VIINDATURE CRYSTA

CX-6V-SM 800kHz to 1.35MHz

ULTRA-LOW PROFILE MINIATURE SMD CRYSTAL **Page** 1 of 2

+44(0)1460 230000 Telephone: +44(0)1460 230001 Email: sales@euroquartz.co.uk Web: www.euroquartz.co.uk

Ultra-low profile (1mm)

- Extensional mode
- Ideal for use with microprocessors
- Designed for low power applications
- Compatible with hybrid or PCB packaging
- Low ageing

Frequency Range: Functional Mode:

- Full military environmental testing available
- Ideal for battery operated applications

General Description

The CX-6-SM quartz crystals are leadless devices designed for surface mounting on printed circuit boards or hybrid substrates. The crystals are intended for use in Pierce oscillators. Hermetically sealed in a miniature ceramic package, the crystals are produced utilizing a photo-lithographic process ensuring consistent high quality production units.

CX-6-SM Package Dimensions

Dimension	Typical (mm)	Maximum (mm)
Α	6.73	7.11
В	2.62	2.90
С	-	see below
D	1.27	1.52

Dimension "C"	Glass Lid (mm max.)	Ceramic Lid (mm max.)
SM1	0.99	1.35
SM2	1.04	1.40
SM3	1.12	1.47

A ±0.05% (±500ppm **Calibration Tolerance*:** $B \pm 0.1\%$

 $C \pm 1.0\%$

Extensional

800kHz to 1.35MHz

Specification

Load Capacitance: 7pF Motional Resistance (R₁): $5k\Omega$ max. Motional Capacitance (C1): 1.2fF Quality Factor (Q): 150k Shunt Capacitance (C₀): 1.0pF **Drive Level:** $3\mu W$ max. Turning Point (T₀)**: 35°C

Temperature Coefficient (k): -0.035ppm/°C2

Note: frequency (f) deviation from frequency (f0) at turning point

 $\frac{f-fo}{} = k(T-To)^2$ temperature =

Ageing, first year: ±5ppm max.

Shock, survival: 1000g peak, 0.3ms, $\frac{1}{2}$ sine 10g rms 20-1,000Hz random Vibration, survival: **Operating Temperature:** -10°~+70°C (commercial) -40°~+85°C (industrial)

 -55° ~ $+125^{\circ}$ C (military)

-55°C~+125°C Storage Temperature: 260°C for 20 sec. **Process Temperature:**

Specifications are typical at 25°C unless otherwise indicated.

- Closer calibration available
- Other Turning Point available

Equivalent Circuit

R₁ Motional Resistance L₁ Motional Inductance

C₁ Motional Capacitance C₀ Shunt Capacitance

CX MINIATURE CRYSTALS

CX-6V-SM 800kHz to 1.35MHz

ULTRA-LOW PROFILE MINIATURE SMD GRYSTAL Page 2 of 2

Telephone: +44(0)1460 230000 Fax: +44(0)1460 230001 Email: sales@euroquartz.co.uk

Web: www.euroquartz.co.uk

Conventional HCMOS Pierce Oscillator Circuit

Circuit Design

Typical Pierce Oscillator Application

The low profile CX miniature surface-mount crystal is ideal for small, battery operated portable products. The CX crystal designed in a Pierce oscillator (single inverter) circuit has a very low current consumption with high stability. A conventional HCMOS Pierce oscillator circuit is shown below. The crystal is effectively inductive and in a Pi network with C_1 and C_2 which provides the additional phase-shift necessary to sustain oscillation. The oscillation frequency (f_0) is 15ppm to 150ppm above the crystal's series resonant frequency (F_0).

Drive Level

 $R_{_{A}}$ is used to limit the crystal's drive level by forming a voltage divider between $R_{_{A}}$ and $C_{_{1}}$. $R_{_{A}}$ also stabilizes the oscillator against changes in the amplifiers output resistance ($R_{_{0}}$). $R_{_{A}}$ should be increased for higher voltage operation.

Load Capacitance

The CX crystal calibration tolerance is influenced by the effective circuit capacitances, specified as the load capacitance (C_L.) C_L is approximately equal to: $C_L = \frac{C_1 \times C_2}{C_1 + C_2} + C_S$

NOTE: C_1 and C_2 include stray layout capacitance to ground. C_s is the stray shunt capacitance between the crystal terminals. In practice, the effective valus of C_L will be less than that calculated from C_1 , C_2 , and CS values due to the effect of the amplifier output resistance. C_s should be minimized.

The oscillation frequency (f_o) is approximately equal to:

$$f_0 = f_S \left[1 + \frac{C_1}{2(C_0 + C_L)} \right]$$

Where F_s = Series resonant frequency of the crystal

C₁ = Motional Capacitance C₀ = Shunt Capacitance

Solder Pad Layout

Terminations

Designation	Termination
SM1	Gold Plated
SM2	Nickel, Solder Plated
SM3	Nickel, Solder Plated and Solder Dipped

Packaging

CX-6V-SM- Tray Pack (Standard)

16mm tape, 178mm or 330mm reels

(Optional) per EIA 481

Order Code

