be guaranteed. If the X/Y memory is accessed while the cache is enabled
(CCRI1.CE = 1), it is advisable to access the X/Y memory via the L bus from space P2 or Uxy. In
a program that requires high performance, it is advisable to access the X/Y memory from space P2
or Uxy.

The relationship described above is summarized in table 6.2.

Rev. 1.00, 02/04, page 193 of 804
RENESAS

Table6.2 Cache Settings

Setting Address Space and Access Enabled or Disabled
CCR1.CE PO, UO P2, Uxy
0 B A
1 X A
Note: A: Enabled (recommended)
B: Enabled
X: Disabled

6.34 Sleep Mode

The XYMCLKC bit of memory clock control register (MCCR) should be set to 1 when I bus
master module such as DMAC accesses this memory in sleep mode.

There is the following restrictions when the X/Ymemory is accessed in the processing the
exception handling and interrupt while this function is used.

1. The program of the exception handling and the interrupt processing should not be placed in the
X/Y memory and U memory.

2. Eight NOP instructions should be added to the head of the exception handling and the interrupt
processing program.

3. When the SLEEP instruction is executed, 16 instructions which include above-mentioned eight
NOP instructions for the head of the exception handling and the interrupt processing should be
placed outside of cache (Miss hit or non-cacheable area (P2)).

e Example |
Take out outside cache by using the address-array write (associative operation).

(Refer to section 5.4, Memory Mapped Cache in section 5, Cache and Invalidating Specific
Entries in section 5.4.3, Usage Examples.)

e Example 2
The value of vector base register (VBR) is changed to non-cacheable area (P2) before the
SLEEP instruction is executed. In this case, execute the SLEEP instruction after confirming

the written VBR value (the branch instruction for the flag confirmation is used). After SLEEP
ends, the VBR should be restored with the previous value.

Rev. 1.00, 02/04, page 194 of 804
RENESAS

Section 7 U Memory
This LSI has on-chip 128-kbyte U memory which can be used to store instructions or data.

7.1 Features

e Page
There are two pages (pages 0 and 1).
e Memory map
The U memory is located in both the virtual address space and physical address space.

In the virtual address space, this memory is located in the addresses in P2/Uxy that are shown
in table 7.1. These addresses are included in space P2 (when SR.MD = 1) or Uxy (when
SR.MD =0 and SR.DSP = 1) according to the CPU operating mode.

Table7.1 U Memory Virtual Addresses

Page Memory Size (128 kbytes in Total Two Pages)
Page 0 of U memory H'A55F0000 to H'AS5FFFFF
Page 1 of U memory H'A5600000 to H'A560FFF

On the other hand, virtual addresses shown in table 7.1 are located in a part of area 1 in the
physical address space. When this memory is accessed from the physical address space, addresses
in which the upper three bits are 0 in addresses shown in table 7.1 are used.

e Ports
Each page has two independent read/write ports and is connected to the I bus or L bus. The L
bus is used when this memory is accessed from the virtual address space. The I bus is used
when this memory is accessed from the physical address space.

e Priority order
In the event of simultaneous accesses to the same page from different buses, the accesses are
processed according to the priority order. The priority order is: I bus > L bus.

RAMS300B_000020030200 Rev. 1.00, 02/04, page 195 of 804
RENESANS

7.2 Operation

721 Accessfrom CPU

The 8/16/32-bit access by the CPU can be performed via the L bus or I bus. Methods for accessing
by the CPU are directly via the L bus from the virtual addresses, and via the I bus from the
physical addresses. As long as a conflict on the page does not occur, access via the L bus is
performed in one cycle. Several cycles are necessary for accessing via the I bus. According to the
CPU operating mode, access from the CPU is as follows:

Privileged mode and privileged DSP mode (SR. MD = 1): The U memory can be accessed by
the CPU from spaces PO and P2.

User DSP mode (SR.MD = 0 and SR.DSP = 1): The U memory can be accessed by the CPU
from spaces U0 and Uxy.

User mode (SR.MD =0and SR.DSP = 0): The U memory can be accessed by the CPU from
space UO.

7.2.2 Accessfrom DSP

The U memory can be accessed from the DSP only by a single data transfer instruction. The16/32
-bit access by the DSP can be performed via the L bus or I bus. The access cannot be performed
by an X data transfer instruction and a Y data transfer instruction.

Methods for accessing from the DSP are via the L bus from the virtual addresses, and via the I bus
from the physical addresses. As long as a conflict on the page does not occur, access via the L bus
is performed in one cycle. Several cycles are necessary for accessing via the I bus. According to
the CPU operating mode, access from the CPU is as follows:

Privileged DSP mode (SR. MD =1 and SR.DSP = 1): The U memory can be accessed by the
DSP from spaces PO and P2.

User DSP mode (SR.MD = 0 and SR.DSP = 1): The U memory can be accessed by the DSP
from spaces UO and Uxy.

7.2.3 Accessfrom | BusMaster Module

The U memory is always accessed by I bus master modules such as the DMAC and USBH via the
I bus, which is a physical address bus. The 8/16/32-bit access can be performed by the DMAC and
the 8/32-bit access can be performed by the USBH. When accessing other than the P4 area (A31 to
A29 =B'l11), three most significant bits of the address are internally set to B'000 even if the logic
addresses are specified other than P4 area. Therefore, access is performed through I bus.

Rev. 1.00, 02/04, page 196 of 804
RENESANS

7.3 Usage Notes

731 PageConflict

In the event of simultaneous accesses to the same page from different buses, the conflict on the
pages occurs. Although each access is completed correctly, this kind of conflict tends to lower U
memory accessibility. Therefore it is advisable to provide software measures to prevent such
conflict as far as possible. For example, conflict will not arise if different memory or different
pages are accessed by each bus.

7.3.2 BusConflict

The I bus is shared by several bus master modules. When the U memory is accessed via the I bus,
a conflict between the other I-bus master modules may occur on the I bus. This kind of conflict
tends to lower U memory accessibility. Therefore it is advisable to provide software measures to
prevent such conflict as far as possible. For example, by accessing the U memory by the CPU not
via the I bus but from space P2 or Uxy via the L bus, conflict on the I bus can be prevented.

7.3.3 Cache Settings

When the U memory is accessed via the I bus using the cache from the CPU and DSP, correct
operation cannot be guaranteed. If the U memory is accessed while the cache is enabled
(CCR1.CR =1), it is advisable to access the U memory via the L bus from space P2 or Uxy. In a
program that requires high performance, it is advisable to access the U memory from space P2 or
Uxy.

The relationship described above is summarized in table 7.2.

Table7.2 Cache Settings

Setting Address Space and Access Enabled or Disabled
CCR1.CE PO, UO P2, Uxy
0 B A
1 X A
Note: A: Enabled (recommended)
B: Enabled
X: Disabled

Rev. 1.00, 02/04, page 197 of 804
RENESANS

734 sleep mode

The UMCLKC bit of memory clock control register (MCCR) should be set to 1 when I bus master
module such as DMAC accesses this memory in sleep mode.

There is the following restrictions when the U memory is accessed in the processing the exception
handling and interrupt while this function is used.

1.

The program of the exception handling and the interrupt processing should not be placed in the
U memory and X/Y memory.

Eight NOP instructions should be added to the head of the exception handling and the interrupt
processing program.

When the SLEEP instruction is executed, 16 instructions which include above-mentioned eight
NOP instructions for the head of the exception handling and the interrupt processing should be
placed outside of cache (Miss hit or non-cacheable area (P2)).

Example 1

Take out outside cache by using the address-array write (associative operation).

(Refer to section 5.4, Memory Mapped Cache in section 5, Cache and Invalidating Specific
Entries in section 5.4.3, Usage Examples.)

Example 2

The value of vector base register (VBR) is changed to non-cacheable area (P2) before the
SLEEP instruction is executed. In this case, execute the SLEEP instruction after confirming
the written VBR value (the branch instruction for the flag confirmation is used). After SLEEP
ends, the VBR should be restored with the previous value.

Rev. 1.00, 02/04, page 198 of 804

RENESANS

Section 8 Interrupt Controller (INTC)

The interrupt controller (INTC) ascertains the priority of interrupt sources and controls interrupt
requests to the CPU. The INTC registers set the order of priority of each interrupt, allowing the
user to process interrupt requests according to the user-set priority.

8.1 Features

16 levels of interrupt priority can be set

By setting the interrupt priority registers, the priorities of on-chip peripheral module and IRQ
interrupts can be selected from 16 levels for individual request sources.

NMI noise canceler function

An NMI input-level bit indicates the NMI pin state. By reading this bit in the interrupt
exception service routine, the pin state can be checked, enabling it to be used as a noise
canceler.

IRQ interrupts can be set
Detection of low level, high level, rising edge, or falling edge
Interrupt request signal can be output IRQOUT pin)

Bus mastership can be required by signaling the external bus master that the external interrupt
and on-chip peripheral module interrupt requests have been generated

Interrupts can be enabled or disabled

Interrupts can be enabled or disabled individually for each interrupt source with the interrupt
mask registers and interrupt mask clear registers.

Rev. 1.00, 02/04, page 199 of 804
RENESANS

Figure 8.1 shows a block diagram of the INTC.

NMI ——] E
|RQ01 — :
BT(IRQ1)* g :
(IRQ)Q : Input/output :
IRQ3 —— control - :
USBF(IRQ7)*?——p -
DMAC i(Interrupt request) A . E . t
B = . Com- ' nterrup
SCIF ' - Priority
USBH —t »| identifier parator request
USBF — > 5 SR
™U > L]2fr o]
WDT : .
H-UDI : - : CPU
SIOF L i 4
: :
: e [mR] :
[RRO | [mcr] :
O O (s
H >
' T a
: < Bus interface [! T
H H 5
e e e e e e e e ——— . S
Legend: INTC

DMAC : DMA controller

SIOF : Serial I/O with FIFO

SCIF : Serial communication interfaces with FIFO
USBH : USB host controller

USBF : USB function controller

TMU :Timer unit

BT : Bluetooth interface

WDT : Watchdog timer

H-UDI : User-debugging interface
ICR :Interrupt control registers
IPR : Interrupt priority registers
IMR :Interrupt mask registers
IMCR : Interrupt mask clear registers
IRRO :Interrupt request register 0
SR : Status register

Notes: 1. The interrupt request pin for the BT (Bluetooth interface) is connected to the IRQ1 pin and is handled as an
external interrupt.
2. The interrupt request pin for the USBF (USB function controller) standby recovery is connected to the IRQ7
pin and is handled as an external interrupt.

Figure8.1 Block Diagram of INTC

Rev. 1.00, 02/04, page 200 of 804
RENESANS

8.2 I nput/Output Pins

Table 8.1 shows the INTC pin configuration.

