CYT6166

Description

The CYT6166 series of fixed output low dropout linear regulators are designed for portable battery powered applications, which require low dropout voltage and low ground current. Each device contains a voltage reference unit, an error amplifier, a PMOS power transistor, and resistors for setting output voltage, and current limit and temperature limit protection circuits.

The CYT6166 has been designed to be used with low cost capacitors and requires a minimum output capacitor of 1.0µF. Standard voltage versions are 1.5, 1.8, 2.5, 2.8, 3.0, and 3.3V.

Features

- Typical Low Dropout Voltage of 203mV at 75mA.
- Guaranteed 150mA output over the full operating temperature range.
- Excellent Line and Load Regulation.
- > High Accuracy Output Voltage of 2%.
- > Typical Low Ground Current at 1mA
- > Current Limiting and Thermal Protection.
- > Standard SOT-23-3L, TO-92, and SOT-323-3L Package.

Applications

- Cellphones.
- > Wireless LAN's.
- > Hand-Held Instrumentation.
- Portable Video Game Devices.
- Digital Cameras.

Ordering/Marking Information

Package	Ordering Information		Marking Information		
	3.3V	CYT6166AHN	CYT6166AHN YYWW		
TO-92 N-Pinout	2.8V	CYT6166BHN	CYT6166BHN YYWW		
(Top View)	2.5V	CYT6166CHN	CYT6166CHN YYWW		
(② IN GND	1.8V	CYT6166DHN	CYT6166DHN YYWW		
	1.5V	CYT6166EHN	CYT6166EHN YYWW		
	3.0V	CYT6166FHN	CYT6166FHN YYWW	YY: year code	
	3.3V	CYT6166AHG	CYT6166AHG YYWW	WW: week code.	
TO-92 G-Pinout	2.8V	CYT6166BHG	CYT6166BHG YYWW		
(Top View)	2.5V	CYT6166CHG	CYT6166CHG YYWW		
GND OUT	1.8V	CYT6166DHG	CYT6166DHG YYWW		
	1.5V	CYT6166EHG	CYT6166EHG YYWW		
	3.0V	CYT6166FHG	CYT6166FHG YYWW		

CYT6166

Ordering/Marking Information (Continued)

Package	Ordering Information		Marking Information		
SOT-23-3L	3.3V	CYT6166ALN	1 <u>6</u> 6AN_		
N-Pinout (Top View)	2.8V	CYT6166BLN	1 <u>6</u> 6BN_		
3 о∪т	2.5V	CYT6166CLN	1 <u>6</u> 6CN_		
IN 2	1.8V	CYT6166DLN	1 <u>6</u> 6DN_		
1 GND	1.5V	CYT6166ELN	1 <u>6</u> 6EN_		
	3.0V	CYT6166FLN	1 <u>6</u> 6FN_		
SOT-23-3L	3.3V	CYT6166ALG	1 <u>6</u> 6AG_		
G-Pinout (Top View)	2.8V	CYT6166BLG	1 <u>6</u> 6BG_		
3 IN	2.5V	CYT6166CLG	1 <u>6</u> 6CG_	Starting with 1, a bar on top of 1 is	
GND 2	1.8V	CYT6166DLG	1 <u>6</u> 6DG_	for production year 2001, and	
1 оит	1.5V	CYT6166ELG	1 <u>6</u> 6EG_	underlined 1 is for year 2002. The next character is marked on top for	
	3.0V	CYT6166FLG	1 <u>6</u> 6FG_	2003, and underlined for 2004. The	
SOT-323-3L	3.3V	CYT6166APN	1 <u>6</u> 6AN_	naming pattern continues with	
N-Pinout (Top View)	2.8V	CYT6166BPN	1 <u>6</u> 6BN_	consecutive characters for later	
2 OUT	2.5V	CYT6166CPN	1 <u>6</u> 6CN_	years.	
IN 3	1.8V	CYT6166DPN	1 <u>6</u> 6DN_	The last character is the week code. (A-Z: 1-26, a-z: 27-52)	
1 GND	1.5V	CYT6166EPN	1 <u>6</u> 6EN_	code. (A-2. 1-20, d-2. 21-32)	
	3.0V	CYT6166FPN	1 <u>6</u> 6FN_		
SOT-323-3L	3.3V	CYT6166APG	1 <u>6</u> 6AG_		
G-Pinout (Top View)	2.8V	CYT6166BPG	1 <u>6</u> 6BG_		
2 IN	2.5V	CYT6166CPG	1 <u>6</u> 6CG_		
GND 3	1.8V	CYT6166DPG	1 <u>6</u> 6DG_		
111 олт	1.5V	CYT6166EPG	1 <u>6</u> 6EG_		
	3.0V	CYT6166FPG	1 <u>6</u> 6FG_		

