EM78P341/2/3N

8-Bit Microprocessor with OTP ROM

Product Specification

ELAN MICROELECTRONICS CORP. December 2006

Trademark Acknowledgments: IBM is a registered trademark and PS/2 is a trademark of IBM. Windows is a trademark of Microsoft Corporation. ELAN and ELAN logo *multical are trademarks of ELAN Microelectronics Corporation*.

Copyright © 2005 by ELAN Microelectronics Corporation All Rights Reserved Printed in Taiwan

The contents of this specification are subject to change without further notice. ELAN Microelectronics assumes no responsibility concerning the accuracy, adequacy, or completeness of this specification. ELAN Microelectronics makes no commitment to update, or to keep current the information and material contained in this specification. Such information and material may change to conform to each confirmed order.

In no event shall ELAN Microelectronics be made responsible for any claims attributed to errors, omissions, or other inaccuracies in the information or material contained in this specification. ELAN Microelectronics shall not be liable for direct, indirect, special incidental, or consequential damages arising from the use of such information or material.

The software (if any) described in this specification is furnished under a license or nondisclosure agreement, and may be used or copied only in accordance with the terms of such agreement.

ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of ELAN Microelectronics product in such applications is not supported and is prohibited. NO PART OF THIS SPECIFICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS WITHOUT THE EXPRESSED WRITTEN PERMISSION OF ELAN MICROELECTRONICS.

ELAN MICROELECTRONICS CORPORATION

Headquarters:

No. 12. Innovation Road 1 Hsinchu Science Park Hsinchu, TAIWAN 30077 Tel: +886 3 563-9977 Fax: +886 3 563-9966 http://www.emc.com.tw

Europe:

Elan Microelectronics Corp. (Europe)

Siewerdtstrasse 105 8050 Zurich, SWITZERLAND Tel: +41 43 299-4060 Fax: +41 43 299-4079 http://www.elan-europe.com

Hong Kong: Elan (HK) Microelectronics Corporation, Ltd.

Flat A, 19F., World Tech Centre 95 How Ming Street, Kwun Tong Kowloon, HONG KONG Tel: +852 2723-3376 Fax: +852 2723-7780 elanhk@emc.com.hk

Shenzhen:

Elan Microelectronics Shenzhen, Ltd.

Shenzhen Hi-Tech Industrial Park Shenzhen, Guandong, CHINA Tel: +86 755 2601-0565 Fax: +86 755 2601-0500

USA:

Elan Information Technology Group (U.S.A.)

1821 Saratoga Ave., Suite 250 Saratoga, CA 95070 U.S.A. Tel: +1 408 366-8225 Fax: +1 408 366-8220

Shanghai:

Elan Microelectronics Shanghai, Ltd.

SSMEC Bldg., 3F, Gaoxin S. Ave. 23/Bldg. #115 Lane 572, Bibo Road Zhangjiang Hi-Tech Park Shanghai, CHINA Tel: +86 21 5080-3866 Fax: +86 21 5080-4600

Contents

1	Gen	eral De	scription	3
2	Feat	ures		3
3	Pin /	Assignr	nent	4
4	Fun	ctional	Block Diagram	5
5	Pin	Descrip	tion	6
	5.1	EM78F	P341NP/M	6
	5.2	EM78F	P342NP/M	7
	5.3		P343NP/M/KM	
6			escription	
•	6.1		ional Registers	
	0.1	6.1.1	R0 (Indirect Address Register)	
		6.1.2	R1 (Time Clock /Counter)	
		6.1.3	R2 (Program Counter) and Stack	
			6.1.3.1 Data Memory Configuration	
		6.1.4	R3 (Status Register)	
		6.1.5	R4 (RAM Select Register)	
		6.1.6	R5 ~ R6 (Port 5 ~ Port 6)	
		6.1.7	R7 (Port 7)	. 13
		6.1.8	R8 (AISR: ADC Input Select Register)	. 14
		6.1.9	R9 (ADCON: ADC Control Register)	. 15
			RA (ADOC: ADC Offset Calibration Register)	
			RB (ADDATA: Converted Value of ADC)	
			RC (ADDATA1H: Converted Value of ADC)	
			RD (ADDATA1L: Converted Value of ADC)	
			RE (Interrupt Status 2 & Wake-up Control Register)	
			RF (Interrupt Status 2 Register)	
			R10 ~ R3F	
	6.2	-	I Purpose Registers	
			A (Accumulator)	
			CONT (Control Register)	
		6.2.3	IOC50 ~ IOC70 (I/O Port Control Register)	
		6.2.4	IOC80 (Comparator and TCCA Control Register)	
		6.2.5	IOC90 (TCCB and TCCC Control Register)	
		6.2.6	IOCA0 (IR and TCCC Scale Control Register)	
		6.2.7	IOCB0 (Pull-Down Control Register)	
		6.2.8	IOCC0 (Open-Drain Control Register)	
		6.2.9	IOCD0 (Pull-high Control Register)	25

	6.2.10	IOCE0 (WDT Control & Interrupt Mask Registers 2)	25							
	6.2.11	IOCF0 (Interrupt Mask Register)	26							
	6.2.12	IOC51 (TCCA Counter)	27							
	6.2.13	6.2.13 IOC61 (TCCB Counter)								
	6.2.14	IOC71 (TCCBH/MSB Counter)	28							
	6.2.15	IOC81 (TCCC Counter)	28							
	6.2.16	IOC91 (Low-Time Register)	29							
	6.2.17	IOCA1 (High Time Register)	29							
	6.2.18	IOCB1 High/Low Time Scale Control Register)	29							
	6.2.19	IOCC1 (TCC Prescaler Counter)	30							
	6.2.20	IOCD1 (LVD Control Register)	31							
	6.2.21	IOCE1 (Output Sink Select Control Register)	32							
	6.2.21	IOCF1 (Pull-high Control Register)	33							
6.3	TCC/V	VDT and Prescaler	. 33							
6.4	I/O Po	rts	35							
	6.4.1	Usage of Port 5 Input Change Wake-up/Interrupt Function	37							
6.5	Reset	and Wake-up	37							
	6.5.1	Reset and Wake-up Operation	37							
		6.5.1.1 Wake-up and Interrupt Modes Operation Summary	40							
		6.5.1.2 Register Initial Values after Reset	46							
		6.5.1.3 Controller Reset Block Diagram	51							
	6.5.2	The T and P Status under Status (R3) Register	51							
6.6	Interru	pt	52							
6.7	Analog	g-To-Digital Converter (ADC)	55							
	6.7.1	ADC Control Register (AISR/R8, ADCON/R9, ADOC/RA)	55							
		6.7.1.1 R8 (AISR: ADC Input Select Register)	55							
		6.7.1.2 R9 (ADCON: AD Control Register)	56							
		6.7.1.3 RA (ADOC: AD Offset Calibration Register)	57							
	6.7.3	ADC Sampling Time	58							
	6.7.4	AD Conversion Time	58							
	6.7.5	ADC Operation during Sleep Mode	59							
	6.7.6	Programming Process/Considerations	59							
		6.7.6.1 Programming Process	59							
		6.7.6.2 Sample Demo Programs	60							
6.8	Infrare	d Remote Control Application/PWM Waveform Generation	. 62							
	6.8.1	Overview	62							
	6.8.2	Function Description	63							
	6.8.3	Programming the Related Registers	65							
6.9	Timer/	Counter	. 66							
	6.9.1	Overview	66							
	6.9.2	Function Description	66							
	6.9.3	Programming the Related Registers	68							

	6.10 Comparator	68
	6.10.1 External Reference Signal	69
	6.10.2 Comparator Outputs	69
	6.10.3 Using a Comparator as an Operation Amplifier	70
	6.10.4 Comparator Interrupt	70
	6.10.5 Wake-up from Sleep Mode	70
	6.11 Oscillator	71
	6.11.1 Oscillator Modes	71
	6.11.2 Crystal Oscillator/Ceramic Resonators (Crystal)	71
	6.11.3 External RC Oscillator Mode	
	6.11.4 Internal RC Oscillator Mode	
	6.12 Power-on Considerations	75
	6.12.1 Programmable WDT Time-out Period	75
	6.12.2 External Power-on Reset Circuit	
	6.12.3 Residual Voltage Protection	76
	6.13 Code Option	
	6.13.1 Code Option Register (Word 0)	
	6.13.2 Code Option Register (Word 1)	
	6.13.3 Customer ID Register (Word 2)	
	6.14 Low Voltage Detector	80
	6.14.1 Low Voltage Reset	
	6.14.2 Low Voltage Detector	
	6.14.2.1 IOCD1 (LVD Control Register)	
	6.14.2.2 RE (Interrupt Status 2 & Wake-up Control Register)	
	6.14.3 Programming Process	
	6.15 Instruction Set	83
7	Absolute Maximum Ratings	85
8	DC Electrical Characteristics	85
	8.1 AD Converter Characteristics	86
	8.2 Comparator (OP) Characteristics	
	8.3 Device Characteristics	
•		
9	AC Electrical Characteristic	
10	Timing Diagrams	90

APPENDIX

Α.	Pac	kage Type	91
в		kaging Configuration	
		14-Lead Plastic Dual in line (PDIP) — 300 mil	
	B.2	14-Lead Plastic Small Outline (SOP) — 150 mil	
	B.3	18-Lead Plastic Dual in line (PDIP) — 300 mil	91
	B.4	18-Lead Plastic Small Outline (SOP) — 300 mil	
	B.5	20-Lead Plastic Shrink Small Outline (SSOP) — 209 mil	
	B.6	20-Lead Plastic Dual-in-line (PDIP) — 300 mil	94
	B.7	20-Lead Plastic Small Outline (SOPP) — 300 mil	
С	Qua	lity Assurance and Reliability	96
	C.1	Address Trap Detect	

Specification Revision History

Specification Revision History							
Doc. Version	Revision Description	Date					
1.0	Initial released version	2006/12/01					

1 General Description

The EM78P341N, EM78P342N and EM78P343N are 8-bit microprocessors designed and developed with low-power and high-speed CMOS technology. The series have an on-chip 2K×13-bit Electrical One Time Programmable Read Only Memory (OTP-ROM). It provides a protection bit to prevent intrusion of user's OTP memory code. Three Code option bits are also available to meet user's requirements.

With enhanced OTP-ROM features, the EM78P341N, EM78P342N and EM78P343N provide a convenient way of developing and verifying user's programs. Moreover, this OTP device offers the advantages of easy and effective program updates, using development and programming tools. User can avail of the ELAN Writer to easily program his development code.

2 Features

- CPU configuration
 - 2K×13 bits on chip ROM
 - 80×8 bits on chip registers (SRAM)
 - 8 level stacks for subroutine nesting
 - 4 programmable Level Voltage Detector (LVD) : 4.5V, 4.0V, 3.3V, 2.2V
 - 4 programmable Level Voltage Reset (LVR) : 4.0V, 3.5V, 2.7V, 1.8V (POR)
 - Less than 1.5 mA at 5V/4MHz
 - Typically 15 μA, at 3V/32kHz
 - Typically 1 µA, during sleep mode
- I/O port configuration
 - Three bidirectional I/O ports : P5, P6, P7
 - 18 I/O pins
 - Wake-up port : P5
 - 8 Programmable pull-down I/O pins
 - 16 programmable pull-high I/O pins
 - 8 Programmable open-drain I/O pins
 - External interrupt : P60
- Operating voltage range:
 - Commercial version: Operating voltage range: 1.9V~5.5V
 - Industrial version: Operating voltage range: 2.1V~5.5V
 - Operating temperature range: -40~85°C
 - Commercial version: Operating voltage range: 0°C ~ 70°C
 - Industrial version:
 Operating voltage range: -40°C ~ 85°C
- Operating frequency range: Main clock
 - Crystal mode: DC ~ 20MHz/2clks @ 4V; DC ~16 MHz/2clks @ 3V DC ~ 4MHz/2clks @ 1.9V
 - ERC mode: DC ~ 4MHz/2clks @ 5V; DC ~ 4MHz/2clks @ 3V DC ~ 8MHz/2clks @ 3V; DC ~ 250ns inst. cycle @ 3V

- IRC mode: Oscillation mode : 4MHz, 16MHz, 1MHz, 455kHz Process deviation : Typ±3%, Max±5% Temperature deviation : ±10% (-40°C~85°C)
- Peripheral configuration
 - Easily implemented IR (or infrared remote control)
 - 8-bit real time clock/counter (TCC) with selective signal sources, trigger edges, and overflow interrupt
 - 8-bit real time clock/counter (TCCA, TCCC) and 16-bit real time clock/counter (TCCB) with selective signal sources, trigger edges, and overflow interrupt
 - 8-bit channels Analog-to-Digital Converter with 12-bit resolution
 - One pair of comparators or OP
- Seven available interrupts:
 - TCC, TCCA, TCCB, TCCC overflow interrupt
 - Input-port status changed interrupt (wake-up from sleep mode)
 - External interrupt
 - ADC completion interrupt
 - IR/PWM interrupt
 - Comparator status change interrupt
 - Low voltage detect (LVD) interrupt
- Special features
 - Programmable free running watchdog timer (4.5ms:18ms)
 - Power saving Sleep mode
 - Selectable Oscillation mode
 - Power-on voltage detector available (1.7 V± 0.1V)
- Package type:
 - 14-pin DIP 300mil : EM78P341NP
 - 14-pin SOP 150mil : EM78P341NM
 - 18-pin DIP 300mil : EM78P342NP
 - 18-pin SOP 300mil : EM78
 - 18-pin SOP 300mil : EM78P342NM
 20-pin DIP 300mil : EM78P343NP
 - 20-pin DIP 300mil : EM78P343NP
 20-pin SOP 300mil : EM78P343NM
 - 20-pin SOP 300mil : EM78P343NM
 - 20-pin SSOP 209mil : EM78P343NKM

3 Pin Assignment

(1) 14-Pin DIP/SOP

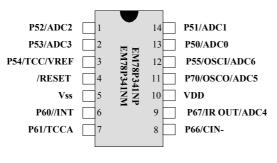
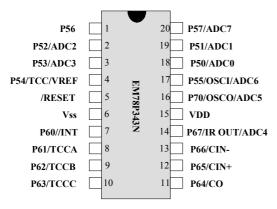
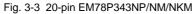
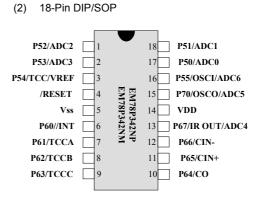
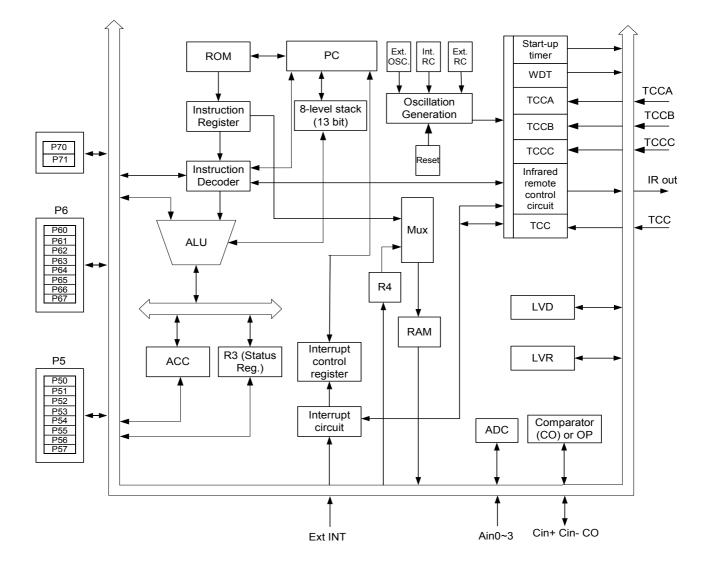
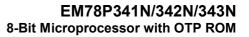





Fig. 3-1 14-pin EM78P341NP/NM

(3) 20-Pin DIP/SOP/SSOP

4 Functional Block Diagram




Fig. 4-1 EM78P341N/342N/343N Functional Block Diagram

5 Pin Description

5.1 EM78P341NP/M

Symbol	Pin No.	Туре	Function
P50~P55	1~3, 12~14	I/O	6-bit General purpose input/output pins Pull-high/pull-down Wake up from sleep mode when the pin status changes Default value at power-on reset
P60, P61 66, 67	6~9	I/O	4-bit General purpose input/output pins Open drain Default value at power-on reset
P70~P71	11, 4	I/O	2-bit General purpose input/output pins Default value at power-on reset
/INT	6	Ι	External interrupt pin triggered by a falling or a rising edge. Defined by CONT <7>
ADC0~ADC6	1, 2, 9 11~14	Ι	7-bit Analog-to-Digital Converter Defined by ADCON (R9)<1:0>
VREF	3	Ι	External reference voltage for ADC Defined by ADCON (R9) <7>.
/RESET	4	I	General-purpose Input only If it remains at logic low, the device will be reset Wake-up from sleep mode when pin status changes Voltage on /RESET must not exceed Vdd during normal mode
TCC, TCCA	3, 7	I	External Counter input TCC defined by CONT<5> TCCA defined by IOC80 <1>
OSCI	12	I	Crystal type: Crystal input terminal or external clock input pin RC type: RC oscillator input pin
OSCO	11	0	Crystal type: Output terminal for crystal oscillator or external clock input pin. RC type: Clock output with a duration of one instruction cycle time. The prescaler is determined by the CONT register. External clock signal input.
IR OUT	13	0	IR mode output pin. Driving current = 10mA when the output voltage drops to Vdd-0.5V at Vdd = 5V Sinking current = 15mA when the output voltage drops to GND+0.5V at Vdd = 5V
VDD	10	_	Power supply
VSS	5	_	Ground

5.2 EM78P342NP/M

Symbol	Pin No.	Туре	Function
P50~P55	1~3, 16~18	I/O	6-bit General purpose input/output pins Pull-high/pull-down Wake up from sleep mode when the pin status changes Default value at power-on reset
P60~67	6~13	I/O	8-bit General purpose input/output pins Open drain Default value at power-on reset
P70~P71	15, 4	I/O	2-bit General purpose input/output pins Default value at power-on reset
/INT	6	I	External interrupt pin triggered by a falling or a rising edge. Defined by CONT <7>
ADC0~ADC6	1, 2, 13 15~18	I	7-bit Analog-to-Digital Converter Defined by ADCON (R9)<1:0>
VREF	3	I	External reference voltage for ADC Defined by ADCON (R9) <7>.
CIN- CIN+ CO	12 11 10	 0	"-" : the input pin of Vin- of the comparator "+" : the input pin of Vin+ of the comparator Pin CO is the comparator output Defined by IOC80 <4:3>
/RESET	4	I	General-purpose Input only If it remains at logic low, the device will be reset Wake-up from sleep mode when pin status changes Voltage on /RESET must not exceed Vdd during normal mode
TCC, TCCA TCCB, TCCC	3, 7 8~9	I	External Counter input TCC defined by CONT<5> TCCA defined by IOC80 <1> TCCB defined by IOC90 <5> TCCC defined by IOC90 <1>
OSCI	16	I	Crystal type: Crystal input terminal or external clock input pin RC type: RC oscillator input pin
osco	15	0	Crystal type: Output terminal for crystal oscillator or external clock input pin. RC type: Clock output with a duration of one instruction cycle time. The prescaler is determined by the CONT register. External clock signal input.
IR OUT	13	0	IR mode output pin. Capable of driving and sinking current = 20mA when the output voltage drops to 0.7Vdd at rise to 0.3Vdd at Vdd = 5V
VDD	14	Ι	Power supply
VSS	5	_	Ground

5.3 EM78P343NP/M/KM

Symbol	Pin No.	Туре	Function
P50~P57	1~4, 17~20	I/O	8-bit General purpose input/output pins Pull-high/pull-down Wake up from sleep mode when the pin status changes Default value at power-on reset
P60~67	7~14	I/O	8-bit General purpose input/output pins Open drain Default value at power-on reset
P70~P71	16, 5	I/O	2-bit General purpose input/output pins Default value at power-on reset
/INT	7	I	External interrupt pin triggered by a falling or a rising edge. Defined by CONT <7>
ADC0~ADC7	2, 3, 14 16~20	I	8-bit Analog-to-Digital Converter Defined by ADCON (R9) <2:0>
VREF	4	I	External reference voltage for ADC Defined by ADCON (R9) <7>.
CIN- CIN+ CO	13 12 11	 0	"-" : the input pin of Vin- of the comparator "+" : the input pin of Vin+ of the comparator Pin CO is the comparator output Defined by IOC80 <4:3>
/RESET	5	I	General-purpose Input only If it remains at logic low, the device will be reset Wake-up from sleep mode when pin status changes Voltage on /RESET must not exceed Vdd during normal mode
TCC, TCCA TCCB, TCCC	4, 8 9~10	I	External Counter input TCC defined by CONT<5> TCCA defined by IOC80 <1> TCCB defined by IOC90 <5> TCCC defined by IOC90 <1>
OSCI	17	I	Crystal type: Crystal input terminal or external clock input pin RC type: RC oscillator input pin
OSCO	16	0	Crystal type: Output terminal for crystal oscillator or external clock input pin. RC type: Clock output with a duration of one instruction cycle time. The prescaler is determined by the CONT register. External clock signal input.
IR OUT	14	0	IR mode output pin. Capable of driving and sinking current = 20mA when the output voltage drops to 0.7Vdd at rise to 0.3Vdd at Vdd = 5V
VDD	15	-	Power supply
VSS	6	-	Ground

6 Function Description

6.1 Operational Registers

6.1.1 R0 (Indirect Address Register)

R0 is not a physically implemented register. Its major function is to perform as an indirect address pointer. Any instruction using R0 as a pointer, actually accesses the data pointed by the RAM Select Register (R4).

6.1.2 R1 (Time Clock /Counter)

- Incremented by an external signal edge which is defined by the TE bit (CONT-4) through the TCC pin, or by the instruction cycle clock.
- Writable and readable as any other registers
- The TCC prescaler counter (IOCC1) is assigned to TCC
- The contents of the IOCC1 register is cleared whenever
 - a value is written to the TCC register.
 - a value is written to the TCC prescaler bits (Bits 3, 2, 1, 0 of the CONT register)
 - there is power-on reset, /RESET, or WDT time out reset.

6.1.3 R2 (Program Counter) and Stack

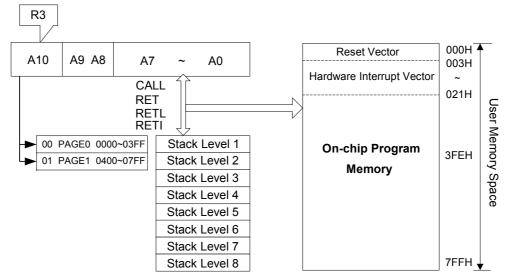


Fig. 6-1 Program Counter Organization

- R2 and hardware stacks are 11-bit wide. The structure is depicted in the table under Section 6.1.3.1, *Data Memory Configuration* (next page).
- Generates 2K×13 bits on-chip ROM addresses to the relative programming instruction codes. One program page is 1024 words long.
- The contents of R2 are all set to "0"s when a RESET condition occurs.

- "JMP" instruction allows direct loading of the lower 10 program counter bits. Thus,
 "JMP" allows PC to jump to any location within a page.
- "CALL" instruction loads the lower 10 bits of the PC, and then PC+1 is pushed into the stack. Thus, the subroutine entry address can be located anywhere within a page.
- "RET" ("RETL k", "RETI") instruction loads the program counter with the contents of the top of stack.
- "ADD R2, A" allows a relative address to be added to the current PC, and the ninth and above bits of the PC will increase progressively.
- "MOV R2, A" allows loading of an address from the "A" register to the lower 8 bits of the PC, and the ninth and tenth bits (A8 ~ A9) of the PC will remain unchanged.
- Any instruction (except "ADD R2,A") that is written to R2 (e.g., "MOV R2, A", "BC R2, 6",....) will cause the ninth bit and the tenth bit (A8 ~ A9) of the PC to remain unchanged.
- In the case of EM78P341N/342N/343N, the most significant bit (A10) will be loaded with the content of PS0 in the status register (R3) upon execution of a "JMP", "CALL", or any other instructions set which write to R2.
- All instructions are single instruction cycle (fclk/2 or fclk/4) except for the instructions that are written to R2. Note that these instructions need one or two instructions cycle as determined by Code Option Register CYES bit.

