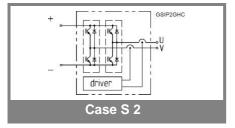

SKiiP 292GH170-273CTV ...

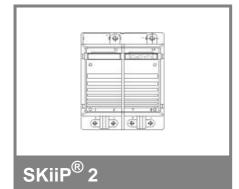
4-pack - integrated intelligent Power System

Power section


SKiiP 292GH170-273CTV

Features

- SKiiP technology inside
- Low loss IGBTs
- · CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 2 System)
- IEC 68T.1 (climate) 40/125/56 (SKiiP[®] 2 power section)
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)


Absolute	Maximum Ratings	s = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V_{CES}		1700	V			
V _{CES} V _{CC} 1)	Operating DC link voltage	1200	V			
V_{GES}		± 20	V			
I _C	T _s = 25 (70) °C	250 (187,5)	Α			
Inverse diode						
I _F = - I _C	T _s = 25 (70) °C	250 (187,5)	Α			
I _{FSM}	$T_{i} = 150 ^{\circ}\text{C}, t_{p} = 10 \text{ms}; \text{sin}.$	2160	Α			
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	23	kA²s			
T _j , (T _{stg})		- 40 (- 25) + 150 (125)	°C			
V _{isol}	AC, 1 min. (mainterminals to heat sink)	4000	V			

Characteristics $T_s =$						°C unless	otherwise	specified	
Symbol	Conditi	ons			min.	typ.	max.	Units	
IGBT									
V_{CEsat}	$I_{\rm C} = 200 A$	A, T _i = 25 (1	25) °C			3,3 (4,3)	3,9	V	
V _{CEO}	$T_i = 25 (1)$	25) [°] °C				1,7 (2)	2 (2,3)	V	
r_{CE}	$T_{j} = 25 (1)$	25) °C				8,1 (11,7)	9,6 (13,2)	mΩ	
I _{CES}	$V_{GE} = 0 V$, V _{CE} = V _{CE}	s,			(15)	1	mA	
	$T_i = 25 (1)$	25) °C							
E _{on} + E _{off}	I _C = 200 A	A, V _{CC} = 900) V				173	mJ	
	$T_j = 125$ °	C, V _{CC} = 12	200 V				254	mJ	
R _{CC' + EE'}	terminal c	hip, T _i = 12	5 °C			0,5		mΩ	
L _{CE}	top, botto					15		nH	
C _{CHC}	per phase	e, AC-side				0,8		nF	
Inverse diode									
$V_F = V_{EC}$	I _F = 200 A	A, T _j = 25 (12	25) °C			2,3 (2,1)	2,9	V	
V_{TO}	$T_j = 25 (1)$					1,3 (1)	,	V	
r _T	$T_{j} = 25 (1)$					5 (5,6)	6,3 (7)	mΩ	
E _{rr}	_	$V_{CC} = 900$					21	mJ	
	J	C, V _{CC} = 12	200 V				25	mJ	
Mechani	cal data								
M _{dc}		nals, SI Unit			6		8	Nm	
M _{ac}	AC terminals, SI Units				13	4.0	15	Nm	
W	SKiiP® 2 System w/o heat sink					1,9		kg	
W	heat sink					4,7		kg	
			P16 hea	at sink; 3°	10m³/h)	; " _r " refer	ence to		
temperat		sor			ı		0.00	14004	
R _{th(j-s)I}	per IGBT						0,08	K/W K/W	
R _{th(j-s)D}	per diode						0,267		
R _{th(s-a)}	per modu						0,044	K/W	
Z_{th}) (max. valu		4	l 4	tau 2	_i (s) 3	4	
7	9	2 62	3 10	4	1 1	2 0,13	3 0,001	4	
$Z_{\text{th(j-r)I}}$	29	205	32		1	0,13	0,001		
Z _{th(j-r)D}	14,2	19,3	6,8	3,7	262	50	5	0,02	
$Z_{th(r-a)}$	14,2	19,3	0,0	3,1	202	50	Э	0,0∠	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

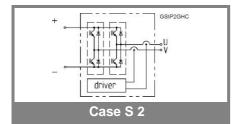
SKiiP 292GH170-273CTV ...

4-pack - integrated intelligent Power System

4-pack integrated gate driver

SKiiP 292GH170-273CTV

Gate driver features


- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- · Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 68T.1 (climate) 25/85/56 (SKiiP[®] 2 gate driver)

Absolute Maximum Ratings					
Symbol	Conditions	Values	Units		
V_{S1}	stabilized 15 V power supply	18	V		
V_{S2}	unstabilized 24 V power supply	30	V		
V_{iH}	input signal voltage (high)	15 + 0,3	V		
dv/dt	secondary to primary side	75	kV/μs		
V_{isollO}	input / output (AC, r.m.s., 2s)	4000	Vac		
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac		
f_{max}	switching frequency	20	kHz		
$T_{op} (T_{stg})$	operating / storage temperature	- 25 + 85	°C		

Characte	eristics	(T _a = 25 °C)			= 25 °C)
Symbol	Conditions	min.	typ.	max.	Units
V_{S1}	supply voltage stabilized	14,4	15	15,6	V
V_{S2}	supply voltage non stabilized	20	24	30	V
I _{S1}	V _{S1} = 15 V	230+360	230+360*f/f _{max} +1,3*(I _{AC} /A)		
I _{S2}	V _{S2} = 24 V	170+250	170+250*f/f _{max} +1,0*(I _{AC} /A)		
V _{iT+}	input threshold voltage (High)	11,2			V
V_{iT-}	input threshold voltage (Low)			5,4	V
R _{IN}	input resistance		10		kΩ
t _{d(on)IO}	input-output turn-on propagation time		1,2		μs
t _{d(off)IO}	input-output turn-off propagation time		3		μs
tpERRRESET	error memory reset time	9			μs
t _{TD}	top / bottom switch : interlock time		2,3		μs
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage		250		Α
I _{Vs1outmax}	(available when supplied with 24 V)			50	mA
I _{A0max}	output current at pin 15/16/18/19			5	mA
V _{0I}	logic low output voltage			0,6	V
V _{0H}	logic high output voltage			30	V
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)		313		Α
I _{TRIPLG}	ground fault protection		72		Α
T _{tp}	over temperature protection	110		120	°C
U _{DCTRIP}	trip level of U _{DC} -protection	1200			V
	(U _{analog OUT} = 9 V); (option)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