Table8.1 Pin Configuration

Pin Name I/0 Description
NMI Input Nonmaskable Interrupt Input
Input of interrupt request signal which is not maskable
IRQ7, IRQ4 to IRQO*’ Input Interrupt Input
Input of interrupt request signal
IRQOUT*? Output Bus Mastership Request Output

Signal of interrupt request generation

Notes: 1. IRQ1 is used as the bluetooth interface interrupt request pin and does not support an
external pin function. IRQ7 is used as the standby recovery interrupt request pin and
does not support an external pin function.

2. When the NMI or H-UDI interrupt request is generated and the response time of CPU is
short, this pin may not be asserted.

8.3 Register Descriptions

The INTC has the following registers. For details on register addresses and register states during
each processing, refer to section 27, List of Registers.

Interrupt control register 0 (ICRO)
Interrupt control register 1 (ICR1)
Interrupt control register 2 (ICR2)
Interrupt priority register A (IPRA)
Interrupt priority register B (IPRB)
Interrupt priority register C (IPRC)
Interrupt priority register D (IPRD)
Interrupt priority register E (IPRE)
Interrupt priority register F (IPRF)
Interrupt priority register G (IPRG)
Interrupt priority register H (IPRH)
Interrupt request register O (IRRO)
Interrupt mask register 0 (IMRO)
Interrupt mask register 1 (IMR1)
Interrupt mask register 4 (IMR4)
Interrupt mask register 5 (IMRS)
Interrupt mask register 6 (IMRG6)

Rev. 1.00, 02/04, page 201 of 804

RENESANS

8.3.

Interrupt mask register 9 (IMR9)

Interrupt mask clear register 0 IMCRO)
Interrupt mask clear register 1 IMCR1)
Interrupt mask clear register 4 (IMCR4)
Interrupt mask clear register 5 IMCRS)
Interrupt mask clear register 6 IMCRO6)
Interrupt mask clear register 9 IMCR9)

1 Interrupt Priority RegistersA toH (IPRA to |PRH)

IPRA to IPRH are 16-bit readable/writable registers in which priority levels from O to 15 are set
for on-chip peripheral module and IRQ interrupts.

Initial
Bit Bit Name Value R/W Description
15 IPR15 0 R/W These bits set the priority level for each interrupt
14 IPR14 0 R/W source in 4-bit units. For details, see table 8.2,
Interrupt Sources and IPRA to IPRH.
13 IPR13 0 R/W
12 IPR12 0 R/W
11 IPR11 0 R/W
10 IPR10 0 R/W
9 IPR9 0 R/W
8 IPR8 0 R/W
7 IPR7 0 R/W
6 IPR6 0 R/W
5 IPR5 0 R/W
4 IPR4 0 R/W
3 IPR3 0 R/W
2 IPR2 0 R/W
1 IPR1 0 R/W
0 IPRO 0 R/W

Rev. 1.00, 02/04, page 202 of 804

RENESANS

Table8.2 Interrupt Sourcesand IPRA to IPRH

Register Bits 15to 12 Bits 11to 8 Bits 7to 4 Bits 3to 0
IPRA TMUO TMUA1 TMU2 Reserved*'
IPRB WDT Reserved*’ Reserved*’ Reserved*'
IPRC IRQ3 IRQ2 IRQ1(for BT)** IRQO
IPRD IRQ7(for USBF Reserved*' Reserved*’ IRQ4

standby recovery
interrupt request

signal) *°
IPRE DMAC Reserved*' Reserved*' Reserved*'
IPRF Reserved*’ Reserved*’ USBF USBH
IPRG SCIF0 SCIF1 Reserved*' Reserved*'
IPRH Reserved*' SIOF Reserved*' Reserved*’

Notes: 1. Always read as 0. The write value should always be 0. If 1 is written to the bit, correct
operation cannot be guaranteed.

2. IRQ1 is connected to the bluetooth interface (BT) interrupt request signal and cannot be
used for other functions.

3. IRQY7 is connected to the USBF (USB function controller) standby recovery interrupt
request signal and cannot be used for other functions.

As shown in table 8.2, on-chip peripheral module or IRQ interrupts are assigned to four 4-bit
groups in each register. These 4-bit groups (bits 15 to 12, bits 11 to 8, bits 7 to 4, and bits 3 to 0)
are set with values from H'0 (0000) to H'F (1111). Setting H'0 means priority level 0 (masking is
requested); H'F means priority level 15 (the highest level).

Rev. 1.00, 02/04, page 203 of 804
RENESANS

8.3.2 Interrupt Control Register 0 (ICRO)

ICRO is a register that sets the input signal detection mode of external interrupt input pin NMI, and
indicates the input signal level at the NMI pin.

Initial
Bit Bit Name Value R/W Description
15 NMIL 0/1%* R NMI Input Level

Sets the level of the signal input at the NMI pin. This bit
can be read from to determine the NMI pin level. This
bit cannot be modified.

0: NMl input level is low
1: NMl input level is high
14t09 — All O R Reserved

These bits are always read as 0. The write value should
always be 0. If 1 is written to these bits, correct
operation cannot be guaranteed.

8 NMIE 0 R/W NMI Edge Select

Selects whether the falling or rising edge of the interrupt
request signal at the NMI pin is detected.

0: Interrupt request is detected at the falling edge of
NMI input

1: Interrupt request is detected at the rising edge of NMI
input

7t00 — AllO R Reserved

These bits are always read as 0. The write value should
always be 0. If 1 is written to these bits, correct
operation cannot be guaranteed.

Note: * 1 when NMI inputis high, 0 when NMI input is low.

Rev. 1.00, 02/04, page 204 of 804
RENESANS

8.3.3 Interrupt Control Register 1 (ICR1)

ICR1 is a 16-bit register that specifies the detection mode for external interrupt input pins IRQ4 to
IRQO individually: rising edge, falling edge, high level, or low level.

Bit Bit Name

Initial
Value R/W

Description

15 —

0 R

Reserved

This bit is always read as 0. The write value should
always be 0. If 1 is written to this bit, correct operation
cannot be guaranteed.

14 IRQE*

Interrupt Request Enable

Enables or disables the use of pins IRQ7, IRQ4 to IRQO
as six independent interrupt pins.

0 : Use of pins IRQ7, IRQ4 to IRQO as six independent
interrupt pins enabled

1: Use of pins IRQ7, IRQ4 to IRQO as interrupt pins
disabled

13to 10 —

AllO R

Reserved

These bits are always read as 0. The write value should
always be 0. If 1 is written to these bits, correct
operation cannot be guaranteed.

Rev. 1.00, 02/04, page 205 of 804

RENESANS

Initial

Bit Bit Name Value R/W Description
9 IRQ41S 0 R/W IRQnN Sense Select
8 IRQ40S 0 R/W These bits select whether interrupt request signals
7 IRQ31S 0 R/W corresponding to pins IRQ4 to IRQO are detected by a
rising edge, falling edge, high level, or low level.
6 IRQ30S 0 R/W i)
Bit 2n+1 Bit 2n
5 IRQ21S 0 R/W on1S IRONOS
4 IRQ20S 0 RIW n Qn
0 0 Interrupt request is detected
3 IRQ11S 0 RIW at the falling edge of IRQn
2 IRQ10S 0 R/W input
1 IRQO1S 0 R/W 0 1 Interrupt request is detected
0 IRQO0S 0 R/W at the rising edge of IRQn
input
1 0 Interrupt request is detected

on low level of IRQnN input

1 1 Interrupt request is detected
on high level of IRQnN input

Legend: n=0to4

Note: * The IRQE bit must be cleared to 0 before the BL bit in the status register (SR) is
cleared to 0 in the initialization routine after reset, and must then not be changed. If the
IRQE bit is set to 1 when the BL bit is cleared to 0, correct operation cannot be
guaranteed.

Rev. 1.00, 02/04, page 206 of 804
RENESANS

834 Interrupt Control Register 2 (ICR2)

ICR2 is a 16-bit register that specifies the detection mode for the external interrupt input pin
IRQ7: rising edge, falling edge, high level, or low level.

Initial
Bit Bit Name Value R/W Description

15t04 — AllO R Reserved

This bit is always read as 0. The write value should
always be 0. If 1 is written to these bits, correct
operation cannot be guaranteed.

IRQ71S 0 R/W IRQ7 Sense Select

2 IRQ70S 0 R/W These bits select whether interrupt request signals
corresponding to pin IRQ7 are detected by a rising
edge, falling edge, high level, or low level.

Bit 2n+1 Bit 2n
IRQ71S IRQ70S

0 0 Interrupt request (USBF
standby recovery interrupt
request) is detected at the
falling edge of IRQ7 input

0 1 Setting prohibited
1 0 Setting prohibited
1 1 Setting prohibited

Note: When the USBF standby recovery interrupt
request need not to be detected, clear the bits 15
to 12 in IPRD to 0O or set the bit 7 in IMRO to 1,
and the IRQ7 interrupt request should be
masked.

— AllO R Reserved

0 These bits are always read as 0. The write value should
always be 0 or the bit7 in IMRO should be set to 1. If 1
is written to these bits, correct operation cannot be
guaranteed.

Rev. 1.00, 02/04, page 207 of 804
RENESANS

8.35 Interrupt Request Register 0 (IRRO0)

IRRO is an 8-bit register that indicates interrupt requests from external input pins IRQ7, IRQ4* to
IRQO.

Note: * In this LSI, IRQ7 and IRQ1 are used specific to internal module and cannot function as
external pins.

Initial
Bit Bit Name Value R/W Description
7 IRQ7R** 0 R/W IRQn Interrupt Request
6+ — 0 R Indicates whether there is interrupt request input to the
g . 0 R IRQn pin. When edge-detection mode is set for IRQn,
, an interrupt request is cleared by writing 0 to the
4 IRQ4R* 0 R/W IRQnNR bit after reading IRQNR = 1.
3 IRQ3R** 0 R/W When level-detection mode is set for IRQn, these bits
2 IRQ2R** 0 R/W indicate whether an interrupt request is input. The
1 IRQ1R* 0 RIW |nterrupt request is set/cleared by only 1/0 input to the
. RAW IRQn pin.
0 IRQOR 0 IRQNR

0: No interrupt request input to IRQn pin
1: Interrupt request input to IRQN pin
Legend:n=01t0 4,7

Notes: 1. Bits 6 to 5 are reserved bits. These bits are always read as undefined value. The write
value should always be 0. If 1 is written to the bits, correct operation cannot be
guaranteed.

2. The IRQ7R, IRQ4R to IRQOR bits are cleared to 0 after the IRQE bit in the interrupt
control register 1 (ICR1) is cleared to 0 in the initialization routine after reset.

8.3.6 Interrupt Mask Registers0, 1,4to0 6, and 9 (IMRO, IMR1, IMR4 to IMR6, and
IMR9)

IMRO, IMR1, IMR4 to IMR6, and IMR9 are 8-bit readable/writable registers that mask the IRQ
and on-chip peripheral module interrupts. When an interrupt source is masked, interrupt requests
may be mistakenly detected, depending on the operation state of the IRQ pins and on-chip
peripheral modules. To prevent this, set IMRO, IMR1, IMR4 to IMR6, and IMR9 while no
interrupts are set to be generated, and then read the new settings from these registers.