EM78P341N/342N/343N 8-Bit Microprocessor with OTP ROM

6.1.3.1 Data Memory Configuration

	Address	R Page Regi	isters	IC	DCX0 Page Registers	IOCX1 Page Registers		
	00	R0 (Indirect Address	sing Register)		Reserve	Reserve		
	01	R1 (Timer Clock Cou	inter)		Reserve	Reserve		
	02	R2 (Program Counte	r)		Reserve	Reserve		
	03	R3 (Status Register)			Reserve	Reserve		
_	04	R4 (RAM Select Reg	jister)		Reserve	Reserve		
	05	R5 (Port 5)		IOC50	(I/O Port Control Register)	IOC51 (TCCA Counter)		
	06	R6 (Port 6)		IOC60	(I/O Port Control Register)	IOC61 (TCCB LSB Counter)		
	07	R7 (Port 7)		10C70	(I/O Port Control Register)	IOC71 (TCCB HSB Counter)		
	08	R8 (ADC Input Selec	t Register	IOC80	(Comparator and TCCA Control Register)	IOC81 (TCCC Counter)		
	09	R9 (ADC Control Reg	gister)	IOC90	(TCCB and TCCC Control Register)	IOC91 (Low-Time Register)		
	0A	RA (ADC Offset Calib Register)	oration	IOCA0	(IR and TCCC Scale Control Register)	IOCA1 (High-Time Register)		
	0B	RB (Converted value AD11~AD4 of AD	DC)	ЮСВО	(Pull-down Control Register)	IOCB1 (High-Time and Low-Time Scale Control Register)		
	0C	RC (Converted value AD11~AD8 of AD	DC)	10000	(Open-drain Control Register)	IOCC1 (TCC Prescaler Control)		
	0D	RD (Converted value AD7~AD0 of ADC	C)	IOCD0	(Pull-high Control Register)	IOCD1 (LVD Control Register)		
	0E	RE (Interrupt Status 2 Wake-up Control	2 and	IOCE0	(WDT Control Register and Interrupt Mask Register 2)	IOCE1 (High Output Sink Current)		
	0F	RF (Interrupt Status F	Register 1)	IOCF0	(Interrupt Mask Register 1)	IOCF1 (Pull-high Control Register)		
	10	_				·		
	: 1F	General Regi	sters					
►	20 : 3F	Bank 0	Bank 1					

6.1.4 R3 (Status Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RST	IOCS	-	Т	Р	Z	DC	С

Bit 7 (RST): Bit of reset type

Set to "1" if wake-up from sleep on pin change, comparator status change, or AD conversion completed. Set to "0" if wake-up from other reset types.

- Bit 6 (IOCS): Select the Segment of IO control register
 - 0 = Segment 0 (IOC50 ~ IOCF0) selected

1 = Segment 1 (IOC51 ~ IOCC1) selected

Bit 5: Not used (reserved)

- **Bit 4 (T):** Time-out bit. Set to "1" by the "SLEP" and "WDTC" commands or during power on, and reset to "0" by WDT time-out (see Section 6.5.2, *The T and P Status under Status Register* for more details).
- **Bit 3 (P):** Power-down bit. Set to "1" during power-on or by a "WDTC" command and reset to "0" by a "SLEP" command (see Section 6.5.2, *The T and P Status under Status Register* for more details).
- **Bit 2 (Z):** Zero flag. Set to "1" if the result of an arithmetic or logic operation is zero.
- Bit 1 (DC): Auxiliary carry flag
- Bit 0 (C): Carry flag

6.1.5 R4 (RAM Select Register)

- Bit 7: Set to "0" all the time
- Bit 6: Used to select Bank 0 or Bank 1 of register
- **Bits 5~0:** Used to select a register (address: 00~0F, 10~3F) in the indirect addressing mode

See the table under Section 6.1.3.1, Data Memory Configuration.

6.1.6 R5 ~ R6 (Port 5 ~ Port 6)

R5 & R6 are I/O registers

The upper two bits of R5 are fixed to "0" (if EM78P342N is selected). Only the lower six bits of R5 are available (this applies to EM78P342N only since EM78P343N can use all the bits)

6.1.7 R7 (Port 7)

Bit	7	6	5	4	3	2	1	0
EM78P342N/343N	'0'	'0'	'0'	'0'	'0'	ʻ0'	I/O	I/O
ICE342N	C3	C2	C1	C0	RCM1	RCM0	I/O	I/O

	NOTE	
	R7 is an I/O register	
-	For EM78P342N/343N, only the lower 2 bit of R7 is available.	

Bit 7 ~ Bit 2:

[With EM78P342N/343N]: Unimplemented, read as '0'.

[With Simulator (C3~C0, RCM1, & RCM0)]: IRC calibration bits in IRC oscillator mode. In IRC oscillator mode of ICE342N simulator, these are the IRC mode selection bits and IRC calibration bits.

Bit 7 ~ Bit 4 (C3 ~ C0): Calibrator of internal RC mode

C3	C2	C1	C0	Frequency (MHz)
0	0	0	0	(1-36%) x F
0	0	0	1	(1-31.5%) x F
0	0	1	0	(1-27%) x F
0	0	1	1	(1-22.5%) x F
0	1	0	0	(1-18%) x F
0	1	0	1	(1-13.5%) x F
0	1	1	0	(1-9%) x F
0	1	1	1	(1-4.5%) x F
1	1	1	1	F (default)
1	1	1	0	(1+4.5%) x F
1	1	0	1	(1+9%) x F
1	1	0	0	(1+135%) x F
1	0	1	1	(1+18%) x F
1	0	1	0	(1+22.5%) x F
1	0	0	1	(1+27%) x F
1	0	0	0	(1+31.5%) x F

Note: 1. Frequency values shown are theoretical and taken from an instance of a high frequency mode. Hence, they are shown for reference only. Definite values depend on the actual process.

2. Similar way of calculation is also applicable for low frequency mode.

RCM 1	RCM 0	Frequency (MHz)
1	1	4 (default)
1	0	16
0	1	1
0	0	455kHz

Bit 3 & Bit 2 (RCM1, RCM0): IRC mode selection bits

6.1.8 R8 (AISR: ADC Input Select Register)

The AISR register defines the I/O Port as analog inputs or as digital I/O, individually.

-	giotor de						in a dany.
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0
Bit 7 (ADE7	'): AD co	onverter en	able bit of	P57 pin			
·	0 = D	isable ADC	7, P57 fun	ctions as I/	O pin		
	1 = E	nable ADC	7 to functio	on as analo	g input pin		
Bit 6 (ADE6	6): AD co	onverter en	able bit of	P55 pin			
·	0 = D	isable ADC	6, P55 fun	ctions as I/	O pin		
	1 = E	nable ADC	6 to functio	on as analo	g input pin		
Bit 5 (ADE5	5): AD co	onverter en	able bit of	P70 pin			
				ctions as I/	O pin		
				on as analo	•		
Bit 4 (ADE4					0 1 1		
				ictions as I/	'O nin		
				on as analo	•		
Bit 3 (ADE3					5 F F		
				ictions as I/	'O nin		
				on as analo	•		
Bit 2 (ADE2					3 p p		
				ictions as I/	0 nin		
				on as analo	•		
Bit 1 (ADE1					3 p p		
	-			ictions as I/	0 nin		
				on as analo	•		
					a mpar pin		
Bit 0 (ADE0							
	u = D		20, P50 tun	iction as I/C	, pin a inautari		

1 = Enable ADC0 to function as analog input pin

EM78P341N/342N/343N 8-Bit Microprocessor with OTP ROM

NOTE

The P55/OSCI/ADC6 pin cannot be applied to OSCI and ADC6 at the same time. If P55/OSCI/ADC6 functions as OSCI oscillator input pin, then ADE6 bit for R8 must be "0" and ADIS2~0 do not select " 110". The P55/OSCI/ADC6 pin priority is as follows:

P55/OS	CI/ADC6 Pir	Priority
High	Medium	Low
OSCI	ADC6	P55

The P70/OSCO/ADC5 pin cannot be applied to OSCO and ADC5 at the same time. If P70/OSCO/ADC5 acts as OSCO oscillator input pin, then ADE5 bit for R8 must be "0" and ADIS2~0 do not select "101". The P70/OSCO/ADC5 pin priority is as follows:

P70/OS0	CO/ADC5 Pi	n Priority
High	Medium	Low
OSCO	ADC5	P70

The P66/IR OUT/ADC4 pin cannot be applied to IR OUT and ADC4 at the same time. If P67/IR OUT/ADC4 functions as ADC4 analog input pin, then IROUTE bit for IOCA0 must be "0"..

If P67/IR OUT/ADC4 functions as IR OUT analog input pin, then ADE4 bit for R8 must be "0" and ADIS2~0 do not select "100".

The P67/IR OUT/ADC4 pin priority is as follows:

P67/IR OUT/ADC4 Pin Priority					
High	Medium	Low			
ADC7	IR OUT	P67			

6.1.9 R9 (ADCON: ADC Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
VREFS	CKR1	CKR0	ADRUN	ADPD	ADIS2	ADIS1	ADIS0

Bit 7 (VREFS): The input source of the Vref of the ADC

0 = The Vref of the ADC is connected to Vdd (default value), and the VREF/TCC/P54 pin carries out the function of P54

1 = The Vref of the ADC is connected to VREF/TCC/P54

NOTE

- The P54/TCC/VREF pin cannot be applied to TCC and VREF at the same time. If P53/TCC/VREF functions as VREF analog input pin, then CONT Bit 5 "TS" must be "0."
- The VREF/TCC/P54 Pin Priority is as follows:

P53/TC	P53/TCC/VREF Pin Priority		
High	Medium	Low	
VREF	тсс	P54	

Bit 6 & Bit 5 (CKR1 & CKR0): The prescaler of ADC oscillator clock rate

11 = 1: 8

CPUS	CKR1:CKR0	Operation Mode	Max. Operation Frequency
1	00	Fosc/16	4MHz
1	01	Fosc/4	1MHz
1	10	Fosc/64	16MHz
1	11	Fosc/8	2MHz
0	XX	Internal RC	-

Bit 4 (ADRUN): ADC starts to RUN.

- 1 = an AD conversion is started. This bit can be set by software
- **0** = Reset upon completion of the conversion. This bit **cannot** be reset through software
- Bit 3 (ADPD): ADC Power-down mode
 - 1 = ADC is operating
 - **0** = Switch off the resistor reference to save power even while the CPU is operating
- Bit 2 ~ Bit 0 (ADIS2 ~ ADIS0): Analog Input Select

These bits can only be changed when the ADIF bit (see Section 6.1.14, *RE (Interrupt Status 2 & Wake-up Control Register)*) and the ADRUN bit are both LOW.

6.1.10 RA (ADOC: ADC Offset Calibration Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CALI	SIGN	VOF[2]	VOF[1]	VOF[0]	"0"	"0"	"0"

Bit 7 (CALI): Calibration enable bit for ADC offset

0 = Calibration disable

1 = Calibration enable

Bit 6 (SIGN): Polarity bit of offset voltage

0 = Negative voltage

1 = Positive voltage

Bit 5 ~ Bit 3 (VOF[2] ~ VOF[0]): Offset voltage bits

VOF[2]	VOF[1]	VOF[0]	EM78P342N/343N	ICE342N
0	0	0	0LSB	0LSB
0	0	1	2LSB	2LSB
0	1	0	4LSB	4LSB
0	1	1	6LSB	6LSB
1	0	0	8LSB	8LSB
1	0	1	10LSB	10LSB
1	1	0	12LSB	12LSB
1	1	1	14LSB	14LSB

Bit 2 ~ Bit 0: Unimplemented, read as '0'

6.1.11 RB (ADDATA: Converted Value of ADC)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AD11	AD10	AD9	AD8	AD7	AD6	AD5	AD4

When the AD conversion is completed, the result is loaded into the ADDATA. The ADRUN bit is cleared, and the ADIF (see Section 6.1.14, *RE (Interrupt Status 2 & Wake-up Control Register)*) is set.

RB is read only.

6.1.12 RC (ADDATA1H: Converted Value of ADC)

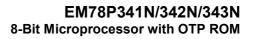
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	1	0
"0"	"0"	"0"	"0"	AD11	AD10	AD9	AD8

When the AD conversion is completed, the result is loaded into the ADDATA1H. The ADRUN bit is cleared, and the ADIF (see Section 6.1.14, *RE (Interrupt Status 2 & Wake-Up Control Register)*) is set.

RC is read only

6.1.13 RD (ADDATA1L: Converted Value of ADC)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0


When the AD conversion is completed, the result is loaded into the ADDATA1L. The ADRUN bit is cleared, and the ADIF (see Section 6.1.14, *RE (Interrupt Status 2 & Wake-up Control Register)*) is set.

RD is read only

6.1.14 RE (Interrupt Status 2 & Wake-up Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
/LVD	LVDIF	ADIF	CMPIF	ADWE	CMPWE	ICWE	LVDWE

•	NOTE <i>RE <5,4> can be cleared by instruction but cannot be set.</i> <i>IOCE0 is the interrupt mask register.</i> <i>Reading RE will result to "logic AND" of RE and IOCE0.</i>
	Low voltage Detector state. This is a read only bit. When the VDD pin voltage is lower than LVD voltage interrupt level (selected by LVD1 and LVD0), this bit will be cleared. 0 = low voltage is detected 1 = low voltage is not detected or LVD function is disabled
Bit 6 (LVDIF):	Low Voltage Detector interrupt flag LVDIF is reset to "0" by software.
Bit 5 (ADIF):	 Interrupt flag for analog to digital conversion. Set when AD conversion is completed. Reset by software. 0 = no interrupt occurs 1 = interrupt request
Bit 4 (CMPIF):	Comparator interrupt flag. Set when a change occurs in the Comparator output. Reset by software. 0 = no interrupt occurs 1 = interrupt request
Bit 3 (ADWE):	ADC wake-up enable bit 0 = Disable ADC wake-up 1 = Enable ADC wake-up When AD Conversion enters sleep mode, this bit must be set to
	"Enable".

Bit 2 (CMPWE): Comparator wake-up enable bit

- 0 = Disable Comparator wake-up
- 1 = Enable Comparator wake-up

When Comparator enters sleep mode, this bit must be set to "Enable".

- Bit 1 (ICWE): Port 5 input change to wake-up status enable bit
 - **0** = Disable Port 5 input change to wake-up status
 - 1 = Enable Port 5 input change to wake-up status

When Port 5 change enters sleep mode, this bit must be set to "Enable".

- Bit 0 (LVDWE): Low Voltage Detect wake-up enable bit
 - **0** = Disable Low Voltage Detect wake-up
 - 1 = Enable Low Voltage Detect wake-up

When the Low Voltage Detect is used to enter an interrupt vector or to wake-up the IC from sleep with Low Voltage Detect running, the LVDWE bit must be set to "Enable".

6.1.15 RF (Interrupt Status 2 Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LPWTIF	HPWTIF	TCCCIF	TCCBIF	TCCAIF	EXIF	ICIF	TCIF

■ F ■ 1	NOTE 1" means there is interrupt request; "0" means no interrupt occurs RF can be cleared by instruction but cannot be set. OCF0 is the relative interrupt mask register. Reading RF will result to "logic AND" of RF and IOCF0.
Bit 7 (LPWTIF):	Internal low-pulse width timer underflow interrupt flag for IR/PWM function. Reset by software.
Bit 6 (HPWTIF):	Internal high-pulse width timer underflow interrupt flag for IR/PWM function. Reset by software.
Bit 5 (TCCCIF):	TCCC overflow interrupt flag. Set when TCCC overflows. Reset by software.
Bit 4 (TCCBIF):	TCCB overflow interrupt flag. Set when TCCC overflows. Reset by software.
Bit 3 (TCCAIF):	TCCA overflow interrupt flag. Set when TCCC overflows. Reset by software.
Bit 2 (EXIF):	External interrupt flag. Set by falling edge on /INT pin. Reset by software.
Bit 1 (ICIF):	Port 5 input status change interrupt flag. Set when Port 5 input changes. Reset by software.
Bit 0 (TCIF):	TCC overflow interrupt flag. Set when TCC overflows. Reset by software.

6.1.16 R10 ~ R3F

All of these are 8-bit general-purpose registers.

6.2 Special Purpose Registers

6.2.1 A (Accumulator)

Internal data transfer operation, or instruction operand holding usually involves the temporary storage function of the Accumulator. The Accumulator is not an addressable register.

6.2.2 CONT (Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE	INT	TS	TE	PSTE	PST2	PST1	PST0

		ΝΟΤ						
	 The CONT reg Bit 6 is read of 		dable and writab	le.				
		niy.						
Bit 7 (INTE):	INT signal edge							
	0 = interrupt occurs at a rising edge on the INT pin							
	1 = interrupt oc	curs at a falling	g edge on the l	NT pin				
Bit 6 (INT):	Interrupt enable	e flaq						
	0 = masked by	-	are interrunt					
	1 = enabled by							
	This bit is read							
		•						
Bit 5 (TS):	TCC signal sou							
		-	lock. P54 is bi	-directional I/O	pin.			
	1 = transition o	n the TCC pin						
Bit 4 (TE):	TCC signal edg	ge						
	0 = increment i pin	f the transition	from low to hig	h takes place o	n the TCC			
	1 = increment i pin.	f the transition	from high to lov	w takes place o	n the TCC			
Bit 3 (PSTE):	Prescaler enab	le bit for TCC						
· · /	0 = prescaler d		C rate is 1:1.					
	1 = prescaler e			Bit 2 ~ Bit 0.				
Bit 2 ~ Bit 0 (PST2 ~ PST0):	TCC prescale	r bits					
	PST2	PST1	PST0	TCC Rate				
	0	0	0	1:2				
	0	0	1	1:4				
	0	<u>1</u> 1	0	1:8 1:16				
	1	0	0	1:32				
	1	0	1	1:64				

Note: Tcc time-out period [1/Fosc x prescaler x 256 (Tcc cnt) x 1 (CLK=2)] Tcc time-out period [1/Fosc x prescaler x 256 (Tcc cnt) x 2 (CLK=4)]

1

1

1

0

1

1:128

1:256

6.2.3 IOC50 ~ IOC70 (I/O Port Control Register)

- "1" sets the relative I/O pin into high impedance, while "0" defines the relative I/O pin as output.
- Only the lower six bits of IOC50 can be defined (this applies to EM78P341N/342N only since all bits of EM78P343N can be used).
- Only Bit 0, Bit 1, Bit 6, Bit 7 of IOC60 can be defined (this applies to EM78P341N only since all bits of EM78P343N can be used)
- Only the lower two bits of **IOC70** can be defined, the others bits are not available.
- IOC50, IOC60, and IOC70 registers are all readable and writable

6.2.4 IOC80 (Comparator and TCCA Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
_	-	CMPOUT	COS1	COS0	TCCAEN	TCCATS	TCCATE

NOTE
Bits 4 ~ 0 of the IOC80 register are both readable and writable
EM78P341N cannot use the OP/comparator function
Bit 5 of the IOC80 register is readable only.

Bit 7 & Bit 6: Not used

Bit 5 (CMPOUT): Result of the comparator output. This bit is readable only.

Bit 4 & Bit 3 (COS1 & COS0): Comparator/OP Select bits

COS1	COS0	Function Description
0	0	Comparator and OP are not used. P64, P65, and P66 function as normal I/O pin
0	1	Used as Comparator and P64 functions as normal I/O pin
1	0	Used as Comparator and P64 functions as Comparator output pin (CO)
1	1	Used as OP and P64 functions as OP output pin (CO)
Bit 2 (TCC	CAEN):	TCCA enable bit 0 = disable TCCA 1 = enable TCCA as a counter
Bit 1 (TCCATS):		 TCCA signal source 0 =: internal instruction cycle clock. P61 is a bidirectional I/O pin. 1 = transit through the TCCA pin
Bit 0 (TCC	CATE):	 TCCA signal edge 0 = increment if transition from low to high takes place on the TCCA pin 1 = increment if transition from high to low takes place on the TCCA pin

6.2.5 IOC90 (TCCB and TCCC Control Register)

Bit 7 Bit 0	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
ТССВНЕ ТССВ	EN TCCBTS	TCCBTE	_	TCCCEN	TCCCTS	TCCCTE		
NOTE The EM78P341N cannot define Bit 5, Bit 4, Bit 1, and Bit 0 of the IOC90.								
 Bit 7 (TCCBHE): Control bit is used to enable the most significant byte of the counter 1 = Enable the most significant byte of TCCBH TCCB is a 16-bit counter. 0 = Disable the most significant byte of TCCBH (default value) TCCB is an 8-bit counter. 								
Bit 6 (TCCBEN):	TCCB enable 0 = disable T 1 = enable T	ССВ	ounter					
Bit 5 (TCCBTS)	TCCB signal 0 = internal ir 1 = transit thr	nstruction c	•		i-directiona	al I/O pin.		
Bit 4 (TCCBTE):	TCCB signal 0 = incremen TCCB pi 1 = incremen TCCB pi	t if the tran n t if the tran		-	-			
Bit 3:	Not used.							
Bit 2 (TCCCEN):	TCCC enable 0 = disable T 1 = enable T	CCC	ounter					
Bit 1 (TCCCTS)	TCCC signal 0 = internal ir 1 = transit thr	nstruction c	•		idirectiona	l I/O pin.		
Bit 0 (TCCCTE):	TCCC signal 0 = incremen TCCC pin 1 = incremen TCCC pin	t if the tran		-	-			

6.2.6 IOCA0 (IR and TCCC Scale Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TCCCSE	TCCCS2	TCCCS1	TCCCS0	IRE	HF	LGP	IROUTE

Bit 7 (TCCCSE): Scale enable bit for TCCC

An 8-bit counter is provided as scale for TCCC and IR-Mode. When in IR-Mode, TCCC counter scale uses the low-time segments of the pulse generated by Fcarrier frequency modulation (see Fig. 6-11 in Section 6.8.2, *Function Description*).

0 = scale disable bit, TCCC rate is 1:1

1 = scale enable bit, TCCC rate is set as Bit 6 ~ Bit 4

Bit 6 ~ Bit 4 (TCCCS2 ~ TCCCS0): TCCC scale bits

The TCCCS2 ~ TCCCS0 bits of the IOCA0 register are used to determine the scale ratio of TCCC as shown below:

TCCCS2	TCCCS1	TCCCS0	TCCC Rate
0	0	0	1:2
0	0	1	1:4
0	1	0	1:8
0	1	1	1:16
1	0	0	1:32
1	0	1	1:64
1	1	0	1:128
1	1 1		1:256

Bit 3 (IRE):

- Infrared Remote Enable bit
- **0** = Disable IRE, i.e., disable H/W Modulator Function. The IROUT pin is fixed at a high level and the TCCC is an Up Counter.
- 1 = Enable IRE, i.e., enable H/W Modulator Function. Pin 67 is defined as IROUT. If HP=1, the TCCC counter scale uses the low-time segments of the pulse generated by the Fcarrier frequency modulation (see Fig. 6-11 in Section 6.8.2, *Function Description*). When HP=0, the TCCC is an Up Counter.

Bit 2 (HF): High Frequency bit

- **0** = PWM application. IROUT waveform is achieved base on the high-pulse width timer and low-pulse width timer which determine the high time width and low time width respectively.
- 1 = IR application mode. The low-time segments of the pulse generated by the Fcarrier frequency modulation (see Fig. 6-11 in Section 6.8.2, *Function Description*)

Bit 1 (LGP): Long Pulse.

- **0** = The high-time and low-time registers are valid
- **1** = The high-time register is ignored. A single pulse is generated.

Bit 0 (IROUTE): Control bit used to define the P67 (IROUT) pin function

- **0** = P67 defined as bi-directional I/O pin
- **1** = P67 defined as IROUT. Under this condition, the I/O control bit of P67 (Bit 7 of IOC60) must be set to "0"

6.2.7 IOCB0 (Pull-Down Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
/PD57	/PD56	/PD55	/PD54	/PD53	/PD52	/PD51	/PD50

	NOTE IOCB0 register is both readable and writable
Bit 7 (/PD57):	Control bit used to enable the pull-down function of the P57 pin (applicable to EM78P343N only) 0 = Enable internal pull-down
Bit 6 (/PD56):	 1 = Disable internal pull-down Control bit is used to enable the pull-down function of the P56 pin
	(applicable to EM78P343N only)
Bit 5 (/PD55):	Control bit used to enable the pull-down function of the P55 pin
Bit 4 (/PD54):	Control bit used to enable the pull-down function of the P54 pin
Bit 3 (/PD53):	Control bit used to enable the pull-down function of the P53 pin
Bit 2 (/PD52):	Control bit used to enable the pull-down function of the P52 pin
Bit 1 (/PD51):	Control bit used to enable the pull-down function of the P51 pin
Bit 0 (/PD50):	Control bit used to enable the pull-down function of the P50 pin.