CYT6166

Absolute Maximum Ratings⁽¹⁾

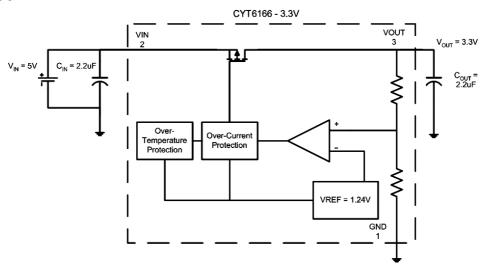
Supply Input Voltage (V _{IN}) 0.7V to +6V
Power Dissipation (P_D) Internally Limited ⁽³⁾
Junction Temperature (T _J)0°C to +125°C
Lead Temperature (soldering, 5 sec.) 260°C
Storage Temperature (T _S)40°C to +150°C

Operating Ratings⁽²⁾

Supply Input Voltage (V _{IN}) +2.0V to +5.5V
Junction Temperature (T _J) 0°C to +125°C
Package Thermal Resistance
160°C/W (TO-92)
230°C/W (SOT-23-3L)
250°C/W (SOT-323-3L)

Electrical Characteristics

 V_{IN} = 5V; C_{IN} = 2.2 μ F; C_{OUT} = 2.2 μ F; I_{OUT} = 10mA; T_{J} = 25°C; unless otherwise noted


Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
		CYT6166 - 1.5V	1.470	1.5	1.530		
		CYT6166 - 1.8V	1.764	1.8	1.836	V	
V _{OUT}	Output Voltage	CYT6166 - 2.5V	2.450	2.5	2.550	V	
V 001	Accuracy	CYT6166 – 2.8V		2.8	2.856	V	
		CYT6166 - 3.0V		3.0	3.060	V	
		CYT6166 – 3.3V	3.234	3.3	3.366	V	
ΔV_{OUT}	Line Regulation	$V_{IN} = V_{OUT} + 1V$ to 5.5V, $I_{OUT} = 10$ mA		1		%	
ΔV_{OUT}	Load Regulation (5)	V_{IN} = 5V; I_{OUT} = 10mA to 150mA		1		%	
	Output Voltage						
$\Delta V_{OUT}/\Delta T$	Temperature	Note 4		0.79		mV/°C	
	Coefficient						
		I _{OUT} = 10mA		20			
$V_{\text{IN}} - V_{\text{OUT}}$	Dropout Voltage (6)	I _{OUT} = 75mA		203		mV	
		I _{OUT} = 150mA		500			
т	Thermal	Thermal Protection Temperature		150		°C	
T _{PROTECTION}	Protection	Protection Hysterisys		20			
PSRR	Ripple Rejection	f = 120 Hz		51		dB	
IQ	Quiescent Current	I _{OUT} = 10mA		1	2	mA	
I _{LIMIT}	Current Limit		300			mA	

CYT6166

- Note 1: Exceeding the absolute maximum rating may damage the device.
- Note 2: The device is not guaranteed to function outside its operating rating.
- Note 3: The maximum allowable power dissipation at any T_A (ambient temperature) is calculated using: $P_{D(MAX)} = (T_{J(MAX)} T_A)/\Theta_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown. See "Thermal Consideration" section for details
- Note 4: Output voltage temperature coefficient is the worst case voltage change divided by the total temperature range.
- **Note 5:** Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 150mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
- **Note 6:** Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential.

Typical Application

CYT6166

Application Hints

Like any low dropout regulator, CYT6166 requires It is important that the thermal limit of the package is external capacitors to ensure stability. The external capacitors must be carefully selected to ensure performance.

