3.3V 160-MHz 1:15 Clock Distribution Buffer

Features

- 160MHz Clock Support
- LVPECL or LVCMOS/LVTTL Clock Input
- LVCMOS/LVTTL Compatible Inputs
- 15 Clock Outputs: Drive up to 30 Clock Lines
- 1X and 1/2X Configurable Outputs
- Output Three-state Control
- 350 ps Maximum Output-to-Output Skew
- Pin Compatible with MPC949
- Industrial Temp. Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- 52-Pin TQFP Package

Description

The B9949 is a low-voltage clock distribution buffer with the capability to select either a differential LVPECL or LVCMOS/LVTTL compatible input clocks. These clock sources can be used to provide for test clocks as well as the primary system clocks. All other control inputs are LVCMOS/LVTTL compatible. The 15 outputs are 3.3 V LVCMOS or LVTTL compatible and can drive two series terminated 50Ω transmission lines. With this capability the B9949 has an effective fan-out of 1:30.
The B9949 is capable of generating 1 X and $1 / 2 \mathrm{X}$ signals from a 1 X source. These signals are generated and retimed internally to ensure minimal skew between the 1 X and $1 / 2 \mathrm{X}$ signals. $\operatorname{SEL}(A: D)$ inputs allow flexibility in selecting the ratio of 1 X to $1 / 2 \mathrm{X}$ outputs.
The B9949 outputs can also be three-stated via MR/OE\# input. When MR/OE\# is set HIGH, it resets the internal flip-flops and three-states the outputs.

Block Diagram

B9949

Pin Configuration

Pin Description ${ }^{[1]}$

Pin	Name	PWR	I/O	Description
6	PECL_CLK		I, PD	PECL Input Clock.
7	PECL_CLK\#		I, PU	PECL Input Clock.
4,5	TCLK $(0,1)$		I, PU	External Reference/Test Clock Input.
49, 51	QA(1,0)	VDDC	O	Clock Outputs.
42, 44, 46	QB(2:0)	VDDC	0	Clock Outputs.
31, 33, 35, 37	QC(3:0)	VDDC	0	Clock Outputs.
$\begin{aligned} & 16,18,20,22, \\ & 24,28 \end{aligned}$	QD(5:0)	VDDC	O	Clock Outputs.
9, 10, 11, 12	DSEL(A:D)		I, PD	Divider Select Inputs. When HIGH, selects $\div 2$ input divider. When LOW, selects $\div 1$ input divider.
2	TCLK_SEL		I, PD	TCLK Select Input. When LOW, TCLK0 clock is selected and when HIGH TCLK1 is selected.
8	PCLK_SEL		I, PD	PECL Select Input. When HIGH, PECL clock is selected and when $\operatorname{LOW} \operatorname{TCLK}(0,1)$ is selected
1	MR_OE\#		I, PD	Output Enable Input. When asserted LOW, the outputs are enabled and when asserted HIGH, internal flip-flops are reset and the outputs are three-stated.
$\begin{aligned} & 17,21,25,32, \\ & 36,41,45,50 \end{aligned}$	VDDC			3.3V Power Supply for Output Clock Buffers.
3	VDD			3.3V Power Supply
$\begin{aligned} & 13,15,19,23, \\ & 29,30,34,38 \\ & 43,47,48,52 \end{aligned}$	VSS			Common Ground
$\begin{aligned} & 14,26,27,39, \\ & 40, \end{aligned}$	NC			Not Connected

Note:

1. $P D=$ Internal Pull-Down, $P U=$ Internal Pull-Up.

B9949

Maximum Ratings ${ }^{[2]}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electric field; however, precautions should be taken to avoid application of any voltage higher than the maximum rated voltages to this circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range:
$\mathrm{V}_{\mathrm{SS}}<\left(\mathrm{V}_{\text {in }}\right.$ or Vout $)<\mathrm{V}_{\mathrm{DD}}$
Unused inputs must always be tied to an appropriate logic voltage level (either V_{SS} or V_{DD}).