Table 8.3 shows the relationship between IMR and each interrupt source.

Rev. 1.00, 02/04, page 208 of 804
RENESANS

Initial

Bit Bit Name Value R/W Description

7 IM7 0 R/W Interrupt Mask

6 IM6 0 R/W Table 8.3 lists the correspondence between the

5 IM5 0 R/W interrupt sources and interrupt mask registers.

4 IM4 0 R/W IMn Read Write

3 IM3 0 R/W 1 Interrupt source of the corresponding bit is

2 IM2 0 RIW masked

1 M1 0 RW 0 Interrupt source _of_ the No _
corresponding bit is not processing

0 IMO 0 R/W masked

Legend:n=71t00

Table8.3 Correspondence between Interrupt Sourcesand IMRO to IMRY/IMCRO to

IMCR9

Register Bit Name (Function Name)
Name 7 6 5 4 3 2 1 0
IMRO/IMCRO IRQ7 — — IRQ4 IRQ3 IRQ2 IRQ1 IRQO

(USBF (BT)

standby

recovery

interrupt

request)
IMR1/IMCR1 — — — — DEI3 DEI2 DEI1 DEIO

— (DMAC)
IMR4/IMCR4 — TUNI2 TUNN TUNIO ITI — — —
(TMU2) (TMU1) (TMUO) (WDT) —

IMR5/IMCR5 — — — — — — SCIFI1 SCIFIO

— — — — (SCIF1) (SCIF0)
IMR6/IMCR6 — — — — — — SIOFI —

— — — — (SIOF) —
IMR9/IMCR9 — — — — — USBFI1 USBFIO USBHI
— — (USBF) (USBH)

Note: —: Reserved. These bits are always read as 0. The write value should always be 0. If 1 is

written to these bits, correct operation cannot be guaranteed.

Rev. 1.00, 02/04, page 209 of 804
RENESANS

8.3.7 Interrupt Mask Clear Registers0, 1, 4to 6, and 9 (IMCRO, IMCR1, IMCRA4 to
IMCR®G, and IMCR9)

IMCRO, IMCR1, IMCR4 to IMCR6, and IMCRY are 8-bit writable registers that clear the mask
settings for the IRQ and on-chip peripheral module interrupts. Table 8.3 shows the relationship
between IMCR and each interrupt source.

Initial
Bit Bit Name Value R/W Description
7 IMC7 — w Interrupt Mask Clear
6 IMC6 — w Table 8.3 lists the correspondence between interrupt
5 IMC5 o W sources and interrupt mask clear registers.
4 IMC4 _ W IMCn Write
3 IMC3 — w 1 Corresponding bit in interrupt mask
5 IMC2 W register IMRn is cleared
1 IMC1 L W 0 No processing
0 IMCO _ W Legend:n=7100

Rev. 1.00, 02/04, page 210 of 804
RENESANS

8.4 Interrupt Sources

There are three types of interrupt sources: NMI, IRQ, and on-chip peripheral modules. Each
interrupt has a priority level (0 to 16), with 1 the lowest and 16 the highest. Priority level 0 masks
an interrupt, so the interrupt request is ignored.

84.1 NMI Interrupt

The NMI interrupt has the highest priority level of 16. When the BL bit in the status register (SR)

is 0, NMI interrupts are accepted. NMI interrupts are edge-detected. In sleep or standby mode, the
interrupt is accepted regardless of the BL setting. The NMI edge select bit (NMIE) in the interrupt
control register O (ICRO) is used to select either rising or falling edge detection.

When using edge-input detection for NMI interrupts, a pulse width of at least two P¢ cycles
(peripheral clock) is necessary. NMI interrupt exception handling does not affect the interrupt
mask level bits (I3 to 10) in the status register (SR).

It is possible to wake the chip up from sleep mode or standby mode with an NMI interrupt.

8.4.2 IRQ Interrupts

IRQ interrupts are input by level or edge from pins IRQ7, IRQ4 to IRQO. The priority level can be
set by interrupt priority registers C and D (IPRC and IPRD) in a range from O to 15.

When using edge-sensing for IRQ interrupts, clear the interrupt source by having software read 1
from the corresponding bit in IRRO, then write O to the bit.

When the ICR1 and ICR2 registers are rewritten, IRQ interrupts may be mistakenly detected,
depending on the IRQ pin states. To prevent this, rewrite the register while interrupts are masked,
then release the mask after clearing the illegal interrupt by writing O to IRRO after reading IRRO.

Edge input interrupt detection requires input of a pulse width of more than two cycles on a
peripheral clock (P0) basis.

When using level-sensing for IRQ interrupts, the pin levels must be retained until the CPU
samples the pins. Therefore, the interrupt source must be cleared by the interrupt handler.

The interrupt mask bits (I3 to 10) in the status register (SR) are not affected by IRQ interrupt
handling.

Rev. 1.00, 02/04, page 211 of 804
RENESANS

8.4.3 On-Chip Peripheral Module Interrupts
On-chip peripheral module interrupts are generated by the following modules*:

o DMA controller (DMAC)

e Serial I/O with FIFO (SIOF)

e Serial communication interfaces with FIFO (SCIFO and SCIF1)
e USB host controller (USBH)

e USB function controller (USBF)

e Timer unit (TMU)

e Watchdog timer (WDT)

e User-debugging interface (H-UDI)

Note: * An interrupt generated at the bluetooth interface (BT) is not handles as a on-chip
peripheral module interrupt and is connected to the eternal interrupt pin IRQ1) of this
LSI. The USB function controller (USBF) standby recovery interrupt is not handled as
a on-chip peripheral module interrupt and is connected to the external interrupt pin
(IRQ7) of this LSI.

Not every interrupt source is assigned a different interrupt vector. Sources are reflected in the

interrupt event register 2 (INTEVT?2). It is easy to identify sources by using the value of the

INTEVT?2 register as a branch offset.

A priority level (from O to 15) can be set for each module except H-UDI by writing to interrupt
priority registers A to H (IPRA to IPRH). The priority level of the H-UDI interrupt is 15 (fixed).

The interrupt mask bits (I3 to 10) in the status register are not affected by on-chip peripheral
module interrupt handling.

8.4.4 Interrupt Exception Handling and Priority

There are three types of interrupt sources: NMI, IRQ, and on-chip peripheral modules. The
priority of each interrupt source is set within priority levels O to 15; level 15 is the highest and
level 1 is the lowest. When the priority is set to level O, that interrupt is masked and the interrupt
request is ignored.

Table 8.4 lists the codes for the interrupt event register 2 (INTEVT2) and the order of interrupt
priority.

Each interrupt source is assigned a unique code by INTEVT?2. The start address of the interrupt
service routine is common for each interrupt source. This is why, for instance, the value of
INTEVT?2 is used as an offset at the start of the interrupt service routine and branched to in order
to identify the interrupt source.

Rev. 1.00, 02/04, page 212 of 804
RENESANS

IRQ interrupt and on-chip peripheral module interrupt priorities can be set properly between 0 and
15 for each module by setting interrupt priority registers A to C and F to H (IPRA to IPRC and
IPRF to IPRH). A reset assigns priority level 0 to IRQ and on-chip peripheral module interrupts.

If the same priority level is assigned to two or more interrupt sources and interrupts from those
sources occur simultaneously, their priority order is the default priority order indicated at the right

in table 8.4.

Table8.4

I nterrupt Exception Handling Sourcesand Priority

Interrupt Priority
Priority IPR within IPR Default

Interrupt Source Interrupt Code (Initial Value) (Bit Numbers) Setting Unit Priority
NMI H'1CO 16 — — High
H-UDI H'5E0 15 — — A
IRQ IRQO H'600 0to 15 (0) IPRC (3to0) —

IRQ1(BT) H'620 0to 15 (0) IPRC (7t04) —

IRQ2 H'640 0to 15 (0) IPRC (11 to 8)

IRQ3 H'660 0to 15 (0) IPRC (15 to 12)

IRQ4 H'680 0to 15 (0) IPRD (3to 0)

IRQ7 (USBF H'6E0 0to 15 (0) IPRD (15 to 12)

standby

recovery)
DMAC DEIO H'800 0to 15 (0) IPRE (15 to 12) High

DEI H'820

DEI2 H'840 I

DEI3 H'860 Low
USBH USBHI H'A0O 0to 15 (0) IPRF (3to0) —
USBF uslo H'A20 0to 15 (0) IPRF (7to 4) High

USI1 H'A40 Low
SCIFO SCIFI0 H'C00 0to 15 (0) IPRG (15t0 12) —
SCIF1 SCIFI1 H'C20 0to 15 (0) IPRG (11t08) —
SIOF SIOFI1 H'CAO 0to 15 (0) IPRH(11t08) —
TMUO TUNIO H'400 0to 15 (0) IPRA (15t0 12) —
TMU1 TUNI H'420 0to 15(0) IPRA (11t08) —
TMU2 TUNI2 H'440 0to 15 (0) IPRA(8to4) — v
WDT ITI H'560 0to 15 (0) IPRB (15t0 12) — Low

RENESANS

Rev. 1.00, 02/04, page 213 of 804

8.5 Operation

851 Interrupt Sequence

The sequence of interrupt operations is described below. Figure 8.2 is a flowchart of the
operations.

1. The interrupt request sources send interrupt request signals to the interrupt controller.

© =N W

The interrupt controller selects the highest-priority interrupt from the interrupt requests sent,
following the priority levels set in interrupt priority registers A to H (IPRA to IPRH). Lower
priority interrupts are held pending. If two of these interrupts have the same priority level or if
multiple interrupts occur within a single module, the interrupt with the highest priority is
selected, according to table 8.4, Interrupt Exception Handling Sources and Priority.

The priority level of the interrupt selected by the interrupt controller is compared with the
interrupt mask bits (I3 to I0) in the status register (SR) of the CPU. If the request priority level
is higher than the level in bits I3 to 10, the interrupt controller accepts the interrupt and sends
an interrupt request signal to the CPU.

Detection timing: The INTC operates, and notifies the CPU of interrupt requests, in
synchronization with the peripheral clock (Pd). The CPU receives an interrupt at a break in
instructions.

The interrupt source code is set in the interrupt event register 2 (INTEVT2).

The status register (SR) and program counter (PC) are saved to SSR and SPC, respectively.
The block bit (BL), register bank bit (RB), and mode bit (MD) in SR are set to 1.

The CPU jumps to the start address of the interrupt handler (the sum of the value set in the
vector base register (VBR) and H'00000600). This jump is not a delayed branch. The interrupt
handler may branch with the INTEVT2 register value as its offset in order to identify the
interrupt source. This enables it to branch to the handling routine for the individual interrupt
source.

Notes: 1. The interrupt mask bits (I3 to 10) in the status register (SR) are not changed by

acceptance of an interrupt in this LSI.