6.2.8 IOCC0 (Open-Drain Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
/OD67	/OD66	/OD65	/OD64	/OD63	/OD62	/OD61	/OD60

NOTE The IOCC0 register is both readable and writable.							
Bit 7 (/OD67):	Control bit is used to enable the open-drain output of the P67 pin						
	0 = Enable open-drain output						
	1 = Disable open-drain output						
Bit 6 (/OD66):	Control bit used to enable the open-drain output of the P66 pin						
Bit 5 (/OD65):	Control bit used to enable the open-drain output of the P65 pin						
	(Not applicable to EM78P341N)						

- Bit 4 (/OD64): Control bit used to enable the open-drain of the P64 pin (Not applicable to EM78P341N)
- Bit 3 (/OD63): Control bit used to enable the open-drain of the P63 pin (Not applicable to EM78P341N)
- Bit 2 (/OD62): Control bit used to enable the open-drain of the P62 pin (Not applicable to EM78P341N)
- Bit 1 (/OD61): Control bit used to enable the open-drain of the P61 pin

Bit 0 (/OD60): Control bit used to enable the open-drain of the P60 pin

6.2.9 IOCD0 (Pull-high Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
/PH57	/PH56	/PH55	/PH54	/PH53	/PH52	/PH51	/PH50

	NOTE The IOCD0 register is both readable and writable.							
Bit 7 (/PH57):	Control bit is used to enable the pull-high of the P57 pin (applicable to EM78P343N only).							
	0 = Enable internal pull-high							
	1 = Disable internal pull-high							
Bit 6 (/PH56):	Control bit used to enable the pull-high function of the P56 pin (applicable to EM78P343N only).							
Bit 5 (/PH55):	Control bit used to enable the pull-high function of the P55 pin.							
Bit 4 (/PH54):	Control bit used to enable the pull-high function of the P54 pin.							
Bit 3 (/PH53):	Control bit used to enable the pull-high function of the P53 pin.							
Bit 2 (/PH52):	Control bit used to enable the pull-high function of the P52 pin.							
Bit 1 (/PH51):	Control bit used to enable the pull-high function of the P51 pin.							
Bit 0 (/PH50):	Control bit used to enable the pull-high function of the P50 pin.							
6.2.10 IOC	E0 (WDT Control & Interrupt Mask Registers 2)							

0.2.70										
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WDTE	EIS	ADIE	CMPIE	PSWE	PSW2	PSW1	PSW0

Bit 7 (WDTE): Control bit used to enable Watchdog Timer

0 = Disable WDT

1 = Enable WDT

WDTE is both readable and writable.

- Bit 6 (EIS): Control bit used to define the function of the P60 (/INT) pin
 - 0 = P60, bidirectional I/O pin
 - 1 = /INT, external interrupt pin. In this case, the I/O control bit of P60 (Bit 0 of IOC60) must be set to "1".

NOTE

- When EIS is "0", the path of /INT is masked. When EIS is "1", the status of /INT pin can also be read by way of reading Port 6 (R6). Refer to Fig. 6-3 (I/O Port and I/O Control Register Circuit for P60 (/INT)) under Section 6.4 (I/O Ports).
- EIS is both readable and writable.

Bit 5 (ADIE): ADIF interrupt enable bit

0 = disable ADIF interrupt

1 = enable ADIF interrupt

Bit 4 (CMPIE): CMPIF interrupt enable bit.

- 0 = disable CMPIF interrupt
- 1 = enable CMPIF interrupt
- Bit 3 (PSWE): Prescaler enable bit for WDT
 - **0** = prescaler disable bit, WDT rate is 1:1
 - 1 = prescaler enable bit, WDT rate is set as Bit 2 ~ Bit 0
- Bit 2 ~ Bit 0 (PSW2 ~ PSW0): WDT prescaler bits

PSW2	PSW1	PSW0	WDT Rate
0	0	0	1:2
0	0	1	1:4
0	1	0	1:8
0	1	1	1:16
1	0	0	1:32
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

6.2.11 IOCF0 (Interrupt Mask Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LPWTIE	HPWTIE	TCCCIE	TCCBIE	TCCAIE	EXIE	ICIE	TCIE

NOTE

- The IOCF0 register is both readable and writable.
- Individual interrupt is enabled by setting its associated control bit in the IOCF0 and in IOCE0 Bit 4 & 5 to "1".
- Global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction. Refer to Fig. 6-7 (Interrupt Input Circuit) under Section 6.6 (Interrupt).

Bit 7 (LPWTIE):	LPWTIF interrupt enable bit
	0 - Disable I DW/TIE interrupt

	0 = Disable LPWTIF interrupt
	1 = Enable LPWTIF interrupt
Bit 6 (HPWTIE):	HPWTIF interrupt enable bit
	0 = Disable HPWTIF interrupt
	1 = Enable HPWTIF interrupt
Bit 5 (TCCCIE):	TCCCIF interrupt enable bit
	0 = Disable TCCCIF interrupt
	1 = Enable TCCCIF interrupt
Bit 4 (TCCBIE):	TCCBIF interrupt enable bit
	0 = Disable TCCBIF interrupt
	1 = Enable TCCBIF interrupt
Bit 3 (TCCAIE):	TCCAIF interrupt enable bit
	0 = Disable TCCAIF interrupt
	1 = Enable TCCAIF interrupt
Bit 2 (EXIE):	EXIF interrupt enable bit
	0 = Disable EXIF interrupt
	1 = Enable EXIF interrupt
Bit 1 (ICIE):	ICIF interrupt enable bit
	0 = Disable ICIF interrupt
	1 = Enable ICIF interrupt
Bit 0 (TCIE):	TCIF interrupt enable bit.
	0 = Disable TCIF interrupt
	1 = Enable TCIF interrupt

6.2.12 IOC51 (TCCA Counter)

IOC51 (TCCA) is an 8-bit clock counter. It can be read, written, and cleared on any reset condition and is an Up Counter.

NOTE

- TCCA timeout period [1/Fosc x (256-TCCA cnt) x 1(CLK=2)]
- TCCA timeout period [1/Fosc x (256-TCCA cnt) x 2 (CLK=4)]

6.2.13 IOC61 (TCCB Counter)

IOC61 (TCCB) is an 8-bit clock counter for the least significant byte of **TCCBX (TCCB)**. It can be read, written, and cleared on any reset condition and it is an Up Counter.

6.2.14 IOC71 (TCCBH/MSB Counter)

IOC71 (TCCBH/MSB) is an 8-bit clock counter for the most significant byte of **TCCBX (TCCBH)**. It can be read, written, and cleared on any reset condition.

When TCCBHE (IOC90) is "**0**," then TCCBH is disabled. When TCCBHE is "**1**," then TCCB is a 16-bit counter.

NOTE
When TCCBH is Disabled:
■ TCCB timeout period [1/Fosc x(256 - TCCB cnt)x 1 (CLK=2)]
■ TCCB timeout period [1/Fosc x(256 - TCCB cnt)x 2 (CLK=4)]
When TCCBH is Enabled:
■ TCCB timeout period {1/Fosc x [65536 - (TCCBH * 256 + TCCB cnt)] x 1 (CLK=2)}
■ TCCB timeout period {1/Fosc x [65536 - (TCCBH * 256 + TCCB cnt)] x 2 (CLK=4)}

6.2.15 IOC81 (TCCC Counter)

IOC81 (TCCC) is an 8-bit clock counter that can be extended to 16-bit counter. It can be read, written, and cleared on any reset condition.

If HF (Bit 2 of IOCA0) = 1 and IRE (Bit 3 of IOCA0) = 1, TCCC counter scale uses the low-time segments of the pulse generated by the Fcarrier frequency modulation (see Fig. 6-11 in Section 6.8.2, *Function Description*). Then TCCC value will be TCCC predicted value.

When HP = 0 or IRE = 0, the TCCC is an UP Counter.

NOTE
In TCCC Up Counter mode:
■ TCCC timeout period [1/Fosc x scaler (IOCA0) x (256-TCCC cnt) x 1 (CLK=2)]
■ TCCC timeout period [1/Fosc x scaler (IOCA0) x (256-TCCC cnt) x 2 (CLK=4)]

When HP = 1 and IRE = 1, TCCC counter scale uses the low-time segments of the pulse generated by the Fcarrier frequency modulation.

NOTE
In IR mode: ■ Fcarrier = FT/ 2 { [1+decimal TCCC Counter value (IOC81)] * TCCC Scale (IOCA0) } ■ FT is system clock: FT = Fosc/1 (CLK=2)
FT = Fosc/2 (CLK=4)

6.2.16 IOC91 (Low-Time Register)

The 8-bit Low-time register controls the active or Low segment of the pulse.

The decimal value of its contents determines the number of oscillator cycles and verifies that the IR OUT pin is active. The active period of IR OUT can be calculated as follows:

NOTE							
Low time width = { [1+decimal low-time value (IOC91)] * Low time Scale (IOCB1) } / FT							
■ FT is system clock: FT = Fosc/1 (CLK=2)							
FT = Fosc/2 (CLK=4)							

When an interrupt is generated by the Low time down counter underflow (if enabled), the next instruction will be fetched from address 015H (Low time).

6.2.17 IOCA1 (High Time Register)

The 8-bit High-time register controls the inactive or High period of the pulse.

The decimal value of its contents determines the number of oscillator cycles and verifies that the IR OUT pin is inactive. The inactive period of IR OUT can be calculated as follows:

NOTE					
High time width = {[1+decimal high-time value (IOCA1)] * High time Scale (IOCB1) } / FT					
■ FT is system clock: FT=Fosc/1(CLK=2)					
FT=Fosc/2(CLK=4)					

When an interrupt is generated by the High time down counter underflow (when enabled), the next instruction will be fetched from Address 012H (High time).

6.2.18 IOCB1 High/Low Time Scale Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
HTSE	HTS2	HTS1	HTS0	LTSE	LTS2	LTS1	LTS0

Bit 7 (HTSE): High-time scale enable bit

0 = scale disable bit, High-time rate is 1:1

1 = scale enable bit, High-time rate is set as Bit 6~Bit 4.

Bit 6 ~ Bit 4 (HTS2 ~ HTS0): High-time scale bits:

HTS2	HTS1	HTS0	High-time rate
0	0	0	1:2
0	0	1	1:4
0	1	0	1:8
0	1	1	1:16
1	0	0	1:32
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

Bit 3 (LTSE): Low-time scale enable bit.

0 = scale disable bit, Low-time rate is 1:1

1 = scale enable bit, Low-time rate is set as Bit 2~Bit 0.

Bit 2 ~ Bit 0 (LTS2 ~ LTS0): Low-time scale bits:

LTS2	LTS1	LTS0	Low-time Rate
0	0	0	1:2
0	0	1	1:4
0	1	0	1:8
0	1	1	1:16
1	0	0	1:32
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

6.2.19 IOCC1 (TCC Prescaler Counter)

TCC prescaler counter can be read and written to:

PST2	PST1	PST0	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	TCC Rate
0	0	0	-	-	-	-	-	-	-	V	1:2
0	0	1	-	-	-	-	-	-	V	V	1:4
0	1	0	-	-	-	-	-	V	V	V	1:8
0	1	1	-	-	-	-	V	V	V	V	1:16
1	0	0	-	-	-	V	V	V	V	V	1:32
1	0	1	-	-	V	V	V	V	V	V	1:64
1	1	0	-	V	V	V	V	V	V	V	1:128
1	1	1	V	V	V	V	V	V	V	V	1:256

V = valid value

The TCC prescaler counter is assigned to TCC (R1).

The contents of the IOCC1 register are cleared when one of the following occurs:

- a value is written to TCC register
- a value is written to TCC prescaler bits (Bits 3, 2, 1, 0 of CONT)
- power-on reset, /RESET
- WDT time out reset

6.2.20 IOCD1 (LVD Control Register)

Bit	7	6	5	4	3	2	1	0
EM78P342N/343N	-	-	-	-	LVDIE	LVDEN	LVD1	LVD0
ICE342N	TYPE1	TYPE0	LVR1	LVR0	LVDIE	LVDEN	LVD1	LVD0

Bits 7~6 (Type 1 ~ Type 0): Type selection for EM78P343N or EM78P342N or EM78P341N or 108C.

Type 1, Type 0	VDD Reset Level
11	EM78P343N (Default) (20PIN)
10	EM78P342N (18PIN)
01	EM78P341N (14PIN)
00	108C (8PIN)

Bits	5~4	(LVR1	~ LVR0): Lov	v Voltage F	Reset enable bits.
------	-----	-------	--------------	-------------	--------------------

LVR1, LVR0	VDD Reset Level	VDD Release Level			
11	NA (Power-on Reset)				
10	2.7V	2.9V			
01	3.5V	3.7V			
00	4.0V	4.2V			

NOTE

- IOCD1<3> register is both readable and writable
- Individual interrupt is enabled by setting its associated control bit in the IOCD1 <4> to "1"
- Global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction. Refer to Fig. 6-8 (Interrupt Input Circuit) under Section 6.6 (Interrupt).

Bit 3 (LVDIE): Low voltage Detector interrupt enable bit.

- **0** = Disable Low voltage Detector interrupt.
- **1** = Enable Low voltage Detector interrupt.

When the detect low level voltage is used to enter an interrupt vector or enter next instruction, the LVDIE bit must be set to "Enable".

- Bit 2 (LVDEN): Low Voltage Detector enable bit
 - **0** = Low voltage detector disable
 - **1** = Low voltage detector enable
- Bit 1~0 (LVD1:0): Low Voltage Detector level bits.

LVDEN	LVD1,LVD0	LVD voltage Interrupt level	/LVD
1	11	$Vdd \le 2.3V$	0
,		Vdd > 2.3V	1
1	10	$Vdd \le 3.3V$	0
	10	Vdd > 3.3V	1
1	01	$Vdd \le 4.0V$	0
1		Vdd > 4.0V	1
1	00	$Vdd \le 4.5V$	0
		Vdd > 4.5V	1
0	XX	NA 0	

6.2.21 IOCE1 (Output Sink Select Control Register)

Bit	7	6	5	4	3	2	1	0
EM78P342N/343N	-	TIMERSC	CPUS	IDLE	HS3	HS2	HS1	HS0
ICE342N	WDTPS	TIMERSC	CPUS	IDLE	HS3	HS2	HS1	HS0
Bit 7 (WDTPS):	Bit 7 (WDTPS): WDT time-out period selection bit. 0 : 4.5ms 1 : 18ms							
Bit 6 (TIMERSC):	TCC, TCCA, TCCB, TCCC clock sources select $0/1 \rightarrow Fs/Fm^*$ Fs: sub frequency for WDT internal RC time base Fm: main-oscillator clock							
Bit 5 (CPUS):	CPU Oscillator Source Select, 0/1 \rightarrow sub-oscillator (fs) / main oscillator (fosc)							
	When CPUS=0, the CPU oscillator select sub-oscillator and the main oscillator is stopped.							
Bit 4 (IDLE):	Idle Mode Enable Bit. This bit will decide SLEP instruction which mode to go. 0 : Idle="0"+SLEP instruction \rightarrow sleep mode 1 : Idle="1"+SLEP instruction \rightarrow idle mode							

CPU Operation Mode

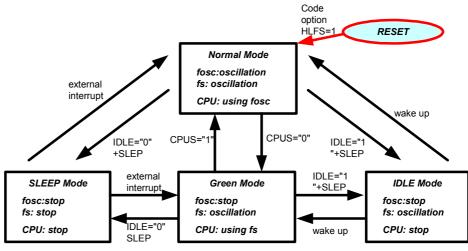


Fig. 6-2 CPU Operation Mode

- Bit 3 (HS3): Output Sink current Select for P63 (Not applicable for EM78P341N)
- Bit 2 (HS2): Output Sink current Select for P62. (Not applicable for EM78P341N)
- Bit 1 (HS1): Output Sink current Select for P61.
- Bit 0 (HS0): Output Sink current Select for P60.

HSx	VDD = 5V, Sink Current
0	20mA (in 0.3VDD)
1	90mA (in 0.3VDD)

6.2.21	IOCF1	(Pull-high	Control	Register)
--------	-------	------------	---------	-----------

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 3 Bit 2		Bit 0
/PH67	/PH66	/PH65	/PH64	/PH63	/PH62	/PH61	/PH60

NOTE The IOCD0 register is both readable and writable.

Bit 7 (/PH67): Control bit is used to enable the pull-high of the P67 pin.

- 0 = Enable internal pull-high
- 1 = Disable internal pull-high
- Bit 6 (/PH66): Control bit used to enable the pull-high function of the P66 pin.
- Bit 5 (/PH65): Control bit used to enable the pull-high function of the P65 pin. (Not applicable for EM78P341N)
- **Bit 4 (/PH64):** Control bit used to enable the pull-high function of the P64 pin. (Not applicable for EM78P341N)
- Bit 3 (/PH63): Control bit used to enable the pull-high function of the P63 pin. (Not applicable for EM78P341N)
- Bit 2 (/PH62): Control bit used to enable the pull-high function of the P62 pin. (Not applicable for EM78P341N)
- Bit 1 (/PH61): Control bit used to enable the pull-high function of the P61 pin.

Bit 0 (/PH60): Control bit used to enable the pull-high function of the P60 pin.

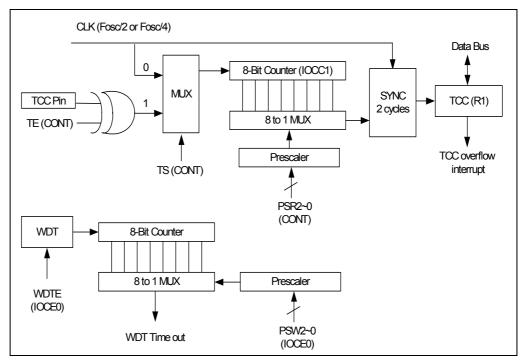
6.3 TCC/WDT and Prescaler

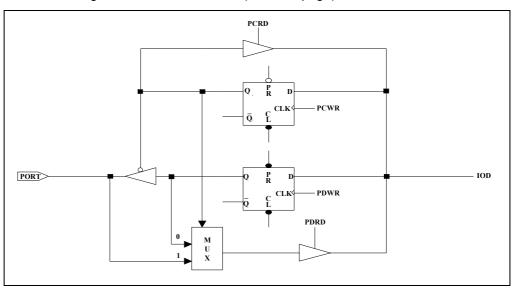
There are two 8-bit counters available as prescalers that can be extended to 16-bit counter for the TCC and WDT respectively. The PST2 ~ PST0 bits of the CONT register are used to determine the ratio of the TCC prescaler, and the PWR2 ~ PWR0 bits of the IOCE0 register are used to determine the WDT prescaler. The prescaler counter is cleared by the instructions each time such instructions are written into TCC. The WDT and prescaler will be cleared by the "WDTC" and "SLEP" instructions. Fig. 6-1 (next page) depicts the block diagram of TCC/WDT.

TCC (R1) is an 8-bit timer/counter. The TCC clock source can be internal clock or external signal input (edge selectable from the TCC pin). If TCC signal source is from an internal clock, TCC will be incremented by 1 at every instruction cycle (without prescaler). Referring to Fig. 6-1, CLK=Fosc/2 or CLK=Fosc/4 is dependent to the Code Option bit <CLKS>. CLK=Fosc/2 if the CLKS bit is "0," and CLK=Fosc/4 if the CLKS bit is "1." If the TCC signal source is from an external clock input, TCC will be incremented by 1 at every falling edge or rising edge of the TCC pin. The TCC pin input time length (kept at High or Low level) must be greater than 1CLK.

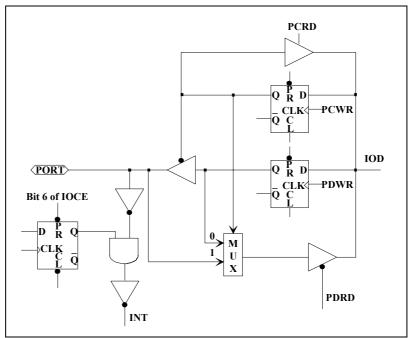
NOTE The internal TCC will stop running when in sleep mode. However, during AD conversion, when TCC is set to "SLEP" instruction, if the ADWE bit of the RE register is enabled, TCC will keep on running.

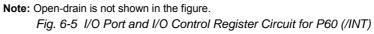
The watchdog timer is a free running on-chip RC oscillator. The WDT will keep on running even when the oscillator driver has been turned off (i.e., in sleep mode). During normal operation or in sleep mode, a WDT time-out (if enabled) will cause the device to reset. The WDT can be enabled or disabled any time during normal mode through software programming. Refer to WDTE bit of IOCE0 register (Section 6.2.10 *IOCE0 (WDT Control & Interrupt Mask Registers 2)*. With no prescaler, the WDT time-out period is approximately 18ms¹ or 4.5ms².



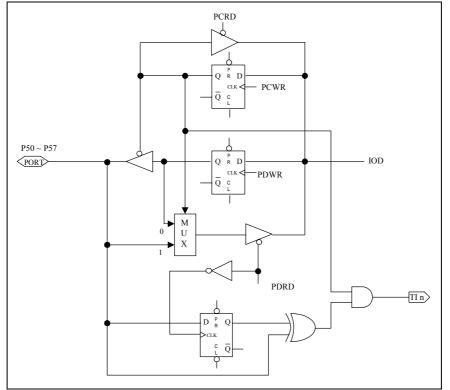

Fig. 6-3 TCC and WDT Block Diagram

- VDD=5V, WDT time-out period = 16.5ms ± 30%
 VDD=3V, WDT time-out period = 18ms ± 30%
- VDD=5V, WDT time-out period = 4.2ms ± 30%
 VDD=3V, WDT time-out period = 4.5ms ± 30%




6.4 I/O Ports

The I/O registers (Port 5, Port 6, and Port 7) are bidirectional tri-state I/O ports. Port 5 is pulled-high and pulled-down internally by software. Likewise, P6 has its open-drain output set through software. Port 5 features an input status changed interrupt (or wake-up) function. Each I/O pin can be defined as "input" or "output" pin by the I/O control register (IOC5 ~ IOC7). The I/O registers and I/O control registers are both readable and writable. The I/O interface circuits for Port 5, Port 6, and Port 7 are illustrated in Figures 6-4, 6-5, 6-6, & 6-7 (see next page).



Note: Open-drain is not shown in the figure. Fig. 6-4 I/O Port and I/O Control Register Circuit for Port 6 and Port 7

Note: Pull-high (down) is not shown in the figure.

Fig. 6-6 I/O Port and I/O Control Register Circuit for Port 50 ~ P57

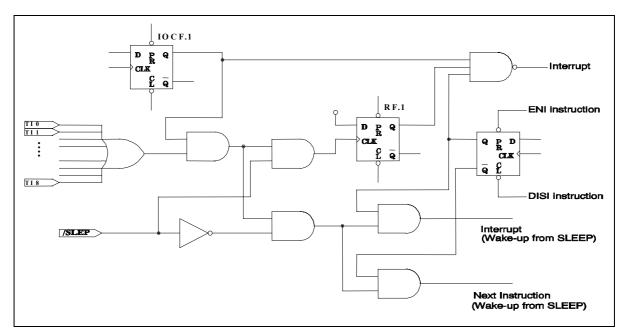


Fig. 6-7 Port 5 Block Diagram with Input Change Interrupt / Wake-up

(1) Wake-up	(2) Wake-up and Interrupt				
(a) Before Sleep	(a) Before Sleep				
1. Disable WDT	1. Disable WDT				
2. Read I/O Port 5 (MOV R65R5)	2. Read I/O Port 5 (MOV R5,R5)				
3. Execute "ENI" or "DISI"	3. Execute "ENI" or "DISI"				
4. Enable wake-up bit (Set RE ICWE =1)	4. Enable wake-up bit (Set RE ICWE =1)				
5. Execute "SLEP" instruction	5. Enable interrupt (Set IOCF ICIE =1)				
(b) After wake-up	6. Execute "SLEP" instruction				
\rightarrow Next instruction	(b) After wake-up				
	1. IF "ENI" \rightarrow Interrupt vector (008H)				
	2. IF "DISI" \rightarrow Next instruction				
(3) Interrupt					
(a) Before Port 5 pin change					
1. Read I/O Port 6 (MOV R5,R5)					
2. Execute "ENI" or "DISI"					
3. Enable interrupt (Set IOCF ICIE =1)					
(b) After Port 5 pin changed (interrupt)					
1. IF "ENI" \rightarrow Interrupt vector (006H)					
2. IF "DISI" \rightarrow Next instruction					

6.4.1 Usage of Port 5 Input Change Wake-up/Interrupt Function

6.5 Reset and Wake-up

6.5.1 Reset and Wake-up Operation

A reset is initiated by one of the following events:

- 1. Power-on reset
- 2. /RESET pin input "low"
- 3. WDT time-out (if enabled)

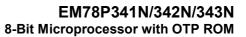
The device is kept in reset condition for a period of approximately 18ms³ (except in LXT mode) after the reset is detected. When in LXT mode, the reset time is 500ms. Two choices (18ms³ or 4.5ms⁴) are available for WDT-time out period. Once a reset occurs, the following functions are performed (the initial address is 000h):

- The oscillator continues running, or will be started (if in sleep mode)
- The Program Counter (R2) is set to all "0"
- VDD=5V, WDT Time-out period = 16.5ms ± 30%.
 VDD=3V, WDT Time-out period = 18ms ± 30%.
- VDD=5V, WDT Time-out period = 4.2ms ± 30%.
 VDD=3V, WDT Time-out period = 4.5ms ± 30%.

- All I/O port pins are configured as input mode (high-impedance state)
- The Watchdog Timer and prescaler are cleared
- When power is switched on, the upper three bits of R3 is cleared
- The IOCB0 register bits are set to all "1"
- The IOCC0 register bits are set to all "1"
- The IOCD0 register bits are set to all "1"
- Bits 7, 5, and 4 of the IOCE0 register are cleared
- Bits 5 and 4 of the RE register are cleared
- RF and IOCF0 registers are cleared

Executing the "SLEP" instruction will assert the sleep (power down) mode. While entering into sleep mode, the Oscillator, TCC, TCCA, TCCB, and TCCC are stopped. The WDT (if enabled) is cleared but keeps on running.