DC Parameters: $\mathrm{V}_{\mathrm{DDC}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	PECL_CLK, Single Ended	1.49		1.825	V
		All other inputs	$\mathrm{V}_{\text {SS }}$		0.8	
V_{IH}	Input High Voltage	PECL_CLK, Single Ended	2.135		2.42	V
		All other inputs	2.0		$V_{\text {DD }}$	
$\mathrm{I}_{\text {IL }}$	Input Low Current (@ $\left.\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\text {SS }}\right)$	Note 3			-100	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	Input High Current (@V $\left.\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{DD}}\right)$				100	$\mu \mathrm{A}$
V_{PP}	Peak-to-Peak Input Voltage PECL_CLK	Note 4	300		1000	mV
$\mathrm{V}_{\text {CMR }}$	Common Mode Range PECL_CLK		$\mathrm{V}_{\mathrm{DD}}-2.0$		$\mathrm{V}_{\mathrm{DD}}-0.6$	V
V_{OL}	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$, Note 5			0.4	V
V_{OH}	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DDC}}=3.3 \mathrm{~V}$, Note 5	2.5			V
I_{DD}	Quiescent Supply Current	All $\mathrm{V}_{\mathrm{DDC}}$ and V_{DD}		1	2	mA
$\mathrm{C}_{\text {in }}$	Input Capacitance				4	pF

Notes:

2. The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.
3. Inputs have pull-up/pull-down resistors that effect input current.
4. The $\mathrm{V}_{\mathrm{CMR}}$ is the difference from the most positive side of the differential input signal. Normal operation is obtained when the "High" input is within the $\mathrm{V}_{\mathrm{CMR}}$ range and the input lies within the V_{PP} specification.
5. Driving series or parallel terminated 50Ω (or 50Ω to $\mathrm{V}_{D D} / 2$) transmission lines.

B9949

AC Parameters ${ }^{[6]}: \mathrm{V}_{\mathrm{DDC}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Notes:

6. Parameters are guaranteed by design and characterization. Not 100% tested in production. All parameters specified with loaded outputs.
7. Outputs driving 50Ω transmission lines.
8. 50% input duty cycle.
9. Outputs loaded with 30 pF each
10. Part-to-Part Skew at a given temperature and voltage

Package Drawing and Dimensions (52 TQFP)

52-Pin TQFP Outline Dimensions

Symbol	Inches			Millimeters		
	Min.	Nom.	Max.	Min.	Nom.	Max.
A	-	-	0.047	-	-	1.20
A_{1}	0.002	-	0.006	0.05	-	0.15
A2	0.037	-	0.041	0.95	-	1.05
D	-	0.472	-	-	12.00	-
D_{1}	-	0.394	-	-	10.00	-
b	0.009	-	0.015	0.22	-	0.38
e	0.026 BSC			0.65 BSC		
L	0.018	-	0.030	0.45	-	0.75

B9949

Ordering Information

Part Number	Package Type	Production Flow
B9949CA $^{[11]}$	52 PIN TQFP	Industrial, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

11. The ordering part number is formed by a combination of device number, device revision, package style, and screening as shown below.

Marking: Example: Cypress
B9949CA,
Date Code, Lot \#

Document Tital: B9949 3.3V, 160-MHz, 1:15 Clock Distribution Buffer Document Number: 38-07081

Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change
${ }^{* *}$	107117	$06 / 06 / 01$	IKA	Convert from IMI to Cypress
${ }^{*}$ A	108062	$07 / 03 / 01$	NDP	Changed Commercial to Industrial
${ }^{*} B$	109807	$02 / 01 / 02$	DSG	Convert from Word Doc to Adobe Framemaker
${ }^{*} \mathrm{C}$	122766	$12 / 14 / 02$	RBI	Add power up requirements to maximum ratings information