2. The interrupt source flag should be cleared in the interrupt handler. To ensure that an
interrupt request that should have been cleared is not inadvertently accepted again, read
the interrupt source flag after it has been cleared, and then execute an RTE instruction.

Rev. 1.00, 02/04, page 214 of 804

RENESANS

A

Program
execution state

No Interrupt
generated?

No SR.BL=0
or sleep mode?
Yes
Standby mode?
No
Yes
- No IRQ? Yes

Level 15
interrupt?

Level 14
interrupt?

'
Set interrupt cause in
INTEVT2

] No
Save SR to SSR;
save PC to SPC
Y
Set BL/RB
bits in SR to1

1

Branch to exception
handler

13 to 10 level
14or lower?

Level 1
interrupt?

13 to 10 level
Yes 13 or lower?

1I3to 10
level 0?

I3 to 10: Interrupt mask bits in status register (SR)

Figure8.2 Interrupt Operation Flowchart

Rev. 1.00, 02/04, page 215 of 804
RENESANS

85.2 Multiple Interrupts

When handling multiple interrupts, an interrupt handler should include the following procedures:

1.

S kv

Branch to a specific interrupt handler corresponding to a code set in INTEVT2. The code in
INTEVT?2 can be used as an offset for branching to the specific handler.

Clear the interrupt source in each specific handler.

Save SSR and SPC to memory.

Clear the BL bit in SR, and set the accepted interrupt level in the interrupt mask bits in SR.
Handle the interrupt.

Execute the RTE instruction.

When the sequence of interrupt operations is described above, if an interrupt of higher priority
than the one being handled occurs directly after execution of the operation in step 4, it can be
accepted.

Rev. 1.00, 02/04, page 216 of 804

RENESANS

Section 9 Bus State Controller (BSC)

9.1 Overview

The bus state controller (BSC) outputs control signals for various types of memory that is
connected to the external address space and external devices. BSC functions enable this LSI to
connect directly with SRAM, SDRAM, and other memory storage devices, and external devices.

9.11 Features
The BSC has the following features:

1. Physical address space is divided into eight areas
A maximum 16 Mbytes for each of the three areas, CS0, CS3, and CS4, totally 48 Mbytes.

Can specify the normal space interface, SRAM interface with byte selection, burst ROM interface,
and SDRAM interface*'

Can select the data bus width (8 or 16 bits) for each address space*z.
Controls the insertion of the wait state for each address space.
Controls the insertion of the wait state for each read access and write access.

Can set the independent idling cycle in the continuous access for five cases: read-write (in same
space/different space), read-read (in same space/different space), the first cycle is a write
access.

2. Normal space interface

Supports the interface that can directly connect to the normal memories such as SRAM and ROM.
3. Burst ROM interface

High-speed access to the ROM that has the page mode function (page flash ROM).

4. SDRAM interface

Can set the SDRAM in CS3 area.

Multiplex output for row address/column address.
Efficient access by single read/single write.
High-speed access by the bank-active mode.

Supports an auto-refresh and self-refresh.

Rev. 1.00, 02/04, page 217 of 804
RENESANS

5. Byte-selection SRAM interface
Can connect directly to a byte-selection SRAM
6. Bus arbitration

Shares all of the resources with other CPU and outputs the bus enable after receiving the bus
request from external devices.

7. Refresh function

Supports the auto-refresh and self-refresh functions.

Specifies the refresh interval using the refresh counter and clock selection

Can execute concentrated refresh by specifying the refresh counts (1, 2, 4, 6, or 8)

Notes: 1. Some CSn arias do not support the some memory interfaces. For the sorts of memory
interfaces that are supported by each area, see section 9.3, Area Overview.

2. The data bus width of the CSO area is 16-bit fixed.

Rev. 1.00, 02/04, page 218 of 804
RENESANS

BSC functional block diagram is shown in figure 9.1.

Internal master

module

y

————y

{ounon |-

CSOWCR |~=p

CS4WCR =

RWTCNT |~g=p

CSOBCR | ~<g=p|

(om0 <>

A
A

Internal slave
module

< Internal bus

Module bus

BACK =
BREQ > Busright |
controller
E Wait
WAIT | > controller
CS0,CS3,C54 - : Area [~
BOOT E : - controller | ¢
E External memory
' area control circuit
MD5 — > <
A2310 A0,
D15 to DO ,
BS, RD/WR,
RD, WET, WE0 : Memory
RAS, CAS, CKE, ' controller
DQM1, DQMO !
; u
W < Refresh
controller
Interrupt
controller [
Legend
CMNCR : Common control register
CSnWCR : CSn space wait control register (n = 0, 3, 4)
RWTCNT : Reset wait counter
CSnBCR : CSn space bus control register (n =0, 3, 4)
SDCR : SDRAM control register
RTCSR : Refresh timer control/status register
RTCNT : Refresh timer counter
RTCOR : Refresh time constant register

Figure9.1 BSC Functional Block Diagram

RENESANS

Rev. 1.00, 02/04, page 219 of 804

9.2 I nput/Output Pins

Table 9.1 shows the pin configuration of BSC.

Table9.1 Pin Configuration
Name I/O Function
A23 to AO O Address Bus
D15 to DO I/O Data Bus
BS O Bus Cycle Start
Asserted when a normal space or burst ROM is accessed. Asserted by the
same timing as CAS in SDRAM access.
CS0,CS3,CS4 O Chip Select
RD/WR O Read/Write
Connects to WE pins when SDRAM or byte-selection SRAM is connected.
RD O Read Pulse Signal (read data output enable signal)
WE1/DQM1 O WET: Controls that D15 to D8 are being written to.
Connected to the byte select signal when a byte-selection SRAM is
connected.
DQM1: Controls that D15 to D8 are being selected.
Connected to the DQM1 pin when SDRAM is connected.
WEO/DQMO O WEQD: Controls that D7 to DO are being written to.
Connected to the byte select signal when a byte-selection SRAM is
connected.
DQMO: Controls that D7 to DO are being selected.
Connected to the DQMO pin when SDRAM is connected.
RAS O Connects to the RAS pin when SDRAM is connected.
CAS O Connects to the CAS pin when SDRAM is connected.
CKE O Connected to the CKE pin when SDRAM is connected.
WAIT I External Wait Input
BREQ I Bus Request Input
BACK O Bus enable output
MD5 I Endian Select
0: Big endian
1: Little endian
REFOUT O Refresh request output when a bus is released
BOOT_E I Boot Enable

For details see section 17, BOOT Function (BOOT).

Rev. 1.00, 02/04, page 220 of 804

RENESANS

9.3 Area Overview

9.3.1 AreaDivision

In the architecture of this LSI, the logical spaces have 32-bit address spaces. The cache access
method is shown by the upper three bits. For details see section 5, Cache. The remaining 29 bits
are mapped in 512-Mbyte physical address space that are used for division of the space into eight
areas. The BSC performs control for this 29-bit physical space. Figure 9.2 shows the mapping
from the logical address space to the physical address space. Area 1 is used for the internal I/O,
and area 2 and area 5 to area 7 are reserved. The other three areas (area 0, area 3, and area 4) are

used as external address spaces.

As listed in table 9.2, this LSI can connect each type of memories to three area of an external
address space among the physical address spaces divided into eight areas, respectively. And it
outputs chip select signals (CS0, CS3, and CS4) for each of them. CSO is asserted during area 0
access; CS4 is asserted during area 4 access.

H'00000000 E Area 0 (CS0) H'00000000
: EN Area 1 (Internal 1/0) | 04000000
H'20000000 7 /7}0 W [area 2 (Resorved area) | 08000000
e i AN H'0C000000
vr 2 PO 2zl 1 MM WO Area 3 (CS3)
H'40000000 / 75 %// \\\\\\ Area 4 (CS4) H'10000000
/ '
S S ///l ’I// \\\\ Area 5 (Reserved area) H14000000
H'60000000 //Z”I \\ Area 6 (Reserved area)
[N ////II Area 7 (Reserved area) | H'{FFFFFFF
H'80000000 ////I/
P1 1y
H'A0000000 [~ r = ,”/’
Pf ,/II/ Physical address space
H'C0000000 i /
P3 /
S P |
H'E0000000 [}
P4
I S

Logical address space

Figure9.2 Logical Address Space and Physical Address Space

Rev. 1.00, 02/04, page 221 of 804
RENESANS

9.3.2 Shadow Area

Areas 0, 3, and 4 are decoded by physical addresses A28 to A26, which correspond to areas B'000,
B'011, and B'100. Address bits A31 to A29 are ignored. This means that the range of area 0
addresses, for example, is H'00000000 to H'O3FFFFFF, and its corresponding shadow space is the
address space obtained by adding to it H20000000 x n (n =1 to 6). Addresses A25 and A24 are
ignored since addresses A23 to AQ are supported for the external pins of the address bus.
Accordingly, for example, H'01000000 to H'O3FFFFFF in the area 0 is shadow space.

Area P4 (H'E0000000 to HFFFFFFFF) is an internal I/O area and is assigned for internal register
addresses. Area P4 does not become shadow space.

Rev. 1.00, 02/04, page 222 of 804
RENESANS

933

AddressMap

The external address space has a capacity of 48 Mbytes and is used by dividing three partial
spaces. The kind of memory to be connected and the data bus width are specified in each partial
space. The address map for the external address space is listed in table 9.2.

Table9.2 Address Space Map of External Address Space
Memory to be
Area Connected Physical Address Capacity Access Size
Area 0 Normal memory*' H'00000000 to H'00FFFFFF 16 Mbytes 8, 16, 32%°
(CSO area) g5t ROM H'01000000 to H'03FFFFFF Shadow —
H'00000000 + H'20000000 x n to Shadow (n=11to6)
H'03FFFFFF + H'20000000 x n
Area 1 Internal I/O H'04000000 to H'07FFFFFF
H'04000000 + H'20000000 x n to (n=11to6)
H'07FFFFFF + H'20000000 x n
Area 2 Reserved area*' H'08000000 + H'20000000 x n to (n=11to06)
H'OBFFFFFF + H'20000000 x n
Area 3 Normal memory*' H'0C000000 to H'0OCFFFFFF 16 Mbytes 8, 16, 32+°
(CS3area) pyie gelection H'ODO0000O to HOFFFFFFF Shadow
SRAM H'0C000000 + H'20000000 x n to Shadow (n=1106)
SDRAM H'OFFFFFFF + H'20000000 x n
Area 4 Normal memory*' H'10000000 to H'1OFFFFFF 16 Mbytes 8, 16, 32+°
(CS4 area) pyrst ROM H'11000000 to H'13FFFFFF Shadow
Byte-selection H'10000000 + H'20000000 x n to Shadow (h=11to06)
SRAM H'13FFFFFF + H'20000000 x n
Area 5 Reserved area** H'14000000 + H'20000000 x n to (n=1106)
H'17FFFFFF + H'20000000 x n
Area 6 Reserved area*' H'18000000 + H'0000000 x n to (n=0to 6)
H'1BFFFFFF + H'20000000 x n
Area 7 Reserved area** H'1C000000 + H'20000000 x n to (n=0t07)
H'1FFFFFFF + H'20000000 x n
Notes: 1. Normal memory can be connected to the external device which has an interface, such
as the SRAM and ROM.
2. In the area 0 (selected when the chip select signal CS0 is asserted), the data bus width
is 16-bit fixed.
3. The data bus width is set by the CSn space bus control register (CSnBCR). The data
bus width should be 16 bits when SDRAM is connected in area 3.
4. Do not access the reserved area. If the reserved area is accessed, the correct

operation cannot be guaranteed.