During AD conversion, when "SLEP" instruction is set; the Oscillator, TCC, TCCA, TCCB, and TCCC keep on running. The WDT (if enabled) is cleared but keeps on running.


The controller can be awakened by:

- Case 1 External reset input on /RESET pin
- Case 2 WDT time-out (if enabled)
- Case 3 Port 5 input status changes (if ICWE is enabled)
- Case 4 Comparator output status changes (if CMPWE is enabled)
- Case 5 AD conversion completed (if ADWE is enabled)
- Case 6 Low Voltage Detector (if LVDWE is enabled)

The first two cases (1 & 2) will cause the EM78P341N/342N/343N to reset. The T and P flags of R3 can be used to determine the source of the reset (wake-up). Cases 3, 4, & 5 are considered the continuation of program execution and the global interrupt ("ENI" or "DISI" being executed) determines whether or not the controller branches to the interrupt vector following wake-up. If ENI is executed before SLEP, the instruction will begin to execute from Address 0x06 (Case 3), 0x0F (Case 4), and 0x0C (Case 5) after wake-up. If DISI is executed before SLEP, the execution will restart from the instruction next to SLEP after wake-up.

Only one of Cases 2 to 5 can be enabled before entering into sleep mode. That is:

- Case [a] If WDT is enabled before SLEP, all of the RE bit is disabled. Hence, the EM78P341N/342N/343N can be awakened only with Case 1 or Case 2. Refer to the section on Interrupt (Section 6.6) for further details.
- Case [b] If Port 5 Input Status Change is used to wake up EM78P341N/342N/343N and the ICWE bit of the RE register is enabled before SLEP, WDT must be disabled. Hence, the EM78P341N/342N/343N can be awakened only with Case 3. Wake-up time is dependent on oscillator mode. In RC mode, Wake-up time is 32 clocks (for stable oscillators). In High Crystal mode, Wake-up time is 2ms and 32 clocks (for stable oscillators), and in low Crystal mode, Wake-up time is 500ms.

- Case [c] If the Comparator output status change is used to wake-up the EM78P342N/ 343N and the CMPWE bit of the RE register is enabled before SLEP, WDT must be disabled by software. Hence, the EM78P342N/343N can be awakened only with Case 4. Wake-up time is dependent on oscillator mode. In RC mode the Wake-up time is 32 clocks (for stable oscillators). In High Crystal mode, Wake-up time is 2ms and 32 clocks (for stable oscillators), and in low Crystal mode, Wake-up time is 500ms.
- Case [d] If AD conversion completed is used to wake-up the EM78P341N/342N/343N and ADWE bit of RE register is enabled before SLEP, WDT must be disabled by software. Hence, the EM78P341N342N/343N can be awakened only with Case 5. The wake-up time is 15 TAD (ADC clock period).
- Case[e] If Low voltage detector is used to wake-up the EM78P341N/342N/343N and the LVDWE bit of Bank 0-RE register is enabled before SLEP, WDT must be disabled by software. Hence, the EM78P341N/342N/343N can be awakened only with Case 6.

Wake-up time is dependent on oscillator mode.

If Port 5 Input Status Change Interrupt is used to wake up the EM78P341N/342N/343N (as in Case [b] above), the following instructions must be executed before SLEP:

BC MOV IOW	R3, 7 A, @00xx1110b IOCE0	; Select Segment 0 ; Select WDT prescaler and Disable WDT
WDTC		; Clear WDT and prescaler
MOV	R5, R5	; Read Port 5
ENI (or DISI)	1	; Enable (or disable) global interrupt
MOV	A, @xxxxxxlxb	; Enable Port 5 input change wake-up bit
MOV	RE	
MOV	A, @xxxxxxlxb	; Enable Port 5 input change interrupt
IOW	IOCF0	
SLEP		; Sleep

Similarly, if the Comparator Interrupt is used to wake up the EM78P341N/342N/343N (as in Case [c] above), the following instructions must be executed before SLEP:

BC MOV	R3, 7 A, @xxx10XXXb	; Select Segment 0 ; Select a comparator and P64 functions as CO pin
IOW	IOC80	
MOV	A, @00x11110b	; Select WDT prescaler and Disable WDT, and enable comparator output status change interrupt
IOW	IOCE0	
WDTC		; Clear WDT and prescaler
ENI (or DISI)		; Enable (or disable) global interrupt
MOV	A, @xxx0x1xxb	; Enable comparator output status change wake-up bit
MOV	RE	
SLEP		; Sleep

6.5.1.1 Wake-up and Interrupt Modes Operation Summary

The controller can be awakened from sleep mode and idle mode. The wake-up signals are listed as follows.

Wakeup Signal	Sleep Mode	Idle Mode	Green Mode	Normal Mode
External interrupt	×	Wake-up + interrupt (if interrupt is enabled) + next instruction	Interrupt (if interrupt is enabled) or next instruction	Interrupt (if interrupt is enabled) or next instruction
Port 5 pin change	If enable ICWE bit Wake-up + interrupt (if interrupt is enabled) + next instruction	If enable ICWE bit Wake-up + interrupt (if interrupt is enabled) + next instruction	Interrupt (if interrupt is enabled) or next instruction	Interrupt (if interrupt is enabled) or next instruction
TCC overflow interrupt	x	Wake-up + interrupt (if interrupt is enabled) + next instruction	Interrupt (if interrupt is enabled) or next instruction	Interrupt (if interrupt is enabled) or next instruction
AD conversion complete interrupt	If enable ADWE bit Wake-up + interrupt (if interrupt is enabled) + next instruction Fs and Fm don't stop	If enable ADWE bit Wake-up + interrupt (if interrupt enable) + next instruction Fs and Fm don't stop	$^{ imes}$ Fs and Fm don't stop	Interrupt (if interrupt is enabled) or next instruction
Comparator interrupt	If enable CMPWE bit Wake-up + interrupt (if interrupt enable) + next instruction	If enable CMPWE bit Wake-up + interrupt (if interrupt enable) + next instruction	Interrupt (if interrupt enable) or next instruction	Interrupt (if interrupt enable) or next instruction
High-pulse width timer underflow interrupt	x	Wake-up + interrupt (if interrupt enable) + next instruction	Interrupt (if interrupt enable) or next instruction	Interrupt (if interrupt enable) or next instruction
Low-pulse width timer underflow interrupt	x	Wake-up + interrupt (if interrupt enable) + next instruction	Interrupt (if interrupt enable) or next instruction	Interrupt (if interrupt enable) or next instruction
TCCA overflow interrupt	x	Wake-up + interrupt (if interrupt enable) + next instruction	Interrupt (if interrupt enable) or next instruction	Interrupt (if interrupt enable) or next instruction
TCCB overflow interrupt	x	Wake-up + interrupt (if interrupt enable) + next instruction	Interrupt (if interrupt enable) or next instruction	Interrupt (if interrupt enable) or next instruction
TCCC overflow interrupt	x	Wake-up + interrupt (if interrupt enable) + next instruction	Interrupt (if interrupt enable) or next instruction	Interrupt (if interrupt enable) or next instruction
Low Voltage Detector interrupt	If Enable LVDWE bit Wake-up + interrupt (if interrupt enable) + next instruction	If Enable LVDWE bit Wake-up + interrupt (if interrupt enable) + next instruction	Interrupt (if interrupt enable) or next instruction	Interrupt (if interrupt enable) or next instruction
WDT Time out	RESET	RESET	RESET	RESET
Low Voltage Reset	RESET	RESET	RESET	RESET

After wake up:

1. If interrupt is enabled \rightarrow interrupt+ next instruction

2. If interrupt is disabled \rightarrow next instruction

Signal	Sleep Mode	Idle Mode	Normal Mode	Green Mode		
INT Pin		DISI+IOCF0(EXIE) Bit 2 =1	DISI + IOCF0 (EXIE) Bit 2=1	DISI + IOCF0 (EXIE) Bit 2=1		
	NA	Wake-up + next instruction Set RF (EXIF)=1	Next Instruction + Set RF (EXIF)=1	Next Instruction + Set RF (EXIF)=1		
		ENI + IOCF0(EXIE) Bit 2 =1	ENI + IOCF0 (EXIE) Bit 2=1	ENI + IOCF0 (EXIE) Bit 2=1		
		Wake-up + Interrupt Vector (003H) + Set RF (EXIF)=1	Interrupt Vector (003H) + Set RF (EXIF)=1	Interrupt Vector (003H) + Set RF (EXIF)=1		
	RE (ICWE) Bit 1=0, IOCF0 (ICIE) bit 1=0	RE (ICWE) Bit 1=0, IOCF0 (ICIE) Bit 1=0	IOCF0 (ICIE) Bit 1=0	IOCF0 (ICIE) Bit 1=0		
	Oscillator, TCC, TCCX and IR/PWM are stopped. Port 5 input status changed wake-up is invalid.	Oscillator, TCC, TCCX and IR/PWM keep on running. Port5 input status changed wake-up is invalid.	Port 5 input status change interrupted is invalid	Port 5 input status change interrupted is invalid		
	RE (ICWE) Bit 1=0, IOCF0 (ICIE) Bit 1=1	RE (ICWE) Bit 1=0, IOCF0 (ICIE) Bit 1=1	N/A	N/A		
	Set RF (ICIF)=1, Oscillator, TCC, TCCX and IR/PWM are stopped. Port 5 input status changed wake-up is invalid.	Set RF (ICIF)=1, Oscillator, TCC, TCCX and IR/PWM keep on running. Port5 input status changed wake-up is invalid.	N/A	N/A		
	RE (ICWE) Bit 1=1, IOCF0 (ICIE) Bit 1=0	RE (ICWE) Bit 1=1, IOCF0 (ICIE) Bit1=0	N/A	N/A		
Port 5 Input Status Change	Wake-up + Next Instruction Oscillator, TCC, TCCX and IR/PWM are stopped.	Wake-up + Next Instruction Oscillator, TCC, TCCX and IR/PWM keep on running.	N/A	N/A		
	RE (ICWE) Bit1=1, DISI + IOCF0 (ICIE) Bit 1=1	RE (ICWE) Bit 1=1, DISI + IOCF0 (ICIE) Bit 1=1	DISI + IOCF0 (ICIE) Bit 1=1	DISI + IOCF0 (ICIE) Bit 1=1		
	Wake-up + Next Instruction + Set RF (ICIF)=1 Oscillator, TCC, TCCX and IR/PWM are stopped.	Wake-up + Next Instruction + Set RF (ICIF)=1 Oscillator, TCC, TCCX and IR/PWM keep on running.	Next Instruction + Set RF (ICIF)=1	Next Instruction + Set RF (ICIF)=1		
	RE (ICWE) Bit 1=1, ENI + IOCF0 (ICIE) Bit 1=1	RE (ICWE) Bit 1=1, ENI + IOCF0 (ICIE) Bit 1=1	ENI + IOCF0 (ICIE) Bit 1=1	ENI + IOCF0 (ICIE) Bit 1=1		
	Wake-up + Interrupt Vector (006H) + Set RF (ICIF)=1 Oscillator, TCC, TCCX and IR/PWM are stopped.	Wake-up + Interrupt Vector (006H) + Set RF (ICIF)=1 Oscillator, TCC, TCCX and IR/PWM keep on running.	Interrupt Vector(006H) + Set RF (ICIF)=1	Interrupt Vector(006H) + Set RF (ICIF)=1		
		DISI+IOCF0(TCIE) Bit 0 =1	DISI + IOCF0 (TCIE) Bit 0=1	DISI + IOCF0 (TCIE) Bit 0=1		
TCC Over Flow	NA	Wake-up + next instruction Set RF (TCIF)=1	Next Instruction + Set RF (TCIF)=1	Next Instruction + Set RF (TCIF)=1		
100 Over How		ENI + IOCF0(TCIE) Bit 0 =1	ENI + IOCF0 (TCIE) Bit 0=1	ENI + IOCF0 (TCIE) Bit 0=1		
		Wake-up + Interrupt Vector (009H) + Set RF (TCIF)=1	Interrupt Vector (009H) + Set RF (TCIF)=1	Interrupt Vector (009H) + Set RF (TCIF)=1		

EM78P341N/342N/343N 8-Bit Microprocessor with OTP ROM

Signal	Sleep Mode	Idle Mode	Normal Mode	Green Mode		
	RE (ADWE) Bit 3=0, IOCE0 (ADIE) Bit 5=0	RE (ADWE) Bit 3=0, IOCE0 (ADIE) Bit 5=0	IOCE0 (ADIE) Bit 5=0	IOCE0 (ADIE) Bit 5=0		
	Clear R9 (ADRUN)=0, ADC is stopped, AD conversion wake-up is invalid. Oscillator, TCC, TCCX and IR/PWM are stopped.	Clear R9 (ADRUN)=0, ADC is stopped, AD conversion wake-up is invalid. Oscillator, TCC, TCCX and IR/PWM keep on running.	AD conversion interrupted is invalid	AD conversion interrupted is invalid		
	RE (ADWE) Bit 3=0, IOCE0 (ADIE) Bit 5=1	RE (ADWE) Bit 3=0, IOCE0 (ADIE) Bit 5=1	N/A	N/A		
	Set RF (ADIF)=1, R9 (ADRUN)=0, ADC is stopped, AD conversion wake-up is invalid. Oscillator, TCC, TCCX and IR/PWM are stopped.	Set RF (ADIF)=1, R9 (ADRUN)=0, ADC is stopped, AD conversion wake-up is invalid. Oscillator, TCC, TCCX and IR/PWM keep on running.	N/A	N/A		
	RE (ADWE) Bit 3=1, IOCE0 (ADIE) Bit 5=0	RE (ADWE) Bit 3=1, IOCE0 (ADIE) Bit 5=0	N/A	N/A		
AD Conversion	Wake-up + Next Instruction, Oscillator, TCC, TCCX and IR/PWM keep on running. Wake-up when ADC completed.	Wake-up + Next Instruction, Oscillator, TCC, TCCX and IR/PWM keep on running. Wake-up when ADC completed.	N/A	N/A		
	RE (ADWE) Bit 3=1, DISI + IOCE0 (ADIE) Bit 5=1	RE (ADWE) Bit 3=1, DISI + IOCE0 (ADIE) Bit 5=1	DISI + IOCE0 (ADIE) Bit 5=1	DISI + IOCE0 (ADIE) Bit 5=1		
	Wake-up + Next Instruction + RE (ADIF)=1, Oscillator, TCC, TCCX and IR/PWM keep on running. Wake-up when ADC completed.	Wake-up + Next Instruction + RE (ADIF)=1, Oscillator, TCC, TCCX and IR/PWM keep on running. Wake-up when ADC completed.	Next Instruction + RE (ADIF)=1	Next Instruction + RE (ADIF)=1		
	RE (ADWE) Bit 3=1, ENI + IOCE0 (ADIE) Bit 5=1	RE (ADWE) Bit 3=1, ENI + IOCE0 (ADIE) Bit 5=1	ENI + IOCE0 (ADIE) Bit 5=1	ENI + IOCE0 (ADIE) Bit 5=1		
	Wake-up + Interrupt Vector (00CH)+ RE (ADIF)=1, Oscillator, TCC, TCCX and IR/PWM keep on running. Wake-up when ADC completed.	Wake-up + Interrupt Vector (00CH)+ RE (ADIF)=1, Oscillator, TCC, TCCX and IR/PWM keep on running. Wake-up when ADC completed.	Interrupt Vector (00CH) + Set RE (ADIF)=1	Interrupt Vector (00CH) + Set RE (ADIF)=1		

Signal	Sleep Mode	Idle Mode	Normal Mode	Green Mode		
	RE (CMPWE) Bit 2=0, IOCE0 (CMPIE) Bit 4=0	RE (CMPWE) Bit 2=0, IOCE0 (CMPIE) Bit 4=0	IOCE0 (CMPIE) Bit 4=0	IOCE0 (CMPIE) Bit 4=0		
	Comparator output status changed wake-up is invalid. Oscillator, TCC, TCCX and IR/PWM are stopped.	Comparator output status changed wake-up is invalid. Oscillator, TCC, TCCX and IR/PWM keep on running.	Comparator output status change interrupt is invalid.	Comparator output status change interrupt is invalid.		
	RE (CMPWE) Bit 2=0, IOCE0 (CMPIE) Bit 4=1	RE (CMPWE) Bit 2=0, IOCE0 (CMPIE) Bit 4=1	N/A	N/A		
	Set RE (CMPIF)=1, Comparator output status changed wake-up is invalid. Oscillator, TCC, TCCX and IR/PWM are stopped.	Set RE (CMPIF)=1, Comparator output status changed wake-up is invalid. Oscillator, TCC, TCCX and IR/PWM keep on running.	N/A	N/A		
	RE (CMPWE) Bit 2=1, IOCE0 (CMPIE) Bit 4=0	RE (CMPWE) Bit 2=1, IOCE0 (CMPIE) Bit 4=0	N/A	N/A		
Comparator (Comparator Output Status Change)	Wake-up + Next Instruction, Oscillator, TCC, TCCX and IR/PWM are stopped.	Wake-up + Next Instruction, Oscillator, TCC, TCCX and IR/PWM keep on running.	N/A	N/A		
	RE (CMPWE) Bit 2=1, DISI + IOCE0 (CMPIE) Bit 4=1	RE (CMPWE) Bit 2=1, DISI + IOCE0 (CMPIE) Bit 4=1	DISI + IOCE0 (CMPIE) Bit 4=1	DISI + IOCE0 (CMPIE) Bit 4=1		
	Wake-up + Next Instruction + Set RE (CMPIF)=1, Oscillator, TCC, TCCX and IR/PWM are stopped.	Wake-up + Next Instruction + Set RE (CMPIF)=1, Oscillator, TCC, TCCX and IR/PWM keep on running.	Next Instruction + Set RE (CMPIF)=1	Next Instruction + Set RE (CMPIF)=1		
	RE (CMPWE) Bit 2=1, ENI + IOCE0 (CMPIE) Bit 4=1	RE (CMPWE) Bit 2=1, ENI + IOCE0 (CMPIE) Bit 4=1	ENI + IOCE0 (CMPIE) Bit 4=1	ENI + IOCE0 (CMPIE) Bit 4=1		
	Wake-up + Interrupt Vector (00FH) + Set RE (CMPIF)=1,Oscillator, TCC, TCCX and IR/PWM are stopped.	Wake-up + Interrupt Vector (00FH) + Set RE (CMPIF)=1,Oscillator, TCC, TCCX and IR/PWM keep on running.	Interrupt Vector (00FH) + Set RE (CMPIF)=1	Interrupt Vector (00FH) + Set RE (CMPIF)=1		
		DISI + IOCF0 (HPWTIE) Bit 6=1	DISI + IOCF0 (HPWTIE) Bit 6=1	DISI + IOCF0 (HPWTIE) Bit 6=1		
IR/PWM underflow interrupt		Wake-up +Next Instruction + Set RF (HPWTIF)=1	Next Instruction + Set RF (HPWTIF)=1	Next Instruction + Set RF (HPWTIF)=1		
(High-pulse width timer underflow	N/A	ENI + IOCF0 (HPWTIE) Bit 6 =1	ENI + IOCF0 (HPWTIE) Bit 6 =1	ENI + IOCF0 (HPWTIE) Bit 6 =1		
interrupt)		Wake-up +Interrupt Vector (012H) + Set RF (HPWTIF)=1	Interrupt Vector (012H) + Set RF (HPWTIF)=1	Interrupt Vector (012H) + Set RF (HPWTIF)=1		

EM78P341N/342N/343N 8-Bit Microprocessor with OTP ROM

Signal	Sleep Mode	Idle Mode	Normal Mode	Green Mode		
IR/PWM		DISI + IOCF0 (LPWTIE) Bit 7=1	DISI + IOCF0 (LPWTIE) Bit 7=1	DISI + IOCF0 (LPWTIE) Bit 7=1		
underflow interrupt	/PWM derflow errupt pw-pulse dth timer derflow errupt) CCA Over pw N/A	Wake-up +Next Instruction + Set RF (LPWTIF)=1	Next Instruction + Set RF (LPWTIF)=1	Next Instruction + Set RF (LPWTIF)=1		
(Low-pulse width timer	N/A	ENI + IOCF0 (LPWTIE) Bit 7 =1	ENI + IOCF0 (LPWTIE) Bit 7 =1	ENI + IOCF0 (LPWTIE) Bit 7 =1		
underflow interrupt)		Wake-up +Interrupt Vector (015H) + Set RF (LPWTIF)=1	Interrupt Vector (015H) + Set RF (LPWTIF)=1	Interrupt Vector (015H) + Set RF (LPWTIF)=1		
		DISI + IOCF0 (TCCAIE) Bit 3=1	DISI + IOCF0 (TCCAIE) Bit 3=1	DISI + IOCF0 (TCCAIE) Bit 3=1		
TCCA Over		Wake-up +Next Instruction + Set RF (TCCAIF)=1	Next Instruction + Set RF (TCCAIF)=1	Next Instruction + Set RF (TCCAIF)=1		
Flow	N/A	ENI + IOCF0 (TCCAIE) Bit 3=1	ENI + IOCF0 (TCCAIE) Bit 3=1	ENI + IOCF0 (TCCAIE) Bit 3=1		
		Wake-up +Interrupt Vector (018H) + Set RF (TCCAIF)=1	Interrupt Vector (018H) + Set RF (TCCAIF)=1	Interrupt Vector (018H) + Set RF (TCCAIF)=1		
		DISI + IOCF0 (TCCBIE) Bit 4=1	DISI + IOCF0 (TCCBIE) Bit 4=1	DISI + IOCF0 (TCCBIE) Bit 4=1		
TOOD Over		Wake-up +Next Instruction + Set RF (TCCBIF)=1	Next Instruction + Set RF (TCCBIF)=1	Next Instruction + Set RF (TCCBIF)=1		
Flow	N/A	ENI + IOCF0 (TCCBIE) Bit 4=1	ENI + IOCF0 (TCCBIE) Bit 4=1	ENI + IOCF0 (TCCBIE) Bit 4=1		
		Wake-up +Interrupt Vector (01BH) + Set RF (TCCBIF)=1	Interrupt Vector (01BH) + Set RF (TCCBIF)=1	Interrupt Vector (01BH) + Set RF (TCCBIF)=1		
		DISI + IOCF0 (TCCCIE) Bit 5=1	DISI + IOCF0 (TCCCIE) Bit 5=1	DISI + IOCF0 (TCCCIE) Bit 5=1		
TCCC Over		Wake-up +Next Instruction + Set RF (TCCCIF)=1	Next Instruction + Set RF (TCCCIF)=1	Next Instruction + Set RF (TCCCIF)=1		
Flow	N/A	ENI + IOCF0 (TCCCIE) Bit 5=1	ENI + IOCF0 (TCCCIE) Bit 5=1	ENI + IOCF0 (TCCCIE) Bit 5=1		
		Wake-up +Interrupt Vector (01EH) + Set RF (TCCCIF)=1	Interrupt Vector (01EH) + Set RF (TCCCIF)=1	Interrupt Vector (01EH) + Set RF (TCCCIF)=1		

Signal	Sleep Mode	Idle Mode	Normal Mode	Green Mode		
	RE (LVDWE) Bit 0=0, IOCD1 (LVDIE) Bit 3=0	RE (LVDWE) Bit 0=0, IOCD1 (LVDIE) Bit 3=0	IOCD1 (LVDIE) Bit 3=0	IOCD1 (LVDIE) Bit 3=0		
	Low voltage detector wake-up is invalid. Oscillator, TCC, TCCX and IR/PWM are stopped.	Low voltage detector wake-up is invalid. Oscillator, TCC, TCCX and IR/PWM keep on running.	Low voltage detector interrupted is invalid.	Low voltage detector interrupted is invalid.		
	RE (LVDWE) Bit 0=0, IOCD1 (LVDIE) Bit 3=1	RE (LVDWE) Bit 0=0, IOCD1 (LVDIE) Bit 3=1	N/A	N/A		
	Set RE (LVDIF)=1, Low voltage detector wake-up is invalid. Oscillator, TCC, TCCX and IR/PWM are stopped.	Set RE (LVDIF)=1, Low voltage detector wake-up is invalid. Oscillator, TCC, TCCX and IR/PWM keep on running.	N/A	N/A		
	RE (LVDWE) Bit 0=1, IOCD1 (LVDIE) Bit 3=0	RE (LVDWE) Bit 0=1, IOCD1 (LVDIE) Bit 3=0	N/A	N/A		
Low Voltage Detector interrupt	Wake-up + Next Instruction, Oscillator, TCC, TCCX and IR/PWM are stopped.	Wake-up + Next Instruction, Oscillator, TCC, TCCX and IR/PWM keep on running.	N/A	N/A		
	RE (LVDWE) Bit =1, DISI + IOCD1 (LVDIE) Bit 3=1	RE (LVDWE) Bit 0=1, DISI + IOCD1 (LVDIE) Bit 3=1	DISI + IOCD1 (LVDIE) Bit 3=1	DISI + IOCD1 (LVDIE) Bit 3=1		
	Wake-up + Next Instruction + Set RE (LVDIF)=1, Oscillator, TCC, TCCX and IR/PWM are stopped.	Wake-up + Next Instruction + Set RE (LVDIF)=1, Oscillator, TCC, TCCX and IR/PWM keep on running.	Next Instruction + Set RE (LVDIF)=1	Next Instruction + Set RE (LVDIF)=1		
	RE (LVDWE) Bit 2=1, ENI + IOCD1 (LVDIE) Bit 3=1	RE (LVDWE) Bit0=1, ENI + IOCD1 (LVDIE) Bit 3=1	ENI + IOCD1 (LVDIE) Bit 3=1	ENI + IOCD1 (LVDIE) Bit 3=1		
	Wake-up + Interrupt Vector (021H) + Set RE (LVDIF)=1,Oscillator, TCC, TCCX and IR/PWM are stopped.	Wake-up + Interrupt Vector (021H) + Set RE (LVDIF)=1,Oscillator, TCC, TCCX and IR/PWM keep on running.	Interrupt Vector (021H) + Set RE (LVDIF)=1	Interrupt Vector (021H) + Set RE (LVDIF)=1		
WDT Time Out IOCE (WDTE) Bit 7=1	Wake-up + Reset (Address 0x00)	Wake-up + Reset (Address 0x00)	Reset (Address 0x00)	Reset (Address 0x00)		
Low voltage reset	Wake-up + Reset (Address 0x00)	Wake-up + Reset (Address 0x00)	Reset (Address 0x00)	Reset (Address 0x00)		

