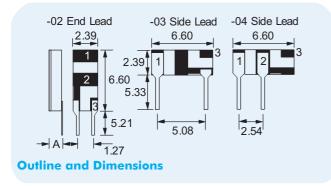
CX MINIATURE CRYSTALS

CX-2 760kHz to 1.35MHz

Page 1 of 2

MINIATURE QUARTZ GRYSTAL

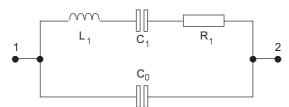
EURO QUARTZ


Telephone: +44(0)1460 230000 Fax: +44(0)1460 230001 Email: sales@euroquartz.co.uk Web: www.euroquartz.co.uk

Extensional mode

- Ideal for use with microprocessors
- Designed for low-power applications
- Compatible with hybrid or PCB
- Low ageing
- Ideal for battery powered applications
- Full military environmental testing available

General Description


The CX-2 quartz crystal is a high quality extensional mode resonator. The CX-2 is hermetically sealed in a rugged, miniature ceramic package, a quarter the size of an eight pin dual-in-line package. The crystal is manufactured utilizing a photo-lithographic process, ensuring consistency and repeatability of electrical characteristics.

Notes:

- 1. Terminal 1 is electrically connected to terminal 3.
- 2. Lead Dimensions: width 0.33mm typical, thickness 0.18mm.
- 3. A = Glass Lid 2.03mm max. Ceramic Lid - 2.41mm max.

Equivalent Circuit

 $egin{array}{lll} R_1 & \mbox{Motional Resistance} & L_1 & \mbox{Motional Inductance} \\ C_1 & \mbox{Motional Capacitance} & C_0 & \mbox{Shunt Capacitance} \\ \end{array}$

Specification

Frequency Range: 760kHz to 1.35MHz
Functional Mode: Extensional

Calibration Tolerance*: A $\pm 0.05\%$ (± 50 ppm)

B ±0.1% C ±1.0%

Temperature Coefficient (k): -0.035ppm/°C²

Note: frequency (f) deviation from frequency (fo) @ turning point

temperature (To): $\frac{f-fo}{f} = k(T-To)^2$

 $\frac{100}{100} = K(1-10)$

Ageing, first year: ± 5 ppm max.

Shock, survival: $1,000g\ 0.3$ ms, $\frac{1}{2}$ sine

Vibration, survival: $10g\ rms\ 20 - 1,000$ Hz

Operating Temperature: $-10^{\circ} \sim +70^{\circ} C\ (commercial)$

-40°~+70°C (commercia -40°~+85°C (industrial) -55°~+125°C (military) -55°C~+125°C

Storage Temperature: $-55^{\circ}\text{C} \sim +125^{\circ}\text{C}$

Process Temperature: Lead to Package temp. not to

exceed 175°C

Glass lid to package seal rim temp. not to exceed 210°C

Specifications are typical at 25°C unless otherwise indicated.

- Closer calibration available
- ** Other turning point available

CX MINIATURE CRYSTALS

CX-2 760kHz to 1.35MHz

Page 2 of 2

MINIATURE QUARTZ GRYSTAL Telephone: +44(0)1460 230000 Fax: +44(0)1460 230001 Email: sales@euroquartz.co.uk Web: www.euroquartz.co.uk

Typical Application

Typical application for Pierce oscillator

The low-profile CX miniature leaded crystal is ideal for small, high density, battery operated portable products. A CX crystal incorporated into a Pierce oscillator (single inverter) circuit provides a high stability with low current consumption. A conventional HCMOS Pierce oscillator circuit is shown below. The crystal is effectively inductive and in a Pi-network circuit with C_1 and C_2 providing the additional phase shift necessary to sustain oscillation. The oscillation frequency $\{f_0\}$ is 15 to 150ppm above the crystals series resonant frequency $\{f_0\}$.

Drive Level

 $R_{_{A}}$ is used to limit the crystal's drive level by forming a voltage divider between $R_{_{A}}$ and $C_{_{1}}$. $R_{_{A}}$ also stabilizes the oscillator against changes in the amplifier's output resistance $(R_{_{0}})$. $R_{_{A}}$ should be increased for higher voltage operation.

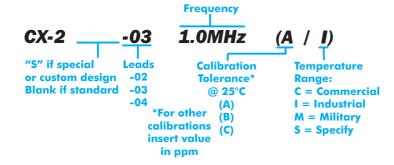
Load Capacitance

The CX crystal calibration tolerance is influenced by the effective circuit capacitances, specified as the load capacitance (C_t) . C_t is approximately equal to:

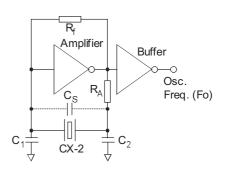
$$C_{L} = \frac{C_{1} \times C_{2}}{C_{1} + C_{2}} + C_{S}$$

NOTE: C_1 and C_2 include stray layout capacitance to ground. C_s is the stray shunt capacitance between the crystal terminals. In practice, the effective valus of C_1 will be less than that calculated from C_1 , C_2 , and CS values due to the effect of the amplifier output resistance. C_s should be minimized.

The oscillation frequency $(f_{\scriptscriptstyle 0})$ is approximately equal to:


$$f_0 = f_S \left[1 + \frac{C_1}{2(C_0 + C_L)} \right]$$

Where F_s = Series resonant frequency of the crystal


C, = Motional Capacitance

C_o = Shunt Capacitance

Order Code

Conventional HCMOS Pierce Oscillator Circuit

Packaging

CX-2-Leaded - Tray Pack (Standard)