RENESANS

Rev. 1.00, 02/04, page 223 of 804

934 Data BusWidth

The data bus width of areas 3 and 4 is set 8 bits or 16 bits by the CSn space bus control register
(CSnBCR, n = 3 or 4). The data bus width of area 0 is fixed 16 bits. For details, see section 9.4.2,
CSn Space Bus Control Register.

9.4 Register Descriptions

The BSC has the following registers. Refer to section 27, List of Registers, for the register
addresses and the register states in each operating mode.

Do not access spaces other than CSO until the termination of the setting the memory interface.
When accessing spaces other than CSO0, set the CSn space bus control register (CSnBCR) which
corresponds to the area to be accessed before setting the CSn space wait control register
(CSnWCR).

e Common control register (CMNCR)

e (SO space bus control register (CSOBCR)

e (CS3 space bus control register (CS3BCR)

e (S4 space bus control register (CS4BCR)

e (S0 space wait control register (CSOWCR)

e (S3 space wait control register (CS3WCR)

e (CS4 space wait control register (CS4WCR)

e SDRAM control register (SDCR)

e Refresh timer control/status register (RTCSR)
e Refresh timer counter (RTCNT)

e Refresh time constant register (RTCOR)

e Reset wait counter (RWTCNT)

e SDRAM mode register for CS3 space (SDMR3)*

Note: * Substance of this register is in the SDRAM, and can be written to by accessing the area
of this register. For details, see Power-On Sequence in section 9.5.5, SDRAM
Interface.

Rev. 1.00, 02/04, page 224 of 804
RENESANS

94.1

Common Control Register (CMNCR)

CMNCR is a 32-bit register that controls the common items for each area. CMNCR is initialized
by a power-on reset, but not by a manual reset or in standby mode and holds the previous value.
Do not access external memory other than area 0 until the CMNCR register initialization is

complete.

Bit

Bit Name

Initial
Value

R/W

Description

31to8 —

AllO

Reserved

These bits are always read as 0. The write value should
always be 0. If 1 is written to these bits, correct operation
cannot be guaranteed.

7
6

DMAIWA
DMAIWO

0
0

R/W
R/W

Wait states between access cycles when DMA single
address transfer is performed

Specify the number of idle cycles to be inserted after an
access to an external device with DACK when DMA single
address transfer is performed. The method of inserting idle
cycles depends on the contents of DMAIWA.

00: No idle cycle inserted
01: 1 idle cycle inserted

10: 2 idle cycles inserted
11: 4 idle cycled inserted

5

DMAIWA

0

R/W

Method of inserting wait states between access cycles when
DMA single address transfer is performed

Specifies the method of inserting the idle cycles specified by
the DMAIW1 and DMAIWO bits. Clearing this bit will make
this LSl insert the idle cycles when another device, which
includes this LSI, drives the data bus after an external device
with DACK drove it. Setting this bit will make this LSl insert
the idle cycles even when the continuous accesses to an
external device with DACK are performed.

0: Idle cycle is inserted when other device drives the data
bus after an external device with DACK drives the data
bus.

1: Idle cycle is inserted every time when an external device
with DACK is accessed.

Reserved

This bit is always read as 1. The write value should always
be 1. When 0 is written to this bit, correct operation cannot
be guaranteed.

Rev. 1.00, 02/04, page 225 of 804
RENESANS

Initial
Bit Bit Name Value R/W Description

3 ENDIAN 0/1* R Endian Flag

Samples the external pin for specifying endian on power-on

reset (MD5) and specifies the pin value as the initial value.

All address spaces are defined by this bit. This is a read-only

bit.

0: The external pin for specifying endian (MD5) was low level
on power-on reset. This LSl is being operated as big
endian.

1: The external pin for specifying endian (MD5) was high
level on power-on reset. This LSl is being operated as little
endian.

2 — 0 R Reserved

This bit is always read as 0. The write value should always
be 0. If 1 is written to this bit, correct operation cannot be
guaranteed.

1 HIZMEM O R/W High-Z Memory Control

Specifies the pin state in standby mode for A23 to A0, BS,
CSn, RD/WR, WEn/DQMn, and RD.

0: High impedance in standby mode.

1: Driven in standby mode

0 HIZCNT 0 R/W High-Z Control

Specifies the state in standby mode and bus released for
CKIO, CKE, RAS, and CAS.

0: High impedance in standby mode and bus released for
CKIO, CKE, RAS, and CAS.

1: Driven in standby mode and bus released for CKIO, CKE,
RAS, and CAS.

Note: * The external pin for specifying endian (MD5) is sampled on power-on reset. When big
endian is specified, this bit is read as 0 and when little endian is specified, this bit is
read as 1.

Rev. 1.00, 02/04, page 226 of 804
RENESANS

9.4.2 CSn Space Bus Control Register (CSnBCR) (n=0, 3, 4)

CSnBCR is a 32-bit readable/writable register that specifies the memory to be connected to each
area, the number of idle cycles between bus cycles, and the bus-width.

CSnBCR is initialized by a power-on reset, but not by a manual reset or in standby mode and
holds the previous value. Do not access external memory other than area O until CSnBCR register
initialization is completed.

Initial
Bit Bit Name Value R/W Description
31 — All O R Reserved
30 This bit is always read as 0. The write value should always
be 0. If 1 is written to these bits, correct operation cannot be
guaranteed.
29 IWWA1 1 R/W Idle Cycles between Write-read Cycles and Write-write
1
28 IWWO 1 rw Cycles*

These bits specify the number of idle cycles to be inserted
after the access to a memory that is connected to the space.
The target access cycles are the write-read cycle and write-
write cycle.

00: No idle cycle inserted

01: 1 idle cycle inserted

10: 2 idle cycles inserted

11: 4 idle cycles inserted
27 — 0 R Reserved

This bit is always read as 0. The write value should always
be 0. If 1 is written to these bits, correct operation cannot be

guaranteed.
26 IWRWD1 1 R/W Idle Cycles for Another Space Read-Write*'
25 IWRWDO 1 R/W Specify the number of idle cycles to be inserted after the

access to a memory that is connected to the space. The
target access cycle is a read-write one in which continuous
accesses switch between different spaces.

00: No idle cycle inserted
01: 1 idle cycle inserted

10: 2 idle cycles inserted
11: 4 idle cycles inserted

Rev. 1.00, 02/04, page 227 of 804
RENESANS

Initial
Bit Bit Name Value R/W Description

24 — 0 R Reserved

This bit is always read as 0. The write value should always
be 0. If 1 is written to this bit, correct operation cannot be

guaranteed.
23 IWRWSH1 1 R/W Idle Cycles for Read-Write in the Same Space*’
22 IWRWSO0 1 R/W Specify the number of idle cycles to be inserted after the

access to a memory that is connected to the space. The
target cycle is a read-write cycle of which continuous
accesses are for the same space.

00: No idle cycle inserted
01: 1 idle cycle inserted

10: 2 idle cycles inserted
11: 4 idle cycles inserted

21 — 0 R Reserved

This bit is always read as 0. The write value should always
be 0. If 1 is written to this bit, correct operation cannot be

guaranteed.
20 IWRRD1 1 R/W Idle Cycles for Read-Read in Another Space*’
19 IWRRDO 1 R/W Specify the number of idle cycles to be inserted after the

access to a memory that is connected to the space. The
target cycle is a read-read cycle of which continuous
accesses switch between different spaces.

00: No idle cycle inserted
01: 1 idle cycle inserted

10: 2 idle cycles inserted
11: 4 idle cycles inserted

18 — 0 R Reserved

This bit is always read as 0. The write value should always
be 0. If 1 is written to this bit, correct operation cannot be
guaranteed.

Rev. 1.00, 02/04, page 228 of 804
RENESANS

Bit

Bit Name

Initial
Value

R/W

Description

17
16

IWRRSH1
IWRRS0

1
1

R/W
R/W

Idle Cycles for Read-Read in the Same Space

Specify the number of idle cycles to be inserted after the
access to a memory that is connected to the space. The
target cycle is a read-read cycle of which continuous
accesses are for the same space.

00: No idle cycle inserted
01: 1 idle cycle inserted

10: 2 idle cycles inserted
11: 4 idle cycles inserted

15

Reserved

This bit is always read as 0. The write value should always
be 0. If 1 is written to this bit, correct operation cannot be
guaranteed.

14
13
12

TYPE2
TYPE1
TYPEO

o O O

R/W
R/W
R/W

Memory Type**

Specify the type of memory connected to a space.
000: Normal space

001: Burst ROM

010: Setting prohibited

011: Byte-selection SRAM

100: SDRAM

101: Setting prohibited

110: Setting prohibited

111: Setting prohibited

For details for memory type in each area, refer to table 9.2.

11

Reserved

This bit is always read as 0. The write value should always
be 0. If 1 is written to this bit, correct operation cannot be
guaranteed.

Rev. 1.00, 02/04, page 229 of 804
RENESANS

Initial
Bit Bit Name Value R/W Description
10 BSZ1 1 R/W Data Bus Size**
9 BSZ0 0/1 R/W Specify the data bus sizes of spaces.
The data bus sizes of areas 3 and 4 are shown below.
00: Setting prohibited
01: 8-bit size
10: 16-bit size
11: Setting prohibited

Note: The initial values of CSOBCR and other CSnBCR
are 10 and 11, respectively. The valid value should
be set.

The data bus width of the area 0 is fixed 16 bits.
Other settings are ignored.

8to0 — AllO R Reserved
These bits are always read as 0. The write value should

always be 0. If 1 is written to these bits, correct operation
cannot be guaranteed.

Notes: 1. In actual operation, same idle cycles might be inserted by factors other than the
specification of this bit.
2. If an unappropriated memory is specified to be connected to a space, correct operation
cannot be guaranteed.
3. The initial data bus sizes of other than area 0 after a reset cannot be set. Therefore, the
data bus sizes should be set 8 or 16 bits before the areas are accessed.

Rev. 1.00, 02/04, page 230 of 804
RENESANS

9.4.3 CSn Space Wait Control Register (CSnWCR) (n=0, 3, 4)

CSnWCR is a 32-bit register which specifies various wait cycles for memory accesses. The bit
configuration of this register varies as shown below according to the memory type specified by the
CSn space bus control register (CSnBCR). Specify CSnBCR register first, then specify the
CSnWCR register.

CSnWCR is initialized by a power-on reset, but not by a manual reset or in standby mode and
holds the previous value.