Input Capacitor

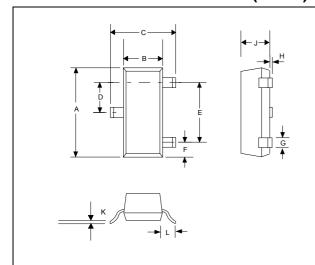
An input capacitor of at least 2.2µF is required. Ceramic or Tantalum can be used. The value can be increase without upper limit.

Output Capacitor

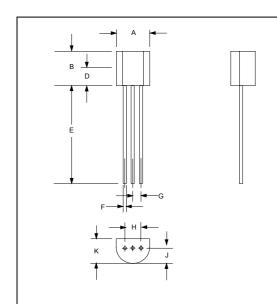
An output capacitor is required for stability. It must be placed no more than 1 cm away from the V_{OUT} pin, and connected directly between V_{OUT} and GND pins. The minimum value is 2.2µF but may be increase without limit.

Thermal Considerations

not exceeded. The CYT6166 has built-in thermal protection. When the thermal limit is exceeded, the IC will enter protection, and V_{OUT} will be pulled to ground. The power dissipation for a given application can be calculated as following:


The power dissipation (PD) is $P_D = I_{OUT} * [V_{IN} - V_{OUT}]$

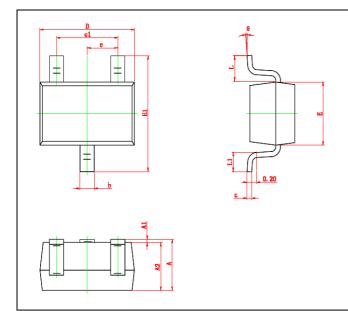
The thermal limit of the package is then limited to $P_{D(MAX)}$ = $[T_J - T_A]/\Theta_{JA}$ where T_J is the junction temperature, TA is the ambient temperature, and Θ_{JA} is around 250°C/W for CYT6166. CYT6166 is designed to enter thermal protection at 150°C. For example, if T_A is 25°C then the maximum P_D is limited to about 0.5W. In other words, if $I_{OUT(MAX)}$ = 150mA, then $[V_{IN} - V_{OUT}]$ cannot exceed 3.33V.


CYT6166

OUTLINE DRAWING SOT-23-3L (SC-59)

DIMENSIONS					
DIM	INC	HES	MM		
DIIVI	MIN	MAX	MIN	MAX	
Α	0.110	0.120	2.80	3.04	
В	0.047	0.055	1.20	1.40	
С	0.083	0.104	2.10	2.64	
D	0.035	0.040	0.89	1.03	
Е	0.070	0.080	1.78	2.05	
F	0.018	0.024	0.45	0.60	
G	0.015	0.020	0.37	0.51	
Н	0.0005	0.004	0.013	0.10	
J	0.034	0.040	0.887	1.02	
K	0.003	0.007	0.085	0.18	
Ĺ	-	0.027	-	0.69	

OUTLINE DRAWING TO-92



DIMENSIONS					
DIM^N	INC	HES	MM		
ואווט	MIN	MAX	MIN	MAX	
Α	0.175	0.205	4.445	5.207	
В	0.170	0.210	4.318	5.334	
Е	0.500	0.610	12.70	15.50	
F	0.016	0.021	0.407	0.533	
G	0.045	0.055	1.143	1.397	
Η	0.095	0.105	2.413	2.667	
J	0.080	0.105	2.032	2.667	
K	0.125	0.165	3.175	4.191	

CYT6166

OUTLINE DRAWING SOT-323-3L

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
A	0.900	1.100	0.035	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.000	0.035	0.039	
b	0.200	0.400	0.008	0.016	
С	0.080	0.150	0.003	0.006	
D	2.000	2.200	0.079	0.087	
Е	1.150	1.350	0.045	0.053	
E1	2.150	2.450	0.085	0.096	
е	0.650	TYP	0.026 TYP		
e1	1.200	1.400	0.047	0.055	
L	0.525	REF	0.021 REF		
L1	0.260	0.460	0.010	0.018	
θ	0°	8°	0°	8°	