Monolithic Linear IC
 LA5683T - 4ch Switching Regulator Control IC

Overview

The LA5683T is 4ch switching regulator control IC.

Functions

- Low-voltage operation (minimum 1.8V)
- OUT1 and OUT2 can drive external PNP transistors.
- OUT3 and OUT4 can drive external NPN transistors.
- 4-independent-channel standby circuit built-in.
- $\pm 1 \%$ accuracy reference voltage.
- Supports MOS transistor drive.
- Channel 2 dead time internally set fixed, duty cycle $=100 \%$.
(The dead time for channels 1,3 , and 4 are set externally.)

Specifications

Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage 1	$\mathrm{V}_{\mathrm{CC}} \max$		9	V
Allowable power dissipation	Pd max	Independent IC	0.4	W
Operating temperature	Topr		-20 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$

Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage 1	$V_{\text {CC }}$		1.8 to 8	V
Supply voltage 2	$V_{\text {BIAS }}$		1.8 to 8	V
Output sync current	ISINK max		0 to 30	mA
Reference voltage output current	IREF		0 to 1	mA
Timing resistor	RT		3 to 30	$\mathrm{k} \Omega$
Timing capacity	CT		100 to 1000	pF
Triangular wave frequency	fOSC		0.1 to 1	MHz

Any and all SANYO Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO Semiconductor representative nearest you before using any SANYO Semiconductor products described or contained herein in such applications.
■ SANYO Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor products described or contained herein.

LA5683T
Electrical Characteristics at Ta $=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=$ VSTBY1 to $4=3 \mathrm{~V}, \mathrm{SCP}=0 \mathrm{~V}$