Normal Space, Byte-Selection SRAM:

e CSOWCR
Initial
Bit Bit Name Value R/W Description
311013 — AllO R Reserved
These bits are always read as 0. The write value should
always be 0. Is 1 is written to these bits, correct operation
cannot be guaranteed.
12 SWi1 0 R/W Number of Delay Cycles from Address, CSn Assertion to
11 SWo 0 R/W RD, WEn Assertion

Specify the number of delay cycles from address and CSn
assertion to RD and WEn assertion.

00: 0.5 cycles
01: 1.5 cycles
10: 2.5 cycles
11: 3.5 cycles

Rev. 1.00, 02/04, page 231 of 804
RENESANS

Initial
Bit Bit Name Value R/W Description

10 WR3 1 R/W Number of Access Wait Cycles
9 WR2 0 R/W Specify the number of cycles that are necessary for read/write
8 WR1 1 R/W 8ccess.
7 WRO 0 R/W 0000: 0 cycles
0001: 1 cycle

0010: 2 cycles

0011: 3 cycles

0100: 4 cycles

0101: 5 cycles

0110: 6 cycles

0111: 8 cycles

1000: 10 cycles

1001: 12 cycles

1010: 14 cycles

1011: 18 cycles

1100: 24 cycles

1101: Setting prohibited
1110: Setting prohibited
1111: Setting prohibited

6 WM 0 R/W External Wait Mask Specification

Specifies whether or not the external wait input is valid. The
specification by this bit is valid even when the number of
access wait cycle is 0.

0: External wait input is valid
1: External wait input is ignored

5to2 — AllO R Reserved

These bits are always read as 0. The write value should
always be 0. If 1 is written to these bits, correct operation
cannot be guaranteed.

1 HW1 0 R/W Delay Cycles from RD, WEn negation to Address, CSn

0 HWO 0 R Negation
Specify the number of delay cycles from RD and WEn
negation to address and CSn negation.

00: 0.5 cycles
01: 1.5 cycles
10: 2.5 cycles
11: 3.5 cycles

Rev. 1.00, 02/04, page 232 of 804
RENESANS

e CS3WCR

Initial
Bit Bit Name Value R/W Description
31to21 — A0 R Reserved

These bits are always read as 0. The write value should
always be 0. If 1 is written to these bits, correct operation
cannot be guaranteed.

20 BAS 0 R/W Byte-Selection SRAM Byte Access Selection

Specifies the WEn and RD/WR signal timing when the byte-
selection SRAM interface is used.

0: Asserts the WEn signal at the read/write timing and
asserts the RD/WR signal during the write access cycle.

1: Asserts the WEn signal during the read access cycle and
asserts the RD/WR signal at the write timing.

19to 11 — Al0O R Reserved

These bits are always read as 0. The write value should
always be 0. If 1 is written to these bits, correct operation
cannot be guaranteed.

10 WR3 1 R/W Number of Access Wait Cycles
WR2 0 R/W Specify the number of cycles that are necessary for
WR1 1 R/ read/write access.
WRO 0 R/W 0000: 0 cycles

0001: 1 cycle

0010: 2 cycles

0011: 3 cycles

0100: 4 cycles

0101: 5 cycles

0110: 6 cycles

0111: 8 cycles

1000: 10 cycles

1001: 12 cycles

1010: 14 cycles

1011: 18 cycles

1100: 24 cycles

1101: Setting prohibited
1110: Setting prohibited
1111: Setting prohibited

Rev. 1.00, 02/04, page 233 of 804
RENESANS

Initial

Bit Bit Name Value R/W Description

6 WM 0 R/W External Wait Mask Specification
Specify whether or not the external wait input is valid. The
specification by this bit is valid even when the number of
access wait cycle is 0.
0: External wait input is valid
1: External wait input is ignored

5t00 — A0 R Reserved
These bits are always read as 0. The write value should
always be 0. If 1 is written to these bits, correct operation
cannot be guaranteed.

e CS4WCR

Initial

Bit Bit Name Value R/W Description

31to21 — Al0O R Reserved
These bits are always read as 0. The write value should
always be 0. If 1 is written to these bits, correct operation
cannot be guaranteed.

20 BAS 0 R/W Byte-Selection SRAM Byte Access Selection
Specifies the WEn and RD/WR signal timing when the byte-
selection SRAM interface is used.
0: Asserts the WEN signal at the read timing and asserts the

RD/WR signal during the write access cycle.
1: Asserts the WEn signal during the read access cycle and
asserts the RD/WR signal at the write timing.
19 — 0 R Reserved

This bit is always read as 0. The write value should always
be 0. If 1 is written to this bit, correct operation cannot be
guaranteed.

Rev. 1.00, 02/04, page 234 of 804

RENESANS

Bit

Bit Name

Initial
Value

R/W

Description

18
17
16

Ww2
Wwi1
WWO

0
0
0

R/W
R/W
RW

Number of Write Access Wait Cycles

Specify the number of cycles that are necessary for write
access.

000: The same cycles as WR3 to WRO setting (read access
wait)

001: 0 cycles
010: 1 cycle

011: 2 cycles
100: 3 cycles
101: 4 cycles
110: 5 cycles
111: 6 cycles

1510 13

AllO

R

Reserved

These bits are always read as 0. The write value should
always be 0. If 1 is written to these bits, correct operation
cannot be guaranteed.

12
11

Swi1
SWo

R/W
R/W

Number of Delay Cycles from Address, CSn Assertion to RD,
WERn Assertion

Specify the number of delay cycles from address and CSn
assertion to RD and WEn assertion.

00: 0.5 cycles
01: 1.5 cycles

10: 2.5 cycles
11: 3.5 cycles

Rev. 1.00, 02/04, page 235 of 804
RENESANS

Initial

Bit Bit Name Value R/W Description
10 WR3 1 R/W Number of Access Wait Cycles
9 WR2 0 R/W Specify the number of cycles that are necessary for read
8 WR1 1 R/W @ccess.
7 WRO 0 r/w 0000: 0 cycles
0001: 1 cycle
0010: 2 cycles
0011: 3 cycles
0100: 4 cycles
0101: 5 cycles
0110: 6 cycles
0111: 8 cycles
1000: 10 cycles
1001: 12 cycles
1010: 14 cycles
1011: 18 cycles
1100: 24 cycles
1101: Setting prohibited
1110: Setting prohibited
1111: Setting prohibited
6 WM 0 R/W External Wait Mask Specification
Specifies whether or not the external wait input is valid. The
specification by this bit is valid even when the number of
access wait cycle is 0.
0: External wait input is valid
1: External wait input is ignored
5t02 — A0 R Reserved
These bits are always read as 0. The write value should
always be 0. If 1 is written to these bits, correct operation
cannot be guaranteed.
HW1 0 R/W Delay Cycles from RD, WEn negation to Address, CSn
0 HWO 0 R/W negation

Specify the number of delay cycles from RD and WEn
negation to address and CSn negation.

00: 0.5 cycles
01: 1.5 cycles
10: 2.5 cycles
11: 3.5 cycles

Rev. 1.00, 02/04, page 236 of 804

RENESANS

Burst ROM:

e CSOWCR
Initial

Bit Bit Name Value R/W Description

31t018 — All O R Reserved
These bits are always read as 0. The write value should
always be 0. If 1 is written to these bits, correct operation
cannot be guaranteed.

17 BW1 0 R/W Number of Burst Wait Cycles

16 BWO 0 R/W Specify the number of wait cycles to be inserted between the
second or later access cycles in burst access.
00: 0 cycles
01: 1 cycle
10: 2 cycles
11: 3 cycles

15t0 11 — All O R Reserved
These bits are always read as 0. The write value should
always be 0. If 1 is written to these bits, correct operation
cannot be guaranteed.

10 W3 1 R/W Number of Access Wait Cycles

9 w2 0 R/W Specify the number of wait cycles to be inserted in the write

W1 1 R/W cycle and the first read cycle.
7 WO 0 R/W 0000: 0 cycles

0001: 1 cycle

0010: 2 cycles

0011: 3 cycles

0100: 4 cycles

0101: 5 cycles

0110: 6 cycles

0111: 8 cycles

1000: 10 cycles

1001: 12 cycles

1010: 14 cycles

1011: 18 cycles

1100: 24 cycles

1101: Setting prohibited
1110: Setting prohibited
1111: Setting prohibited

Rev. 1.00, 02/04, page 237 of 804
RENESANS

Initial

Bit Bit Name Value R/W Description

6 WM 0 R/W External Wait Mask Specification
Specify whether or not the external wait input is valid. The
specification by this bit is valid even when the number of
access wait cycle is 0.
0: External wait input is valid
1: External wait input is ignored

5to0 — All O R Reserved
These bits are always read as 0. The write value should
always be 0. If 1 is written to these bits, correct operation
cannot be guaranteed.

e CS4WCR

Initial

Bit Bit Name Value R/W Description

31018 — All O R Reserved
These bits are always read as 0. The write value should
always be 0. If 1 is written to these bits, correct operation
cannot be guaranteed.

17 BW1 R/W Number of Burst Wait Cycles

16 BWO R/W Specify the number of wait cycles to be inserted between
the second or later access cycles in burst access.
00: 0 cycles
01: 1 cycle
10: 2 cycles
11: 3 cycles

15t0 13 — AllO R Reserved
These bits are always read as 0. The write value should
always be 0. If 1 is written to these bits, correct operation
cannot be guaranteed.

12 SWi1 R/W Number of Delay Cycles from Address, CSn Assertion to

11 SWo R/W RD, WE Assertion

Specify the number of delay cycles from address and CSn
assertion to RD and WE assertion.

00: 0.5 cycles
01: 1.5 cycles
10: 2.5 cycles
11: 3.5 cycles

Rev. 1.00, 02/04, page 238 of 804

RENESANS

Initial
Bit Bit Name Value R/W Description

10 W3 1 R/W Number of Access Wait Cycles
9 w2 0 R/W Specify the number of wait cycles to be inserted in the write
8 W1 1 R/w cycle and the first read cycle.
7 Wo 0 R/w 0000: 0 cycles
0001: 1 cycle

0010: 2 cycles

0011: 3 cycles

0100: 4 cycles

0101: 5 cycles

0110: 6 cycles

0111: 8 cycles

1000: 10 cycles

1001: 12 cycles

1010: 14 cycles

1011: 18 cycles

1100: 24 cycles

1101: Setting prohibited
1110: Setting prohibited
1111: Setting prohibited

6 WM 0 R/W External Wait Mask Specification

Specifies whether or not the external wait input is valid. The
specification by this bit is valid even when the number of
access wait cycle is 0.

0: External wait input is valid
1: External wait input is ignored

5to2 — AllO R Reserved

These bits are always read as 0. The write value should
always be 0. If 1 is written to these bits, correct operation
cannot be guaranteed.