Address	Name	Reset Type	Bit 7 Bit 6			t 5			Bit 3		Bit 2		Bit 1		Bit	t 0		
		Bit Name		57	C56		C55		C54		C53		C52		C51		C5	
N/A	IOC50	Туре	341N 343N		108C 341N 342N 342N 342N 343N 343N <td< td=""><td>-</td><td>-</td><td>-</td><td>-</td></td<>		-	-	-	-								
N/A	10050	Power-on	0	1	0	1		1	0	1	0	1	0	1		1	1	i
		/RESET and WDT	0	1	0	1		1	0	1	0	1	0	1		1	1	i
		Wake-up from Pin Change	0	Ρ	0	Ρ	F	D	0	Ρ	0	Ρ	0	Ρ	F	D	F	>
		Bit Name	С	67	C	6	C	65	С	64	C	63	С	62	С	61	Ce	30
N/A	IOC60	Туре	-	_	108C 341N 342N	343 N			108C 341N				108C 341N		108C	341N 342N 343N	108C	341N 342N 343N
N/A	10000	Power-on		1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
		/RESET and WDT		1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
		Wake-up from Pin Change	F	Þ	0	Ρ	0	Ρ	0	Ρ	0	Ρ	0	Ρ	0	Ρ	0	Ρ
		Bit Name)	X	>	(>	K)	X	>	<)	X	C71		C70	
		Power-on	(0	0		(0 0		0		0		1		1		
N/A	IOC70	/RESET and WDT	0		0		0		0		0		0		1		1	
		Wake-up from Pin Change		Р		P P		5	Р		Р		Р		Р		Р	
		Bit Name)	X	Х		CMPOUT		COS1 COS0		TCCAEN		TCCATS		TCCATE			
		Power-on	(0	0		0 0)	0		0		0		0		
N/A	IOC80	/RESET and WDT	(0	C)	0		0		()	()	()	C)
		Wake-up from Pin Change	F	Ρ	Р		Р		Р		Р		F	5	F	5	F	,
		Bit Name	тсс	BHE	тсс	BEN	тсс	BTS	S TCCBTE		Х		TCCCEN		TCCCTS		тсс	CTE
		Power-on	(0	C)	()	()	()	0		()	C)
N/A	IOC90	/RESET and WDT	(0	C)	()	()	()	0		()	C)
		Wake-up from Pin Change	F	Þ	F)	F	D	F	D	F	C	F	5	F	5	F	,
		Bit Name	тсс	CSE	тсс	CS2	тсс	CS1	тсс	CS0	IR	RE	н	IF	LC	θP	IRO	JTE
	IOCA0	Power-on	(0	C)	()	()	()	()	()	C)
N/A	(IR CR)	/RESET and WDT	(0	C)	()	(C	()	(D	(C	C)
		Wake-up from Pin Change	F	P	F	þ	F	D	F	D	F	D	F	5	F	Þ	F	,
		Bit Name	/PI	057	/PC	56		055	/PE	054	/PE	053	/PE	052	/PE	051	/PD50	
	IOCB0	Power-on	· ·	1	1		-	1		1	1		1		1		1	
N/A	(PDCR)	/RESET and WDT	· ·	1	1		-	1	-	1	-	1		1		1	1	
	. ,	Wake-up from Pin Change	F	Þ	F	þ	F	D	F	5	F	D	Р		F	5	F	,

6.5.1.2 Register Initial Values after Reset

The following summarizes the registers initialized values.

Address	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	/OD67	/OD66	/OD65	/OD64	/OD63	/OD62	/OD61	/OD60
	10000	Power-on	1	1	1	1	1	1	1	1
N/A	(ODCR)	/RESET and WDT	1	1	1	1	1	1	1	1
	· · ·	Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	/PH57	/PH56	/PH55	/PH54	/PH53	/PH52	/PH51	/PH50
	IOCD0	Power-on	1	1	1	1	1	1	1	1
N/A	(PHCR1)	/RESET and WDT	1	1	1	1	1	1	1	1
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Ρ
		Bit Name	WDTC	EIS	ADIE	CMPIE	PSWE	PSW2	PSW1	PSW0
		Power-on	0	0	0	0	0	0	0	0
N/A	IOCE0	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Ρ
		Bit Name	LPWTIE	HPWTIE	TCCCIE	TCCBIE	TCCAIE	EXIE	ICIE	TCIE
		Power-on	0	0	0	0	0	0	0	0
N/A	IOCF0	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TCCA7	TCCA6	TCCA5	TCCA4	TCCA3	TCCA2	TCCA1	TCCA0
	IOC51	Power-on	0	0	0	0	0	0	0	0
N/A	(TCCA)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
	IOC61	Bit Name	TCCB7	TCCB6	TCCB5	TCCB4	TCCB3	TCCB2	TCCB1	TCCB0
		Power-on	0	0	0	0	0	0	0	0
N/A	(TCCB)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	ТССВН7	ТССВН6	TCCBH5	ТССВН4	тссвнз	TCCBH2	TCCBH1	TCCBH 0
N/A	IOC71	Power-on	0	0	0	0	0	0	0	0
1071	(TCCBH)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TCCC7	TCCC6	TCCC5	TCCC4	TCCC3	TCCC2	TCCC1	TCCC0
	IOC81	Power-on	0	0	0	0	0	0	0	0
N/A	(TCCC)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Ρ	Р
		Bit Name	LTR7	LTR6	LTR5	LTR4	LTR3	LTR2	LTR1	LTR0
	IOC91	Power-on	0	0	0	0	0	0	0	0
N/A	(LTR)	/RESET and WDT	0	0	0	0	0	0	0	0
	(2)	Wake-p from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р

Address	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	HTR7	HTR6	HTR5	HTR4	HTR3	HTR2	HTR1	HTR0
	100044	Power-on	0	0	0	0	0	0	0	0
N/A	IOCA1 (HTR)	/RESET and WDT	0	0	0	0	0	0	0	0
	()	Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	HTSE	HTS2	HTS1	HTS0	LTSE	LTS2	LTS1	LTS0
	IOCB1	Power-on	0	0	0	0	0	0	0	0
N/A	(HLTS)	/RESET and WDT	0	0	0	0	0	0	0	0
	× ,	Wake-up from Pin Change	Ρ	Ρ	Ρ	Р	Ρ	Ρ	Ρ	Ρ
		Bit Name	TCCPC7	TCCPC6	TCCPC5	TCCPC4	ТССРСЗ	TCCPC2	TCCPC1	TCCPC 0
N/A	IOCC1	Power-on	0	0	0	0	0	0	0	0
11/7	(TCCPC)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TYPE1	TYPE0	LVR1	LVR0	LVDIE	LVDEN	LVD1	LVD0
	IOCD1	Power-on	1	1	1	1	0	0	1	1
N/A (LVD CR) (ROMLESS)	/RESET and WDT	Р	Р	Р	Р	0	Р	1	1	
	Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р	
	HS1	WDPTS	TIMERS C	CPUS	IDLE	HS3	HS2	HS1	HS0	
N/A	IOCE1 (HSC)	Power-on	1	1	1	1	0	0	0	0
1071	(ROMLESS)	/RESET and WDT	Р	1	1	1	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	/PH67	/PH66	/PH65	/PH64	/PH63	/PH62	/PH61	/PH60
	IOCF1	Power-on	1	1	1	1	1	1	1	1
N/A	(PHCR2)	/RESET and WDT	1	1	1	1	1	1	1	1
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	INTE	INT	TS	TE	PSTE	PST2	PST1	PST0
		Power-on	1	0	1	1	0	0	0	0
N/A	CONT	/RESET and WDT	1	0	1	1	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	-	-	-	-	-	-
0x00 R0(IAR)	Power-on	U	U	U	U	U	U	U	U	
	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р	
	Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р	
		Bit Name	-	-	-	-	-	-	-	-
		Power-on	0	0	0	0	0	0	0	0
0x01	R1(TCC)	/RESET and WDT	0	0	0	0	0	0	00	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р

Address	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	_	_	_	_	_	_	_	_
		Power-on	0	0	0	0	0	0	0	0
0x02	R2 (PC)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change		Jump to a	ddress 0x0)6 or contii	nue to exe	cute next i	instruction	
		Bit Name	RST	IOCS	PS0	Т	Р	Z	DC	С
		Power-on	0	0	0	1	1	U	U	U
0x03	R3 (SR)	/RESET and WDT	0	0	0	Т	t	Р	Р	Р
		Wake-up from Pin Change	Р	Р	Р	т	t	Р	Р	Р
		Bit Name	Х	BS	Х	Х	Х	Х	Х	Х
		Power-on	0	0	U	U	U	U	U	U
0x04	R4 (RSR)	/RESET and WDT	0	0	Р	Р	Р	Р	Р	Р
		Wake-up from Pin Change	0	Ρ	Р	Р	Р	Ρ	Р	Р
		Bit Name	P57	P56	P55	P54	P53	P52	P51	P50
		Power-on	1	1	1	1	1	1	1	1
0x05	0x05 R5	/RESET and WDT	1	1	1	1	1	1	1	1
	Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р	
		Bit Name	P67	P66	P65	P64	P63	P62	P61	P60
		Power-on	1	1	1	1	1	1	1	1
0x06	R6	/RESET and WDT	1	1	1	1	1	1	1	1
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	-	-	-	-	P71	P70
		Power-on	0	0	0	0	0	0	1	1
0x7	R7	/RESET and WDT	0	0	0	0	0	0	1	1
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	_	_	_	-	ADE3	ADE2	ADE1	ADE0
	R8	Power-on	0	0	0	0	0	0	0	0
0x8	(AISR)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	0	0	0	0	Р	Р	Р	Р
		Bit Name	VREFS	CKR1	CKR0	ADRUN	ADPD	_	ADIS1	ADIS0
	R9	Power-on	0	0	0	0	0	0	0	0
0x9	(ADCON)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	0	Р	Р
		Bit Name	CALI	SIGN	VOF[2]	VOF[1]	VOF[0]	-	-	-
	RA	Power-on	0	0	0	0	0	0	0	0
0xA	(ADOC)	/RESET and WDT	0	0	0	0	0	0	0	0
	(1200)	Wake-up from Pin Change	Р	Ρ	Ρ	Р	Р	Ρ	Ρ	Р

EM78P341N/342N/343N 8-Bit Microprocessor with OTP ROM

Address	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	AD11	AD10	AD9	AD8	AD7	AD6	AD5	AD4
	RB	Power-on	U	U	U	U	U	U	U	U
0XB	(ADDATA)	/RESET and WDT	U	U	U	U	U	U	U	U
	、 ,	Wake-up from Pin Change	Ρ	Ρ	Ρ	Р	Ρ	Р	Ρ	Р
		Bit Name	"0"	"0"	"0"	"0"	AD11	AD10	AD9	AD8
	RC	Power-on	0	0	0	0	U	U	U	U
0XC	(ADDATA1H)	/RESET and WDT	0	0	0	0	U	U	U	U
	(, , , , , , , , , , , , , , , , ,	Wake-up from Pin Change	0	0	0	0	Р	Ρ	Ρ	Ρ
		Bit Name	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0
	RD	Power-on	U	U	U	U	U	U	U	U
0XD (ADDATA1L0)	/RESET and WDT	U	U	U	U	U	U	U	U	
	(125) (17(126)	Wake-up from Pin Change	Ρ	Р	Ρ	Ρ	Ρ	Р	Ρ	Р
		Bit Name	1	-	ADIF	CMPIF	ADWE	CMPWE	ICWE	_
	RE	Power-on	0	0	0	0	0	0	0	0
0xE	K⊑ (ISR2)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ
		Bit Name	LPWTIF	HPWTIF	TCCCIF	TCCBIF	TCCAIF	EXIF	ICIF	TCIF
	RF	Power-on	0	0	0	0	0	0	0	0
0xF	(ISR1)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	_	-	_	_	_	_	_	_
		Power-on	U	U	U	U	U	U	U	U
0x10~0x3F	R10~R3F	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
	Wake-up from Pin Change	Ρ	Р	Р	Р	Р	Р	Р	Р	

Legend: "-" = not used

"u" = unknown or don't care

"P" = previous value before reset

"t" = check "Reset Type" Table in Section 6.5.2

6.5.1.3 Controller Reset Block Diagram

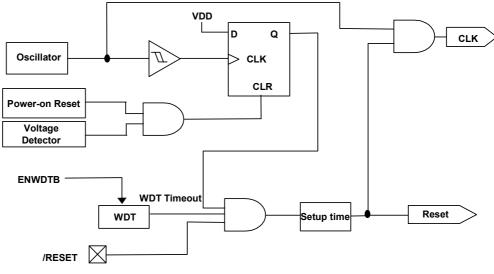


Fig. 6-8 Controller Reset Block Diagram

6.5.2 The T and P Status under Status (R3) Register

A reset condition is initiated by one of the following events:

- 1. Power-on reset
- 2. /RESET pin input "low"
- 3. WDT time-out (if enabled)

The values of RST, T, and P as listed in the table below, are used to check how the processor wakes up.

Reset Type	RST	Т	Р
Power-on	0	1	1
/RESET during Operating mode	0	*P	*P
/RESET wake-up during SLEEP mode	0	1	0
WDT during Operating mode	0	0	1
WDT wake-up during SLEEP mode	0	0	0
Wake-up on pin change during SLEEP mode	1	1	0

*P: Previous status before reset

The following shows the events that may affect the status of T and P.

Event	RST	Т	Р
Power-on	0	1	1
WDTC instruction	*P	1	1
WDT time-out	0	0	*P
SLEP instruction	*P	1	0
Wake-up on pin changed during SLEEP mode	1	1	0

*P: Previous value before reset

6.6 Interrupt

The EM78P341N/342N/343N has six interrupts as listed below:

- 1. TCC, TCCA, TCCB, TCCC overflow interrupt
- 2. Port 5 Input Status Change Interrupt
- 3. External interrupt [(P60, /INT) pin]
- 4. Analog to Digital conversion completed
- 5. IR/PWM underflow interrupt
- 6. When the comparators status changes (not applicable to EM78P341N)
- 7. Low voltage detector interrupt

Before the Port 5 Input Status Change Interrupt is enabled, reading Port 5 (e.g. "MOV R5,R5") is necessary. Each Port 5 pin will have this feature if its status changes. The Port 5 Input Status Change Interrupt will wake up the EM78P341N/342N/343N from sleep mode if it is enabled prior to going into sleep mode by executing SLEP instruction. When wake up occurs, the controller will continue to execute program in-line if the global interrupt is disabled. If enabled, the global interrupt will branch out to the interrupt vector 006H.

External interrupt equipped with digital noise rejection circuit (input pulse less than system clock time) is eliminated as noise. However, under Low Crystal oscillator (LXT) mode the noise rejection circuit will be disabled. Edge selection is possible with INTE of CONT. When an interrupt is generated by the External interrupt (when enabled), the next instruction will be fetched from address 003H. Refer to the Word 1 Bits 9 & 8 (Section 6.14.2, *Code Option Register (Word 1)*) for digital noise rejection definition.

RF and RE are the interrupt status register that records the interrupt requests in the relative flags/bits. IOCF0 and IOCE0 are interrupt mask registers. The global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction. Once in the interrupt service routine, the source of an interrupt can be determined by polling the flag bits in RF. The interrupt flag bit must be cleared by instructions before leaving the interrupt service routine to avoid recursive interrupts.

The flag (except for the ICIF bit) in the Interrupt Status Register (RF) is set regardless of the ENI execution. Note that the result of RF will be the logic AND of RF and IOCF0 (refer to figure below). The RETI instruction ends the interrupt routine and enables the global interrupt (the ENI execution).

When an interrupt is generated by the Timer clock/counter (when enabled), the next instruction will be fetched from Address 009, 018, 01B, and 01EH (TCC, TCCA, TCCB, and TCCC respectively).

When an interrupt generated by the AD conversion is completed (when enabled), the next instruction will be fetched from Address 00CH.

When an interrupt is generated by the High time / Low time down counter underflow (when enabled), the next instruction will be fetched from Addresses 012 and 015H (High time and Low time respectively).

When an interrupt is generated by the Comparators (when enabled), the next instruction will be fetched from Address 00FH (Comparator interrupt).

When an interrupt is generated by the Low Voltage Detect (when enabled), the next instruction will be fetched from Address 021 (Low Voltage Detector interrupt).

Before an interrupt subroutine is executed, the contents of ACC and the R3 and R4 registers are saved first by the hardware. If another interrupt occurs, the ACC, R3, and R4 will be replaced by the new interrupt. After an interrupt service routine is completed, the ACC, R3, and R4 registers are restored.

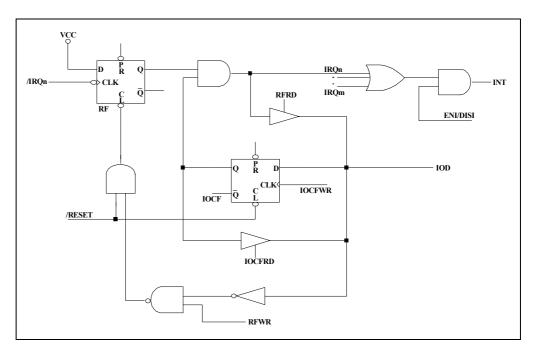


Fig. 6.9 Interrupt Input Circuit

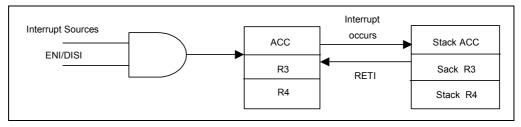


Fig. 6.10 Interrupt Backup Diagram

In EM78P341N/342N/343N, each individual interrupt source has its own interrupt vector as depicted in the table below.

Interrupt Vector	Interrupt Status	Priority*
003H	External interrupt	2
006H	Port 5 pin change	3
009H	TCC overflow interrupt	4
00CH	AD conversion complete interrupt	5
00FH	Comparator interrupt	6
012H	High-pulse width timer underflow interrupt	7
015H	Low-pulse width timer underflow interrupt	8
018H	TCCA overflow interrupt	9
01BH	TCCB overflow interrupt	10
01EH	TCCC overflow interrupt	11
021H	Low Voltage Detector interrupt	1

*Priority: 1 = highest ; 11 = lowest priority

NOTE

• Comparator interrupt is not applicable to EM78P341N.

6.7 Analog-To-Digital Converter (ADC)

The analog-to-digital circuitry consist of a 4-bit analog multiplexer; three control registers (AISR/R8, ADCON/R9, & ADOC/RA), three data registers (ADDATA/RB, ADDATA1H/RC, & ADDATA1L/RD), and an ADC with 12-bit resolution as shown in the functional block diagram below. The analog reference voltage (Vref) and the analog ground are connected via separate input pins.

The ADC module utilizes successive approximation to convert the unknown analog signal into a digital value. The result is fed to the ADDATA, ADDATA1H, and ADDATA1L. Input channels are selected by the analog input multiplexer via the ADCON register Bits ADIS1 and ADIS0.

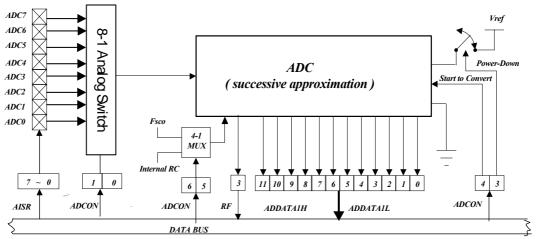


Fig. 6-11 Analog-to-Digital Conversion Functional Block Diagram

6.7.1 ADC Control Register (AISR/R8, ADCON/R9, ADOC/RA)

6.7.1.1 R8 (AISR: ADC Input Select Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0

AISR register defines the P5, P6, P7 pins as analog inputs or as digital I/O, individually.

Bit 7 (ADE7): AD converter enable bit of P57 pin

- **0** = Disable ADC7, P57 functions as I/O pin
- 1 = Enable ADC7 to function as analog input pin
- Bit 6 (ADE6): AD converter enable bit of P55 pin
 - 0 = Disable ADC6, P55 functions as I/O pin
 - 1 = Enable ADC6 to function as analog input pin
- Bit 5 (ADE5): AD converter enable bit of P70 pin
 - **0** = Disable ADC5, P70 functions as I/O pin
 - 1 = Enable ADC5 to function as analog input pin

Bit 4 (ADE4):	AD converter enable bit of P67 pin
	0 = Disable ADC4, P67 functions as I/O pin
	1 = Enable ADC4 to function as analog input pin
Bit 3 (ADE3):	AD converter enable bit of P53 pin
	0 = Disable ADC3, P53 functions as I/O pin
	1 = Enable ADC3 to function as analog input pin
Bit 2 (ADE2):	AD converter enable bit of P52 pin
	0 = Disable ADC2, P53 functions as I/O pin
	1 = Enable ADC2 to function as analog input pin
Bit 1 (ADE1):	AD converter enable bit of P51 pin
	0 = Disable ADC1, P51 functions as I/O pin
	1 = Enable ADC1 to function as analog input pin
Bit 0 (ADE0):	AD converter enable bit of P50 pin
	0 = Disable ADC0, P50 functions as I/O pin
	1 = Enable ADC0 to function as analog input pin

6.7.1.2 R9 (ADCON: AD Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
VREFS	CKR1	CKR0	ADRUN	ADPD	ADIS2	ADIS1	ADIS0

The **ADCON** register controls the operation of the AD conversion and decides which pin should be currently active.

Bit 7(VREFS): The input source of the ADC Vref

- **0** = The ADC Vref is connected to Vdd (default value), and the VREF/TCC/P54 pin carries out the P54 function
- 1 = The ADC Vref is connected to VREF/TCC/P54

NOTE								
The P54/TCC/VREF pin cannot be applied to TCC and VREF at the same time. If P54/TCC/VREF functions as VREF analog input pin, then CONT Bit 5 (TS) must be "0". The P54/TCC/VREF pin priority is as follows:								
	P54/T0	CC/VREF Pin	Priority					
	High	Medium	Low					
	VREF	тсс	P54					

Bit 6 & Bit 5 (CKR1 & CKR0): The prescaler of ADC oscillator clock rate

00 = 1: 16 (default value)

10 = 1: 64

11 = 1: 8

CPUS	CKR1: CKR0	Operation Mode	Max. Operation Frequency	
1	00	Fosc/16	4MHz	
1	01	Fosc/4	1MHz	
1	10	Fosc/64	16MHz	
1	11	Fosc/8	2MHz	
0	××	Internal RC	-	

Bit 4 (ADRUN): ADC starts to RUN

- **1** = an AD conversion is started. This bit can be set by software.
- **0** = Reset upon completion of the conversion. This bit **cannot** be reset through software
- Bit 3 (ADPD): ADC Power-down mode.
 - 1 = ADC is operating
 - **0** = switch off the resistor reference to save power even while the CPU is operating.

Bit 2 ~ Bit 0 (ADIS2 ~ ADIS0): Analog Input Select

- 000 = ADIN0/P50
- 001 = ADIN1/P51
- 010 = ADIN2/P52
- 011 = ADIN3/P53
- 100 = ADIN0/P67
- 101 = ADIN1/P70
- 110 = ADIN2/P55
- 111 = ADIN3/P57

These bits can only be changed when the ADIF bit and the ADRUN bit are both LOW.

6.7.1.3 RA (ADOC: AD Offset Calibration Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CALI	SIGN	VOF[2]	VOF[1]	VOF[0]	-	-	-

Bit 7 (CALI): Calibration enable bit for ADC offset

0 = disable Calibration

1 = enable Calibration

Bit 6 (SIGN): Polarity bit of offset voltage

0 = Negative voltage

1 = Positive voltage

VOF[2]	VOF[1]	VOF[0]	EM78P342N/343N	ICE342N
0	0	0	0LSB	OLSB
0	0	1	2LSB	2LSB
0	1	0	4LSB	4LSB
0	1	1	6LSB	6LSB
1	0	0	8LSB	8LSB
1	0	1	10LSB	10LSB
1	1	0	12LSB	12LSB
1	1	1	14LSB	14LSB

Bit 5 ~ Bit 3 (VOF[2] ~ VOF[0]): Offset voltage bits

Bit 2 ~ Bit 0: Unimplemented, read as '0'.