Parameter		Symbol	Conditions	Ratings			Unit	
		min		typ	max			
[Error amplifier]								
IN+ pin internal bias voltage			VB	Pins $\mathrm{IN1}^{+}, \mathrm{IN2}^{+}, \mathrm{IN3}^{+}$, and $\mathrm{IN} 4^{+}$	0.500	0.506	0.512	V
Output L level voltage	CH 1 to CH 4	VLow_FB1	IN1 ${ }^{-}=2.0$ IFB1 $=20 \mu \mathrm{~A}$			1	V	
Output H level voltage	CH 1 to CH 4	V_{Hi} - FB 1	$\mathrm{IN1} 1^{-}=0 \mathrm{~V}$ IFB1 $=-20 \mu \mathrm{~A}$	2.25			V	
[Protection circuit]								
Threshold voltage		$\mathrm{V}_{\text {SCP }}$		1.1	1.25	1.4	V	
SCP pin current		ISCP			3.9		$\mu \mathrm{A}$	
[Idle period adjustment block]								
Input bias current		IB_DTC		-15	-3		$\mu \mathrm{A}$	
Threshold voltage 1	CH1	VTH1_DTC	IN1 ${ }^{-}=0 \mathrm{~V}$, duty cycle $=100 \%$	0.67	0.77	0.87	V	
Threshold voltage 2	CH1	VTH2_DTC	IN1 ${ }^{-}=0 \mathrm{~V}$, duty cycle $=0 \%$	0.35	0.4	0.45	V	
Threshold voltage 3	CH3 to CH4	VTH3_DTC	IN3, IN4 ${ }^{-}=0 \mathrm{~V}$, duty cycle $=100 \%$	0.72	0.8	0.88	V	
Threshold voltage 4	CH 3 to CH 4	VTH4_DTC	IN3, IN4 ${ }^{-}=0 \mathrm{~V}$, duty cycle $=0 \%$	0.4	0.45	0.5	V	
[Software start block (CH1 to CH 4$)$]								
Software start current	CH 1 to CH 4	ISF	CSOFT $=0 \mathrm{~V}$	3.16	3.95	4.74	$\mu \mathrm{A}$	
Software start resistance	CH 1 to CH 4	RSF		160	200	240	$\mathrm{k} \Omega$	
[Output blocks 1 and 2 (CH1 and CH 2$)$]								
OUT pin source current		IOUT12_SOUR	IN1, 2- = 0V DTC1 = 0V $\mathrm{V}_{\text {OUT }} 1,2=2.7 \mathrm{~V}$ ICAPH $=0.5 \mathrm{~mA}$	10			mA	
OUT pin sink current		lout ${ }^{12}$ _SINK	$\begin{aligned} & \text { IN1, } 2^{-}=0 \mathrm{~V} \text { DTC1 }=1.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }} 1,2=2.3 \mathrm{~V} \end{aligned}$	35	45	55	mA	
[Output blocks and 4 (CH3 and CH 4$)$]								
OUT pin source current		IOUT34_SOUR	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}^{3}, 4=0.9 \mathrm{~V}} \mathrm{DTC} 3,4=1.0 \mathrm{~V} \\ & \text { IN3, } 4=0 \mathrm{~V} \end{aligned}$	20	30	40	mA	
OUT pin sink current		IOUT34_SINK	$\mathrm{V}_{\text {OUT }}{ }^{3,} 4=0.3 \mathrm{~V}$ DTC3, $4=1.0 \mathrm{~V}$ IN3, $4=1.0 \mathrm{~V}$	30			mA	
OUT pin high level voltage		VOUT ${ }^{34}$ _Hi	${ }^{\mathrm{I}} \mathrm{OUT}^{3}, 4=-10 \mathrm{~mA}$ DTC3, $4=1.0 \mathrm{~V}$ IN3, 4 = 0 V	2			V	
OUT pin low level voltage		VOUT ${ }^{34}$ _Low	${ }^{\mathrm{I}} \mathrm{OUT}^{3,} 4=10 \mathrm{~mA}$ DTC3, $4=0 \mathrm{~V}$ IN3, $4=1.0 \mathrm{~V}$			0.2	V	
[Triangular wave form generator block]								
Current setting pin voltage		VT_RT	$\mathrm{RT}=5.6 \mathrm{k} \Omega$	1.190	1.260	1.330	V	
Output current		$\mathrm{IOH}^{\text {O }}$ CT	$\mathrm{VCT}=0.5 \mathrm{~V}, \mathrm{RT}=5.6 \mathrm{k} \Omega$		230		$\mu \mathrm{A}$	
Output current ratio		$\Delta_{\text {O_CT }}$		0.8	1.0	1.2		
Oscillation frequency		fosc^{1}		380	440	500	kHz	
[Reference voltage block]								
Reference voltage		VREF	$\mathrm{I}_{\text {REF }}=-1 \mathrm{~mA}$	1.244	1.257	1.270	V	
Line regulation		VLN_REF	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$ to 8 V			10	mV	
Load regulation		VLD_REF	$\mathrm{I}_{\text {REF }}=-0.1 \mathrm{~mA}$ to -1 mA			10	mV	
[STBY circuit]								
On voltage		VON_STBY		1.15			V	
Off voltage		VOFF_STBY				0.2	V	
Pin input current		In_STBY	VSTBY1 to $4=3 \mathrm{~V}$			70	$\mu \mathrm{A}$	
[All circuits]								
Operating-time current drain		${ }^{\text {I CC }}{ }^{1}$	FB1, 2, 3, $4=1.5 \mathrm{~V}$ DTC1, 3, $4=1.5 \mathrm{~V}$		15	18	mA	
Standby-time current drain		${ }^{1} \mathrm{CC}^{2}$	VSTBY1 to $3=0 \mathrm{~V}$			1	$\mu \mathrm{A}$	

Package Dimensions

unit: mm

3253B

Pin Assignment

Block Diagram and Application Circuit Examples 1

2-dry-battery (1.8 V to 3.2 V) configuration

T1 = Sumida product
L4 $=$ TDK product: RLF5018-220MR63
L6 = TDK product: SLF6028-6R8M1R5
L9 = Toko product: 636CY-100M

Application Circuit Examples 2

4-dry battery (3.5 V to 6.5 V) configuration

T1 = Sumida product
L4 = TDK product: RLF5018-220MR63
L7 $=$ Toko product: 636CY-470M
L9 $=$ Toko product: 636CY-100M

Application Circuit Examples 3

1-lithium ion battery (2.5 V to 4.2 V) configuration

T1 = Sumida product
L3 $=$ TDK product: RLF5018-220MR63
L4 = TDK product: RLF5018-150MR63
L7 = Toko product: 636CY-470M
L9 = Toko product: 636CY-100M

SCP Pin

Charging of the SCP block starts when FB1 to FB4 are set to a low level due to a load shorting and the protection circuit is activated if the block does not reset itself within the preset time tSCP (the protection circuit then turns off the whole OUT channels).

$$
\mathrm{tSCP}=\frac{\mathrm{CSCP} \times \mathrm{VSCP}_{\mathrm{SC}}}{\mathrm{ISCP}}[\mathrm{~S}]
$$

Dead Time Setup

- The dead time of channel 1 can be set by the voltage at DTC1.