HW1 0 R/W Delay Cycles from RD, WEn negation to Address, CSn

0 HWO 0 R/w negation
Specify the number of delay cycles from RD and WEn
negation to address and CSn negation.

00: 0.5 cycles
01: 1.5 cycles
10: 2.5 cycles
11: 3.5 cycles

Rev. 1.00, 02/04, page 239 of 804
RENESANS

SDRAM:

e CS3WCR
Initial
Bit Bit Name Value R/W Description
31to15 — All O R Reserved
These bits are always read as 0. The write value should
always be 0. If 1 is written to these bits, correct operation
cannot be guaranteed.
14 TRP1 0 R/W Number of Cycles from Auto-precharge/PRE Command to
13 TRPO 0 R/W ACTV Command
Specify the number of minimum cycles from the start of auto-
precharge or issuing of PRE command to the issuing of
ACTV command for the same bank.
00: 1 cycle
01: 2 cycles
10: 3 cycles
11: 4 cycles
12 — 0 R Reserved
This bit is always read as 0. The write value should always
be 0. If 1 is written to these bits, correct operation cannot be
guaranteed.
11 TRCD1 O R/W Number of Cycles from ACTV Command to
10 TRCDO 1 R/W READ(A)/WRIT(A) Command
Specify the number of minimum cycles from issuing ACTV
command to issuing READ(A)/WRIT(A) command.
00: 1 cycle
01: 2 cycles
10: 3 cycles
11: 4 cycles
9 — 0 R Reserved

This bit is always read as 0. The write value should always
be 0. If 1 is written to this bit, correct operation cannot be
guaranteed.

Rev. 1.00, 02/04, page 240 of 804
RENESANS

Initial

Bit Bit Name Value R/W Description
8 A3CL1 1 R/W CAS Latency
7 A3CLO O R/W Specify the CAS latency.
00: 1 cycle
01: 2 cycles
10: 3 cycles
11: 4 cycles
6,5 — All O R Reserved

These bits are always read as 0. The write value should
always be 0. If 1 is written to these bits, correct operation
cannot be guaranteed.

TRWL1 O R/W Number of Cycles from WRITA/WRIT Command to Auto-
3 TRWLO 0 R/W precharge/PRE Command

Specifies the number of cycles from issuing WRITA/WRIT
command to the start of auto-precharge or to issuing PRE
command.

00: 0 cycles
01: 1 cycle

10: 2 cycles
11: 3 cycles

2 — 0 R Reserved

This bit is always read as 0. The write value should always
be 0. If 1 is written to this bit, correct operation cannot be

guaranteed.
1 TRC1 0 R/W Number of Cycles from REF Command/Self-refresh Release
0 TRCO 0 rw toACTV Command

Specify the number of cycles from issuing the REF command
or releasing self-refresh to issuing the ACTV command..

00: 3 cycles
01: 4 cycles
10: 6 cycles
11: 9 cycles

Rev. 1.00, 02/04, page 241 of 804
RENESANS

9.4.4 SDRAM Control Register (SDCR)

SDCR is a 32-bit register that specifies the method to refresh and access SDRAM, and the types of
SDRAMs to be connected.

SDCR is initialized by a power-on reset, but not by a manual reset or in standby mode and holds
the previous value. Bits other than RFSH and RMODE should be written to at the initialization
settings and not be changed afterward. When writing to RFSH and RMODE, the values before
writing should be written to the other bits. The area 3 should not be accessed until this register
setting has been completed while the synchronous DRAM is used.

Initial
Bit Bit Name Value R/W Description
311013 — All O R Reserved

These bits are always read as 0. The write value should
always be 0. If 1 is written to this bit, correct operation cannot
be guaranteed.

12 SLOW 0 R/W Low-Frequency Mode

Specifies the output timing of command, address, and write
data for SDRAM and the latch timing of read data from
SDRAM. Setting this bit makes the hold time for command,
address, write and read data. This mode is suitable for
SDRAM with low-frequency clock.

0: Command, address, and write data for SDRAM is output
at the rising edge of CKIO. Read data from SDRAM is
latched at the rising edge of CKIO.

1: Command, address, and write data for SDRAM is output
at the falling edge of CKIO. Read data from SDRAM is
latched at the falling edge of CKIO.

11 RFSH 0 R/W Refresh Control

Specifies whether or not the refresh operation of the SDRAM
is performed.

0: No refresh
1: Refresh

Rev. 1.00, 02/04, page 242 of 804
RENESANS

Bit

Initial
Bit Name Value

R/W

Description

10

RMODE o0

R/W

Refresh Control

Specifies whether to perform auto-refresh or self-refresh
when the RFSH bit is 1. When the RFSH bit is 1 and this bit
is 1, self-refresh starts immediately. When the RFSH bit is 1
and this bit is 0, auto-refresh starts according to the contents
that are set in registers RTCSR, RTCNT, and RTCOR.

0: Auto-refresh is performed
1: Self-refresh is performed

PDOWN O

R/W

Power-Down Mode

Specifies whether the SDRAM is entered in power-down
mode or not after the memory access other than SDRAM is
completed. If this bit is set to 1, the CKE pin is pulled to low
to place the SDRAM to power-down mode triggered by
memory access other than SDRAM after the SDRAM access
ends.

0: Does not place the SDRAM in power-down mode.
1: Places the SDRAM in power-down mode.

BACTV 0

R/W

Bank Active Mode

Specifies to access whether in auto-precharge mode (using
READA and WRITA commands) or in bank active mode
(using READ and WRIT commands).

0: Auto-precharge mode (using READA and WRITA
commands)

1: Bank active mode (using READ and WRIT commands)

Note: When bank active mode is specified, the data bus
width should be set 16 bits.

7105

— AllO

R

Reserved

These bits are always read as 0. The write value should
always be 0. If 1 is written to this bit, correct operation cannot
be guaranteed.

A3ROW1 0
A3ROWO 0

R/W
R/W

Number of Bits of Row Address

Specify the number of bits of the row address.
00: 11 bits

01: 12 bits

10: 13 bits

11: Reserved (setting prohibited)

Rev. 1.00, 02/04, page 243 of 804
RENESANS

Initial
Bit Bit Name Value R/W

Description

2 — 0 R

Reserved

This bit is always read as 0. The write value should always
be 0. If 1 is written to this bit, correct operation cannot be
guaranteed.

A3COL1T O R/W
0 A3COLO © R/W

Number of Bits of Column Address

Specify the number of bits of the column address.
00: 8 bits

01: 9 bits

10: 10 bits

11: Setting prohibited

Rev. 1.00, 02/04, page 244 of 804

RENESANS

9.4.5 Refresh Timer Control/Status Register (RTCSR)

RTCSR is a 32-bit readable/writable register that specifies various items about refresh for
SDRAM. When the RTCSR is written, the upper 16 bits of the write data must be H’'A55A to
cancel write protection.

Initial
Bit Bit Name Value R/W Description
31to8 — AllO R Write Protection

These bits are always read as 0. When writing to these bits,
the upper 16-bit of the write data should be H’A55A to cancel
write protection. The lower 8-bit is should always be 0. If
other value is written to these bits, correct operation cannot
be guaranteed.

7 CMF 0 R/W Compare Match Flag

Indicates that a compare match occurs between the refresh
timer counter (RTCNT) and refresh time constant register
(RTCOR). This bit is set or cleared in the following
conditions.

0: Clearing condition: When 0 is written in CMF after reading
out RTCSR during CMF = 1.

1: Setting condition: When the condition RTCNT = RTCOR is
satisfied.

6 — 0 R Reserved

This bit is always read as 0. The write value should always
be 0. If 1 is written to this bit, correct operation cannot be
guaranteed.

5 CKS2 0 R/W Clock Select
CKS1 0 R/W Select the clock input to count-up the refresh timer counter

CKSO 0 rw (RTONT).
000: Stop the counting-up

001: Bo/4
010: Bo/16
011: B/64
100: By/256
101: Bo/1024
110: By/2048
111: B6/4096

Rev. 1.00, 02/04, page 245 of 804
RENESANS

Initial

Bit Bit Name Value R/W Description
2 RRC2 0 R/W Refresh Count

RRC1 0 R/W Specify the number of continuous refresh cycles, when the
0 RRCO 0 R/w refresh request occurs after the coincidence of the values of

the refresh timer counter (RTCNT) and the refresh time
constant register (RTCOR). These bits can make the period
of occurrence of refresh long.

000: Once

001: Twice

010: 4 times

011: 6 times

100: 8 times

101: Setting prohibited
110: Setting prohibited
111: Setting prohibited

9.4.6 Refresh Timer Counter (RTCNT)

RTCNT is an 8-bit counter register that increments using the clock selected by bits CKS2 to CKSO
in RTCSR. When RTCNT matches RTCOR, RTCNT is cleared to 0. The value in RTCNT returns
to 0 after counting up to 255. When the RTCNT is written, the upper 16 bits of the write data must
be H'AS5A to cancel write protection.

Initial

Bit Bit Name Value R/W Description

31to8 — All O R/W Write Protection
These bits are always read as 0. When writing to these bits,
the upper 16-bit of the write data should be H'A55A to cancel
write protection. The lower 8-bit is should always be 0. If
other value is written to these bits, correct operation cannot
be guaranteed.

7t00 — AllO R/W 8-bit Counter

Rev. 1.00, 02/04, page 246 of 804
RENESANS

9.4.7 Refresh Time Constant Register (RTCOR)

RTCOR is a 32-bit register. When RTCOR matches RTCNT, the CMF bit in RTCSR is set to 1
and RTCNT is cleared to 0.

When the RFSH bit in SDCR is 1, a memory refresh request is issued by this matching signal.
This request is maintained until the refresh operation is performed. If the request is not processed
when the next matching occurs, the previous request is ignored.

When the RTCOR is written, the upper 16 bits of the write data must be H'A55A to cancel write
protection.

Initial

Bit Bit Name Value R/W Description

31to8 — All O R Write Protection
These bits are always read as 0. When writing to these bits,
the upper 16-bit of the write data should be H’A55A to cancel
write protection. The lower 8-bit is should always be 0. If
other value is written to these bits, correct operation cannot
be guaranteed.

7t00 — All O R/W Refresh Time
Specify the upper limit value of the refresh timer counter
(RTCNT).

9.4.8 Reset Wait Counter (RWTCNT)

RWTCNT is a 7-bit counter. This counter starts to increment by synchronizing the CKIO after a
power-on reset is released, and stops when the value reaches H'007F. External bus access is
suspended while the counter is operating. This counter is provided to minimize the time from
releasing a reset for flash memory to the first access. This register cannot be read or written to.

Rev. 1.00, 02/04, page 247 of 804
RENESANS

9.5 Operating Description

9.5.1 Endian/Access Size and Data Alignment

This LSI supports big endian, in which the 0 address is the most significant byte (MSByte) in the
byte data and little endian, in which the 0 address is the least significant byte (LSByte) in the byte
data. Endian is specified on power-on reset by the external pin (MDS5). When MDS pin is low
level on power-on reset, the endian will become big endian and when MDS pin is high level on
power-on reset, the endian will become little endian.