6.7.2 ADC Data Register (ADDATA/RB, ADDATA1H/RC, ADDATA1L/RD)

When the AD conversion is completed, the result is loaded to the ADDATA, ADDATA1H and ADDATA1L registers. The ADRUN bit is cleared, and the ADIF is set.

6.7.3 ADC Sampling Time

The accuracy, linearity, and speed of the successive approximation of AD converter are dependent on the properties of the ADC and the comparator. The source impedance and the internal sampling impedance directly affect the time required to charge the sample holding capacitor. The application program controls the length of the sample time to meet the specified accuracy. Generally speaking, the program should wait for 2μ s for each K Ω of the analog source impedance and at least 2μ s for the low-impedance source. The maximum recommended impedance for analog source is $10K\Omega$ at Vdd=5V. After the analog input channel is selected, this acquisition time must be done before the conversion is started.

6.7.4 AD Conversion Time

CKR1 and CKR0 select the conversion time (Tct), in terms of instruction cycles. This allows the MCU to run at a maximum frequency without sacrificing the AD conversion accuracy. For the EM78P342N/343N, the conversion time per bit is 4μ s. The table below shows the relationship between Tct and the maximum operating frequencies.

CKR1: CKR0	Operation Mode	Max. Operation Frequency	Max. Conversion Rate/Bit	Max. Conversion Rate
00	Fsco/16	4 MHz	250kHz (4µs)	15×4µs=60µs(16.7kHz)
01	Fsco/4	1MHz	250kHz (4µs)	15×4µs=60µs(16.7kHz)
10	Fsco/64	16MHz	250kHz(4µs)	15×4µs=60µs(16.7kHz)
11	Fsco/8	2MHz	250kHz (4µs)	15×4µs=1065µs(16.7kHz)

NOTE

- Pin not used as an analog input pin can be used as a regular input or output pin.
- During conversion, do not perform output instruction to maintain precision for all of the pins.

6.7.5 ADC Operation during Sleep Mode

In order to obtain a more accurate ADC value and reduce power consumption, the AD conversion remains operational during sleep mode. As the SLEP instruction is executed, all the MCU operations will stop except for the Oscillator, TCC, TCCA, TCCB, TCCC and AD conversion.

The AD Conversion is considered completed as determined by:

- 1. ADRUN bit of R9 register is cleared to "0".
- 2. ADIF bit of RE register is set to "1".
- 3. ADWE bit of the RE register is set to "1." Wake-up from ADC conversion (where it remains in operation during sleep mode).
- 4. Wake-up and executes the next instruction if ADIE bit of IOCE0 is enabled and the "DISI" instruction is executed.
- 5. Wake-up and enters into Interrupt vector (Address 0x00C) if ADIE bit of IOCE0 is enabled and the "ENI" instruction is executed.
- 6. Enters into Interrupt vector (Address 0x00C) if ADIE bit of IOCE0 is enabled and the "ENI" instruction is executed.

The results are fed into the ADDATA, ADDATA1H, and ADDATA1L registers when the conversion is completed. If the ADIE is enabled, the device will wake up. Otherwise, the AD conversion will be shut off, no matter what the status of ADPD bit is.

6.7.6 Programming Process/Considerations

6.7.6.1 Programming Process

Follow these steps to obtain data from the ADC:

- 1. Write to the seven bits (ADE7:ADE0) on the R8 (AISR) register to define the characteristics of R5 (digital I/O, analog channels, or voltage reference pin)
- 2. Write to the R9/ADCON register to configure the AD module:
 - a) Select the ADC input channel (ADIS2: ADIS0)
 - b) Define the AD conversion clock rate (CKR1: CKR0)
 - c) Select the VREFS input source of the ADC
 - d) Set the ADPD bit to 1 to begin sampling
- 3. Set the ADWE bit, if the wake-up function is employed
- 4. Set the ADIE bit, if the interrupt function is employed
- 5. Write "ENI" instruction, if the interrupt function is employed
- 6. Set the ADRUN bit to 1
- 7. Write "SLEP" instruction or Polling.
- 8. Wait for wake-up, ADRUN bit is cleared to "0", interrupt flag (ADIF) is set "1," or ADC interrupt occurs.

- 9. Read the ADDATA or ADDATA1H and ADDATA1L conversion data registers. If the ADC input channel changes at this time, the ADDATA, ADDATA1H, and ADDATA1L values can be cleared to '0'.
- 10. Clear the interrupt flag bit (ADIF)
- 11. For the next conversion, go to Step 1 or Step 2 as required. At least two Tct is required before the next acquisition starts.

NOTE

In order to obtain accurate values, it is necessary to avoid any data transition on the I/O pins during AD conversion.

6.7.6.2 Sample Demo Programs

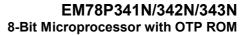
A. Define a General Register

R_0 == 0	; Indirect addressing register
PSW == 3	; Status register
PORT5 == 5	
PORT6 == 6	
R_E== OXE	; Interrupt status register

B. Define a Control Register

IOC50 == 0X5 ; Control Register of Port 5
IOC60 == 0X6 ; Control Register of Port 6
C_INT== 0XF ; Interrupt Control Register

C. ADC Control Register


```
ADDATA == 0xB; The contents are the results of ADCAISR == 0x08; ADC input select registerADCON == 0x9; 76543210; VREFS CKR1 CKR0 ADRUN ADPD ADIS2 ADIS1 ADIS0
```

D. Define Bits in ADCON

ADRUN == 0x4	;	ADC is executed as the bit is set
ADPD == 0x3	;	Power Mode of ADC

E. Program Starts

ORG	0	;	Initial address
JMP	INITIAL	;	
ORG	0x0C	;	Interrupt vector
JMP	CLRRE		
;			
;			
;(Us	ser program s	ec	tion)
;			
;			


```
CLRRE:
MOV A,RE
AND A, @OBXX0XXXXX ; To clear the ADIF bit, "X" by application
MOV RE,A
BS ADCON, ADRUN
                  ; To start to execute the next AD conversion
                     if necessary
RETI
INITIAL:
MOV A,@0B00000001 ; To define P50 as an analog input
MOV AISR, A
MOV A,@0B00001000 ; To select P50 as an analog input channel, and
                     AD power on
MOV ADCON, A
                  ; To define P50 as an input pin and set clock
                     rate at fosc/16
En_ADC:
MOV A, @OBXXXXXXX1 ; To define P50 as an input pin, and the others
IOW PORT5
                   ; are dependent on applications
MOV A, @OBXXXX1XXX ; Enable the ADWE wake-up function of ADC, "X"
                     by application
MOV RE,A
MOV A, @OBXXXX1XXX ; Enable the ADIE interrupt function of ADC,
                     "X" by application
IOW C_INT
                   ; Enable the interrupt function
ENI
BS ADCON, ADRUN ; Start to run the ADC
; If the interrupt function is employed, the following three lines
may be ignored
;If Sleep:
SLEP
;
;(User program section)
;
or
; If Polling:
POLLING:
JBC ADCON, ADRUN ; To check the ADRUN bit continuously;
                   ; ADRUN bit will be reset as the AD conversion
JMP POLLING
                     is completed
;
;(User program section)
;
```


6.8.1 Overview

This LSI can easily output infrared carrier or PWM standard waveform. As illustrated below, the IR and PWM waveform generation function include an 8-bit down count timer/counter, high-time, low-time, and IR control register. The IROUT pin waveform is determined by IOCA0 (IR and TCCC scale control register), IOCB1 (high-time rate, low-time rate control register), IOC81 (TCCC counter), IOCA1 (high-time register), and IOC91 (low-time register).

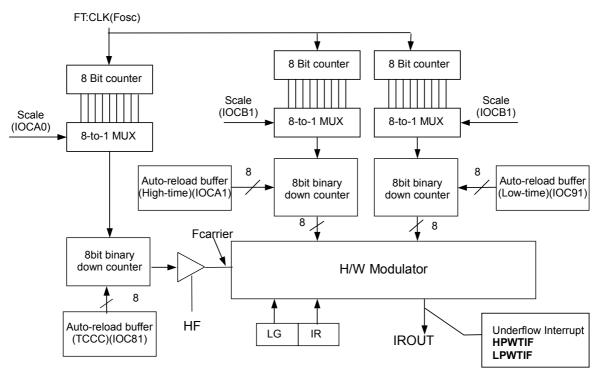


Fig. 6-12 IR/PWM System Block Diagram

	NOTE							
Details of the Fo	Details of the Fcarrier high time width and low time width are explained below:							
Fcarrier =	FT/ 2 { [1+decimal TCCC Counter value (IOC81)] * TCCC Scale(IOCA0) }							
High time widt	<pre>High time width = {[1+decimal high-time value (IOCA1)] * High time Scale(IOCB1) }/ FT</pre>							
Low time width	h = { [1+decimal low-time value (IOC91)] * Low time Scale(IOCB1) } / FT							
Where FT is the	e system clock FT=Fosc/1(CLK=2) FT=Fosc/2(CLK=4)							

When an interrupt is generated by the High time down counter underflow (when enabled), the next instruction will be fetched from Address 018 and 01BH (High time and Low time respectively).

6.8.2 Function Description

The following figure shows **LGP=0** and **HF=1**. The IROUT waveform modulates the Fcarrier waveform at low-time segments of the pulse.

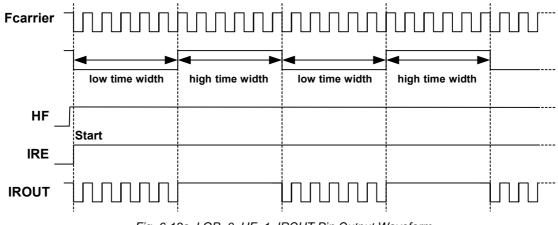


Fig. 6-13a LGP=0, HF=1, IROUT Pin Output Waveform

The following figure shows **LGP=0** and **HF=0**. The IROUT waveform cannot modulate the Fcarrier waveform at low-time segments of the pulse. So IROUT waveform is determined by the high time width and low time width instead. This mode can produce standard PWM waveform.

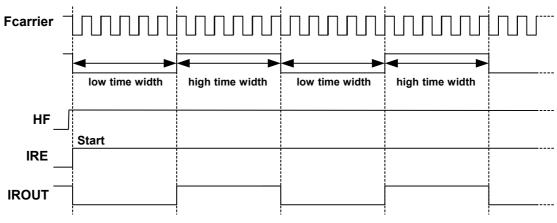


Fig. 6-13b LGP=0, HF=0, IROUT Pin Output Waveform

The following figure shows **LGP=0** and **HF=1**. The IROUT waveform modulates the Fcarrier waveform at low-time segments of the pulse. When IRE goes low from high, the output waveform of IROUT will keep transmitting until high-time interrupt occurs.

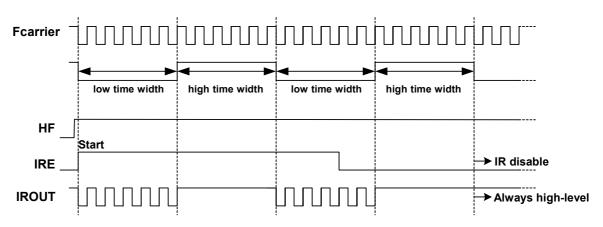


Fig. 6-13c LGP=0, HF=1, When IRE goes Low from High, IROUT Pin Outputs Waveform

The following figure shows **LGP=0** and **HF=0**. The IROUT waveform cannot modulate the Fcarrier waveform at low-time segments of the pulse. So IROUT waveform is determined by high time width and low time width. This mode can produce standard PWM waveform when IRE goes low from high. The output waveform of IROUT will keep on transmitting until high-time interrupt occurs.

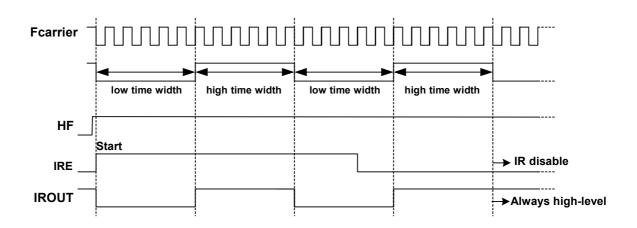


Fig. 6-13d LGP=0, HF=0, When IRE goes Low from High, Irout Pin Output Waveform

The following figure shows **LGP=1** and **HF=1**. When this bit is set to high level, the high-time segment of the pulse is ignored. So, IROUT waveform output is determined by low-time width.

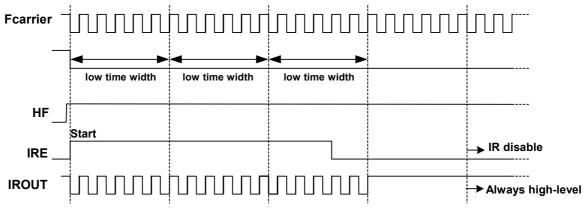


Fig. 6-13e LGP=1 and HP=1, IROUT Pin Output Waveform

6.8.3 Programming the Related Registers

When defining IR/PWM, refer to the operation of the related registers as shown in the tables below.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x09	IOC90	TCCBHE/0	TCCBEN/0	TCCBTS/0	TCCBTE/0	0	TCCCEN/0	TCCCTS/0	TCCCTE/0
0X0A	IR CR /IOCA0	TCCCSE/0	TCCCS2/0	TCCCS1/0	TCCCS0/0	IRE/0	HF/0	LGP/0	IROUTE/0
0x0F	IMR /IOCF0	LPWTIE/0	HPWTIE/0	TCCCIE/0	TCCBIE/0	TCCAIE/0	EXIE/0	ICIE/0	TCIE/0
0X0B	HLTS /IOCB1	HTSE/0	HTS2/0	HTS1/0	HTS0/0	LTSE/0	LTS2/0	LTS1/0	LTS0/0

IR/PWM Related Control Registers

IR/PWM Related Status/Data Registers

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x0F	ISR/RF	LPWTIF/0	HPWTIF/0	TCCCIF/0	TCCBIF/0	TCCAIF/0	EXIF/0	ICIF/0	TCIF/0
0x06	TCCC /IOC81	TCCC7/0	TCCC6/0	TCCC5/0	TCCC4/0	TCCC3/0	TCCC2/0	TCCC1/0	TCCC0/0
0X09	LTR /IOC91	LTR7/0	LTR6/0	LTR5/0	LTR4/0	LTR3/0	LTR2/0	LTR1/0	LTR0/0
0X0A	HTR /IOCA1	HTR7/0	HTR6/0	HTR5/0	HTR4/0	HTR3/0	HTR2/0	HTR1/0	HTR0/0

6.9 Timer/Counter

6.9.1 Overview

Timer A (TCCA) is an 8-bit clock counter. Timer B (TCCB) is a 16-bit clock counter. Timer C (TCCC) is an 8-bit clock counter that can be extended to 16-bit clock counter with programmable scalers. TCCA, TCCB, and TCCC can be read and written to, and are cleared at every reset condition.

6.9.2 Function Description

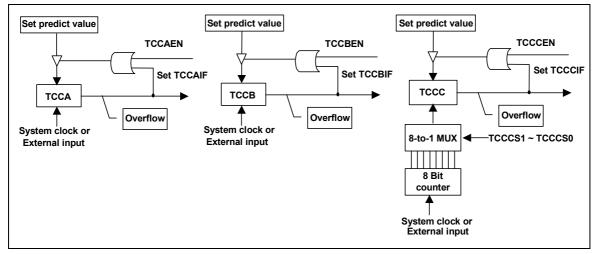


Fig. 6.14 TIMER Block Diagram

Each signal and block of the above Timer block diagram is described as follows:

TCCX: Timer A~C register. TCCX is incremented until it matches with zero, and then reloads the predicted value. When writing a value to TCCX, the predicted value and TCCX value become the set value. When reading from TCCX, the value will be the TCCX direct value. When TCCXEN is enabled, the reloading of the predicted value to TCCX, TCCXIE is also enabled. TCCXIF will be set at the same time. It is an up counter.

TCCA Counter (IOC51):

IOC51 (TCCA) is an 8-bit clock counter. It can be read, written to, and cleared on any reset condition and is an Up Counter.

NOTE

- TCCA timeout period [1/Fosc x (256-TCCA cnt) x 1 (CLK=2)]
- TCCA timeout period [1/Fosc x (256-TCCA cnt) x 2 (CLK=4)]

TCCB Counter (IOC61):

IOC61 is an 8-bit clock counter for the least significant byte of TCCBX (TCCB). It can be read, written, and cleared on any reset condition and is an Up Counter.

TCCBH / MSB Counter (IOC71):

IOC71 is an 8-bit clock counter for the most significant byte of TCCBX (TCCBH). It can be read, written to, and cleared on any reset condition.

When TCCBHE (IOC90) is "0," then TCCBH is disabled. When TCCBHE is "1," then TCCB is a 16-bit length counter.

NOTE

When TCCBH is Disabled: TCCB timeout period [1/Fosc x (256 - TCCB cnt) x 1 (CLK=2)] TCCB timeout period [1/Fosc x (256 - TCCB cnt) x 2 (CLK=4)]

When TCCBH is Enabled:

TCCB timeout period {1/Fosc x [65536 - (TCCBH * 256 + TCCB cnt)] x 1 (CLK=2)} TCCB timeout period {1/Fosc x [65536 - (TCCBH * 256 + TCCB cnt)] x 2 (CLK=4)}

TCCC Counter (IOC81):

IOC81 (TCCC) is an 8-bit clock counter. It can be read, written to, and cleared on any reset condition.

If HF (Bit 2 of IOCA0) = 1 and IRE (Bit 3 of IOCA0) = 1, TCCC counter scale uses the low-time segments of the pulse generated by Fcarrier frequency modulation (see Fig. 6-11 in Section 6.8.2, *Function Description*). The TCCC value will then be the TCCC predicted value.

When HP = 0 or IRE = 0. The TCCC is an Up Counter.

NOTE
In TCCC Up Counter mode: ■ TCCC timeout period [1/Fosc x scaler (IOCA0) x (256-TCCC cnt) x 1(CLK=2)]
TCCC timeout period [1/Fosc x scaler (IOCA0) x (256-TCCC cnt) x 2(CLK=4)]
When HP = 1 and IRE = 1, the TCCC counter scale uses the low-time segments of the pulse generated by the Fcarrier frequency modulation.
NOTE

In IR mode: Fcarrier = FT/ 2 { [1+decimal TCCC Counter value (IOC81)] x TCCC Scale (IOCA0) }

■ FT is system clock: FT = Fosc/1 (CLK=2)

FT = Fosc/2 (CLK=4)

6.9.3 Programming the Related Registers

When defining TCCX, refer to the operation of its related registers as shown in the tables below.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x08	IOC80	0	0	CPOUT/0	COS1/0	COS0/0	TCCAEN /0	TCCATS /0	TCCATE /0
0x09	IOC90	TCCBHE /0	TCCBEN /0	TCCBTS /0	TCCBTE /0	0	TCCCEN /0	TCCCTS /0	TCCCTE /0
0x0A	IR CR /IOCA0	TCCCSE /0	TCCCS2 /0	TCCCS1/ 0	TCCCS0 /0	IRE/0	HF/0	LGP/0	IROUTE/0
0x0F	IMR /IOCF0	LPWTE/0	HPWTE/0	TCCCIE/0	TCCBIE/0	TCCAIE/0	EXIE/0	ICIE/0	TCIE/0

Related TCCX Status/Data Registers:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x0F	ISR/RF	LPWTF/0	HPWTF/0	TCCCIF/0	TCCBIF/0	TCCAIF/0	EXIF/0	ICIF/0	TCIF/0
0x05	TCCA /IOC51	TCCA7/0	TCCA6/0	TCCA5/0	TCCA4/0	TCCA3/0	TCCA2/0	TCCA1/0	TCCA0/0
0x06	TCCB /IOC61	TCCB7/0	TCCB6/0	TCCB5/0	TCCB4/0	TCCB3/0	TCCB2/0	TCCB1/0	TCCB0/0
0x07	TCCBH /IOC71	TCCBH7 /0	TCCBH6 /0	TCCBH5 /0	TCCBH4 /0	TCCBH3 /0	TCCBH2 /0	TCCBH1 /0	TCCBH0 /0
0x08	TCCC /IOC81	TCCC7/0	TCCC6/0	TCCC5/0	TCCC4/0	TCCC3/0	TCCC2/0	TCCC1/0	TCCC0/0

6.10 Comparator

The EM78P342N/343N has one comparator which has two analog inputs and one output. The comparator can be employed to wake up the system from sleep mode. The Figure at right shows the comparator circuit.

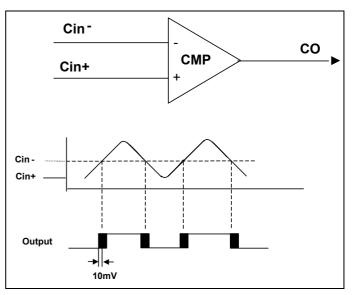


Fig. 6.15 Comparator Operating Mode

6.10.1 External Reference Signal

The analog signal that is presented at Cin – is compared to the signal at Cin+. The digital output (CO) of the comparator is adjusted accordingly by taking into consideration the following notes:

- NOTE
- The reference signal must be between Vss and Vdd.
- The reference voltage can be applied to either pin of the comparator.
- Threshold detector applications may be of the same reference.
- The comparator can operate from the same or different reference sources.

6.10.2 Comparator Outputs

- The compared result is stored in the CMPOUT of IOC80.
- The comparator outputs are sent to CO (P64) by programming Bit 4 & Bit 3 <COS1, COS0> of the IOC80 register to <1,0>. See table under Section 6.2.4, IOC80 (Comparator and TCCA Control Registers) for Comparator/OP select bits function description.

The following figure shows the Comparator Output block diagram.

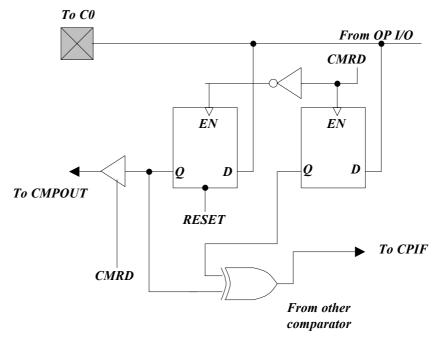


Fig. 6-16 Comparator Output Configuration

6.10.3 Using a Comparator as an Operation Amplifier

The comparator can be used as an operation amplifier if a feedback resistor is externally connected from the input to the output. In this case, the Schmitt trigger can be disabled for power saving purposes, by setting Bit 4, Bit 3 <COS1, COS0> of the IOC80 register to <1,1>. See table under Section 6.2.4, *IOC80 (Comparator and TCCA Control Registers)* for Comparator/OP select bits function description.

NOTE

- The CMPIE (IOCE0.4), CMPWE (RE.2), and CMPIF (RE.4) bits are invalid.
- The comparator interrupt is invalid.

Under Operation Amplifier:

The comparator wake-up is invalid.

6.10.4 Comparator Interrupt

- CMPIE (IOCE0.4) must be enabled for the "ENI" instruction to take effect
- Interrupt is triggered whenever a change occurs on the comparator output pin
- The actual change on the pin can be determined by reading the Bit CMPOUT, IOC80<5>.
- CMPIF (RE.4), the comparator interrupt flag, can only be cleared by software

6.10.5 Wake-up from Sleep Mode

- If the CMPWE bit of the RE register is set to "1," the comparator remains active and the interrupt remains functional, even under SLEEP mode.
- If a mismatch occurs, the change will wake up the device from SLEEP mode.
- The power consumption should be taken into consideration for the benefit of energy conservation.
- If the function is unemployed during SLEEP mode, turn off the comparator before entering into sleep mode.

The Comparator is considered completed as determined by:

- 1. COS1 and COS0 bits of IOC80 register setting selects Comparator.
- 2. CMPIF bit of RE register is set to "1".
- 3. CMPWE bit of RE register is set to "1". Wakes-up from Comparator (where it remains in operation during sleep mode)
- 4. Wakes-up and executes the next instruction, if CMPIE bit of IOCE0 is enabled and the "DISI" instruction is executed.
- 5. Wake-up and enters into Interrupt vector (address 0x00F), if ADIE bit of IOCE0 is enabled and the "ENI" instruction is executed
- 6. Enters into Interrupt vector (address 0x00F), if CMPIE bit of IOCE0 is enabled and the "ENI" instruction is executed.

6.11 Oscillator

6.11.1 Oscillator Modes

The EM78P341N/342N/343N can be operated in six different oscillator modes, such as High Crystal oscillator mode 1 (HXT1), High Crystal oscillator mode 2 (HXT2), Low Crystal oscillator mode 1 (LXT1), Low Crystal oscillator mode 2 (LXT2), External RC oscillator mode (ERC), and RC oscillator mode with Internal RC oscillator mode (IRC). You can select one of them by programming the OSC2, OCS1, and OSC0 in the CODE Option register.