The duty cycle D1 is calculated as follows:

$$
\text { D1 }=\frac{\text { VDTC1 }- \text { VTH2_DTC }}{\text { VTH1_DTC }- \text { VTH2_DTC }} \times 100[\%]
$$

- Channel 2

The dead time of channe 2 is fixed internally and the setting duty is 100%.

LA5683T

- Channel 3

The dead time of channel 3 can be set by the voltage at DTC3.

The duty cycle D3 is calculated as follows:

$$
\text { D3 }=\frac{\text { VDTC3 }- \text { VTH4_DTC }}{\text { VTH3_DTC }- \text { VTH4_DTC }} \times 100[\%]
$$

- Channel 4

The dead time of channel 4 can be set in the same manner as that of channel 3.

Procedure for Setting the Software Start Time

- Channel 1 (the procedure is the same for channels 2, 3, and 4.)

The software start time of channel 1 is set by the capacitance of the capacitor connected between pin CSOFT1 to CSOFT4 and GND.

$$
\mathrm{t}_{\mathrm{SOFT}}=-\mathrm{C}_{\mathrm{SOFT}} \times \mathrm{R}_{\mathrm{SF}} 1 \mathrm{n}\left(1-\frac{\mathrm{VB}}{\mathrm{R}_{\mathrm{SF}} \times \mathrm{I}_{\mathrm{SF}}}\right)[\mathrm{S}]
$$

* The formula is for channel 1.

The software start time for channels 2 to 4 can be calculated in the same manner.

CT1 and CT2

The waveform of CT1 is 180 degrees out of phase with that of CT2. Their frequency cannot be set independently.
The capacitance of the capacitors to be connected to pins CT1 and CT2 must be the same.

- Setting the oscillation frequency
(1) The oscillation frequency of the oscillator can be set by selecting the capacitance of the capacitors connected to pins CT1 and CT2 (see Figure 1).
(2) The oscillation frequency can also be determined by the resistance of the resistor connected to the RT pin (see Figure 2).

Figure 1 Oscillation Frequency vs

Figure 2 Oscillation Frequency vs.

Sample Circuits

Sample Circuit That Makes Use of VBIAS (1)
This IC can be used to implement the circuit that is shown below since the power to the channels 3 and 4 output stages is supplied via VBIAS.
Apply $\mathrm{V}_{\mathrm{O}} 1$ that is dropped to 3.3 V in channel 1 to VBIAS. A voltage of approx. VBIAS3-1 volt develops at VOUT3, so that the IC can drive MOS transistors in a low-voltage environment like this sample circuit.

Sample Circuit That Makes Use of VBIAS (2)
This IC can be used to implement the circuit that is shown below since the power to the channels 3 and 4 output stages is supplied via VBIAS.
Apply the power voltage to VBIAS through the path that is made up of $\mathrm{V}_{\mathrm{CC}}, \mathrm{L}$ to Schottky diode (through path formation). Then feed the stabilized voltage $\mathrm{VO}_{\mathrm{O}} 3$ that is raised to 3.3 V in channel 3 to VBIAS.
A voltage of approx. VBIAS3-1 volt develops at VOUT3, so that the IC can drive MOS transistors in a low-voltage environment like this sample circuit.

VBIAS Circuit Example 2

Using the IC in a Step-down Circuit (CH1 and CH2)

The IC detects a short-circuit condition and activates the SCP when V_{CC} falls below the preset voltage $\mathrm{V}_{\mathrm{O}}{ }^{+} \mathrm{VF}$ in such a step-down application as the one shown below.

When stepping down $\mathrm{V}_{\mathrm{CC}}<\mathrm{V} 0+\mathrm{VF}$

Using the IC in a Step-up Circuit (CH3 and CH4)

In a step-up application like the one shown below, a through path consisting of $V_{C C}, L$, and D is formed when STBY is set off and a voltage normally remains present at V_{O}.

* Although the STBY off-time through path in the application circuit example is cut by a MOSFET, a voltage remains present at V_{O} after an SCP operation performed with STBY set on.

Figure Used with a Chopper Type Step-up Circuit
\square Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

- SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
■ In the event that any or all SANYO Semiconductor products (including technical data,services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
■ No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of April, 2006. Specifications and information herein are subject to change without notice.