Two data bus widths (8 bits and 16 bits) are available for normal memory and byte-selection
SRAM. Note that the data bus width for the area 0 is fixed 16 bits. The data bus width of SDRAM
is fixed 16 bits. Data alignment is performed in accordance with the data bus width of the device
and endian. This also means that when longword data is read from a byte-width device, the read
operation must be done four times. In this LSI, data alignment and conversion of data length is
performed automatically between the respective interfaces.

Table 9.3 through 9.6 show the relationship between endian, device data width, and access unit.

Table9.3 16-Bit External Device/Big Endian Access and Data Alignment

Data Bus Strobe Signals

Operation D15 to D8 D7 to DO WE1/DQM1 WEO/DQMO
Byte access at 0 Data7to 0 — Assert —

Byte access at 1 — Data7to 0 — Assert

Byte access at 2 Data7to 0 — Assert —

Byte access at 3 — Data7t0 0 — Assert
Word access at 0 Data 15to0 8 Data 7t0 0 Assert Assert
Word access at 2 Data 15to 8 Data 7 to O Assert Assert
Longword 1sttime at 0 Data 31to 24 Data23to 16 Assert Assert
access at 0 2ndtimeat2 Data15t08 Data7to 0 Assert Assert

Rev. 1.00, 02/04, page 248 of 804
RENESANS

Table9.4 8-Bit External Device/Big Endian Access and Data Alignment

Data Bus Strobe Signals

Operation D15 to D8 D7 to DO WE1/DQM1 WEO0/DQMO
Byte access at 0 — Data 7to 0 — Assert
Byte access at 1 — Data 7to O — Assert
Byte access at 2 — Data 7to O — Assert
Byte access at 3 — Data 7to 0 — Assert
Word 1sttime at 0 — Data15t0 8 — Assert
access at 0 2nd time at 1 — Data7to 0 — Assert
Word 1sttime at 2 — Data15t0 8 — Assert
access at 2 2ndtimeat3 — Data7to 0 — Assert
Longword 1sttime at 0 — Data31to24 — Assert
access at 0 2ndtimeat1 — Data23to 16 — Assert

3rd time at 2 — Data15t0 8 — Assert

4th time at 3 — Data 7to 0 — Assert

Table9.5 16-Bit External Device/Little Endian Access and Data Alignment

Operation Data Bus Strobe Signals
D15 to D8 D7 to DO WE1/DQM1 WEO/DQMO

Byte access at 0 — Data7to 0 — Assert

Byte access at 1 Data 7to O — Assert —

Byte access at 2 — Data7to 0 — Assert

Byte access at 3 Data7to 0 — Assert —

Word access at 0 Data 15to0 8 Data 7t0 O Assert Assert
Word access at 2 Data 15to 8 Data 7 to O Assert Assert
Longword 1sttime at 0 Data 15to 8 Data 7to 0 Assert Assert
access at 0 2ndtimeat2 Data31to24 Data23to16 Assert Assert

Rev. 1.00, 02/04, page 249 of 804
RENESANS

Table9.6 8-Bit External Device/Little Endian Access and Data Alignment

Operation Data Bus Strobe Signals
D15 to D8 D7 to DO WE1/DQM1 WEO/DQMO

Byte access at 0 — Data7to 0 — Assert
Byte access at 1 — Data7to 0 — Assert
Byte access at 2 — Data7to 0 — Assert
Byte access at 3 — Data7to 0 — Assert
Word 1sttime at 0 — Data7to 0 — Assert
access at 0 2nd time at 1 — Data 15t0 8 — Assert
Word 1sttime at 2 — Data7to 0 — Assert
access at 2 2ndtimeat3 — Data 15t0 8 — Assert
Longword 1sttime at 0 — Data7to 0 — Assert
access at 0 2ndtimeat1 — Data 15t0 8 — Assert

3rd time at 2 — Data23to 16 — Assert

4th time at 3 — Data31to24 — Assert

Rev. 1.00, 02/04, page 250 of 804

RENESANS

9.5.2 Normal Space Interface

Basic Timing: For access to a normal space, this LSI uses strobe signal output in consideration of
the fact that mainly static RAM will be directly connected. When using SRAM with a byte-
selection pin, see section 9.5.7, Byte-Selection SRAM Interface. Figure 9.3 shows the basic
timings of normal space access. A no-wait normal access is completed in two cycles. The BS
signal is asserted for one cycle to indicate the start of a bus cycle.

A23 to A0 x

Read < RD \ /

1
1
|
- RDWR A\

Write

Note: * The waveform for DACK is when active low is specified.

Figure9.3 Normal Space Basic Access Timing (Access Wait 0)

Rev. 1.00, 02/04, page 251 of 804
RENESANS

There is no access size specification when reading. The correct access start address is output in the
least significant bit of the address, but since there is no access size specification, 16 bits are always
read in case of a 16-bit device, and 8 bits in case of an 8-bit device. When writing, only the WEn
signal for the byte to be written is asserted.

Reading/writing for cache fill or copy back is performed continuously in total of 16 bytes
according to the specified data bus width. During the processing, bus is not released. If a cache
miss occurs in byte or word operand access or at a branch to an odd word boundary, the CPU
performs longword accesses to perform a cache fill operation on the external interface. Writing to
the write-through area and reading/writing to the area not to be cached are performed according to
the actual access size.

It is necessary to output the data that has been read using the RD signal when a buffer is
established in the data bus. The RD/WR signal is in a read state (high output) when no access has
been carried out. Therefore, care must be taken when controlling the external data buffer, to avoid
collision.

Figures 9.4 and 9.5 show the basic timings of normal space accesses. If the WM bit of the
CSnWCR is cleared to 0, a Tnop cycle is inserted to evaluate the external wait (figure 9.4). If the
WM bit of the CSnWCR is set to 1, external waits are ignored and no Tnop cycle is inserted
(figure 9.5).

Figure 9.6 and figure 9.7 shows the examples of SRAM connection. Note that bits of external
memory address and those of this LSI address are connected shifted when using the data in
longword units (figure 9.6) and in word units (figure 9.7) since this LSI address is divided in byte
units.

Rev. 1.00, 02/04, page 252 of 804
RENESANS

™ T2 , Tnop . T T2

CKIO

A23 to AO

Write {

Note: * The waveform for DACK is when active low is specified.

Figure9.4 Continuous Accessfor Normal Space 1 Data Bus Width = 16 bits, Long-Word
Access, CSNWCR.WN Bit = 0 (Access Wait = 0, Cycle Wait = 0)

Rev. 1.00, 02/04, page 253 of 804
RENESANS

H ™ T2 T T2
T T T T T T 1

CKIO

RD
Read
D15 to DO

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1
{ WEn N L/ 0 N
. 1 1 1 1 1
Write 1 | | | | | | | |
:(o X o >
D15to DO 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
: 1 1 1 1 1 1 1 1
1 1 1 1
1 1 1 T 1 1 1 1

Note: * The waveform for DACK is when active low is specified.

Figure9.5 Continuous Accessfor Normal Space 2 Data Bus Width = 16 bits, Long-Word
Access, CSNWCR.WN Bit = 1 (Access Wait = 0, Cycle Wait = 0)

Rev. 1.00, 02/04, page 254 of 804
RENESANS

128k x 8 bits

This LSI SRAM
A7 — A6
_Al AQ.
Csn cs

RD OE
D15 107
D8 1/00
WEA WE
D7
DO A16
WEO
AQ
cs
OE
107
1/00
WE

Figure9.6 Exampleof 16-Bit Data-Width SRAM Connection

128 k x 8 bits
This LSI SRAM
A16 A16
A0 A0
CSn CS
RD OE
D7 1107
DO 1/100
WEO WE

Figure9.7 Example of 8-Bit Data-Width SRAM Connection

Rev. 1.00, 02/04, page 255 of 804
RENESANS

9.5.3 AccessWait Control

Wait cycle insertion on a normal space access can be controlled by the settings of bits WR3 to
WRO in CSnWCR. It is possible for area 4 to insert wait cycles independently in read access and
in write access. The areas other than 4 have common access wait for read cycle and write cycle.
The specified number of Tw cycles are inserted as wait cycles in a normal space access shown in
figure 9.8.

Q
P
(o]

--- -
-
>
S
-

A23 to AD X : X:
w N/
RD/WR X X:

o | ik

i

WEn : O\
Write {

T

B

Note: * The wavefdrm for DACK is When active IoW is specilfied.

Figure9.8 Wait Timing for Normal Space Access (Softwar e Wait Only)

When the WM bit in CSnWCR is cleared to 0, the external wait input WAIT signal is also
sampled. WAIT pin sampling is shown in figure 9.9. A 2-cycle wait is specified as a software
wait. The WAIT signal is sampled on the falling edge of CKIO at the transition from the T1 or Tw
cycle to the T2 cycle.

Rev. 1.00, 02/04, page 256 of 804
RENESANS

Wait states inserted
by WAIT signal

T1 Tw Tw Twx) T2

R R R R R
Read : i . 1 . o 1 , OI H
D150 D0 ————F————————____)
Write ! , ! . . ! !
D15 to DO —~ —

wa TUTTITTVITTITT

ook TN L 4 b b T

Note: * The waveform for DACK is when active low is specified.

Figure9.9 Wait State Timing for Normal Space Access (Wait State | nsertion using WAIT
Signal)

Rev. 1.00, 02/04, page 257 of 804
RENESANS

954 CSnAssert Period Expansion

The number of cycles from CSn assertion to RD, WEn assertion can be specified by setting bits
SW1 and SWO0 in CSnWCR. The number of cycles from RD, WEn negation to CSn negation can
be specified by setting bits HW1 and HWO. Therefore, a flexible interface to an external device
can be obtained. Figure 9.10 shows an example. A Th cycle and a Tf cycle are added before and
after an ordinary cycle, respectively. In these cycles, RD and WEn are not asserted, while other
signals are asserted. The data output is prolonged to the Tf cycle, and this prolongation is useful
for devices with slow writing operations.

Th T T2 Tf
el
| | | | | | | | |

| | | |

O‘
»
=1

RD
Read
D15 to DO

S

|
T
|
|
DACKn* | \ b
|

Note: * The waveform for DACK is when active low is specified.

Figure9.10 CSn Assert Period Expansion

Rev. 1.00, 02/04, page 258 of 804
RENESANS

955 SDRAM Interface

SDRAM Direct Connection: The SDRAM that can be connected to this LSI is a product that has
11/12/13 bits of row address, 8/9/10 bits of column address, 4 or less banks, and uses the A10 pin
for setting precharge mode in read and write command cycles. The control signals for direct
connection of SDRAM are RAS, CAS, RD/WR, DQM1, DQMO0, CKEand CS3. All the signals
other than CS3 are common to all areas, and signals other than CKE are valid when CS3 is
asserted. The data bus width of the area that is connected to SDRAM should be set to16 bits.

Burst read/single write (burst length 1) and burst read/burst write (burst length 1) are supported as
the SDRAM operating mode.

Comma