The Oscillator modes defined by OSC2, OCS1, and OSC0 are described below.

Oscillator Modes	OSC2	OSC1	OSC0
ERC ¹ (External RC oscillator mode); P70/OSCO acts as P70	0	0	0
ERC ¹ (External RC oscillator mode); P70/OSCO acts as OSCO	0	0	1
IRC ² (Internal RC oscillator mode); P70/OSCO acts as P70	0	1	0
IRC ² (Internal RC oscillator mode); P70/OSCO acts as OSCO	0	1	1
LXT1 ³ (Frequency range of XT mode is 1MHz ~ 100kHz)		0	0
HXT1 ³ (Frequency range of XT mode is 20MHz ~ 6MHz)		0	1
LXT2 ³ (Frequency range of XT mode is 32kHz)		1	0
HXT2 ³ (Frequency range of XT mode is 6MHz ~ 1MHz) (default)	1	1	1

¹ In ERC mode, OSCI is used as oscillator pin. OSCO/P50 is defined by code option Word 0 Bit 6 ~ Bit 4.

² In IRC mode, P55 is normal I/O pin. OSCO/P70 is defined by code option Word 0 Bit 6 ~ Bit 4.

³ In LXT1, LXT2, HXT1 and HXT2 modes; OSCI and OSCO are used as oscillator pins. These pins cannot and should not be defined as normal I/O pins.

The maximum operating frequency limit of crystal/resonator at different VDDs, are as follows:

Conditions	VDD	Max. Freq. (MHz)
Two clocks	1.7	4
	3.0	16
	4.0	20

6.11.2 Crystal Oscillator/Ceramic Resonators (Crystal)

The EM78P341N/342N/343N can be driven by an external clock signal through the OSCI pin as illustrated below.

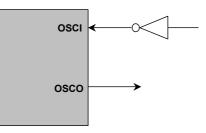


Fig. 6-17 External Clock Input Circuit

In most applications, Pin OSCI and Pin OSCO can be connected with a crystal or ceramic resonator to generate oscillation. Fig. 6-18 below depicts such a circuit. The same applies to the HXT1 mode, HTX2 mode, LXT1 mode and LXT2 mode.

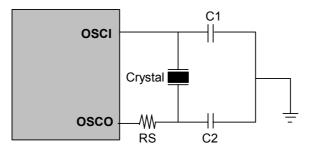
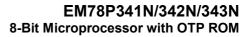



Fig. 6-18 Crystal/Resonator Circuit

The following table provides the recommended values for C1 and C2. Since each resonator has its own attribute, user should refer to the resonator specifications for the appropriate values of C1 and C2. RS, a serial resistor, may be required for AT strip cut crystal or low frequency mode.

Oscillator Type	Frequency Mode	Frequency	C1 (pF)	C2 (pF)
		455kHz	100~150	100~150
Ceramic Resonators	HXT	2.0 MHz	20~40	20~40
		4.0 MHz	10~30	10~30
		32.768kHz	25	15
	LXT	100kHz	25	25
		200kHz	25	25
Crystal Oscillator		455kHz	20~40	20~150
	НХТ	1.0 MHz	15~30	15~30
		2.0 MHz	15	15
		4.0 MHz	15	15

Capacitor selection guide for crystal oscillator or ceramic resonators:

Circuit diagrams for serial and parallel modes Crystal/Resonator:

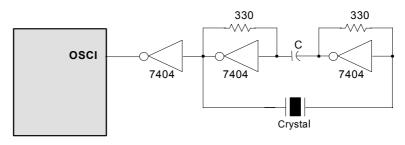


Fig. 6-19 Serial Mode Crystal/Resonator Circuit Diagram

Fig. 6-20 Parallel Mode Crystal/Resonator Circuit Diagram

6.11.3 External RC Oscillator Mode

For some applications that do not require precise timing calculation, the RC oscillator (Fig. 6-21 at right) offers a costeffective solution. Nevertheless, it should be noted that the frequency of the RC oscillator is influenced by the supply voltage, the values of the resistor (Rext), the capacitor (Cext), and even by the operation temperature. Moreover, the frequency also changes slightly from one chip to another due to manufacturing process variations.

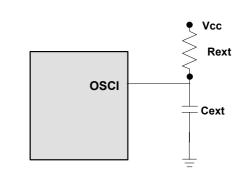


Fig. 6-21 External RC Oscillator Mode Circuit

In order to maintain a stable system frequency, the values of the Cext should be no less than 20pF, and that of Rext should be no greater than $1M\Omega$. If the frequency cannot be kept within this range, the frequency can be affected easily by noise, humidity, and leakage.

The smaller the Rext in the RC oscillator is, the faster its frequency will be. On the contrary, for very low Rext values, for instance, 1 K Ω , the oscillator will become unstable because the NMOS cannot correctly discharge the capacitance current.

Based on the above reasons, it must be kept in mind that all supply voltage, the operation temperature, the components of the RC oscillator, the package types, and the PCB layout have certain effects on the system frequency.

The RC	Oscillator	frequencies:
--------	------------	--------------

Cext	Rext	Average Fosc 5V, 25°C	Average Fosc 3V, 25°C
	3.3k	3.5 MHz	3.2 MHz
20 pF	5.1k	2.5 MHz	2.3 MHz
20 pi	10k	1.30 MHz	1.25 MHz
	100k	140 KHz	140kHz
	3.3k	1.27 MHz	1.21 MHz
100 pF	5.1k	850kHz	820kHz
100 pr	10k	450kHz	450kHz
	100k	48kHz	50kHz
	3.3k	560kHz	540kHz
300 pF	5.1k	370kHz	360kHz
300 pr	10k	196kHz	192kHz
	100k	20kHz	20kHz

Note: ¹: Measured based on DIP packages.

²: The values are for design reference only.

³: The frequency drift is \pm 30%

6.11.4 Internal RC Oscillator Mode

The EM78P341N/342N/343N offers a versatile internal RC mode with default frequency value of 4MHz. Internal RC oscillator mode has other frequencies (1MHz, 8MHz, and 455kHz) that can be set by Code Option (Word 1), RCM1, and RCM0. The Table below describes the EM78P341N/342N/343N internal RC drift with voltage, temperature, and process variations.

Internal		Drift Rate				
RC Frequency	Temperature (-40°C ~+85°C)	Voltage (2.3V~5.5V)	Process	Total		
4MHz	±5%	±5%	±4%	±14%		
16MHz	±5%	±5%	±4%	±14%		
1MHz	±5%	±5%	±4%	±14%		
455MHz	±5%	±5%	±4%	±14%		

Internal RC Drift Rate (Ta=25°C, VDD=5V±5%, VSS=0V)

Theoretical values are for reference only. Actual values may vary depending on the actual process.

6.12 Power-on Considerations

Any microcontroller is not warranted to start operating properly before the power supply stabilizes in steady state. The EM78P341N/342N/343N POR voltage range is $1.55 \sim 1.7V$. Under customer application, when power is switched OFF, Vdd must drop below 1.9V and remains at OFF state for 10µs before power can be switched ON again. Subsequently, the EM78P341N/342N/343N will reset and work normally. The extra external reset circuit will work well if Vdd rises fast enough (50ms or less). However, under critical applications, extra devices are still required to assist in solving power-on problems.

6.12.1 Programmable WDT Time-out Period

The Option word (WDTPS) is used to define the WDT time-out period (18ms⁵ or 4.5ms⁶). Theoretically, the range is from 4.5ms or 18ms. For most crystal or ceramic resonators, the lower the operation frequency is, the longer is the required set-up time.

6.12.2 External Power-on Reset Circuit

The circuit shown in the following figure implements an external RC to produce a reset pulse. The pulse width (time constant) should be kept long enough to allow the Vdd to reach the minimum operating voltage. This circuit is used when the power supply has a slow power rise time. Because the current leakage from the /RESET pin is about $\pm 5\mu$ A, it is recommended that R should not be greater than 40 K. This way, the voltage at Pin /RESET is held below 0.2V. The diode (D) functions as a short circuit at power-down. The "C" capacitor is discharged rapidly and fully. Rin, the current-limited resistor, prevents high current discharge or ESD (electrostatic discharge) from flowing into Pin /RESET.

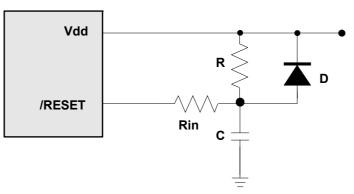


Fig. 6-22 External Power-on Reset Circuit

- ⁵ VDD=5V, WDT time-out period = $16.5ms \pm 30\%$. VDD=3V, WDT time-out period = $18ms \pm 30\%$.
- ⁶ VDD=5V, WDT time-out period = 4.2ms ± 30%. VDD=3V, WDT time-out period = 4.5ms ± 30%.

6.12.3 Residual Voltage Protection

When the battery is replaced, device power (Vdd) is removed but the residual voltage remains. The residual voltage may trip below Vdd minimum, but not to zero. This condition may cause a poor power-on reset. Fig. 6-23 and Fig. 6-24 show how to create a protection circuit against residual voltage.

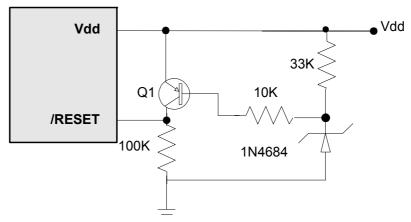


Fig. 6-23 Residual Voltage Protection Circuit 1

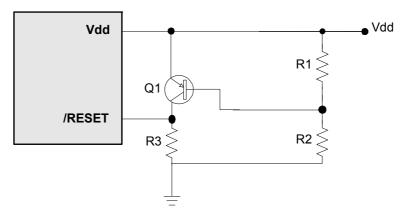
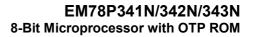



Fig. 6-24 Residual Voltage Protection Circuit 2

6.13 Code Option

EM78P341N/342N/343N has two CODE option words and one Customer ID word that are not part of the normal program memory.

Word 0	Word1	Word 2
Bit 12 ~ Bit 0	Bit 12 ~ Bit 0	Bit12 ~ Bit 0

6.13.1 Code Option Register (Word 0)

	Word 0												
	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ſ	LVR1	LVR0	TYPE1	TYPE0	CLKS	ENWDTB	OSC2	OSC1	OSC0	HLP	-	-	-

Bits 12~11 (LVR1 ~ LVR0): Low Voltage Reset enable bits

LVR1, LVR0	VDD Reset Level	VDD Release Level
11	NA (Power-on I	Reset) (Default)
10	2.7V	2.9V
01	3.5V	3.7V
00	4.0V	4.2V

Bits 10~9 (TYPE1 ~ TYPE0): Type selection for EM78P343N or EM78P342N or EM78P341N or 108C.

TYPE 1, TYPE 0	VDD Reset Level
00	108C (8-pin)
01	EM78P341N (14-pin)
10	EM78P342N (18-pin)
11	EM78P343N (Default) (20-pin)

Bit 8 (CLKS):	Instruction period option bit
	0 = two oscillator periods
	1 = four oscillator periods (default)
	Refer to Section 6.15 for Instruction Set
Bit 7 (ENWDTB):	Watchdog timer enable bit
	0 = Enable
	1 = Disable (default)

Bits 6, 5 & 4 (OSC2, OSC1 & OSC0): Oscillator Modes Selection bits

Oscillator Modes	OSC2	OSC1	OSC0
ERC ¹ (External RC oscillator mode); P70/OSCO acts as P70	0	0	0
ERC ¹ (External RC oscillator mode); P70/OSCO acts as OSCO	0	0	1
IRC ² (Internal RC oscillator mode); P70/OSCO acts as P70	0	1	0
IRC ² (Internal RC oscillator mode); P70/OSCO acts as OSCO	0	1	1
LXT1 ³ (Frequency range of XT mode is 1MHz ~ 100kHz)	1	0	0
HXT1 ³ (Frequency range of XT mode is 20MHz ~ 6MHz)		0	1
LXT2 ³ (Frequency range of XT mode is 32kHz)	1	1	0
HXT2 ³ (Frequency range of XT mode is 6MHz ~ 1MHz) (default)	1	1	1

¹ In ERC mode, OSCI is used as oscillator pin. OSCO/P70 is defined by code option Word 0 Bit 6 ~ Bit 4.

 $^{\rm 2}$ In IRC mode, P55 is normal I/O pin. OSCO/P70 is defined by code option Word 0 Bit 6 ~ Bit 4.

³ In LXT1, LXT2, HXT1 and HXT2 modes; OSCI and OSCO are used as oscillator pins. These pins cannot and should not be defined as normal I/O pins.

Bit 3 (HLP): Power consumption selection

- 0 = Low power consumption, applies to working frequency at 4MHz or below 4MHz
- 1 = High power consumption, applies to working frequency above 4MHz (Default)

Bits 2 ~ 0: Not used (reserved)

6.13.2 Code Option Register (Word 1)

	Word 1											
Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
_	_	JMPTS	RCOUT	NRHL	NRE	CYES	C3	C2	C1	C0	RCM1	RCM0

Bits 12~11: Not used, (reserved). These bits are set to "1" all the time.

Bit 10 (JMPTS): Long Instruction enable

0 = Disable LCALL, LJMP instruction

1 = Enable LCALL, LJMP instruction.(default)

Bit 8 (RCOUT): System clock output enable bit in IRC or ERC mode

0 = OSCO pin is open drain

1 = OSCO output system clock (default)

Bit 8 (NRHL): Noise rejection high/low pulses define bit. INT pin is falling or rising edge trigger

0 = Pulses equal to 8/fc is regarded as signal

1 = Pulses equal to 32/fc is regarded as signal (default)

NOTE

The noise rejection function is turned off under the LXT and sleep mode.

Bit 7 (NRE):	Noise rejection enable
	0 = disable noise rejection
	 1 = enable noise rejection (default), but in Low Crystal oscillator (LXT) mode, the noise rejection circuit is always disabled.
Bit 6 (CYES):	Instruction cycle selection bit
	0 = one instruction cycle
	1 = two instructions cycles (default)
Bit 5, 4, 3, & Bit 2	(C3, C2, C1, C0): Calibrator of internal RC mode

C3, C2, C1, & C0 must be set to "1" only (auto-calibration).

Bit 1 & Bit 0 (RCM1, RCM0): RC mode selection bits

RCM 1	RCM 0	Frequency (MHz)
1	1	4(Default)
1	0	16
0	1	1
0	0	455kHz

6.13.3 Customer ID Register (Word 2)

-	Word 2											
Bit 12	Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0											
_	_	_	_	RESETENB	_	WDTPS	×	×	×	×	×	×

Bits 12 ~ 9: Not used (reserved). These bits are set to "1" all the time.

Bit 8 (RESETENB): P71/RESET pin select bit

1 = P71 is general purpose input pin or open-drain for output

Port (default)

0 = P71 set to /RESET pin

Bit 7: Not used (reserved). This bit is set to "1" all the time.

Bit 6 (WDTPS):

): WDT Time-out Period Selection bit

WDT Time	Watchdog Timer*
1	18 ms (Default)
0	4.5 ms

*Theoretical values, for reference only

Bits 5 ~ 0: Customer's ID code

6.14 Low Voltage Detector

During a power source unstable situation, like external power noise interference or EMS test condition, will cause the power to vibrate fiercely. At the time the Vdd is unsettled, it maybe below working voltage. When the system supply voltage Vdd is below the working voltage, the IC kernel must keep all register status automatically.

6.14.1 Low Voltage Reset

LVR property is setting at code option Word 0, Bit 10,9 detail operation mode as following :

	Word 0											
Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LVR1	LVR0	TYPE1	TYPE0	CLKS	ENWDTB	OSC2	OSC1	OSC0	HLP	_	_	_

Bits 12~11 (LVR1 ~ LVR0): Low Voltage Reset enable bits.

LVR1, LVR0	VDD Reset Level	VDD Release Level
11	NA (Po	wer-on Reset)
10	2.7V	2.9V
01	3.5V	3.7V
00	4.0V	4.2V

6.14.2 Low Voltage Detector

LVD property is setting at Register detail operation mode as following:

6.14.2.1 IOCD1 (LVD Control Register)

Bit	7	6	5	4	3	2	1	0
EM78P342L/343L	-	-	-	-	LVDIE	LVDEN	LVD1	LVD0
ICE342N	TYPE1	TYPE0	LVR1	LVR0	LVDIE	LVDEN	LVD1	LVD0

NOTE

- IOCD1< 3 > register is both readable and writable
- Individual interrupt is enabled by setting its associated control bit in the IOCD1< 4 > to "1."
- Global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction. Refer to Fig. 6-8 (Interrupt Input Circuit) under Section 6.6 (Interrupt).

Bit 3 (LVDIE): Low voltage Detector interrupt enable bit.

- 0 = Disable Low voltage Detector interrupt
- 1 = Enable Low voltage Detector interrupt

When the detect low level voltage state is used to enter an interrupt vector or enter next instruction, the LVDIE bit must be set to "Enable".

Bit 2 (LVDEN): Low Voltage Detector Enable bit

- **0** = Low voltage detector disable
- **1** = Low voltage detector enable

Bits 1~0 (LVD1:0): Low Voltage Detector level bits.

LVDEN	LVD1, LVD0	LVD voltage Interrupt Level	/LVD
1	11	Vdd ≤ 2.3V	0
I	11	Vdd > 2.3V	1
1	10	Vdd ≤ 3.3V	0
1	10	Vdd > 3.3V	1
1	01	Vdd ≤ 4.0V	0
I	01	Vdd > 4.0V	1
1	00	Vdd ≤ 4.5V	0
1	00	Vdd > 4.5V	1
0	××	NA	0

6.14.2.2 RE (Interrupt Status 2 & Wake-up Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
/LVD	LVDIF	ADIF	CMPIF	ADWE	CMPWE	ICWE	LVDWE

NOTE

■ *RE* < 6, 5, 4 > can be cleared by instruction but cannot be set.

■ IOCE0 is the interrupt mask register.

- Reading RE will result to "logic AND" of RE and IOCE0.
- **Bit 7 (/LVD):** Low voltage Detector state. This is a read only bit. When the VDD pin voltage is lower than LVD voltage interrupt level (selected by LVD1 and LVD0), this bit will be cleared.
 - **0** = Low voltage is detected.
 - **1** = Low voltage is not detected or LVD function is disabled.
- Bit 6 (LVDIF): Low Voltage Detector interrupt flag

LVDIF reset to "0" by software or hardware.

- Bit 0 (LVDWE): Low Voltage Detect wake-up enable bit.
 - **0** = Disable Low Voltage Detect wake-up.

1 = Enable Low Voltage Detect wake-up.

When the Low Voltage Detect is used to enter an interrupt vector or to wake up the IC from sleep with Low Voltage Detect running, the LVDWE bit must be set to "Enable".

6.14.3 Programming Process

Follow these steps to obtain data from the LVD:

- 1. Write to the two bits (LVD1: LVD0) on the LVDCR register to define the LVD level.
- 2. Set the LVDWE bit, if the wake-up function is employed.
- 3. Set the LVDIE bit, if the interrupt function is employed.
- 4. Write "ENI" instruction, if the interrupt function is employed.
- 5. Set LVDEN bit to 1
- 6. Write "SLEP" instruction or Polling /LVD bit.
- 7. Clear the interrupt flag bit (LVDIF) when Low Voltage Detector interrupt occurred.

The internal LVD module uses the internal circuit, and when the code option is set to enable the LVD module, the current consumption will increase to about 5μ A.

During sleep mode, the LVD module continues to operate. If the device voltage drops slowly and crosses the detect point, the LVDIF bit will be set and the device will wake up from Sleep mode. The LVD interrupt flag is still set as the prior status.

When the system resets, the LVD flag will be cleared.

Figure 6-25 shows the LVD module to detect the external voltage situation.

When Vdd drops not below VLVD, LVDIF is kept at "0". When Vdd drops below VLVD, LVDIF is set to "1". If global ENI is enabled, LVDIF will be set to "1", the next instruction will branch to an interrupt vector. The LVD interrupt flag is cleared to "0" by software.

When Vdds drops below VRESET and it is less than $80\mu s$, the system will keep all the register status and the system halts but oscillation is active. When Vdd drops below VRESET and it is more than $80\mu s$, a system reset will occur. Refer to Section 6.5.1 for detailed RESET description.

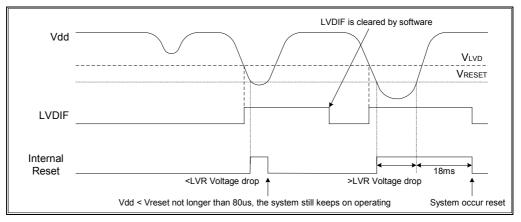


Fig. 6-25 LVD Waveform Situation

6.15 Instruction Set

Each instruction in the instruction set is a 13-bit word divided into an OP code and one or more operands. Normally, all instructions are executed within one single instruction cycle (one instruction consists of two oscillator periods), unless the program counter is changed by instructions "MOV R2,A," "ADD R2,A," or by instructions of arithmetic or logic operation on R2 (e.g., "SUB R2,A," "BS(C) R2,6," "CLR R2," etc.). In this case, these instructions need one or two instruction cycles as determined by the Code Option Register CYES bit.

In addition, the instruction set has the following features:

- 1. Every bit of any register can be set, cleared, or tested directly.
- 2. The I/O registers can be regarded as general registers. That is, the same instruction can operate on I/O registers.

The following symbols are used in the Instruction Set table:

Convention:

R = Register designator that specifies which one of the registers (including operation and general purpose registers) is to be utilized by the instruction.

Bits 6 and 7 in R4 determine the selected register bank.

b = Bit field designator that selects the value for the bit located in the register R and which affects the operation.

Binary Instruction	Hex	Mnemonic	Operation	Status Affected
0 0000 0000 0000	0000	NOP	No Operation	None
0 0000 0000 0001	0001	DAA	Decimal Adjust A	С
0 0000 0000 0010	0002	CONTW	$A \rightarrow CONT$	None
0 0000 0000 0011	0003	SLEP	$0 \rightarrow WDT$, Stop oscillator	T, P
0 0000 0000 0100	0004	WDTC	$0 \rightarrow WDT$	T, P
0 0000 0000 rrrr	000r	IOW R	$A \rightarrow IOCR$	None ¹
0 0000 0001 0000	0010	ENI	Enable Interrupt	None
0 0000 0001 0001	0011	DISI	Disable Interrupt	None
0 0000 0001 0010	0012	RET	[Top of Stack] \rightarrow PC	None
0 0000 0001 0011	0013	RETI	[Top of Stack] \rightarrow PC, Enable Interrupt	None
0 0000 0001 0100	0014	CONTR	$CONT \rightarrow A$	None
0 0000 0001 rrrr	001r	IOR R	$IOCR \to A$	None ¹
0 0000 01rr rrrr	00rr	MOV R,A	$A \rightarrow R$	None
0 0000 1000 0000	0800	CLRA	$0 \rightarrow A$	Z
0 0000 11rr rrrr	00rr	CLR R	$0 \rightarrow R$	Z
0 0001 00rr rrrr	01rr	SUB A,R	$R-A \rightarrow A$	Z, C, DC
0 0001 01rr rrrr	01rr	SUB R,A	$R-A \rightarrow R$	Z, C, DC
0 0001 10rr rrrr	01rr	DECA R	$R-1 \rightarrow A$	Z
0 0001 11rr rrrr	01rr	DEC R	$R-1 \rightarrow R$	Z
0 0010 00rr rrrr	02rr	OR A,R	$A \lor VR \to A$	Z
0 0010 01rr rrrr	02rr	OR R,A	$A \lor VR \to R$	Z

k = 8 or 10-bit constant or literal value

Binary Instruction	Hex	Mnemonic	Operation	Status Affected
0 0010 10rr rrrr	02rr	AND A,R	A & R \rightarrow A	Z
0 0010 11rr rrrr	02rr	AND R,A	A & R \rightarrow R	Z
0 0011 00rr rrrr	03rr	XOR A,R	$A \oplus R \to A$	Z
0 0011 01rr rrrr	03rr	XOR R,A	$A \oplus R \to R$	Z
0 0011 10rr rrrr	03rr	ADD A,R	$A + R \rightarrow A$	Z, C, DC
0 0011 11rr rrrr	03rr	ADD R,A	$A + R \rightarrow R$	Z, C, DC
0 0100 00rr rrrr	04rr	MOV A,R	$R \rightarrow A$	Z
0 0100 01rr rrrr	04rr	MOV R,R	$R \rightarrow R$	Z
0 0100 10rr rrrr	04rr	COMA R	$/R \rightarrow A$	Z
0 0100 11rr rrrr	04rr	COM R	$/R \rightarrow R$	Z
0 0101 00rr rrrr	05rr	INCA R	$R+1 \rightarrow A$	Z
0 0101 01rr rrrr	05rr	INC R	$R+1 \rightarrow R$	Z
0 0101 10rr rrrr	05rr	DJZA R	R-1 \rightarrow A, skip if zero	None
0 0101 11rr rrrr	05rr	DJZ R	$R-1 \rightarrow R$, skip if zero	None
0 0110 00rr rrrr	06rr	RRCA R	$\begin{array}{l} R(n) \rightarrow A(n\text{-}1), R(0) \rightarrow C, \\ C \rightarrow A(7) \end{array}$	С
0 0110 01rr rrrr	06rr	RRC R	$ \begin{array}{l} R(n) \rightarrow R(n\text{-}1), R(0) \rightarrow C, \\ C \rightarrow R(7) \end{array} $	С
0 0110 10rr rrrr	06rr	RLCA R	$ \begin{array}{l} R(n) \rightarrow A(n+1), R(7) \rightarrow C, \\ C \rightarrow A(0) \end{array} $	С
0 0110 11rr rrrr	06rr	RLC R	$ \begin{array}{l} R(n) \rightarrow R(n+1), R(7) \rightarrow C, \\ C \rightarrow R(0) \end{array} $	С
0 0111 00rr rrrr	07rr	SWAPA R	$R(0-3) \rightarrow A(4-7),$ $R(4-7) \rightarrow A(0-3)$	None
0 0111 01rr rrrr	07rr	SWAP R	$R(0-3) \leftrightarrow R(4-7)$	None
0 0111 10rr rrrr	07rr	JZA R	R+1 \rightarrow A, skip if zero	None
0 0111 11rr rrrr	07rr	JZ R	$R+1 \rightarrow R$, skip if zero	None
0 100b bbrr rrrr	0xxx	BC R,b	$0 \rightarrow R(b)$	None ²
0 101b bbrr rrrr	0xxx	BS R,b	$1 \rightarrow R(b)$	None ³
0 110b bbrr rrrr	0xxx	JBC R,b	if R(b)=0, skip	None
0 111b bbrr rrrr	0xxx	JBS R,b	if R(b)=1, skip	None
1 00kk kkkk kkkk	1kkk	CALL k	$PC+1 \rightarrow [SP], (Page, k) \rightarrow PC$	None
1 01kk kkkk kkkk	1kkk	JMP k	$(Page,k){\rightarrow}PC$	None
1 1000 kkkk kkkk	18kk	MOV A,k	$k \rightarrow A$	None
1 1001 kkkk kkkk	19kk	OR A,k	$A \lor k \to A$	Z
1 1010 kkkk kkkk	1Akk	AND A,k	A & $k \rightarrow A$	Z
1 1011 kkkk kkkk	1Bkk	XOR A,k	$A \oplus k \to A$	Z
1 1100 kkkk kkkk	1Ckk	RETL k	$k \rightarrow A,$ [Top of Stack] $\rightarrow PC$	None
1 1101 kkkk kkkk	1Dkk	SUB A,k	$k\text{-}A \to A$	Z, C, DC
1 1110 1000 kkkk k kkkk kkkk kkkk	1EAK	LCALL k	PC+1→[SP], k→PC	None
1 1110 1000 kkkk k kkkk kkkk kkkk	1EBK	LJMP k	k→PC	None
1 1111 kkkk kkkk	1Fkk	ADD A,k	$k + A \rightarrow A$	Z, C, DC

Note: ¹ This instruction is applicable to IOC50~IOCF0, IOC51 ~ IOCF1 only. ² This instruction is not recommended for RF operation.

³ This instruction cannot operate under RF.

7 Absolute Maximum Ratings

Items		Rating	
Temperature under bias	-40°C	to	85°C
Storage temperature	-65°C	to	150°C
Input voltage	Vss-0.3V	to	Vdd+0.5V
Output voltage	Vss-0.3V	to	Vdd+0.5V
Working Voltage	2.5V	to	5.5V
Working Frequency	DC	to	20MHz

8 DC Electrical Characteristics

Ta=25 °C, VDD=5.0V±5%, VSS=0V

Symbol	Parameter	Condition	Min	Тур	Max	Unit
	Crystal: VDD to 5V	Two evolge with two electro	DC	-	20	MHz
Fxt	Crystal: VDD to 3V	Two cycles with two clocks	DC	-	8	MHz
ΓΧΙ	ERC: VDD to 5V	R: 5.1KΩ, C: 100 pF	F±30%	830	F±30%	kHz
	IRC: VDD to 5 V	8MHz,4MHz, 1MHz, 455kHz	F±30%	F	F±30%	Hz
IRC1	IRC:VDD to 5V	RCM0:RCM1=1:1	3.84	4.0	4.16	MHz
IRC2	IRC:VDD to 5V	RCM0:RCM1=1:0	7.68	8.0	8.32	MHz
IRC3	IRC:VDD to 5V	RCM0:RCM1=0:1	0.96	1.0	1.06	MHz
IRC4	IRC:VDD to 5V	RCM0:RCM1=0:0	436.8	455	473.2	kHz
VIHRC	Input High Threshold Voltage (Schmitt Trigger)	OSCI in RC mode	-	3.5	_	V
VILRC	Input Low Threshold Voltage (Schmitt Trigger)	OSCI in RC mode	-	1.5	-	V
IIL	Input Leakage Current for input pins	VIN = VDD, VSS	-1	0	1	μA
VIH1	Input High Voltage (Schmitt Trigger)	Ports 5, 6, 7	-	3.75	-	V
VIL1	Input Low Voltage (Schmitt Trigger)	Ports 5, 6, 7	-	1.25	_	V
VIHT1	Input High Threshold Voltage (Schmitt Trigger)	/RESET	-	2.0	-	V
VILT1	Input Low Threshold Voltage (Schmitt Trigger)	/RESET	-	1.0	-	V
VIHT2	Input High Threshold Voltage (Schmitt Trigger)	TCC, INT	-	3.75	_	V
VILT2	Input Low Threshold Voltage (Schmitt Trigger)	TCC, INT	-	1.25	_	V
VIHX1	Clock Input High Voltage	OSCI in crystal mode	-	3.5	-	V
VILX1	Clock Input Low Voltage	OSCI in crystal mode	_	1.5	_	V
IOH1	Output High Voltage (Ports 5, P60~66,P70)	VOH = VDD-0.5V	-	-3.7	-	mA
IOH2	Output High Voltage (IR OUT (Port 67))	VOH = VDD-0.5V	_	-10	-	mA

EM78P341N/342N/343N 8-Bit Microprocessor with OTP ROM

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
IOL1	Output Low Voltage (Ports 5, P60~66, P70)	VOL = GND+0.5V	_	10	_	mA
IOL2	Output Low Voltage (IR OUT (Port 67))	VOL = GND+0.5V	_	15	_	mA
IPH	Pull-high current	Pull-high active, input pin at VSS	-70	-75	-80	μΑ
IPL	Pull-low current	Pull-low active, input pin at Vdd	35	40	45	μΑ
ISB1	Power down current	All input and I/O pins at VDD, output pin floating, WDT disabled	_	1.0	2.0	μA
ISB2	Power down current	All input and I/O pins at VDD, output pin floating, WDT enabled	Ι	6.0	10	μA
ICC1	Operating supply current at two clocks (VDD to 3V)	/RESET= 'High', Fosc=32kHz (Crystal type,CLKS="0"), output pin floating, WDT disabled	_	15	20	μA
ICC2	Operating supply current at two clocks (VDD to 3V)	/RESET= 'High', Fosc=32kHz (Crystal type,CLKS="0"), output pin floating, WDT enabled	_	15	25	μA
ICC3	Operating supply current at two clocks	/RESET= 'High', Fosc=4MHz (Crystal type, CLKS="0"), output pin floating, WDT enabled	_	1.9	2.2	mA
ICC4	Operating supply current at two clocks	/RESET= 'High', Fosc=10MHz (Crystal type, CLKS="0"), output pin floating, WDT enabled	_	3.0	3.5	mA

Note: 1. These parameters are hypothetical (not tested) and are provided for design reference use only.

2. Data under minimum, typical, & maximum (Min, Typ, & Max) columns are based on hypothetical results at 25°C. These data are for design reference only.

8.1 AD Converter Characteristics

Vdd=2.5V to 5.5V, Vss=0V, Ta=25°C

Syn	nbol	Parameter	Condition	Min.	Тур.	Max.	Unit
VA	REF	Analog reference voltage	V_{1255} $V_{100} > 2.5 V_{100}$	2.5	-	Vdd	V
VA	ASS	Analog reference voltage	VAREF VASS ≥ 2.5 V	Vss	-	Vss	V
V	AI	Analog input voltage	_	V _{ASS}	Ι	VAREF	V
IAI1	lvdd	Analog oupply ourront	Vdd=V _{AREF} =5.0V, V _{ASS} =0.0V	750	850	1000	uA
IAH	lvref	Analog supply current	(V referenced from Vdd)	-10	0	+10	uA
1412	lvdd	Analog oupply ourront	Vdd=V _{AREF} =5.0V, V _{ASS} =0.0V	500	600	820	uA
IAI2	IVref	Analog supply current	(V referenced from VREF)	200	250	300	uA
IC)P	OP current	Vdd=5.0V, OP used Output voltage swing 0.2V to 4.8V	450	550	650	uA
R	N.	Resolution	Vdd=V _{AREF} =5.0V, V _{ASS} =0.0V	10	11	-	Bits
L	N	Linearity error	Vdd = 2.5 to 5.5V Ta=25°C	0	±4	±8	LSB
DI	NL	Differential nonlinear error	Vdd = 2.5 to 5.5V Ta=25°C	0	±0.5	±0.9	LSB
F	SE	Full scale error	Vdd=V _{AREF} =5.0V, V _{ASS} =0.0V	±0	±4	±8	LSB

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
OE	Offset error	Vdd=V _{AREF} =5.0V, V _{ASS} =0.0V	±0	±2	±4	LSB
ZAI	Recommended impedance of analog voltage source	_	0	8	10	ΚΩ
TAD	ADC clock period	Vdd=V _{AREF} =5.0V, V _{ASS} =0.0V	4	_	_	us
TCN	AD conversion time	Vdd=V _{AREF} =5.0V, V _{ASS} =0.0V	15	_	15	TAD
ADIV	ADC OP input voltage range	Vdd=V _{AREF} =5.0V, V _{ASS} =0.0V	0	-	V _{AREF}	v
ADOV	ADC OP output voltage	Vdd=V _{AREF} =5.0V, V _{ASS} =0.0V,	0	0.2	0.3	- v
ADOV	swing	RL=10KΩ	4.7	4.8	5	v
ADSR	ADC OP slew rate	Vdd=V _{AREF} =5.0V, V _{ASS} =0.0V	0.1	0.3	_	V/us
PSR	Power Supply Rejection	Vdd=5.0V±0.5V	±0	-	±2	LSB

Note: 1. These parameters are hypothetical (not tested) and are provided for design reference use only.

2. There is no current consumption when ADC is off other than minor leakage current.

3. AD conversion result will not decrease when an increase of input voltage and no missing code will result.

4. These parameters are subject to change without further notice.

8.2 Comparator (OP) Characteristics

Vdd = 5.0V, Vss=0V, Ta= $25^{\circ}C$

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
SR	Slew rate		0.1	0.2		V/us
IVR	Input voltage range	Vdd =5.0V, V _{SS} =0.0V	0		5	V
ovs	Output voltage swing	Vd =5.0V, V _{SS} =0.0V, RL=10KΩ	0	0.2	0.3	V
003	Output voltage swing	VU = 5.0V, VSS = 0.0V, RE = 10R22	4.7	4.8	5	v
Іор	Supply current of OP		250	350	500	uA
Ico	Supply current of Comparator			300		uA
PSR R	Power-supply Rejection Ration for OP	Vdd= 5.0V, V _{SS} =0.0V	50	60	70	dB
Vs	Operating range		2.5		5.5	V

Note: 1. These parameters are hypothetical (not tested) and are provided for design reference use only.

8.3 Device Characteristics

The graphs below were derived based on a limited number of samples and they are provided for reference only. Hence, the device characteristic shown herein cannot be guaranteed as fully accurate. In these graphs, the data may be out of the specified operating warranted range.

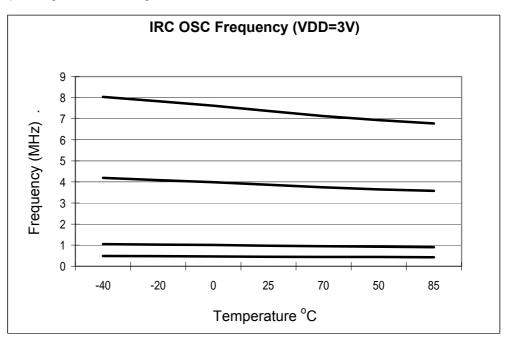


Fig. 8-1 Internal RC OSC Frequency vs. Temperature, VDD=3V

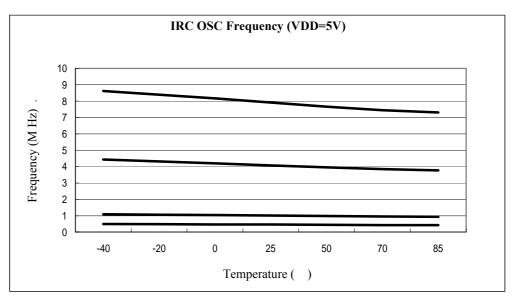
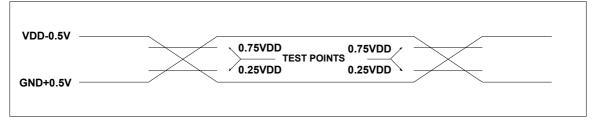


Fig. 8-2 Internal RC OSC Frequency vs. Temperature, VDD=5V

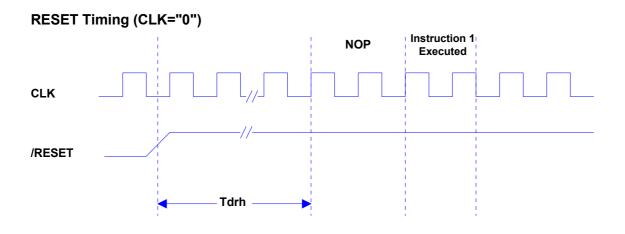
9 AC Electrical Characteristic

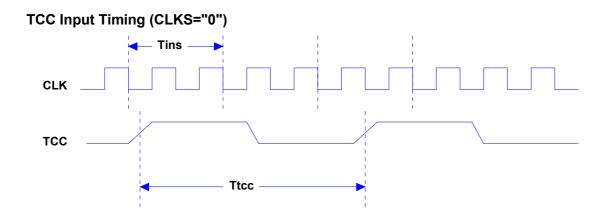
Ta=-40 to 85 °C, VDD=5V±5%, VSS=0V

Symbol	Parameter	Conditions	Min	Туре	Max	Unit
Dclk	Input CLK duty cycle	-	45	50	55	%
Tins	Instruction cycle time	Crystal type	100	-	DC	ns
11115	(CLKS="0")	RC type	500	Ι	DC	ns
Ttcc	TCC input time period	_	(Tins+20)/N*	Ι	_	ns
Tdrh	Device reset hold time	Ta = 25°C	11.3	16.2	21.6	ms
Trst	/RESET pulse width	Ta = 25°C	2000	Ι	-	ns
Twdt	Watchdog timer duration	Ta = 25°C	11.3	16.2	21.6	ms
Tset	Input pin setup time	-	-	0	-	ns
Thold	Input pin hold time	-	15	20	25	ns
Tdelay	Output pin delay time	Cload=20pF	45	50	55	ns
Tdrc	ERC delay time	Ta = 25°C	1	3	5	ns

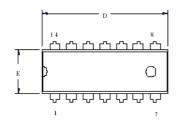

Note:1. *N = selected prescaler ratio

- 2. Twdt1: The Option word1 (WDTPS) is used to define the oscillator set-up time. WDT timeout length is the same as set-up time (18ms).
- 3. Twdt2: The Option word1 (WDTPS) is used to define the oscillator set-up time. WDT timeout length is the same as set-up time (4.5ms).
- 4. These parameters are hypothetical (not tested) and are provided for design reference only.
- 5. Data under minimum, typical, & maximum (Min, Typ, & Max) columns are based on hypothetical results at 25°C. These data are for design reference use only.
- 6. The Watchdog timer duration is determined by code option Word1 (WDTPS).




10 Timing Diagrams

AC Testing : Input is driven at VDD-0.5V for logic "1",and GND+0.5V for logic "0".Timing measurements are made at 0.75VDD for logic "1",and 0.25VDD for logic "0".


APPENDIX

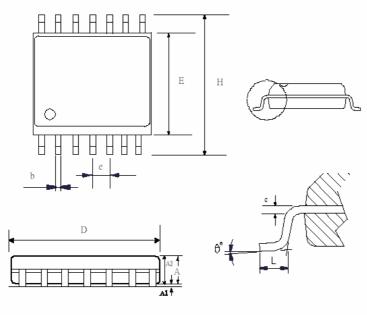
A. Package Type

ОТР МСИ	Package Type	Pin Count	Package Size
EM78P341NP	DIP	14	300mil
EM78P341NM	SOP	14	150mil
EM78P342NP	DIP	18	300mil
EM78P342NM	SOP	18	300mil
EM78P343NP	DIP	20	300mil
EM78P343NM	SOP	20	300mil
EM78P343NKM	SSOP	20	209mil

B Packaging Configuration

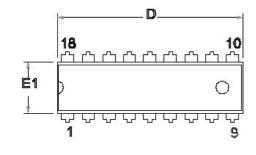
B.1 14-Lead Plastic Dual in line (PDIP) - 300 mil

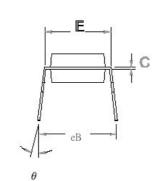
A 2



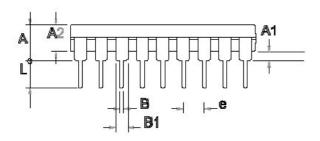
Symbal	Min	Normal	Max	
Α			4.318	
Al	0.381			
A2	3.175	3.302	3.429	
с	0.203	0.254	0.356	
D	18.796	19.050	19.304	
E	6.174	6.401	6.628	
E1	7.366	7.696	8.025	
eB	8.409	9.017	9.625	
В	0.356	0.457	0.559	
B1	1.143	1.524	1.778	
L	3.048	3.302	3.556	
е	2.540(TYP)			
θ	0		- 15	

B.2 14-Lead Plastic Small Outline (SOP) — 150 mil



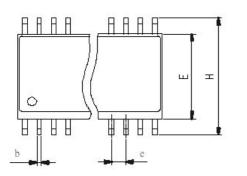

Symbal	Min	Normal	Max
Α	1.350		1.750
A1	0.100		0.250
b	0.330		0.510
с	0.190		0.250
Е	3.800		4.000
Н	5.800		6.200
D	8.550		8.750
L	0.600		1.270
e		1.27(TYP))
θ	0		8

TITLE: SOP.44(1)SOME) PACKAGE OUTLINE DIMENSION File : NSO14 Edition: A			
ELAN	Scale: Free		
	Material:		
Y	Sheet:1 of 1		

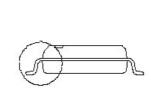


Symbal	Min	Normal	Max
А			4.450
Al	0.381		3
A2	3.175	3.302	3.429
с	0.203	0.254	0.356
D	22.610	22.860	23.110
E1	6.220	6.438	6.655
Е	7.370	7.620	7.870
eB	8.510	9.020	9.530
В	0.356	0.457	0.559
B1	1.143	1.524	1.778
L	3.048	3.302	3.556
е	2.540(TYP)		
θ	0		15

DIMENSION	
File : D18	Edtion: A
\sim	Unit : mm
1 Series	Scale: Free
COLAI	Material:
¥	Sheet:1 of 1



B.4 18-Lead Plastic Small Outline (SOP) — 300 mil

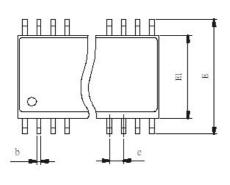

θ°=

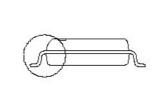
¥

L

в

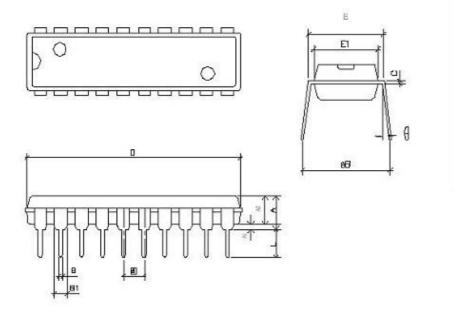
Symbal	Min	Normal	Max
Α	2.350		2.650
Al	0.102		0.300
b	0.406(TYP)		
с	0.230		0.320
E	7.400		7.600
Н	10.000		10.650
D	11.350		11.750
L	0.406	0.838	1.270
е	6	1.27(TYP))
θ^{\bullet}	0		8


File : SO18	Edtion: A
\sim	Unit : mm
Y AN	Scale: Free
COLAN	Material:
Ψ	Sheet:1 of 1



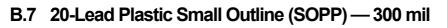
θ°

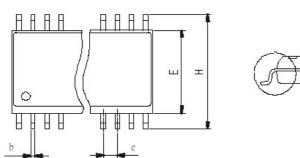
AI



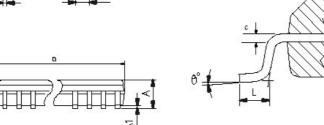
Symbol	Min	Normal	Max
Α			2,130
Al	0.050		0.250
A2	1.620	1.750	1.880
b	0.220		0.380
с	0.090		0.200
Е	7.400	7.800	8.200
E1	5.000	5.300	5.600
D	6.900	7.200	7.500
L	0.650	0.750	0.850
Ll	1.250(REF)		
е	0.650(TYP)		
θ^{\bullet}	0	4	8

TITLE: SSOP-20L(209MIL) OUT OUTLINE DIMENSION	LINE PACKAGE PACKA
File : SSOP20	Editon: A
Q	Unit : mm
	Scale: Free
COLAN	Material:
Y	Sheet:1 of 1


B.6 20-Lead Plastic Dual-in-line (PDIP) - 300 mil



Symbal	Min	Normal	Max
A			4.450
A1	0.381		
A2	3.175	3.302	3,429
с	0.203	0.254	0.356
D	25.883	26.060	26.237
E1	6.220	6.438	6.655
Е	7.370	7.620	7.870
eB	8.510	9.020	9,530
В	0.356	0.457	0.559
B1	1.143	1.524	1.778
L	3.048	3.302	3.556
e		2.540(TYI	?)
0	0		15


100	
Pile : D20	Editon: A
0	Unit : mm
1	Scale: Hee
(OLAN	Material:
4	Sheet1 of 1

Symbal	Min	Normal	Max
Α	2.350		2.650
Al	0.102		0.300
b		0.406(TYP)
с	0.230		0.320
Е	7.400		7.600
Н	10.000		10.650
D	12.600		12.900
L	0.630	0.838	1.100
е		1.27(TYP)	
θ^{\bullet}	0	100 March 100 Ma	8

DIMENSION	2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
File : SO20	Edtion: A
\sim	Unit : mm
1 Second	Scale: Free
(OLAN	Material:
¥	Sheet:1 of 1

Test Category	Test Conditions	Remarks	
Solderability	Solder temperature=245 \pm 5 $^{\circ}\text{C},$ for 5 seconds up to the stopper using a rosin-type flux	_	
	Step 1: TCT, 65°C (15mins)~150°C (15mins), 10 cycles		
	Step 2: Bake at 125°C, TD (durance)=24 hrs		
	Step 3: Soak at 30° C /60% , TD (durance)=192 hrs		
Pre-condition	Step 4: IR flow 3 cycles (Pkg thickness ≥ 2.5 mm or Pkg volume ≥ 350 mm ³ 225 $\pm 5^{\circ}$ C) (Pkg thickness ≤ 2.5 mm or Pkg volume ≤ 350 mm ³ 240 $\pm 5^{\circ}$ C)	For SMD IC (such as SOP, QFP, SOJ, etc)	
Temperature cycle test	-65 [°] (15mins)~150 [°] C (15mins), 200 cycles	_	
Pressure cooker test	TA =121°C, RH=100%, pressure=2 atm, TD (durance) = 96 hrs	_	
High temperature / High humidity test	TA=85 [°] C , RH=85% , TD (durance)=168 , 500 hrs	_	
High-temperature storage life	TA=150°C, TD (durance)=500, 1000 hrs	_	
High-temperature operating life	TA=125°C, VCC=Max. operating voltage, TD (durance) =168, 500, 1000 hrs	_	
Latch-up	TA=25°C, VCC=Max. operating voltage, 150mA/20V	-	
ESD (HBM)	TA=25°C, ≥ ±3KV	IP_ND,OP_ND,IO_ND IP_NS,OP_NS,IO_NS IP_PD,OP_PD,IO_PD,	
ESD (MM)	TA=25°C, ≥ ± 300V	IP_PS,OP_PS,IO_PS, VDD-VSS(+),VDD_VSS (-)mode	

C.1 Address Trap Detect

An address trap detect is one of the MCU embedded fail-safe functions that detects MCU malfunction caused by noise or the like. Whenever the MCU attempts to fetch an instruction from a certain section of ROM, an internal recovery circuit is auto started. If a noise caused address error is detected, the MCU will repeat execution of the program until the noise is eliminated. The MCU will then continue to execute the next program.